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Abstract— AJAX-based Web 2.0 applications rely on stateful asynchronous client/server communication, and client-side runtime

manipulation of the DOM tree. This not only makes them fundamentally different from traditional web applications, but also more error-

prone and harder to test. We propose a method for testing AJAX applications automatically, based on a crawler to infer a state-flow

graph for all (client-side) user interface states. We identify AJAX-specific faults that can occur in such states (related to, e.g., DOM

validity, error messages, discoverability, back-button compatibility) as well as DOM-tree invariants that can serve as oracles to detect

such faults. Our approach, called ATUSA, is implemented in a tool offering generic invariant checking components, a plugin-

mechanism to add application-specific state validators, and generation of a test suite covering the paths obtained during crawling. We

describe three case studies, consisting of six subjects, evaluating the type of invariants that can be obtained for AJAX applications as

well as the fault revealing capabilities, scalability, required manual effort, and level of automation of our testing approach.

Index Terms—Automated testing, web applications, Ajax.
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1 INTRODUCTION

THERE is a growing trend to move applications toward the
web. Well-known examples include Google’s mail and

office software comprising spreadsheet, word processing,
and calendar applications. The reasons for this move to the
web are manifold:

. no installation effort for end users;

. automatic use of the most recent software version
by all users, thus reducing maintenance and
support costs;

. universal access from any browser on any machine
with Internet access, not only to the application but
also to user data;

. new collaboration and community building oppor-
tunities as supported by Web 2.0 applications.

For today’s web applications, one of the key technologies
facilitating this move is AJAX, an acronym for “Asynchro-
nous JAVASCRIPT and XML” [13]. With AJAX, web
browsers not only offer the user navigation through a
sequence of HTML pages, but also dynamic rich interaction
via graphical user interface (UI) components.

While the use of AJAX technology positively affects the
user-friendliness and interactiveness of web applications

[27], it comes at a price: AJAX applications are notoriously
error-prone due to, e.g., their stateful, asynchronous, and
event-based nature, the use of (loosely typed) JAVASCRIPT,
the client-side manipulation of the browser’s Document-
Object Model (DOM), and the use of delta communication
between client and webserver [27].

In order to improve the dependability of AJAX applica-
tions, static analysis or testing techniques could be
deployed. Unfortunately, static analysis techniques are not
able to reveal many of the dynamic dependencies present in
today’s web applications. Furthermore, traditional web
testing techniques are based on the classical page request/
response model, not taking into account client side
functionality. Recent tools such as Selenium1 offer a
capture-and-replay style of testing for modern web applica-
tions. While such tools are capable of executing AJAX test
cases, they still demand a substantial amount of manual
effort from the tester.

The goal of this paper is to support automated testing of
AJAX applications. To that end, we propose an approach in
which we automatically derive a model of the user interface
states of an AJAX application. We obtain this model by
“crawling” an AJAX application, automatically clicking
buttons and other UI-elements, thus exercising the client-
side UI functionality. In order to recognize failures in these
executions, we propose the use of invariants: properties of
either the client-side DOM tree or the derived state machine
that should hold for any execution. These invariants can be
generic (e.g., after any client-side change the DOM should
remain W3C-compliant valid HTML) or application-specific
(e.g., the home-button in any state should lead back to the
starting state).

We offer an implementation of the proposed approach in
an open source, plugin-based tool architecture. It consists of a
crawling infrastructure called CRAWLJAX,2 as well as a series
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of testing-specific extensions referred to as ATUSA. We have
applied these tools to a series of AJAX applications. We report
on our experiences in this paper, evaluating the proposed
approach in terms of fault-finding capabilities, scalability,
automation level, and the usefulness of invariants.

This paper is a substantially expanded and revised
version of our paper from early 2009 [28]. Since the first
publication on CRAWLJAX [24], a range of improvements to
the tool and the underlying algorithms have been realized.
Furthermore, the tool and testing approach have been
applied to several AJAX applications (see, e.g., [33], [6]). In
this paper, we provide an integrated presentation of the full
approach, incorporating the most recent developments
concerning the crawling algorithm, the testing approach,
the available plugins, and the application of the approach to
a range of different AJAX applications, of which six are
covered in substantial detail.

