
Reverse Engineering iOS Mobile Applications

Mona Erfani Joorabchi
University of British Columbia

Canada
merfani@ece.ubc.ca

Ali Mesbah
University of British Columbia

Canada
amesbah@ece.ubc.ca

I. ABSTRACT

As a result of the ubiquity and popularity of smartphones,
the number of third party mobile applications is explosively
growing. With the increasing demands of users for new
dependable applications, novel software engineering tech-
niques and tools geared towards the mobile platform are
required to support developers in their program compre-
hension and analysis tasks. In this paper, we propose a
reverse engineering technique that automatically (1) hooks
into, dynamically runs, and analyzes a given iOS mobile
application, (2) exercises its user interface to cover the
interaction state space and extracts information about the
runtime behaviour, and (3) generates a state model of the
given application, capturing the user interface states and
transitions between them. Our technique is implemented in
a tool called ICRAWLER. To evaluate our technique, we
have conducted a case study using six open-source iPhone
applications. The results indicate that ICRAWLER is capable
of automatically detecting the unique states and generating
a correct model of a given mobile application.

Keywords-reverse engineering; mobile applications; iOS;
model generation

II. INTRODUCTION

According to recent estimations [1], by 2015 over 70 per-
cent of all handset shipments will be smartphones, capable
of running mobile applications.1 Currently, there are over
600,000 mobile applications on Apple’s AppStore [2] and
more than 400,000 on Android Market [3].

Some of the challenges involved in mobile application de-
velopment include handling different devices, multiple oper-
ating systems (Android, Apple iOS, Windows Mobile), and
different programming languages (Java, Objective-C, Visual
C++). Moreover, mobile applications are developed mostly
in small-scale, fast-paced projects to meet the competitive
market’s demand [4]. Given the plethora of different mobile
applications to choose from, users show low tolerance for
buggy unstable applications, which puts an indirect pressure
on developers to comprehend and analyze the quality of their
applications before deployment.

1There are two kinds of mobile applications: Native applications and
Web-based applications. Throughout this paper, ’mobile application’ refers
to native mobile applications.

With the ever increasing demands of smartphone users
for new applications, novel software engineering techniques
and tools geared towards the mobile platform are required
[5], [6], [7] to support mobile developers in their program
comprehension, analysis and testing tasks [8], [9].

According to a recent study [10], many developers interact
with the graphical user interface (GUI) to comprehend the
software by creating a mental model of the application. For
traditional desktop applications, an average of 48% of the
application’s code is devoted to GUI [11]. Because of their
highly interactive nature, we believe the amount of GUI-
related code is typically higher in mobile applications.

To support mobile developers in their program com-
prehension and analysis tasks, we propose a technique to
automatically reverse engineer a given mobile application
and generate a comprehensible model of the user interface
states and transitions between them. In this paper, we focus
on native mobile applications for the iOS platform. To the
best of our knowledge, reverse engineering of iOS mobile
applications has not been addressed in the literature yet.

Our paper makes the following contributions:
• A technique that automatically performs dynamic anal-

ysis of a given iPhone application by executing the
program and extracting information about the runtime
behaviour. Our approach exercises the application’s
user interface to cover the interaction state space;

• A heuristic-based algorithm for recognizing a new user
interface state, composed of different UI elements and
properties.

• A tool implementing our technique, called ICRAWLER
(iPhone Crawler), capable of automatically navigating
and generating a state model of a given iPhone appli-
cation. This generated model can assist mobile devel-
opers to better comprehend and visualize their mobile
application. It can also be used for analysis and testing
purposes (i.e., smoke testing, test case generation).

• An evaluation of the technique through a case study
conducted on six different open-source iPhone appli-
cations. The results of our empirical evaluation show
that ICRAWLER is able to identify the unique states
of a given iPhone application and generate its state
model accurately, within the supported transitional UI
elements.

III. RELATED WORK

We divide the related work in three categories: mobile
application security testing, industrial testing tools currently
available to mobile developers, and GUI reverse engineering
and testing.

Mobile Application Security Testing. Security testing
of mobile applications has gained most of the attention
from the research community when compared to other
areas of research such as functional testing, maintenance, or
program comprehension. Most security testing approaches
are based on static analysis of mobile applications [12] to
detect mobile malware. Egele et al. [13] propose PIOS to
perform static taint analysis on iOS application binaries.
To automatically identify possible privacy gaps, the mobile
application under test is disassembled and a control flow
graph is reconstructed from Objective-C binaries to find
code paths from sensitive sources to sinks. Extending on
PIOS, the same authors discuss the challenges involved
in dynamic analysis of iOS applications and propose a
prototype implementation of an Objective-C binary ana-
lyzer [14]. Interestingly, to exercise the GUIs, they use
image processing techniques. This work is closest to ours.
However, their approach randomly clicks on an screen area
and reads the contents from the device’s frame buffer and
applies image processing techniques to compare screenshots
and identify interactive elements. Since image comparison
techniques are known to have a high rate of false positives,
in our approach we “programatically” detect state changes
by using a heuristic-based approach.

Industrial Testing Tools. Most industrial tools and tech-
niques currently available for analyzing mobile applications
are manual or specific to the application in a way that they
require knowledge of the source code and structure of the
application. For instance, KIF (Keep It Functional) [15] is an
open source iOS integration test framework, which uses the
assigned accessibility labels of objects to interact with the UI
elements. The test runner is composed of a list of scenarios
and each scenario is composed of a list of steps. Other
similar frameworks are FRANK [16] and INSTRUMENTS
[17]. A visual technology, called SIKULI [18], uses fuzzy
image matching algorithms on the screenshots to determine
the positions of GUI elements, such as buttons, in order
to find the best matching occurrence of an image of the
GUI element in the screen image. SIKULI creates keyboard
and mouse click events at that position to interact with the
element. There are also record and playback tools for mobile
applications such as MONKEYTALK [19]. However, using
such tools requires application-specific knowledge and much
manual effort.

