
Imagen: Runtime Migration of Browser Sessions for
JavaScript Web Applications

James Lo
Department of Computer

Science
University of British Columbia

Vancouver, Canada
tklo@cs.ubc.ca

Eric Wohlstadter
Department of Computer

Science
University of British Columbia

Vancouver, Canada
wohlstad@cs.ubc.ca

Ali Mesbah
Department of Electrical and

Computer Engineering
University of British Columbia

Vancouver, Canada
amesbah@ece.ubc.ca

ABSTRACT
Due to the increasing complexity of web applications and
emerging HTML5 standards, a large amount of runtime state
is created and managed in the user’s browser. While such
complexity is desirable for user experience, it makes it hard
for developers to implement mechanisms that provide users
ubiquitous access to the data they create during applica-
tion use. This paper presents our research into browser ses-
sion migration for JavaScript-based web applications. Ses-
sion migration is the act of transferring a session between
browsers at runtime. Without burden to developers, our sys-
tem allows users to create a snapshot image that captures
all runtime state needed to resume the session elsewhere.
Our system works completely in the JavaScript layer and
thus snapshots can be transfered between different browser
vendors and hardware devices. We report on performance
metrics of the system using five applications, four different
browsers, and three different devices.

Categories and Subject Descriptors
D.3.2 [Software]: Programming Languages—JavaScript ; E.2
[Data]: Data Storage Representations—Object Representa-
tion

Keywords
JavaScript, session migration, HTML5, JSON, DOM

1. INTRODUCTION
The World Wide Web was originally designed around the

notion of uniquely identifiable resources. Using the URL of
a resource, the user could point to and load a specific state
of a website into their browser [15]. This simple stateless
client/server interaction contributed to the success of the
Web. However, due to increasing complexity of web appli-
cations (referred to as apps), considerable effort on the part
of developers is now required to achieve state persistence.

With the evolution of web technologies, browsers, and
HTML5 [5] a great deal of application state is being offloaded
to the client-side. In order to achieve more responsive apps,
JavaScript is increasingly used to incrementally mutate the
Document Object Model (DOM) in the browser to repre-
sent a state change, without requiring a URL change. Addi-

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13-17, 2013, Rio de Janeiro, Brazil
ACM 978-1-4503-2035-1/13/05.

tionally, with new HTML5 APIs apps can feature advanced
graphics, animation, audio, and video. Therefore, capturing
and migrating a particular state of an app is not as sim-
ple as saving and loading a URL any longer. It requires
developers to manually implement code for persisting the
transient browser state (i.e. state that normally would be
lost once a user closes a browser tab). While some libraries
and APIs [4, 7, 30] provide support for object persistence,
developers are still obliged to register and track individual
objects programmatically, which can be tedius and error-
prone. Since persistence is well-known to be a crosscutting
concern [34, 32], adding it to existing code is difficult because
it requires changes scattered across various modules. Fur-
thermore, such libraries only support persistence of simple
JavaScript objects, and not other application state such as
function closures, event-handlers, or HTML5 media objects.

In this paper, we investigate the use of session migration
to address this problem. Session migration is the act of
transferring a session between browsers, possibly on differ-
ent platforms, at runtime. We propose a novel technique
and tool, called Imagen1, for migrating client-side session
state of web apps across different browsers and devices. Our
technique enables end-users to seamlessly capture the run-
time client-side browser state at a desired instance, and later
restore that state in a different browser and continue using
the app from there.

While there is some previous work on Web app migra-
tion [3], that system only supports migration of traditional
data-structures and not full application runtime state which
include Javascript function closures, event-handlers, and
HTML5 media objects. Thus that approach is not appli-
cable to the type of applications supported and evaluated in
this research. Also, previous work [27, 2] on event-logging of
JavaScript could theoretically be applied for session migra-
tion. However, that work was intended for the purpose of
development-time debugging, and we show in our evaluation
that it is not practical for end-user session migration.

Imagen works through a combination of novel JavaScript
transformations. Such transformations can be applied in two
different ways: developer-initiated or user-initiated. The
developer-initiated transformation is applied by a software
developer to their code prior to application deployment. Al-
ternatively, end-users can enable the transformation them-
selves by using a provided transformation HTTP proxy. Ei-
ther way, no extra coding is required to achieve migration
of sessions.

1Imagen means image in Spanish.

This paper makes the following main contributions:
• We propose an automated generic and transparent ap-

proach for persisting and migrating the transient ses-
sion states of JavaScript web apps;

• We illustrate how entire client-side states, including
those in JavaScript function closures, event-handlers,
and HTML5 media objects can be captured and seri-
alized;

• We describe how the serialized session state can be
brought back to life in a different browser;

• We present the implementation of our approach in
a tool called Imagen2; an online video3 provides a
demonstration.

• We report the efficiency of our approach through an
empirical evaluation using five existing apps. Our re-
sults indicate that Imagen adds less than 10% execu-
tion overhead to all our test apps and less than 2% in
most cases.

2. MOTIVATING EXAMPLES
Robots Are People Too [35] (RAPT) is a side-scrolling
two player platform game. The game features different chal-
lenges, drones, and rewards. It invites gamers to invest suf-
ficient time and effort to finish levels and make progress. A
gamer may want to persist or migrate her session of game-
play for any of the following reasons:

• Strategy: She perceives a risky move ahead and wants
to seamlessly try again when it fails without repeating
previous effort.

• Time: She has to work on something else and wants
to close this game completely from the browser. A
reason could be to free up some system resources since
the game can be performance intensive.

• Location: She is going somewhere and wants to con-
tinue the game at another location or on another de-
vice.

The current version of RAPT does not provide a feature
for saving progress during a game. By using Imagen, end
users can persist and migrate such game state without re-
quiring developers to provide any additional coding.

SketchPad [13] is a painting app that makes use of the
HTML5 <canvas> tag. Once the painter has chosen to save,
the image gets saved to the Portable Network Graphics for-
mat (PNG); however there is no option in the app to load a
PNG later for further editing. By saving their browser ses-
sion using Imagen, a user can resume editing some picture
at any later time. Imagen also remembers and migrates all
the many configurable settings that SketchPad has, e.g. the
color palette, gradient, pattern, and tools settings. In the
current version of SketchPad all of these settings are lost
when a user closes their browser.

3. IMAGEN DESIGN
We start by presenting an overview of some challenges

in session migration (Section 3.1), followed by a high-level
architectural overview of the components involved in our
approach (Section 3.2).