The paper starts with a survey of related work (Section 2),
followed by an analysis of AJAX testing challenges (Section 3).
We then explain the crawling algorithms (Section 4) as well
as the invariant-based testing approach built on top of it
(Sections 5 and 6). After covering the architecture of our
plugin-based tool set (Section 7), we describe three case
studies, totaling six different AJAX applications (Section 8).
We conclude with a discussion of our findings, a summary of
our contributions, and an outlook toward future work.

2 RELATED WORK

Modern web interfaces incorporate client-side scripting and
user interface manipulation which is increasingly separated
from server-side application logic [36]. Although the field of
rich web interface testing is mainly unexplored, much
knowledge may be derived from two closely related fields:
traditional web testing and GUI application testing. We
survey these in Sections 2.1 and 2.2. We describe current
AJAX testing approaches in Section 2.3, after which we
provide a short overview of the use of invariants for web
testing in Section 2.4.

2.1 Traditional Web Testing

Benedikt et al. [4] present VeriWeb, a tool for automatically
exploring paths of multipage websites through a crawler
and detector for abnormalities such as navigation and page
errors (which are configurable through plugins). VeriWeb
uses SmartProfiles to extract candidate input values for
form-based pages. Although VeriWeb’s crawling algorithm
has some support for client-side scripting execution, the
paper provides insufficient detail to determine whether it
would be able to cope with modern AJAX web applications.
VeriWeb offers no support for generating test suites as we
do in Section 6.

Tools such as WAVES [18] and SecuBat [19] have been
proposed for automatically assessing web application
security. The general approach is based on a crawler
capable of detecting data entry points which can be seen
as possible points of security attack. Malicious patterns, e.g.,
SQL and XSS vulnerabilities, are then injected into these
entry points and the response from the server is analyzed to
determine vulnerable parts of the web application.

Alfaro apply model-checking [9] to web applications
using his tool called MCWEB [10]. His work, however, was
targeted toward web 1.0 applications.

A model-based testing approach for web applications
was proposed by Ricca and Tonella [31]. They introduce
ReWeb, a tool for creating a model of the web application in
UML, which is used along with defined coverage criteria to
generate test cases. Another approach was presented by
Andrews et al. [1], who rely on a finite state machine
together with constraints defined by the tester. All such
model-based testing techniques focus on classical multipage
web applications. They mostly use a crawler to infer a
navigational model of the web. Unfortunately, traditional
web crawlers are not able to crawl AJAX applications [24].

Logging user session data on the server is also used for
the purpose of automatic test generation [11], [34]. This
approach requires sufficient interaction of real web users
with the system to generate the necessary logging data.
Session-based testing techniques are merely focused on
synchronous requests to the server and lack the complete
state information required in AJAX testing. Delta-server
messages [27] from the server response are hard to analyze
on their own. Most of such delta updates become mean-
ingful after they have been processed by the client-side
engine on the browser and injected into the DOM.

Exploiting static analysis of server-side implementation
logic to abstract the application behavior is another testing
approach. Artzi et al. [2] propose a technique and a tool
called Apollo for finding faults in PHP web applications
that is based on combined concrete and symbolic execution.
The tool is able to detect runtime errors and malformed
HTML output. Halfond and Orso [16], [17] present their
static analysis of server-side Java code to extract web
application request parameters and their potential values.
They use [15] symbolic execution of server-side code to
identify possible interfaces of web applications. Such
techniques have limitations in revealing faults that are
due to the complex (client-side) runtime behavior of
modern rich web applications.

2.2 GUI Application Testing

Reverse engineering a model of the desktop (GUI) in order
to generate test cases has been proposed by Memon [23].
AJAX applications can be seen as a hybrid of desktop and
web applications since the user interface is composed of
components and the interaction is event-based [27]. How-
ever, AJAX applications have specific features, such as the
asynchronous client/server communication and dynamic
DOM-based user interface, which make them different from
traditional GUI applications [22], and therefore require
other testing tools and techniques.

2.3 Current AJAX Testing Approaches

The server side of AJAX applications can be tested with any
conventional testing technique. On the client, testing can be
performed at different levels. Unit testing tools such as
JsUnit3 can be used to test JAVASCRIPT on a functional level.