GUI Reverse Engineering and Testing. Reverse
engineering of desktop user interfaces was first proposed
by Memon et al. in a technique called GUI Ripping [20].
Their technique starts at the main window of a given

desktop application, automatically detects all GUI widgets
and analyzes the application by executing those elements.
Their tool, called GUITAR, generates an event-flow graph to
capture a model of the application’s behaviour and generate
test-cases.

For web applications, Mesbah et al. [21] propose a
crawling-based technique to reverse engineer the naviga-
tional structure and paths of a web application under test.
The approach, called CRAWLJAX, automatically builds a
model of the application’s GUI by detecting the clickable
elements, exercising them, and comparing the DOM states
before and after the event executions. The technique is used
for automated test case generation [22] and maintenance
analysis [23] in web applications.

Amalfitano et al. [24] extend on this approach and propose
a GUI crawling technique for Android applications. Their
prototype tool, called A2T2, manages to extract models of
a small subset of widgets of an Android application.

Gimblett et al. [25] present a generic description of UI
model discovery, in which a model of an interactive soft-
ware is automatically discovered through simulating its user
actions. Specifically they describe a reusable and abstract
API for user interface discovery.

Further, Chang et al. [26] build on SIKULI, the afore-
mentioned tool, to automate GUI testing. They help GUI
testers automate regression testing by programming test
cases once and repeatedly applying those test cases to check
the integrity of the GUI.

Hu et al. [27] propose a technique for detecting GUI bugs
for Android applications using Monkey [28], an automatic
event generation tool. Their technique automatically gener-
ates test cases, feeds the application with random events,
instruments the VM, and produces log/trace files to detect
errors by analyzing them post-run.

To the best of our knowledge, no work has been done
so far to reverse engineer Objective-C iPhone applications
automatically. Our approach and algorithms are different
from the aforementioned related work in the way we track
the navigation within the application, retrieve the UI views
and elements, and recognize a new state, which are geared
towards native iPhone user interfaces.

IV. BACKGROUND AND CHALLENGES

Here, we briefly describe the relevant iPhone program-
ming concepts [17] required for understanding our approach
in Section V.

Objective-C is the primary programming language used
to write native iOS applications. The language adds a thin
layer of object-oriented and Smalltalk-style messaging to the
C programming language. Apple provides a set of Objective-
C APIs collectively called Cocoa. Cocoa Touch is a UI
framework on top of Cocoa. One of the main frameworks of
Cocoa Touch is UIKit, which provides APIs to develope
iOS user interfaces.

	

	

Figure 1: The Olympics2012 iPhone application going
through a UI state transition, after a generated event.

The Model-View-Controller design pattern is used for
building iOS applications. In this model, the controller is
a set of view controllers as well as the UIApplication
object, which receives events from the system and dispatches
them to other parts of the system for handling. As soon
as an application is launched, the UIApplication main
function creates a singleton application delegate object
that takes control. The application delegate object can be
accessed by invoking the shared application class method
from anywhere in code.

At a minimum, a window object and a view object
are required for presenting the application’s content. The
window provides the area for displaying the content and
is loaded from the main nib file.2 Standard UI elements,
which are provided by the UIKit framework for presenting
different types of content, such as labels, buttons, tables, and
text fields are inherited from the UIView class. Views draw
content in a designated rectangular area and handle events.

Events are objects sent to an application to inform it of
user actions. Many classes in UIKit handle touch events
in ways that are distinctive to objects of the class. The
application sends these events to the view on which the touch
occurred. That view analyzes the events and responds in an
appropriate manner. For example, buttons and sliders are
responsive to gestures such as a tap or a drag while scroll
views provide scrolling behaviour for tables or text views.
When the system delivers a touch event, it sends an action
message to a target object when that gesture occurs.

View controllers are used to change the UI state
of an application. A view controller is responsible
for handling the creation and destruction of its
views, and the interactions between the views
and other objects in the application. The UIKit
framework includes classes for view controllers such as

2A nib file is a special type of resource file to store the UI elements in.

TabBarItemclicked

gotoArchery

gotoCycling1

gotoCycling2

gotoCycling3

gotoCycling4

gotoDiving

gotoEquestrian1

gotoEquestrian2

gotoEquestrian3

gotoFencing

gotoFootball

gotoArchery

gotoGymnastics1

gotoGymnastics2

gotoGymnastics3

gotoHandball

gotoHockey

gotoJudo

gotoRowing

gotoSailing

gotoShooting

gotoSwimming

gotoAthletics

gotoSynchronisedSwimming

gotoTableTennis

gotoTaekwondo

gotoTennis

gotoTriathlon

gotoVolleyball

gotoWaterPolo

gotoWeightlifting

gotoWrestling

gotoBadminton

gotoBasketball

gotoBeach

gotoBoxing

gotoCanoe1

gotoCanoe2

 TabBarItemclicked

Back

 TabBarItemclicked TabBarItemclicked

Figure 2: The generated state graph of the Olympics2012
iPhone application.

UITabBarController, UITableViewController
and UINavigationController. Because iOS
applications have a limited amount of space in which
to display content, view controllers also provide the
infrastructure needed to swap out the views from one view
controller and replace them with the views of another
view controller. The most common relationships between
source and destination view controllers in an iPhone
application are either by using a navigation controller, in
which a child of a navigation controller pushes another
child onto the navigation stack, or by presenting a view
controller modally. The navigation controller is an instance
of the UINavigationController class and used for
structured content applications to navigate between different
levels of content in order to show a screen flow, whereas
the modal view controllers represent an interruption to the
current workflow.