2Source code is available at: http://www.cs.ubc.ca/
~wohlstad/imagen.html
3Video is available at: http://www.cs.ubc.ca/~wohlstad/
imagenVideo.html

1 // Attempt (and fail) to serialize the
2 //user’s session by JSONizing ’window ’
3 var snapshot = JSON.stringify(window);
4
5 // Attempt (and fail) to unserialize a
6 //user’s session by assigning
7 // parsed string to ’window ’
8 window = JSON.parse(snapshot);

Sample Code 1: Essence of Snapshot Imaging. This
code fails horribly on regular apps but becomes
possible using Imagen.

3.1 Challenges
In order to explain the technical challenges for session mi-

gration, we start from an incorrect strawman implementa-
tion of saving/loading a snapshot image of some browser
session (shown in Sample Code 1). In JavaScript, the global
variable window provides a context from which both native
browser APIs (such as the DOM) and application-specific
state (in the form of JavaScript objects) can be accessed by
programmers. JSON [22] is the popular serialization format
of JavaScript and can be used to serialize (JSON.stringify)
and unserialize objects (JSON.parse). Thus it would seem
reasonable that to migrate a user’s session, one might be
able to simply stringify the whole window object (line 3).
Ideally, this would return a string capturing all runtime state
needed for migration. Then later, on another browser, the
stringified snapshot could be parsed back into window (line
8) and the user’s session would resume. Unfortunately, this
will not work in practice.

Capturing a snapshot for migration is much more chal-
lenging, for a number of reasons:

1. Function Closures. In addition to objects, JavaScript
state includes function instances called function clo-
sures. This kind of function/object hybrid is not easy
to serialize.

2. Event-handler state. Event-handlers are the driving
force of execution in JavaScript. They create a sched-
ule of activity that is not supported by existing serial-
ization mechanisms.

3. HTML5 rich-media objects. Modern web applications
make use of rich-media objects from the HTML5 stan-
dard which have unique serialization requirements.

All of these problems need to be solved without intro-
ducing burden on the developer or end-user, in particular
Imagen should be:

1. Generic and Interoperable: End users should be able to
migrate a variety of apps and should have the freedom
to use a snapshot in any device of their choice.

2. Automatic: Enabling session migration should not re-
quire additional coding for developers and only minor
setup configuration.

3. Efficient and Scalable: End users should experience
the same level of interactivity as the original app.
This means Imagen’s overhead to the app’s execution
should be minimal.

3.2 Architectural Overview
We describe the components involved in the migration of

a running app, as depicted in Figure 1. The figure is divided
into two: the top half (Save Snapshot Flow), the bottom half

Figure 1: Imagen Architecture: (top) Starting up an app and saving a snapshot; (bottom) Loading a previ-
ously saved snapshot to a different device.

(Load Snapshot Flow). First, a user starts to load an app
in their browser and execute it as usual (1); e.g. entering
the URL or navigating from a search page. In order to make
migration possible, the JavaScript source code of an applica-
tion must be transformed and instrumented with additional
code. This can be done by the developers using a source
code processor, prior to deployment. Alternatively, instru-
mentation can be transparently injected by an end-user by
making use of a provided HTTP proxy which runs on the
user’s own machine (shown as (2) in the figure). Our tech-
nique supports both, and either way, no manual changes to
the application code is necessary. Transparency is important
because developers often mash-up 3rd party APIs into their
Web application. For example, RAPT embeds Analytics
and the minified version of jQuery, both hosted at Google’s
servers.

Ideally, there should be no noticeable change in the app’s
behavior after instrumentation. Using a simple GUI button
(added to the bottom of each web page by the instrumenta-
tion) a user can take a snapshot at any point during execu-
tion (3). This snapshot is then saved to a secondary storage
(4), either on a remote web service (Snapshot Storage in the
figure), or on the user’s local drive. Either way, the user
is provided with a URL, which can be used to retrieve and
load the snapshot.

Sometime later, the user opens a new browser, which can
be on a different device. In the example figure, the user mi-
grates the application from their desktop to a tablet (e.g.,
iPad). The user then enters the previously given URL in the
new browser (5). If instrumentation was provided by the ap-
plication developer, step (6) is not necessary. Otherwise at
(6), the proxy redirects the user’s browser to the original
URL where the snapshot was taken. However, rather than
returning the content at that URL, it returns the saved snap-
shot instead. This step allows the restored app to run in the
same browser security domain as the original application4.
After the app is loaded into the new browser, it seamlessly
continues exactly where it had left off (7).

4We assume the user trusts the proxy so no new security
threats are created by this technique.

4. TECHNICAL DETAILS
We continue to describe the challenges laid out in Sec-

tion 3.1 and the solutions we implemented.

4.1 Migrating Function Closures
The basic idea for capturing an app’s execution state is to

traverse and serialize its object graph [20]. However, certain
“edges” in this graph cannot be traversed by the application
itself and are kept as internal browser state. These “edges”
correspond to the links between functions and closure-bound
variables. In this subsection, we describe the problem of
closure-bound variables and our solution through an exam-
ple. We have made this example as simple as possible, just
to focus on the essential problem created by closures.

4.1.1 Example of Closure Usage
In JavaScript, functions act as both executable code and

objects. Like objects, functions can have properties assigned
to them and they can be assigned as values to properties of
other objects. Also, there can be many instances of the same
function type. Whereas in static languages such as Java, we
may assume that functions exist when a program first starts,
in JavaScript, function instances are created dynamically
when the statement where they are defined is executed. At
the moment when they are created, they also become asso-
ciated with certain variables that were in scope when they
were created. This is referred to as creating a function clo-
sure [1] (i.e. closure). While JavaScript has been criticized
for some poor language design decisions, closures have been
recognized as one of its good qualities [11].

Sample Code 2 presents a simple counter using a func-
tion closure. On line 1, a function is defined called Cre-

ateCounter, which takes as an argument a count_val to
be used as the counter’s initial value. On line 2, a new
object is created for the counter, and on line 3 a function
is added to the object. This function (lines 3-6) takes an
argument to increment and then prints the counter to the
screen. The counter state is captured as a closure-bound
variable count_val simply by referring to the name of the
argument passed to CreateCounter (on line 1).