The most commonly used AJAX testing tools are
currently capture/replay tools such as Selenium IDE,4

WebKing,5 and Sahi,6 which allow DOM-based testing
by capturing events fired by user interaction. Other web
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application testing tools such as WebDriver7 or Watij8

take a different approach: Rather than being a JAVA-

SCRIPT application running within the browser, they use
a wrapping mechanism and provide APIs to control the
browser. Such tools demand, however, a substantial
amount of manual effort on the part of the tester to
create and maintain a test suite since every event trail
and the corresponding DOM assertions have to be written
by the tester.

Marchetto et al. [21] discuss a case study in which they
demonstrate that traditional web testing techniques (e.g.,
code coverage testing [31], model-based testing [1], session-
based testing [11], [34]) have serious limitations when
applied to modern Web 2.0 applications. They propose an
approach for state-based testing of AJAX applications. They
use traces of the application to construct a finite state
machine. Sequences of semantically interacting events in
the model are used to generate test cases once the model is
refined by the tester.

Our approach is the first to exercise automated testing
of Web 2.0 applications by simulating real user events on
the web user interface and inferring an abstract model
automatically.

2.4 Invariants

The concept of using invariants to assert program behavior at
runtime is as old as programming itself [8]. For the domain of
web applications, any approach that performs validation of
the HTML output (e.g., [4], [2]) could be considered to be
using invariants on the DOM. This paper makes the use of
invariants for testing web applications explicit by defining
different types of (client side) invariants, providing a
mechanism for expressing those invariants, and automati-
cally checking them through dynamic analysis.

Automatic detection of invariants is another direction that
has gained momentum. The best-known work is that of Ernst
et al. on Daikon [12], a tool capable of inferring likely invariants
from program execution traces. A more recent tool is DoDom
[30], capable of inferring DOM invariants. We have also
started exploring ways of automatically detecting DOM and
JAVASCRIPT invariants in web applications [14].

3 AJAX TESTING CHALLENGES

In order to test AJAX applications automatically, we need to
face the following challenges:

. Find a method to simulate a user’s interaction with
the web application.

. Gain access to various dynamic DOM states.

. Develop a method to assess the correctness of the
obtained states.

In traditional web applications, states are explicit and
correspond to pages having a unique URL. In AJAX

applications, the state of the user interface is determined
dynamically through event-driven changes in the browser’s
DOM tree that are only visible after executing the corre-
sponding JAVASCRIPT code. Ultimately, an AJAX application
could consist of a single page [25] with a single URL.

The event-driven nature of AJAX presents the first
serious challenge for automation, as the event model of
the browser must be manipulated, instead of just construct-
ing and sending appropriate URLs to the server. Thus,
simulating user events on AJAX interfaces requires an
environment equipped with all the necessary technologies,
e.g., JAVASCRIPT, DOM, and the XMLHttpRequest object
used for asynchronous communication.

In addition, any response to a client-side event can be
injected into the single-page interface and therefore faults
propagate to and are manifested at the DOM level. Hence,
access to the dynamic runtime DOM is a necessity in order
to be able to analyze and detect the propagated errors.

One way to simulate a web user and gain access to
dynamic states of AJAX applications automatically is by
adopting a web crawler capable of detecting and firing
events on clickable elements on the web interface. Such a
crawler should be able to crawl through different UI states
and infer a model of the navigational paths and states. In
addition, executing different sequences of events can also
trigger an incorrect state. Therefore, we should be able to
generate and execute different event sequences as well as
different (random or user specified) input data. We have
proposed such a crawler for AJAX, called CRAWLJAX [24],
which is substantially extended for this work and explained
in Section 4.

Automating the process of assessing the correctness of
test case output is a challenging task, known as the oracle
problem [38]. The problem is even more demanding when
we consider AJAX in which all the state changes are
manifested through modifications on the DOM tree. Ideally,
a tester acts as an oracle who knows the expected output, in
terms of DOM tree elements and their attributes, after each
state change. When the state space is huge, this manual
approach becomes practically impossible. An approach
taken in practice is to use a version of the application to
obtain a baseline, also known as the Gold Standard [7]. The
shortcoming of this approach is that it presumes that the
baseline represents a correct version of the system from
which initial states can be collected and reused as oracles in
subsequent test executions. The web testing literature has
mainly used HTML comparators [35] and validators [2] for
testing web applications. Such validators are, however, not
capable of capturing complex faulty DOM states that are
present in modern web applications. To automate the test
oracles, we propose to use generic and application-specific
invariants on the DOM tree.