Challenges. Dynamic analysis of iOS applications has
a number of challenges. Most iOS applications are heavily
based on event-driven graphical user interfaces. Simply
launching an application will not be sufficient to infer a
proper understating of the application’s runtime behaviour
[14]. Unfortunately, most iOS applications currently do not
come with high coverage test suites. Therefore, to execute a
wide range of paths and reverse engineer a representative
model, an approach targeting iOS applications needs to
be able to automatically change the application’s state and
analyze state changes.

One challenge that follows is defining and detecting a new
state of an application while executing and changing its UI.
In other words, automatically determining whether a state
change has occurred is not that straight forward.

Another challenge, associated with tracking view con-
trollers, revolves around the fact that firing an event on the
UI could result in several different scenarios as far as the UI

is concerned, namely, (1) the current view controller could
go to the next view controller (modally, by being pushed
to the navigation stack, or changing to the next tab in a
tab bar view controller) or (2) UI element(s) in the current
interface could be dynamically added/removed/changed, or
(3) the current view controller goes back to the previous view
controller (dismissed modally or popped from the navigation
stack), or (4) nothing happens. Analyzing each of these
scenarios requires a different way of monitoring the UI
changes and the navigation stack.

V. OUR APPROACH

Our approach revolves around dynamically running a
given iOS mobile application, navigating its user interface
automatically, and reverse engineering a model of the appli-
cation’s user interface states and transitions between them.
Figure 1 shows snapshots of an iPhone application (called
Olympics2012, used in our case study in Section VII) UI
state transition after an event. Figure 2 shows the automat-
ically generated state graph of the same application. The
figure is minimized because of space restrictions, and it is
depicted to give an impression of the graph inferred by our
approach.

Figure 3 depicts the relation between our technique and a
given mobile application. The following seven steps outline
our technique’s operation.
Step 1 - Hooking into the Application: As soon as the

application is started, our technique kicks in by setting
up a shared instance object. As shown in Figure 3,
we immediately hook into and monitor the application
delegate object to identify the initial view controller
and infer information about its UI components.

Step 2 - Analyzing UI Elements: After obtaining the ini-
tial view controller, we have access to all its UI ele-
ments. We keep this information in an array associated
to the view controller. Meanwhile, our technique recog-
nizes the different types of UI elements, such as labels,
buttons, table cells, and tabs, and identifies which UI
elements have an event listener assigned to them.

Step 3 - Exercising UI Elements: To exercise a UI ele-
ment, we look for an unvisited UI element that has an
event listener. As depicted in Figure 3, after gathering
all the information about the event listeners, the UI
object, and its action and target, we generate an event
on that element and pass it to UIApplication
object, which is responsible for receiving the events
and dispatching them to the code for further handling.

Step 4 - Accessing Next View Controller: By observing
the changes on the current view controller, we obtain
the next view controller and analyze the behaviour. The
event could lead to four scenarios: no user interface
change, the changes are within the current view con-
troller, going to a new view controller, or going to the
previous view controller.

iCrawler

iPhone Application

UI Application

Controller

Events

App Delegate

ViewiC
ra

w
le

r C
on

tro
lle

r

Shared Instance

State Flow Graph

View Controller

UI Window

Views & UI objects

KIF

UIEvent UITouch
event

Access
Invocation

Processing File
Processing Component

Legend

Inter Access

Figure 3: Relation between ICRAWLER and a given iPhone
application. The right side of the graph shows key compo-
nents of an iPhone application taken from [17].

Step 5 - Analyzing New UI Elements: After getting a
new view controller, we collect all its UI elements. If
the action has resulted in staying in the current view
controller, we record the changes on the UI elements.

Step 6 - Comparing UI States: Once we get the new
view controller and its UI elements, we need to com-
pare the new state with all the perviously visited unique
states. This way, we can determine if the action changes
the current state or ends up on a state that has already
been analyzed. If the state is not visited before, it is
added to the set of unique visited states.

Step 7 - Recursive Call: We recursively repeat from step
3 until no other executable UI elements are left within
the view controller and we have traversed all the view
controllers.

We further describe our approach in the following sub-
sections.

A. Hooking into the Application

The process of accessing the initial view controller is
different from the rest of the view controllers. Since our goal
is to be as nonintrusive and orthogonal to the application’s
source code as possible, we determine the initial view
controller by performing a low-level Objective-C program
analysis on the application delegate object. To that end, we
employ a number of runtime functions to deduce the initial
view controller. We use the Objective-C runtime reference
library [29], which provides support for the dynamic prop-
erties of the Objective-C language and works with classes,
objects, and properties directly. It is effective primarily for
low-level debugging and meta-programming. In addition, the
Key-Value Coding (KVC) protocol [30] is used to access UI

− (vo id) icDismissModalVC : (BOOL) animated {
[[NSUserDefaults standardUserDefaults] setBool :YES ←↩

forKey :@” I C i s D i s m i s s e d ”] ;
/ / C a l l t h e o r i g i n a l (now renamed) method
[s e l f icDismissModalVC :animated] ;

}

Figure 4: The new method in which we inject code to set
the dismissed boolean and then call the original method.

objects at runtime. The KVC protocol assists in accessing
the properties of an object indirectly by key/value, rather
than through invocation of an accessor method or as instance
variables [30].