Closure-bound variables allow programmers to create ref-
erences between: (a) variables in a created function and (b)

1 function CreateCounter(count_val) {
2 var count = new Object ();
3 count.inc = function(add) {
4 count_val += add;
5 alert(count_val);
6 };
7 return count;
8 }
9 // Example usage of CreateCounter:

10 window.myCounter = CreateCounter (10);
11 window.myCounter.inc(5); // prints ‘15’

Sample Code 2: Example use of closures.

1 function CreateCounter(count_val) {
2 var CreateCounterScope = new Object();
3 CreateCounterScope.count_val = count_val;
4 var count = new Object ();
5 count.inc = function(add) {
6 count_val += add;
7 CreateCounterScope.count_val = count_val;
8 alert(count_val);
9 };

10 count.inc.parentScope = CreateCounterScope;
11 return count;
12 }

Sample Code 3: Example of closure instrumentation
for CreateCounter.

objects that are referenced in the scope that the function is
created. For example, in Sample Code 2 we see (a) inc being
created on line 3 with the closure-bound variable count_val

on line 4 and 5. These references on line 4 and 5 refer to (b)
the object passed as parameter count_val on line 1. This
link is simply achieved by using the same variable name in
the created function as some variable that appears in the
scope it is created.

Closure-bound variables are different from local variables
because they exist for the lifetime of a function object, not
simply during one execution of the function. For example,
when some execution of CreateCounter goes out of scope,
the created function inc will still refer to the object that
had been passed as the parameter to CreateCounter.

Suppose the example code in Sample Code 2 on lines 11-12
is executed. At this point a counter object is easily accessible
through window.myCounter. Furthermore, the inc function
can be accessed as window.myCounter.inc. However, inter-
estingly, it is not possible to access the counter’s actual state
(referred to as count_val). Thus there is no straightforward
way to serialize this counter so that it can migrate or persist
for another browser session. It is important to note that this
is true for any closure-bound variable and is not specific to
this example.

To solve this problem we instrument JavaScript code to
monitor the use of closures in an application so that we
can reliably serialize and unserialize execution. We describe
this solution in five parts: (i) explicit scope, (ii) monitor-
ing changes to closure variables, (iii) associating scopes with
functions, (iv) closure serialization, and (v) closure loading.

4.1.2 Closure Saving
First, to deal with (i), we make closure-bound variables

available to our system by instrumenting the code. This is

1 function CreateCounterScope_1 () {
2 var count_val = 15;
3 objIndex[ID].inc = function(add) {
4 count_val += add;
5 alert(count_val);
6 };
7 }

Sample Code 4: Example of generated code for
closure restoration after migration.

done to explicitly keep track of a scope object for each func-
tion execution which has variables that will be referenced
by closures. This is demonstrated in Sample Code 3. Our
instrumentation code is shown in italic. On line 2 we cre-
ate an object that will track the scope of CreateCounter

executions. Notice that for the function count.inc there is
no corresponding explicit scope object. This is because that
function has no variables that will be referenced by closures
(this is clear because it has no functions defined in its scope).

Once a scope object is created, all of the variables that
will be referenced by closures are added to the object, so we
can keep track of their values. This occurs for example on
line 3, where the variable count_val is added to the newly
created scope object.

Second, to monitor changes to closure variables (ii), when-
ever a variable that has been added to an explicit scope ob-
ject is assigned to, we assign the same value to the property
of the scope object which is responsible for monitoring that
variable. This is shown on line 7. When count_val is in-
cremented by add we change the explicit scope object to the
updated value. This ensures that the values in the explicit
scope object are always an accurate reflection of the actual
program state.

Third, at this point we have a “mirror” of the closure-
related program state. Essentially, by keeping a copy of this
state in the application, we now have access to it for serial-
ization. However we still need to keep track of which scope
objects are used by which function objects. To assign our
scope objects to functions (iii), we attach the explicit scope
objects directly to the functions that use them. Since func-
tion definitions form a tree-like hierarchy, each function is
matched to the scope object of its parent function (imme-
diately enclosing function). This is shown in line 10, im-
mediately after the function count.inc is created, we bind
the explicit scope object of its parent to the function with a
special property (parentScope).

Fourth, now that we have a data-structure modeling the
closure-bound variables, their values, and the relationships
between the function scopes, dealing with serialization of
closures (iv) is straightforward. Whenever a function object
is encountered by our serializer, the following information
is serialized: the name of the function and the hierarchy
of explicit scope objects reachable through the special par-
entScope property.

4.1.3 Closure Loading
Finally, this serialized closure information needs to be

restored (v), possibly on another browser. However, it is
not trivial to recreate the binding between each closure-
bound variable and the value it had at the time of seri-
alization. For example, consider the example code at the

end of Sample Code 2. Imagine we take a snapshot of this
program after these two lines execute, in browser A, and
then restore it on another browser B. Now if a call to win-

dow.myCounter.inc(2) is made in B, it must respond with
an alert of ‘17’. But how do we get the variable count_val in
the restored version of window.myCounter.inc to reference
its properly restored value of 15, which was taken at browser
A? Or in other words, how does a generic tool-driven trans-
formation provide this without understanding the semantics
of the program?

A naive solution would be for our tool to call the function
CreateCounter passing an argument of 15. In this particu-
lar case, it would create a new counter object with the initial
value 15. However, a tool could not discover these seman-
tics of the program in the general case because it would re-
quire a sound and complete static data-flow analysis, which
is known to be undecidable [24, 29]. Furthermore, if Cre-
ateCounter had side effects, these side-effects would be trig-
gered upon session migration, which would violate the orig-
inal program semantics. For example, if the function Cre-

ateCounter issued an XMLHttpRequest (XHR) request, then
calling the function for the purpose of restoring a previous
program state would cause the XHR to be duplicated.

Instead, our solution involves generating new code that
causes closure-bound variables in functions to become bound
to their properly restored values. We unserialize the explicit
scope object for the execution of a function by generating a
new function, as shown in Sample Code 4.3.1. We generate
one variable declaration for each value saved in the scope
object. For example, on line 2, the count_val variable is
defined and assigned to its current value. Recall that this
code is generated so we can insert whatever values are nec-
essary into the text of the code to initialize variables. In this
case, count_val is assigned its current value of ‘15’.