The details of our solutions for the challenges mentioned
in this section are presented in the following sections.

4 DERIVING AJAX STATES

The testing method we propose is based on CRAWLJAX,9 a
crawler capable of automatically deriving a state machine
from an AJAX web application, which we originally
proposed in early 2008 [24]. One year later (early 2009),
we described how this crawler can be applied for testing
purposes. Since then, we have used CRAWLJAX in a range
of projects (see, e.g., [33], [6]), resulting in numerous
improvements to the crawler and the testing approach. In
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the subsequent sections, we provide an integrated
presentation of our most recent developments concerning
the crawling algorithm.

Algorithms 1 and 2 show the overall crawling process.
Central to our approach is the automatic inference of a state-
flow graph from the web application. To infer such a graph
automatically, we open the web application in a web
browser, we examine the DOM-tree looking for candidate
elements to fire events on, and we detect user interface state
changes. We conduct the analysis and navigation part
recursively for all possible states. For input fields, we
provide random data if no custom data is available. And
finally, we provide various options for controlling the
crawling phase. The following sections discuss these steps
in more detail.

Algorithm 1. Crawling process with pre/postCrawling
hooks

1: procedure START (url, Set tags)

2: browser initEmbeddedBrowser(url)

3: robot initRobot()

4: sm initStateMachine()

5: preCrawlingPlugins(browser)

6: crawl(null)

7: postCrawlingPlugins(sm)
8: end procedure

9: procedure CRAWL (State ps)

10: cs sm.getCurrentState()

11: �update diff(ps, cs)

12: f  analyseForms(�update)

13: Set C  getCandidateClickables(�update, tags, f)

14: for c 2 C do

15: generateEvent(cs, c)
16: end for

17: end procedure

Algorithm 2. Firing events and analyzing AJAX states

1: procedure GENERATEEVENT (State cs, Clickable c)

2: robot.enterFormValues(c)
3: robot.fireEvent(c)

4: dom browser.getDom()

5: if stateChanged(cs.getDom(), dom) then

6: xe getXpathExpr(c)

7: ns sm.addState(dom)

8: sm.addEdge(cs, ns, Event(c, xe))

9: sm.changeToState(ns)

10: runOnNewStatePlugins(ns)
11: testInvariants(ns)

12: if stateAllowedToBeCrawled(ns) then

13: crawl(cs)

14: end if

15: sm.changeToState(cs)

16: if browser.history.canGoBack then

17: browser.history.goBack()

18: else

19: {We have to back-track by going to the initial

state.}.

20: browser.reload()

21: List E  sm.getPathTo(cs)

22: for e 2 E do

23: re resolveElement(e)

24: robot.enterFormValues(re)

25: robot.fireEvent(re)

26: end for

27: end if

28: end if

29: end procedure

4.1 The State-Flow Graph

The crawler we propose is a tool that can exercise client-side

code and identify elements10 that change the state within

the browser’s dynamically built DOM. From these state

changes, we infer a state-flow graph, which captures the

states of the user interface and the possible event-based

transitions between them.

Definition 1. We define an AJAX UI state change as a change on

the DOM tree caused either by server-side state changes

propagated to the client or client-side events handled by the

AJAX engine.

We model such UI changes in a directed graph by

recording the paths (events) to the DOM changes to be able

to navigate between the different states. For that purpose

we define a state-flow graph as follows:

Definition 2. A state-flow graph for an AJAX site A is a

3-tuple hrrrr; VVVV ;EEEEi where:

1. rrrr is the root node (called Index) representing the initial
state after AAAA has been fully loaded into the browser.

2. VVVV is a set of vertices representing the UI states. Each
vvvv 2 VVVV represents a unique runtime DOM state in AAAA.

3. EEEE is a set of edges between vertices. Each ðvvvv1; vvvv2Þ 2 EEEE
represents a clickable cccc connecting two states if and
only if state vvvv2 is reached by executing cccc in state vvvv1.