Once the application delegate is accessed, we retrieve
all the properties of this class and their names. After
getting the property names in the application delegate,
we call a KVC method to access an instance variable
of the initial view controller using the property name
string. This way, we are able to identify the type of
initial view controller (e.g., UITabBarController,
UINavigationController, just a custom
UIViewController). This knowledge is required
for setting up the initial state.

B. Analyzing UI Elements

In our approach, a UI state includes the current view
controller, its properties, accompanied by its set of UI
elements. Once we get the view controller, we read all
the subviews, navigation items, as well as tool bar items
of the view controller in order to record the corresponding
UI elements in an array associated to the view controller.
Having the required information for a state, we set a global
variable to point to the current state throughout the program.

C. Exercising UI Elements

We fire an event (e.g., a tap) on each unvisited UI
element that has an event-listener assigned to it. Since events
are handled in different ways for different UI classes, for
each UI element type, such as tables, tabs, text views, and
navigation bar items, we recognize its type and access the
appropriate view. As shown in Figure 3, we use KIF’s
methods to handle the event.

After an element is exercised, we use a delay to wait
for the UI to update, before calling the main function
recursively. Based on our experience, a 1 second waiting
time is enough after firing different event types such as
tapping on a table cell or a button, scrolling a table up and
down, and closing a view.

D. Accessing the Next View Controller

After exercising a UI element, we need to analyze the
resulting UI state. An event could potentially move the UI
forward, backward, or have no effect at all.

At a low level, going back to a previous view controller
in iPhone applications happens either by popping the view

+ (vo id)load {
i f (s e l f == [UIViewController class]) {
Method originalMethod = class_getInstanceMethod (←↩

s e l f , @ s e l e c t o r (←↩
dismissModalViewControllerAnimated :)) ;

Method replacedMethod = class_getInstanceMethod (←↩
s e l f , @ s e l e c t o r (icDismissModalVC :)) ;

swap (originalMethod , replacedMethod) ;
}

}

Figure 5: Swapping the original built-in method with our
new method in the +load function.

controller from the navigation stack or by dismissing a
modal view controller. We monitor the navigation stack after
executing each event to track possible changes on the stack
and thus, become aware of the pop calls. However, being
aware of dismissing a modal view needs to be addressed
differently. Our approach combines reflection with code
injection to track if a dismiss method is called. To that
end, we employ the Category and Extension [31] feature
of Objective-C, which allows adding methods to an existing
class without subclassing it or knowing the original classes.
We also use a technique called Method Swizzling [32], which
allows the method implementation of a class to be swapped
with another method.

We define a category extension to the
UIViewController class and add a new method
in this category (See Figure 4). We then swap a built-in
method of the view controller, responsible for dismissing a
view controller class, with the new method (See Figure 5).
The static +load method is also added to the category and
called when the class is first loaded. We use the +load
method to swap the implementation of the original method
with our replaced method. The swap method call swaps
the method implementations such that calls to the original
method at run-time result in calls to our method defined
in the category. As show in Figure 4, we also call the
original method, which is now renamed. Our method stores
a boolean data in the defaults system. The iOS defaults
system is available throughout the application, and any data
saved in the defaults system will persist through application
sessions. Therefore, after a dismiss call occurs, we set
the dismissed boolean to true. At runtime, each time an
action is executed, we check the dismissed boolean in the
NSUserDefaults object to see if dismiss has occurred.
We set this back to false if that is the case. This way
we are able to track if the event results in going back to a
previous view controller to take the proper corresponding
action.

A new view controller could be pushed to the navigation
stack, presented modally, or be a new tab of a tab bar
controller. If the action results in staying in the current view
controller, different state changes could still occur such as UI

Algorithm 1: State Change Recognition
input : Set of weights for view controller properties (Wvc)
input : Set of weights for UI element properties (We)
input : Similarity threshold (τ)
input : Set of the unique states visited (VS)
input : Current state (cs)
output: Similar state (s ∈ VS, otherwise nil)

1 begin
2 σ ← 0
3 foreach s ∈ VS do
4 σ ←
5 (Wvc(class) × (s.viewController.class ≡

cs.viewController.class) +
6 Wvc(title) × (s.viewController.title ≡

cs.viewController.title) +
7 Wvc(elements) × (s.uiElementsCount ≡

cs.uiElementsCount))
8 foreach e1 ∈ s.uiElementsArray do
9 e2 ← GETELEMENTATINDEX(cs, e1)

10 σ ← σ + (We(class) × (e1.class ≡ e2.class) +
We(hidden) × (e1.hidden ≡ e2.hidden) +
We(enable) × (e1.enable ≡ e2.enable) +
We(target) × (e1.target ≡ e2.target) + We(action)
× (e1.action ≡ e2.action))

11 attributes ← Size(Wvc) + (s.uiElementsCount ×
Size(We))

12 if ((σ/attributes)× 100) >= τ then
13 return s

14 return nil

element(s) dynamically being changed/added/removed, or a
pop-up message or an action sheet appearing. If we do not
notice any changes within the current state, we move further
with finding the next clickable UI element. Otherwise, we
need to conduct a state comparison to distinguish new states
from already visited states. If the state is recognized as a new
state, a screen shot of the interface is also recoded.

E. Comparing States

Another crucial step in our analysis is determining
whether the state we encounter after an event is a new
UI state. As opposed to other techniques that are based on
image-based comparisons [26], [14], in order to distinguish
a new state from the previously detected states, we take a
programmatic, heuristic-based approach in which we com-
pare the view controllers and all their UI elements of the
application before and after the event is executed.