When a snapshot is restored, this code is evaluated by
the target browser, recreating the closures and binding their
closure-bound variables to the proper values. We can see
this in lines 4-8. We keep a map called objIndex, which
contains all objects that are being restored during deseri-
alization. This map is indexed by a unique ID assigned to
each unique object, because there can be multiple references
to the same object, including self- or circular- references. In
our example, objIndex[ID] points to our counter object. In
order to restore the function property inc for our example
counter, the function definition for inc is generated inside
the scope of our generated function that models its parent
scope CreateCounterScope_1. Now the new copy of inc

has its count_val variable bound to the appropriate value
of ‘15’ using the standard mechanism for binding closure-
bound variables. If a call to this counter is made now with
an argument of ‘2’, it will appropriately respond with ‘17’.

Our index is extensible so that developers can define how
each object type is (de-)serialized. For example, we extended
our index to cover native objects such as Dates and Arrays.

4.2 Event Handlers
In order for a web app’s state to migrate, we need to

capture and restore its event state. To explain this challenge
and our solution, we first start with a brief explanation of
the salient details of the JavaScript event-model.

4.2.1 Relevant JavaScript Event Basics
Browser embedded JavaScript provides a single-threaded

concurrency model for handling the browser’s user inter-
face. Programmers register event-handler functions with
some event type that should trigger them, e.g. when a but-
ton is clicked by the mouse. When such an event occurs, any
corresponding event-handlers become queued for execution.
Since handling of events is single-threaded, event-handlers
may not actually begin execution immediately when their
corresponding event is triggered. If another event-handler is
executing at that time, other event-handlers are placed on
an active queue and are serviced by the browser generally
using a first-in-first-out (FIFO) policy.

In order to monitor event handler registration, we instru-
ment the APIs that are used to register events (e.g. addE-

ventListener). Additionally, when each handler function is
registered, we wrap that function with a Decorator [17], that
records when the handler execution begins and when it com-
pletes. This is needed so we can monitor which events have
completed and which are still pending (further details de-
scribed below). Since our transformation for closures allows
functions to be included in a snapshot it is easy to include
each event-handler function as well. However, some types of
events (especially timer events) require special treatment, so
we divide them into three categories and describe the differ-
ences below.

4.2.2 Event Categories
Based on the HTML5 specification, we divide event

types into three categories with differing behavior from the
perspective of migration.

UI Events: When a relevant event occurs on a given UI
element, any corresponding handler function is added to the
end of the active queue. UI Events do not require any tech-
nical solution because of the FIFO policy of browsers. When
Imagen is asked to save a snapshot by the user, this request
is added to the end of the active queue, so any relevant
event handlers already queued because of previous UI in-
teractions are guaranteed to execute before the snapshot is
taken. When restoring a snapshot, we intercept and inhibit
onload events because they can have detrimental side-effects.

Asynchronous I/O Events: JavaScript uses an asyn-
chronous model for handling I/O requests that could po-
tentially have high latency (such as XHR). For this purpose
JavaScript requires a callback function to be registered to
receive a result from an I/O request. Results which are
pending at the time of a snapshot can pose a challenge. For
this reason, we capture all requests for I/O in our instrumen-
tation of JavaScript. If a snapshot is taken when a response
for some request has not yet occurred, we record the request
in the snapshot. Later, when a snapshot is loaded, we replay
such requests so that the result can arrive at the migrated
location.

Timer Events: Event-handlers can be registered to start
executing after some given time has elapsed. We refer to the
time that a handler is registered at as treg and the time to
elapse as interval. Such handlers come in two flavors, (1)
setTimeout causes a handler to execute one time only. At
time treg + interval, the browser will add the corresponding
handler function to the active queue; (2) setInterval causes
a handler to execute periodically for a given interval. Here,

Figure 2: setInterval example. Time flows from left
to right along the axis (top) at Browser 1, and (bot-
tom) at Browser 2.

the browser will add the handler function at time treg +
interval∗x for all integers x > 0. If any timers are scheduled
to execute when a snapshot is requested, this schedule needs
to be saved. Dealing with timers is more complicated than
for the other two categories, so we describe our solution in
more detail below.

4.2.3 Saving and Loading for Timers
We describe here how we handle the case of setInterval

timers as setTimeout is a simpler case of this general behav-
ior. As in the illustration of Figure 2, suppose a script reg-
isters a setInterval in some browser (Browser 1) at some
time, treg. Let the time of the interval registered be interval.
Now suppose the user requests a snapshot at some time,
timg, where timg > treg. This scenario is illustrated on the
top timeline of the figure.

At this point, the registered event-handler needs to be
activated at some time in the future. Since the future time
may occur when the app has migrated to another browser,
Imagen must handle this case. To handle this, we record the
residual time, ((treg − timg) mod interval), in the snapshot,
labeled as r in the figure. This represents the time remaining
until the handler should be activated.

Later, suppose a snapshot is transferred to another
browser (Browser 2), depicted by the dotted line in the fig-
ure. At this time, t0, Imagen automatically re-registers
a setTimeout handler in the new browser but setting the
timeout to the recorded residual value. This will cause this
shorter interval to activate only once after restoration. After
the handler has executed once on the short interval, it then
needs to resume on the original interval at time trereg. To
achieve this, we use our injected decorator code to re-register
the original setInterval immediately after the handler has
executed once on the short residual interval. Now the inter-
val will continue executing seamlessly without unexpected
changes in runtime behavior.

4.3 HTML5
A traditional JavaScript object is simply a set of key-

value pairs (i.e. a map or dictionary). However, native
browser objects such as those commonly provided by the
newer HTML5 APIs include some objects which have differ-
ing behavior from traditional objects. In our research, we

1 img = document.createElement("img");
2 img.src = "http :// example.com/img.jpg";
3 pattern = canvas.createPattern(img);

Sample Code 5: Example of CanvasPattern (an
opaque HTML5 object).

first implemented our solutions to the problems of function
closures and event-handlers described in Sections 4.1 and
4.2. We then attempted to use our prototype on existing
web sites. This trial uncovered two new problems related to
HTML5. These observed problems are related to “opaque”
objects and stream resources.

4.3.1 Opaque Objects
Traditionally, the entire state of an object can be accessed

through its properties. So including the state of an object in
a snapshot simply requires enumerating property values (i.e.
as would be done by JSON). However, some HTML5 objects
include state which is not accessible through its properties.
These objects are referred to as “opaque” in HTML5 speci-
fications (e.g. [8]).

An example is illustrated in Sample Code 5 with an
HTML5 CanvasPattern object. On line 1, an HTML

is created and the source URL is set on line 2. On line 3,
an image pattern is created from this image. Such patterns
are used, for example, to create a tiled background from a
single image tile. The function call on line 3 yields our result
assigned to the pattern variable.