As an example, Fig. 1 displays the state-flow graph of a

simple AJAX site. From the index page three different states

can be reached directly. The edges between states are

labeled with an identification (e.g., XPath expression) of the

element and the event type to reach the next state.
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4.2 Inferring the State Machine

The state machine (line 4 Algorithm 1) is created incremen-
tally. Initially, it only contains the root state and new states
are created and added as the application is crawled and state

changes are analyzed (lines 7-8 Algorithm 2). The following
components participate in the construction of the graph:

. CRAWLJAX uses an embedded browser interface (with
different implementations: IE, Firefox, and Chrome)
supporting all technologies required by modern
dynamic web applications;

. a robot is used to simulate user input (e.g., click,
hover, text input) on the embedded browser;

. the finite state machine is a data component main-
taining the state-flow graph, as well as a pointer to
the current state;

. the controller has access to the browser’s DOM and
analyzes and detects state changes. It also controls
the robot’s actions and is responsible for updating
the state machine when relevant changes occur
on the DOM tree.

As can be seen in Algorithm 1, the browser, robot and

state machine are initialized first (lines 2-4) and from there
the crawl procedure is called. The steps taken by the crawl

procedure to infer the state machine are discussed below.

4.3 Detecting Clickables

To illustrate the difficulties involved in crawling AJAX,
consider Fig. 2. This is a highly simplified example,

showing how an onclick event listener can be attached
to a DIV element at runtime through JAVASCRIPT. Tradi-

tional crawlers as used by search engines simply ignore all
such clickables. Finding these clickables at runtime is a
nontrivial task for any modern crawler.

To tackle this challenge, CRAWLJAX implements an
algorithm in which a set of candidate elements (line 13
Algorithm 1) are exposed to an event type (e.g., click,

mouseover) (line 3 Algorithm 2).
In an automatic mode, the crawler examines all elements

of the type A, DIV, INPUT, and IMG since these elements are

often used to attach event listeners. If the user wishes to
define their own criteria for selection, this list can be

extended or adapted. The candidate clickables can be labeled
as such based on their HTML tag element name and attribute

constraints. For instance, all elements with a tag SPAN having
an attribute class=“menuitem” can be set to be considered

as candidate clickable. For each detected candidate element
on the DOM tree, the crawler fires an event on the element in

the browser to analyze the effect. A candidate clickable
becomes an actual clickable if the event fired on the element

causes a DOM change in the browser. In that case, using the
clickable element an edge is created and added to the state

machine, which connects the previous state to the current
state (lines 5-9 Algorithm 2).

The general approach to using CRAWLJAX is to select a
large set of elements to examine (for good coverage) and to
exclude elements that are not of importance or can cause
problems (delete items or log the user out).

4.4 Creating and Comparing States

After firing an event on a candidate clickable, the algorithm
inspects the resulting DOM tree to see if the event results in
a modified state (line 5 Algorithm 2). If a similar state is part
of the state flow graph already, merely an edge is created,
identifying the type of click and the location clicked. If the
next state is not part of the graph already, a new state is
created and added first (line 7 Algorithm 2).

The level of abstraction achieved in the resulting state-
flow graph is largely determined by the algorithm used to
compare DOM trees (which reflect the states in the flow
graph). A generic and effective way is to use a simple string
edit distance algorithm such as Levenshtein [20]. This has
the advantage that it does not require application-specific
knowledge and that the algorithm can be fine-tuned by
means of a similarity threshold (between 0 and 1).

Alternatively, we propose the use of a series of “compara-
tors” that each can compare specific aspects of two DOM
trees. Each comparator can eliminate specific parts of the
DOM tree, such as (irrelevant) attributes, time stamps, or
styling issues. The resulting simplified DOM tree is subse-
quently pipelined to the next comparator. Fig. 3 shows an
example of how the pipelining works by stripping the
differences and passing the result forward. At the end, after
all the desired differences are removed, a simple string
comparison determines the equality of the two DOM strings.

Web applications often contain structures with repeating
patterns, such as tables and lists. Since the actual elements
are not always relevant, we propose comparators that can
abstract from the specific elements. In particular, our
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Fig. 2. Attaching an onClick event listener to a DIV element with attribute
class=“news.”

Fig. 3. Pipelining state comparators.



technique scans the DOM tree for elements that recur
within a structure, and automatically generates a template
capturing the pattern. The comparators can use these
templates to ignore the given repeating patterns.

While state comparators can be a powerful means to
ignore nondeterministic differences, they can also be too
permissive, grouping DOM trees that should be considered
different. To address this problem, state comparators are
equipped with preconditions: Boolean predicates that the
test engineer can add to ensure that a given comparator is
only used on states meeting certain constraints.