Deciding what constitutes a UI state change is not always
that straight forward. For instance, consider when a user
starts typing a string to a text field and that action changes
the value of the text field’s property, or when the sent button
of an email application is enabled as soon as the user starts
typing a body of the email. We need a way to figure out if
these changes (changing text of a text field/label or enabling
a button) should be seen as a new state. To that end, we
propose a similarity-based heuristic to emphasize or ignore
changes on specific properties of view controllers, their
accompanying UI elements, and the elements’ properties.

Our state recognition heuristic considers the following
properties of view controllers: class, title, and the
number of UI elements. In addition, for each UI element,
it considers class, hidden, enable, target, and
action. Although our algorithm can handle as many
properties as required, we are interested in these attributes
because we believe they are most likely to cause a visible
UI state change. We consider a set of distinct weights for
each of the aforementioned attributes of a view controller,
denoted as WV C = {wvc1, wvc2, ..} as well as another set
of distinct weights for each of the aforementioned attributes
of a UI element as WE = {we1, we2, ..}. The value of
each weight is a number between 0 and 1. All weights have
default values that can be overridden by the user’s input if
required. These default values are obtained for each weight
through an experimental trial and error method (discussed
in Section VII). The similarity, σ, between two UI states is
a percentage calculated as follows:

σ =

∑Size(WV C)
i=1 |WVCi|V Ci +

∑Ne
j=1

∑Size(WE)
k=1 |WEk|Elj

Size(WVC) +Ne × Size(WE)

×100

where, VC returns 1 if the property of the two view
controllers are equal and 0 otherwise, Size(WVC) and
Size(WE) return the total number of properties considered
for a view controller and a UI element respectively. The
second part of the summation calculates similarity of each
of the elements’ properties. El returns 1 if the property of
the two UI elements is equal and Ne is the total number of
UI elements. The total summation of the view controllers
and elements is divided by the total number of properties.

Algorithm 1 shows our algorithm for checking the simi-
larity of the current state (after an event) with all the visited
states. It returns a similar state if one is found among the
visited states. As input the algorithm gets two sets of distinct
weights for view controller and UI element, a similarity
threshold (τ), the set of unique states visited so far, and
the current state.

For each visited state (line 3), we calculate the similarity
of the two states by adding the similarity of the two view
controllers’ classes, titles and the number of UI elements
(line 7). Then for each UI element in a visited state (line
8), the corresponding UI element in the current state (line
9) is retrieved and their similarity is calculated. Finally,
we divide the similarity by the total number of attributes,
which are considered so far, calculate the percentage (line
12) and compare it to the threshold. The algorithm assumes
the two interfaces to be equivalent if the calculation of
the aforementioned weight-based attributes are more than
or equal to τ . In other words, we consider two UI states
equal, if they have the same view controller, title, set of UI
elements, with the same set of selected properties, and the
same event listeners.

Table I: Experimental objects.

ID Exp. Object Resource
1 Olympics2012 https://github.com/Frahaan/

2012-Olympics-iOS--iPad-and-iPhone--source-code
2 Tabster http://developer.apple.com/library/ios/#samplecode/

Tabster/Introduction/Intro.html#
3 TheElements http://developer.apple.com/library/ios/#samplecode/

TheElements/Introduction/Intro.html#
4 Recipes & Printing http://developer.apple.com/library/ios/#samplecode/

Recipes + Printing/Introduction/Intro.html#
5 NavBar http://developer.apple.com/library/ios/#samplecode/

NavBar/Introduction/Intro.html#
6 U Decide http://appsamuck.com/day12.html

F. State Graph Generation
To explore the state space, we use a depth-first search

algorithm and incrementally create a multi-edge directed
graph, called a state-flow graph [21], with the nodes repre-
senting UI states and edges representing user actions causing
a state transition.

VI. TOOL IMPLEMENTATION: ICRAWLER

We have implemented our approach in a tool called
ICRAWLER. ICRAWLER is implemented in Objective-C us-
ing Xcode 3. We use a number of libraries as follows.

DCINTROSPECT [33] is a library for debugging iOS user
interfaces. It listens for shortcut keys to toggle view outlines
and print view properties as well as the action messages and
target objects, to the console. We have extended DCINTRO-
SPECT in a way to extract a UI element’s action message,
target object, it’s properties and values. We further use our
extension to this library to output all the reverse engineered
UI elements’ properties within one of our output files.

To generate an event or insert textual input, we use and
extend the KIF framework [15]. At runtime, ICRAWLER
extracts UI elements with event-listeners assigned to them
and collects information about the action message and target
object of each UI elements. By recognizing the type of a UI
element, ICRAWLER gains access to its appropriate view.
Then it uses KIF’s internal methods to generate an event on
the view.

At the end of the reverse engineering process, the state
graph is transformed into an XML file using XSWI [34],
which is a standalone XML stream writer implemented in
Objective-C.

The output of ICRAWLER consists of the following three
items: (1) an XML file, representing a directed graph with
actions as edges and states as nodes. (2) screenshots of the
unique states, and (3) a log of all the reverse engineered
UI elements (including their properties, values, actions and
targets), generated events and states.

VII. EMPIRICAL EVALUATION

To assess the effectiveness of our reverse engineering
approach, we have conducted a case study using six open-
source iPhone applications.

Table II: Characteristics of the experimental objects.

ID .m/.h Files LOC (Objective-C) Statements (;) Widgets

1 22 2,645 1,559 398
2 21 1,727 286 14
3 28 2,870 690 21
4 23 2,127 508 7
5 20 1,487 248 10
6 13 442 162 15

We address the following research questions in our eval-
uation:
RQ1 Is ICRAWLER capable of identifying unique states of

a given iPhone application correctly?
RQ2 How complete is the generated state model in terms

of the number of edges and nodes?
RQ3 How much manual effort is required to set up and use

ICRAWLER? What is the performance of ICRAWLER?