If we are to save a snapshot for an app which includes
the pattern, we need to know which image URL is to be
used by the pattern. Unfortunately, although the API uses
an image to construct the pattern, there is no correspond-
ing “getter” in the API to interrogate which image was re-
sponsible for the pattern. In other words, we would like to
use something like pattern.img to determine this associa-
tion since this is how traditional JavaScript objects maintain
properties. However, in this case such state simply becomes
hidden to JavaScript behind the native implementation of
the browser, i.e. pattern is opaque and hides its internal
structure.

To deal with this problem, our instrumentation intercepts
HTML5 API functions which construct or mutate opaque
state. We record both the function name being called and
all of its arguments. We associate these records with the
opaque object being created or mutated. This yields a log
associated with the opaque object in our snapshot. Later,
when we load a snapshot, to recreate the object state, we
replay this log of function calls.

Note that theoretically, we could use the same log replay
approach for all objects (not just the opaque HTML5 ob-
jects). However, this would yield a log size which is imprac-
tical. We evaluate this further in

4.3.2 Stream Resources
Similar to“opaque”objects, streaming media objects, such

as <audio> and <video> objects, do not behave like tradi-
tional objects. This is because the state of the object con-
sists of a data stream which is progressively buffered over
time. Such buffers are generally too large to include in a
snapshot, so it is more practical to reload them from their
original location after migration. However, since loading of

these objects is an asynchronous operation, resuming exe-
cution of a snapshot that includes them creates difficulties
synchronizing their playback with the script execution.

An example of this problem occurred when we applied one
of our earlier prototypes to the ColorPiano app [12]. Color-
Piano is a piano teaching animation. As a song is played, the
app animates a slider of sheet-music notes and animates keys
playing each note. Session migration would be useful here as
it allows piano students to pause and resume at any partic-
ular positions in any songs they are practicing. ColorPiano
does not include this feature in its current implementation.
However, when we loaded a saved snapshot of ColorPiano,
we noticed that the animation and the audio became out
of synch. This is because upon loading the snapshot in a
new browser, the audio stream was not yet ready to play at
the position of the song where we had left off. The problem
is clearly not specific to ColorPiano but is general for any
applications using Imagen with such media objects.

To deal with this, we make use of support for random
seeking in HTML5 and modern media servers. This al-
lows scripts to initiate buffering at any position in a stream.
When a snapshot is saved, we record the stream position of
each media object and its status (whether it is playing or
paused). Then when a snapshot is loaded we request that
playback for these objects resume at the position recorded
in the snapshot. We are able to use a function in the
HTML5 specification called seekable to determine when the
buffer for these objects is playable at the specified position.
Once all the playing objects are playable at their previously
recorded snapshot position, we allow the original execution
to resume, as it is now synchronized with media. Because
we control the seeking, we intercept events triggered by our
code and prevent them from causing side effects.

For example, in ColorPiano, this creates an additional de-
lay of a few seconds when loading a snapshot (specific data
provided in the evaluation). However, once the snapshot
resumes, the sheet music animation and the corresponding
audio resume seamlessly.

4.4 Other implementation details
Our implementation consists of two main parts: a source

code transformation for JavaScript (written in Java) and a
library of JavaScript functions.

The Java-based transformer is built on top of Mozilla’s
Rhino open-source project. It provides us JavaScript in the
form of abstract syntax trees (ASTs) which we then analyze
and transform with our own code. Our own Java code is
6,923 lines. The transformer can be run by a developer
through the command-line to transform their JavaScript
code. Alternatively, the transformer can be hosted in an
HTTP proxy by any user. We added a plugin to the Web-
Scarab [36] proxy for this purpose. In the future we plan to
implement this proxy feature as a browser plugin also.

Our JavaScript library is injected into a app by the trans-
former (by inserting <script> into the DOM). The library
performs most of the work of saving and loading snapshots.
It retrieves information that was stashed away by the instru-
mentation. This information is combined with other data
available through window to build a JSON formatted snap-
shot file consisting of: function closures, plain JavaScript
objects, event-handlers, media objects, the DOM, and op-
tionally any cookies for the web app. To JSONize the DOM

we make use an existing library called JsonML [23]. Our
own JavaScript library is 5,028 lines of code.

Cookies can be included so the same app can continue
running without interruption on another browser even when
cookie data is used by the app. Since users are in control of
their own snapshot data, this does not leak the user’s cookies
to any third-party. However, since some users may want to
share their snapshot with others, this feature is optional.
In our experience, if cookies are required by the app, but
they are stripped from the snapshot, the app will treat the
user as though their session had timed out. In that case,
a user would simply need to provide any credentials (such
as username and password) another time when they load a
snapshot.

5. EVALUATION
We evaluated Imagen from the perspective of a number

of research questions:
1. Is it possible to serialize a snapshot of the execution

state of a running JavaScript app and resume execu-
tion on another browser? This is evaluated by using
five different apps from three domains: gaming, data
visualization and multimedia.

2. Is the performance of Snapshot efficient enough for
practical use? This is evaluated through a number
of performance metrics divided into three categories:
Instrumentation (Section 5.1), Execution Overhead
(5.2), and Snapshot Lifecycle (5.3).

3. To what extent can this work for different browsers,
and devices? This is evaluated by performance metrics
for one app across four browsers and three devices.

4. For the purpose of session migration, how does the ap-
proach of Imagen compare to MugShot’s approach of
event logging [27]? This is evaluated by a compari-
son of snapshot (or log) size for each approach (Sec-
tion 5.4).

Evaluation was performed on a number of different
browsers and devices. Unless otherwise stated, measure-
ments come from Google Chrome v.23, running on a Win-
dows 7 quad-core 2.8GHz laptop with 8GB of RAM.

We evaluated metrics across five HTML5 apps:
1. Robots are people too (RAPT): A side-scrolling game

as described in Section 2.
2. Convergence: A puzzle strategy game [9].
3. SketchPad: An image editor as described in Section 2.
4. Genoverse: A genome browser [18]. Session migra-

tion is important for Genoverse because of the magni-
tude of data that users need to navigate. While Gen-
overse allows users to tag certain locations in a gene
sequence for reference in navigating data, such tags
are not saved across sessions. Imagen allows tags and
other session-specific data to be saved in Genoverse
without any additional programming labor.