A. Experimental Objects

We include six open-source experimental objects from
the official Apple sample code, Guithub, and other online
resources. Table I shows each objects’s ID, name, and
resource. Table II presents the characteristics of these appli-
cations in terms of their size and complexity. We use XCODE
STATISTICIAN3 for collecting metrics such as the number of
header and main files, lines of code (LOC) and statements.
The table also shows the number of UI widgets within each
application. The UI widget is a UI element, such as a tab
bar view with all of its tab icons, a table view with all of
its cells, a label or a button. The number of UI widgets is
collected through ICRAWLER’s output file, which logs all
the UI elements and their properties.

B. Experimental Design

In order to address RQ1, we need to compare unique states
generated by ICRAWLER to the actual unique states for each
application. As mentioned before, ICRAWLER identifies the
unique states through Algorithm 1 and keeps the screen-
shots of the unique states in a local folder. To form a
comparison baseline, we manually run and navigate each
application and count the unique states and compare that
with the output of ICRAWLER.

To assess the ICRAWLER’s generated state model (RQ2),
we also require to form a baseline of the actual number of
edges (i.e. user’s actions that change the states) and states
(unique and repetitive) to compare with the ICRAWLER’s
state model. Therefore, we manually run and navigate each
application and count the edges and the states. Note that
there are currently no other similar tools available to com-
pare ICRAWLER’s results against.

3http://xcode-statistician.mac.informer.com/

In order to address RQ3, we measure the time required
to set up ICRAWLER and employ it to each of the given
iPhone applications. The following series of manual tasks
are required before ICRAWLER can start the analysis:
• The ICRAWLER framework should be added to the

application’s project under analysis.
• In order to enable ICRAWLER to access the

delegating application object, the ICRAWLER’s
initialization line of code should be added
to the built-in method, application:
didFinishLaunchingWithOptions:.

• Finally, a preprocessor flag (RUN_ICRAWLER) needs
to be added to the created Xcode target.

Further to investigate the performance of ICRAWLER for
each application under test, we measure the time between
calling ICRAWLER and when ICRAWLER finishes its job.

As we mentioned earlier, we obtain default values for the
threshold and similarity weights by an experimental trial and
error method for each of the applications. The best values
that we have observed are: threshold (%70); weights include:
view controller’s class (0.8), title (0.8), and number
of UI elements (0.8); UI element’s class (0.7), hidden
(0.7), enable (0.7), target (0.7), and action (0.7).
These are also the values used in our evaluation, for all the
experimental objects.

C. Results

Setting up ICRAWLER and utilizing it for a given iPhone
application takes 10 minutes on average. The results of our
study are shown in Table III. The table shows the number of
Unique States, Total States, and Edges counted
manually and by ICRAWLER. Further, the total number of
Generated Events and Total Time for ICRAWLER
are presented. We should note that the total time depends on
the application and includes the delay (1 sec) we use after
each action. The number of generated events is different
from the number of detected edges. The events include all
the user actions, while the edges are only those actions that
result in a state change (including back-ward edges). For
instance, scrolling a table or a view up and down counts as
an event while it is not an edge in the state model. Another
example, related to our state comparison algorithm, is a label
that changes after executing a button, which ICRAWLER
does not consider as a new state.

Below, we describe some of the results in Table III.
The Olympics2012 (#1) application provides informa-

tion about 38 sports in the Olympics 2012 as well as a
timetable and a count down (See Figure 1 and Figure 2).
According to Table III, ICRAWLER is capable of identifying
the correct number of uniques states, total states, and edges
within this application. The events include tapping on a tab
bar item, scrolling up/down a view, scrolling up/down a
table, tapping on a backward/forward button and tapping on
a button which flips the view. The number of user actions,

Table III: Results.

Manual ICRAWLER

ID Unique
States

Tot.
States Edges Unique

States
Total
States Edges Gen.

Events

Total
Time
(Sec)

1 6 81 43 6 81 43 85 88
2 11 16 17 9 12 11 18 18
3 6 16 15 6 16 15 27 29
4 6 13 10 3 5 4 8 10
5 8 14 13 3 5 4 7 9
6 2 13 2 2 13 2 12 13

i.e., generated events, is 85 while the number of edges is 43
(including a back-ward edge). This is because user actions
such as scrolling are not changing states and as a result they
are not counted as edges. The number of uniques states is 6
while the number of total states is 81. This is because there
are 38 buttons in this application which lead to a same UI
state while presenting different data for 38 types of sports.

Events within Tabster (#2) include tapping on a tab
bar item, scrolling up/down a table, tapping on a table
cell, tapping on a backward/forward button, tapping on a
dismiss/present button and writing a text. When exercising
UI elements which require text input through keyboard,
we used a dummy string based on the keyboard type e.g.,
numeric, alphanumeric, url or email address input. As it is
shown in Table III, our approach is able to identify 11 edges
and 9 uniques states. However Tabster has the tab bar
view with a “more page” feature and ICRAWLER supports
an ordinary tab bar view (without the “more” feature) at this
time. As a result, there is a difference between the number
of uniques states and edges in baseline and ICRAWLER.

Actions within TheElements (#3) application include
tapping on a tab bar item, scrolling up/down a table,
tapping on a table cell, tapping on a back-ward/forward
button and tapping on a button which flips the view.
ICRAWLER is successfully able to cover the states and edges
of TheElements. Here, we disabled a button, which closes
the application and forwards the user to the AppStore.