5. ColorPiano: A piano teaching animation program as
described in Section 4.3.2.

5.1 Instrumentation Overhead
Figure 3 shows several metrics related to our JavaScript

instrumentation. This occurs at item (2) in the Save Snap-
shot Flow (Figure 1). The table includes columns for: the
application tested, the aggregate size of JavaScript files, the
increase in size due to our instrumentation, and the time of
instrumentation. From the third column (JS Size Increase)

App JS Size JS Size Instrumentation
Name Original Increase Time

(kB) (%) (ms)

RAPT 225 24% 702
Convergence 381 18% 780
SketchPad 200 13% 566
Genoverse 349 14% 801
ColorPiano 236 16% 636

Figure 3: Instrumentation metrics for a number of
apps.

we can see that our instrumentation adds less than 25% to
the aggregate file size in all cases. We could reduce this size
somewhat in the future if we implemented JavaScript mini-
fication. The number varies between applications because
the instrumentation depends on which language features or
APIs are used. In the fourth column, we see time taken by
our proxy to instrument JavaScript files. In the case where
JavaScript is transformed on-the-fly this extra time is likely
to be noticeable by the end-user, however, it was less than
one second in all cases. For cases where a developer applies
our transformation offline, this instrumentation time is not
perceived by the end-user.

5.2 Execution Overhead
Since our approach requires JavaScript code to be instru-

mented, it will have some overhead during execution. This
metric measures that overhead by profiling applications with
and without our instrumentation. This corresponds to over-
head incurred at steps (3) or (7) in Save Snapshot Flow
or Load Snapshot Flow. Execution times are measured by
wrapping each event handler execution with a Decorator
that records clock time before and after the handler. These
elapsed times for handler execution are aggregated over one
minute of program activity to record the time spent by the
browser executing JavaScript. These measurements are av-
eraged over 10 trials, then compared for the case of instru-
mented and uninstrumented versions of the app.

The execution overhead could be affected by both: (i) the
browser used to host the application or (ii) the particular
application which is running. This yields three-dimensions
of data (metric, browser, and application). However, while
it is interesting to see how the metrics are affected for each
browser or each application, there is not much useful infor-
mation to be gleaned for each combination of browser and
application together. So we present the data in two dif-
ferent two-dimensional tables. First, for the case of varied
browsers and device5 (Table 4) with the application chosen
as RAPT. Then, second, we present the data for the case
of varied applications (Table 5), with the browser chosen as
Chrome.

In Figure 4 we see the execution overhead for RAPT in the
fourth column. We performed the same test case for each
row6. Clearly, the device and browser has an effect on this
overhead, but in all cases it was less than 10%. The reason
this number is fairly low is because, although features like
closures, events, and HTML5, are important, the majority of

5The Mac is a 2.2GHZ i7 with 8GB RAM running OS X
10.7.3
6We simply move the character in one direction continuously
since this is easily repeatable.

App Browser Device Imagen
Name Type Type Exec. Overhead

(%)

RAPT Chrome PC 1.4%
RAPT Firefox 17 PC 3.8%
RAPT IE 9 PC 9.5%
RAPT Safari 6 Mac 2.9%
RAPT Safari 5.1.1 iPad 2 8.0%

Figure 4: Execution Overhead for RAPT across a
number of browsers and devices.

JavaScript statements are not using these features directly.
Our instrumentation only needs to be added for those state-
ments directly using these features. Since the overhead was
very small for Chrome on our PC laptop, we hope that this
level of overhead could be achieved for the other platforms
through further optimization. We chose RAPT to evaluate
on several platforms as it was the most CPU intensive app
in our group.

Figure 5 shows the overhead for the other apps on our
PC using Chrome. Here the overhead is even lower which is
likely due to the fact that they simply use less of those afore-
mentioned features, per line of JavaScript, than RAPT. To
ensure the same test case is used for the instrumented and
uninstrumented version, we use a UI recorder/playback pro-
gram [21]. For all 5 apps we we verified successfully through
simple inspection that the program execution resumed after
migration without errors.

App Imagen
Name Exec. Overhead

(%)

Convergence 0.97%
SketchPad 0.21%
Genoverse 0.43%
ColorPiano 1.2%

Figure 5: Execution Overhead for apps on PC
Chrome.

5.3 Snapshot Lifecycle
The metrics related to the snapshot lifecycle are:
• Snapshot Save Time: The time it takes to create a seri-

alized snapshot of the running application’s execution
state, in milliseconds. This occurs immediately before
step (4) in the Save Snapshot flow.

• Snapshot Load Time: The time it takes to recreate
a running application from a given serialized snap-
shot of the execution state, in milliseconds. This takes
place immediately before step (7) in the Load Snap-
shot Flow.

• Snapshot size: The size of the serialized snapshot
which would need to be transferred over the network
for migrating between devices, in megabytes. This is
the amount of data which needs to be transferred dur-
ing step (4) or (6) in either Save Snapshot or Load
Snapshot Flow.

In Figure 6 data is provided for the time to save and load
a snapshot for each of the apps. The first bar in each column
shows the save time, with the second bar showing the load

RAPT Conv. SketchPad Geno. Piano

0

1

2

3

4

5

0.85 0.99 1.1
0.91

3.6

0.5

1.7

0.98 1.1

4.7
S
av

e
o
r

L
o
a
d

T
im

e
(s

ec
o
n
d
s)

Figure 6: Snapshot Save Time (solid) and Load
Time (striped) for: RAPT, Convergence (Conv.),
SketchPad, Genoverse (Geno.), and ColorPiano (Pi-
ano).

time. Unsurprisingly the time to save and the time to load
appear to be correlated, for example, ColorPiano has both
the highest save and load time. Examining Figure 7 we see
this correlation carries over somewhat to the snapshot size,
although not precisely. On one hand, it makes sense that
ColorPiano has both the highest save time and the largest
snapshot size. On the other hand, RAPT has the fastest
save-time but not the smallest snapshot size. This is likely
due to the fact that RAPT carries most of its state in one
large canvas object so there are few objects in RAPT for our
tool to process, whereas other apps have their state spread
across many more fine-grained objects which each require
separate processing.

App Snapshot
Name Size

(MB)
RAPT 2.037
Convergence 2.417
SketchPad 1.953
Genoverse 1.379
ColorPiano 8.329

Figure 7: Snapshot Size for a number of apps.

Figure 7 shows the uncompressed size of a snapshot taken
for each of these apps after we used the application for a
short period, for example, playing RAPT or scribbling on
the SketchPad for a minute. These actions taken by a user
do have some effect on the snapshot size, but for the most
part, the size does not vary greatly over time (this is shown
further in Section 5.4). This is true unless a large amount
of new data is actually generated by the user, e.g. finishing
a detailed painting in Sketchpad. However, it that case we
expect the user would want that data saved anyway, so it
probably wouldn’t be considered as an overhead imposed by
Imagen. For three of the apps, the snapshot size was about
2MB or less. This amount of data is likely to be saved and
transferred by any user without any problem. We believe

even the case of ColorPiano at 8MB is still modest. It is
certainly possible other apps we have not tested vary greatly
from these numbers although these apps do cover a range of
different web app use cases.

5.4 Snapshot Size vs. Mugshot Log Size
In theory there are two ways to recreate the state of a

program: state-capture or event-playback. Imagen works
through state-capture: at a given instant in time the com-
plete state is recorded to stable storage. On the other hand,
Mugshot [27] is an existing approach that provides event-
playback for Web applications: each event that occurs dur-
ing program execution is recorded in a log and the log can be
used later to playback the application to some state. State-
capture has the advantage that recording size is limited by
the size of the application state. Event-playback has the ad-
vantage that a user can return to any point in the history of
execution.

Here we address our fourth research question and demon-
strate why state-capture is a more practical solution for sup-
porting browser session migration. The evaluation is not
intended to show that Imagen is better than Mugshot, be-
cause Mugshot was not even designed as a tool for session
migration. Mugshot uses event-playback because that ap-
proach is useful for the purpose of debugging. Regardless of
this evaluation, Mugshot would continue to be a better tool
for its intended purpose of debugging. However, since our
focus is on migration, we show why Imagen is practical in
this regard.

The problem with event-playback, which we demonstrate
here, is that the event log grows without bound as execution
continues. For the purpose of session migration, this would
create a limit on the amount of time a user can use an app
before migration became intractable. The only way to avoid
this problem is to create a checkpoint which captures the
state at some point, relieving the need for the event-log up
to that checkpoint. This is precisely what Imagen does.

In a previous paper on Mugshot, measurements were pro-
vided which show the growth rate of the size of the event
logs for some apps. Here we compare the size of a Imagen
snapshot for the same apps versus the size of those logs as
they grow over time.

The first comparison is provided for a PacMan clone [10].
The log growth rate during gameplay was given by Mugshot
as 75kB per minute. This means that after four minutes the
log size for Mugshot would already be 300kB whereas in our
measurements the Imagen the snapshot size continues to
be roughly 25kB regardless of how long the game is played.
While 300kB is not large, this trend places an unnecessary
time limit on the user. Also, this size is modest because
this application only relies on keyboard events which are
usually less frequent than mouse events (mouse events must
continuously track screen position). The next comparison
shows how the case is worse for these commonly used event
types.

This second comparison is provided for a paint program
called Canvas Painter [33]. The log growth rate was given
by Mugshot as 795kB per minute. This is shown in Figure 8
interpolated over the period of four minutes. For Imagen,
we took the snapshot size at each one minute interval, over
a period of four minutes. The activity provided as input
is simply random pencil drawing on the canvas. Now we
see a large difference as the Mugshot log grows to 3MB in

0 1 2 3 4

0

1,000

2,000

3,000

Time (min)

L
o
g

o
r

S
n
a
p
sh

o
t

si
ze

(k
B

)

Mugshot Log Size Imagen Snapshot Size

Figure 8: Imagen snapshot vs. Mugshot Log Size
for Canvas Painter.

only four minutes, whereas for Imagen the snapshot size
grows slowly. After only thirty minutes, the event logging
approach would most likely be impractical for session mi-
gration. While difficult to see in the graph, the Imagen
snapshot grows from 23kB to 26kB over the four minute
interval.

While it is possible for an event log to be more efficient
than a state snapshot at the early part of program execution,
event logs will always grow without bound. A combination
of checkpointing and event logging could possibly bring some
benefits for session migration, however, this was not needed
for any of the applications we looked at and Imagen’s ap-
proach never resulted in a snapshot larger than 9MB. This
evidence suggests that for the specific case of session migra-
tion, state capture is a more practical approach.

6. RELATED WORK
State synchronization. State synchronization can be seen
as a special form of state migration. For instance, Amazon
Kindle’s WhisperSync and Chrome browser’s sync support
synchronizing bookmarks across different devices. Online
tools for collaborative editing or browsing synchronize the
DOM’s tree structure [6, 16, 19, 26]. Sync Kit [4] and Re-
plets [37] replicate server data of apps to the browser but do
not handle other runtime state such as closures or events.
WedPod [31] offers cross-device browsing by implementing
a special purpose Linux-based browser that persists a ses-
sion. Imagen runs in JavaScript on existing browsers across
multiple devices.

Deterministic Replay. Deterministic replay is primarily
used by event-capture/replay testing and debugging tools
[2, 27]. These tools allow advanced developers to revisit
any recorded program state to track down bugs. However,
deterministic replay also requires constantly logging the ap-
plication’s dispatched events. Our evaluation indicates that
these logs are not likely to be practical for use by end users
in session migration.

Object Serialization and Persistence. As described in
the introduction, using a persistence library [4, 7, 30], the
programmer still has to manually register and manage indi-

vidual objects. Moreover, persistence is a cross-cutting con-
cern, so scattered changes are need over the application’s
code, making it less maintainable.

The automated and generic nature of our instrumentation
makes our approach transparent and helps developers keep
their original source code intact. While our previous work [7]
helped to automate database tasks related to persistence of
JavaScript objects, it did not handle the runtime state of
function closures, event-handlers, or HTML5 media objects
that we addressed in this paper related to the migration of
running browser sessions. Similarly, previous work on Web
app migration [3] did not address these issues.

Server Side Process Migration. Server side process mi-
gration [28, 14, 25] transfers a system level process between
two machines and is used for administration tasks such as
load balancing and fault-resilience. Process migration hap-
pens in the kernel so implementation is quite complex. Such
systems work at a lower-level of abstraction handling issues
such as memory page allocation and thread scheduling. Our
work focuses on a new domain where the Web browser be-
comes the“operating system”. Traditional process migration
which suffered from slow adoption due to difficulty adapting
to different platforms. Since technologies such as HTML5
are being standardized, interoperability for browser session
migration is easier to achieve.