The Recipes & Printing application (#4) browses
recipes and has the ability to print the browsed recipes. Here,
the difference between manual and ICRAWLER results in
Table III is due to ignoring the states and actions involved
with printing.

For tables, one could think of different strategies to take:
(1) generate an event on each and every single table cell,
(2) randomly click on a number of table cells (3) generate
an event on the first table cell. In our technique, once
ICRAWLER encounters a table view, it scrolls down and
up to ensure the scrolling action works properly and it
does not cause to any unwanted crashes, e.g., by having
a specific character in an image’s url and trying to load
the image on a table cell. ICRAWLER then generates an
event on the first row and moves forward. This works well
for table cells that result to the same next view. However,

there are cases in which table cells lead to a different view.
NavBar (#5) is such a case. There are five different table
cells within this application, which go to different UI states.
Thus we witness a difference between the number of edges
or states counted manually and by ICRAWLER. This is a
clear empirical evidence suggesting that we need to improve
our table cell analysis strategy.

D. Findings

The results of our case study show that ICRAWLER is able
to identify the unique states of a given iPhone application
and generate its state model correctly, within the supported
UI elements and event types. Generally, it takes around 10
minutes to set up and use ICRAWLER. The performance
of ICRAWLER is acceptable. For the set of experimental
objects, the minimum analysis time was 9 seconds (5 states,
4 edges, 7 events) and the maximum was 88 seconds (81
states, 43 edges, 85 events).

VIII. DISCUSSION

Limitations. There are some limitations within our
current implementation of the approach. Although it is
minimal, the users still need to complete a few tasks to set
up ICRAWLER within their applications manually. There are
also some UI elements such as the tool bar, slider, page
control, and search bar, which are not supported currently.
In addition, while ICRAWLER currently supports the most
common gestures in iOS applications such as tapping on
a UI element, inserting text, and scrolling views, there is
no support yet for other advanced gestures such as swiping
pages and pinching (e.g., zooming in and out images).

Threats to Validity. The fact that we form the compari-
son baselines manually could be a threat to internal validity.
We did look for other tools to compare our results against,
without success. Manually going through the different appli-
cations to create baselines is labour intensive and potentially
subject to errors and author’s bias. We tried to mitigate this
threat by asking two other students to create the comparison
baselines.

Additionally, the independent variables of weights and
threshold within our state recognition algorithm have a direct
effect on our dependent variables such as number of unique
states and edges. As a result, choosing other values for these
independent variables rather than our default values, could
result in difference in the outcome. As mentioned in the
evaluation section, we chose these optimal values through a
series of trial and error experiments.

In our attempt to gather the experimental objects, we
noticed that there is a small collection of open-source iPhone
applications available online – note that we could not use
applications available in AppStore for our experiment since
we needed access to their source code. Even though, this
made it difficult to select applications that reflect the whole
spectrum of different UI elements in iPhone applications, we

believe the selected objects are representative of the type of
applications ICRAWLER can reverse engineer. However, we
acknowledge the fact that, in order to draw more general
conclusions, more mobile applications are required.

Applications. There are various applications for our
technique. First of all, our technique enables automatic
interaction with the mobile application. This alone can be
seen as performing smoke testing (e.g., to detect crashes). In
addition, the state model inferred can be used for automated
test case generation. Further, using the model to provide
a visualization of the state space supports developers to
obtain a better understanding of their mobile applications.
The approach can be extended to perform cross-platform
testing [35], i.e., whether an application is working cor-
rectly on different platforms such as iOS and Android, by
comparing the generated models. Finally, other application
areas could be in performance and accessibility testing of
iOS applications.

IX. CONCLUSIONS AND FUTURE WORK

As smartphones become ubiquitous and the number of
mobile applications increases, new software engineering
techniques and tools geared towards the mobile platform are
required to support developers in their program comprehen-
sion, analysis, and testing tasks.

In this paper, we presented our reverse engineering tech-
nique to automatically navigate a given iPhone application
and infer a model of its user interface states. We imple-
mented our approach in ICRAWLER, which is capable of
exercising and analyzing UI changes and generate a state
model of the application. The results of our evaluation, on
six open source iPhone applications, point to the efficacy
of the approach in automatically detecting unique UI states,
with a minimum level of manual effort required from the
user. We believe our approach and techniques have the
potential to help mobile application developers increase the
quality of iOS applications.

Future Work. There are several opportunities in which
our approach can be enhanced and extended for future
research. The immediate step would be to extend the current
version of ICRAWLER to support the remaining set of UI
elements within UIKIT such as the tool bar, slider, page
control, and search bar. We also plan to evaluate the tool on
more complex industrial iOS applications. Other directions
we will pursue are using this technique for smoke testing
of iPhone applications as well as generating test cases from
the inferred state model. Furthermore, we intend to expand
ICRAWLER to support iPad applications. We are currently
extending ICRAWLER with reverser engineering analysis at
the binary level.

REFERENCES

[1] Berg Insight, “The mobile application market,” http://www.
berginsight.com/ReportPDF/ProductSheet/bi-app1-ps.pdf.

[2] “App Store Metrics,” http://148apps.biz/app-store-metrics/.

[3] “Android market stats,” http://www.appbrain.com/stats/.

[4] H. Kim, B. Choi, and W. Wong, “Performance testing of mo-
bile applications at the unit test level,” in Proceedings of the
3rd International Conference on Secure Software Integration
and Reliability Improvement. IEEE Computer Society, 2009,
pp. 171–180.

[5] H. Muccini, A. D. Francesco, and P. Esposito, “Software Test-
ing of Mobile Applications: Challenges and Future Research
Directions,” in Proceedings of the 7th International Workshop
on Automation of Software Test (AST). IEEE Computer
Society, 2012.

[6] J. Dehlinger and J. Dixon, “Mobile Application Software
Engineering: Challenges and Research Directions,” in Pro-
ceedings of the Workshop on Mobile Software Engineering.
Springer, 2011, pp. 29–32.

[7] A. I. Wasserman, “Software engineering issues for mobile
application development,” in Proceedings of the FSE/SDP
workshop on Future of software engineering research, ser.
FoSER’10. ACM, 2010, pp. 397–400.

[8] M. Janicki, M. Katara, and T. Paakkonen, “Obstacles and
opportunities in deploying model-based gui testing of mobile
software: a survey,” Software Testing, Verification and Relia-
bility, vol. 22, no. 5, pp. 313–341, 2012.

[9] D. Franke and C. Weise, “Providing a Software Quality
Framework for Testing of Mobile Applications,” in Proceed-
ings of the International Conference on Software Testing,
Verification and Validation (ICST). IEEE Computer Society,
2011, pp. 431–434.

[10] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How
Do Professional Developers Comprehend Software?” in Pro-
ceedings of the 34th International Conference on Software
Engineering (ICSE). IEEE Computer Society, 2012, pp.
255–265.

[11] B. A. Myers and M. B. Rosson, “Survey On User Interface
Programming,” in Proceedings of the SIGCHI conference on
Human factors in computing systems, ser. CHI’92. ACM,
1992, pp. 195–202.

[12] M. Chandramohan and H. B. K. Tan, “Detection of mobile
malware in the wild,” Computer, vol. 99, 2012.

[13] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS:
Detecting Privacy Leaks in iOS Applications,” in 18th Annual
Network and Distributed System Security Symposium (NDSS).
The Internet Society, 2011.

[14] M. Szydlowski, M. Egele, C. Kruegel, and G. Vigna, “Chal-
lenges for Dynamic Analysis of iOS Applications,” in Pro-
ceedings of the Workshop on Open Research Problems in
Network Security (iNetSec), 2011, pp. 65–77.

[15] “KIF iOS Integration Testing Framework,” https://github.com/
square/KIF.

[16] “Frank: Automated Acceptance Tests for iPhone and iPad,”
http://www.testingwithfrank.com/.

[17] iOS Developer Library, “Apple’s developer guides,”
https://developer.apple.com/library/ios/navigation/#section=
ResourceTypes&topic=Guides.

[18] “Project SIKULI,” http://sikuli.org.

[19] “MonkeyTalk for iOS & Android,” http://www.gorillalogic.
com/testing-tools/monkeytalk.

[20] A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI Rip-
ping: Reverse Engineering of Graphical User Interfaces for
Testing,” in Proceedings of The 10th Working Conference on
Reverse Engineering. IEEE, 2003, pp. 260–269.

[21] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling
Ajax-based Web Applications through Dynamic Analysis of
User Interface State Changes,” in ACM Transactions on the
Web (TWEB), vol. 6, no. 1. ACM, 2012, pp. 3:1–3:30.

[22] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-based
automatic testing of modern web applications,” IEEE Trans-
actions on Software Engineering (TSE), vol. 38, no. 1, pp. 35
–53, 2012.

[23] A. Mesbah and S. Mirshokraie, “Automated analysis of CSS
rules to support style maintenance,” in Proceedings of the
34th ACM/IEEE International Conference on Software En-
gineering (ICSE’12). IEEE Computer Society, 2012, pp.
408–418.

[24] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A
gui crawling-based technique for android mobile application
testing,” in Proceedings of the Workshops at IEEE Fourth
International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE Computer Society,
2011, pp. 252–261.

[25] A. Gimblett and H. Thimbleby, “User interface model dis-
covery: towards a generic approach,” in Proceedings of the
2nd ACM SIGCHI symposium on Engineering interactive
computing systems, ser. EICS ’10. ACM, 2010, pp. 145–
154.

[26] T.-H. Chang, T. Yeh, and R. C. Miller, “GUI testing using
computer vision,” in Proceedings of the 28th international
conference on Human factors in computing systems, ser. CHI
’10. ACM, 2010, pp. 1535–1544.

[27] C. Hu and I. Neamtiu, “Automating GUI testing for Android
applications,” in Proceedings of the 6th International Work-
shop on Automation of Software Test, ser. AST ’11. ACM,
2011, pp. 77–83.

[28] “UI/Application Exerciser Monkey,” 2010, http://developer.
android.com/guide/developing/tools/monkey.html.

[29] “Objective-C Runtime Reference,” https://developer.
apple.com/library/ios/documentation/Cocoa/Reference/
ObjCRuntimeRef/ObjCRuntimeRef.pdf.

[30] “NSKeyValueCoding Protocol Reference,” https:
//developer.apple.com/library/mac/documentation/Cocoa/
Reference/Foundation/Protocols/NSKeyValueCoding
Protocol/NSKeyValueCoding Protocol.pdf.

[31] “Categories and Extensions,” http://developer.apple.com/
library/ios/#documentation/cocoa/conceptual/objectivec/
chapters/occategories.html.

[32] Cocoa developer community, “Method Swizzling,” http://
cocoadev.com/wiki/MethodSwizzling.

[33] “DCIntrospect,” https://github.com/domesticcatsoftware/
DCIntrospect.

[34] “XSWI: XML stream writer for iOS,” http://code.google.com/
p/xswi/.

[35] A. Mesbah and M. R. Prasad, “Automated cross-browser
compatibility testing,” in Proceedings of the 33rd ACM/IEEE
International Conference on Software Engineering (ICSE’11).
ACM, 2011, pp. 561–570.