7. FUTURE WORK AND CONCLUSION
We have presented a generic solution to session migration,

which works in the JavaScript layer and also targets some
HTML5 APIs. However there are still other APIs which are
not covered by our current implementation, such as Web-
Workers and GeoLocation. WebWorkers provides support
for background computational tasks but since each worker
has an isolated memory and cannot respond to UI events,
our assumptions made in this paper that depend on a single-
threaded model still apply. While additional effort will be
required to enable support, the fact that such APIs are be-
ing standardized should help making migration support fea-
sible. We are also looking into source code that is generated
dynamically by eval().

While we have not focused on debugging in this paper,
it may be possible to use Imagen so that when an end
user requires urgent assistance, she can instantly duplicate
and share a session snapshot with developers who could in-
spect the state in a web developer tool such as FireBug. We
plan to investigate such debugging support also in our fu-
ture work. We hope to combine Imagen with the Mugshot
approach to bring checkpointing functionality to an event-
logging debugger.

In this research, we tackled technical challenges that arise
in the context of web technologies where state is created
and managed at the user’s browser. This occurs frequently
in apps that make use of Ajax and HTML5. In order to make
such state data ubiquitously available to users, we investi-
gated an approach based on session migration, a conceptual
descendant of previous research on process migration. Our
solution using JavaScript transformation has the advantage
that it does not require additional coding. From the evalua-
tion the overhead seems reasonable and quite low on several
apps and browsers. We also showed that an approach to
session migration based on event-playback is not likely to
be practical compared to our state-capture approach.

8. ACKNOWLEDGEMENTS
This work was supported in part by the Institute for

Computing, Information and Cognitive Systems (ICICS) at
UBC.

9. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and

Interpretation of Computer Programs. MIT Press, 2nd
edition, 1996.

[2] S. Andrica and G. Candea. WaRR: A tool for
high-fidelity web application record and replay. In
Proc. of Dependable Systems and Networks, 2011.

[3] F. Bellucci, G. Ghiani, F. Paternò, and C. Santoro.
Engineering JavaScript state persistence of web
applications migrating across multiple devices. In
Proc. of the Symposium on Engineering Interactive
Computing Systems, 2011.

[4] E. Benson, A. Marcus, D. R. Karger, and S. Madden.
Sync kit: a persistent client-side database caching
toolkit for data intensive websites. In Proc. of WWW,
2010.

[5] R. Berjon, T. Leithead, E. D. Navara, E. O’Connor,
and S. Pfeiffer. W3C HTML5, 2012.
http://dev.w3.org/html5/spec/.

[6] I. Bicking. Browser mirror.
https://browsermirror.ianbicking.org.

[7] B. Cannon and E. Wohlstadter. Automated object
persistence for JavaScript. In Proc. of WWW, pages
191–200. ACM, 2010.

[8] HTML5 Canvas. http:
//www.whatwg.org/specs/web-apps/current-work/

multipage/the-canvas-element.htmlp.

[9] C. Cat. Convergence.
http://currantcat.com/convergence.

[10] K. Cieslak. Pacman!
http://www.digitalinsane.com/api/yahoo/pacman/.

[11] D. Crockford. JavaScript: The Good Parts. O’Reilly
Media, Inc., 2008.

[12] M. Deal. Colorpiano. http://mudcu.be/piano/.

[13] M. Deal. Sketchpad. http://mudcu.be/sketchpad/.

[14] F. Douglis and J. Ousterhout. Transparent process
migration: Design alternatives and the sprite
implementation. Software - Practice and Experience,
21:757–785, 1991.

[15] R. Fielding and R. Taylor. Principled design of the
modern web architecture. ACM Transactions on
Internet Technology (TOIT), 2(2):115–150, 2002.

[16] N. Fraser. Differential synchronization. In Proc. of the
Symposium on Document Engineering, pages 13–20,
2009.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[18] Genoverse.org. Genoverse - HTML5 genome browser.
http://www.genoverse.org/.

[19] M. Heinrich, F. Lehmann, T. Springer, and
M. Gaedke. Exploiting single-user web applications for
shared editing: a generic transformation approach. In
Proc. of WWW, pages 1057–1066. ACM, 2012.

[20] A. L. Hosking and J. Chen. Mostly-copying
reachability-based orthogonal persistence. In Proc. of
Object-oriented programming, systems, languages, and
applications, pages 382–398, 1999.

[21] JitBit. Macro Recorder Lite.
http://www.jitbit.com/macro-recorder-lite/.

[22] Introducing JSON. http://www.json.org/.

[23] JsonML. JSON Markup Language.
http://www.jsonml.org.

[24] W. Landi. Undecidability of static analysis. ACM
Letters on Programming Languages and Systems,
1:323–337, 1992.

[25] M. Litzkow, M. Livny, and M. Mutka. Condor-a
hunter of idle workstations. In International
Conference on Distributed Systems, 1988.

[26] D. Lowet and D. Goergen. Co-browsing dynamic web
pages. In Proc. of WWW, pages 941–950, 2009.

[27] J. Mickens, J. Elson, and J. Howell. Mugshot:
deterministic capture and replay for JavaScript
applications. In Proc. of Networked Systems Design
and Implementation, pages 159–174, 2010.

[28] D. S. Milojicic, F. Douglis, Y. Paindaveine,
R. Wheeler, and S. Zhou. Process migration. ACM
Computing Surveys, 2000.

[29] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer-Verlag, 1999.

[30] PersistenceJS. http://persistencejs.org.

[31] S. Potter and J. Nieh. Webpod: Persistent Web
browsing sessions with pocketable storage devices. In
Proc. of WWW, pages 603–612, 2005.

[32] A. Rashid and R. Chitchyan. Persistence as an aspect.
In Proc. of Aspect-oriented software development,
pages 120–129, 2003.

[33] R. Robayna. Canvas painter.
http://caimansys.com/painter/.

[34] S. Soares, E. Laureano, and P. Borba. Implementing
distribution and persistence aspects with AspectJ. In
Proc. of Object-oriented programming, systems,
languages, and applications, pages 174–190, 2002.

[35] E. Wallace, J. Ardini, K. Gishen, and P. Kernfeld.
Robots are people too. http://raptjs.com/.

[36] The Open Web Application Security Project.
WebScarab.
https://www.owasp.org/index.php/Category:

OWASP_WebScarab_Project.

[37] D. Zhou, N. Islam, and A. Ismael. Flexible on-device
service object replication with replets. In Proc. of
WWW, pages 131–142, 2004.