Finally, to enable fast comparison with existing states,
the resulting stripped DOM tree is used to calculate a
hashcode which is used in all subsequent comparisons in
the state machine.

4.5 Processing Document Tree Deltas

After a new state has been detected, the crawling procedure
is recursively called (line 13 Algorithm 2) to find new
possible candidate elements in the partial changes made to
the DOM tree. CRAWLJAX computes the differences
between the previous document tree and the current one
(line 11 Algorithm 1) by means of an enhanced Diff
algorithm to detect AJAX partial updates, which may be
due to a server request call that injects new elements into
the DOM. This differencing method is an optimization step,
needed to scan and search for candidate clickables merely
in the changed parts of the DOM-tree, as opposed to
examining all of the elements of the new DOM-tree.

4.6 Navigating the States

Upon completion of the recursive call, the browser should
be put back into the previous state. A dynamically changed
DOM state does not register itself with the browser history
engine automatically, so triggering the “Back” function of
the browser is usually insufficient. To deal with this AJAX

crawling problem, we save information about the elements
(line 6-7 Algorithm 2) and the order in which their
execution results in reaching a given state. We can then
reload the application and follow and execute the elements
from the initial state to the desired state (lines 16-27
Algorithm 2).

CRAWLJAX adopts XPath to identify the clickable
elements. After a reload or state change, DOM elements,
can easily be deleted, changed, or replaced. As a conse-
quence, the XPath expression used for navigation can
become invalid. To tackle this problem, our approach uses a
mechanism called Element Resolver (line 23 Algorithm 2),
which examines the clickable elements before they are used
to make state transitions. This examination is needed to
make sure we have access to the correct element. To detect
the intended element persistently, we use various (saved)
properties of the element such as their attributes and text
value. Using a combination of these properties, our element
resolver searches the DOM for a match, which gives us
some degree of reliability in case clickables are removed or
changed. Note that despite our element resolving mechan-
ism, because of side effects of server-side state there is no
guarantee that we find the same element on the DOM-tree
and can reach the exact same state.

4.7 Data Entry Points

Besides clicks to proceed along links, buttons, etc., certain
user interface states will require data entered by the user. In
order to provide input values in AJAX web applications, we
have adopted a reverse engineering process to extract all
exposed data entry points. To this end, we have extended
our crawler with the capability of detecting input elements
on each newly detected state (line 12 Algorithm 1).

While crawling, before the robot clicks on an element, it
checks the DOM for input elements and enters the
corresponding values (line 2 Algorithm 2). The related
input fields are saved with the clickable element, causing
the state transition so that the crawler knows which values
to enter in which fields the next time it clicks on the element
(while backtracking). For supplying values in the input
fields, our approach considers three categories:

Random input values. Automation is an important
aspect of our approach. Therefore, our tool enters random
values in the form elements by default. With this approach,
many states that need input values can be reached without
any human effort. Table 1 shows the random values used
while crawling if no custom values are provided.

If there is already some value in an input field, that value
is retrieved and used instead of a random value.

Custom input values. Specific input values are often
needed for testing or to reach certain states. For example, a
valid e-mail address as input is needed to add a contact.
With our approach it is possible to provide custom input
values by specifying them for the crawler.

Multiple custom input values. Entering multiple values
for input fields can be useful for testing or to reach more
states. For example, entering a normal string, an empty
string, and a string with non-alpha-numeric characters in a
field that requires a text value could be required for testing.

The challenge here is to know when to enter which
value. Our current approach is based on grouping the input
elements on each state by specifying the related clickable
element (e.g., submit button). For each input value,
n number of values are provided. These values are inserted
into the input fields and the associated clickable is clicked
n times, where n is the position of the provided input
values. A more complete approach would be to try every
combination of the input values at the cost of increasing the
running/testing time.

4.8 Controlling the Crawling Phase

In order to have more control on the crawling paths, we use
crawl conditions, conditions that check whether a state
should be visited. A state is crawled only if the crawl
conditions are satisfied (line 12 in Algorithm 2). Fig. 4
shows an example of a crawl condition that enforces that
only states within the crawljax.com domain are crawled.

40 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

TABLE 1
Random Values for Form Input Elements



In addition, to give more controllability, CRAWLJAX has
a set of options, such as the maximum number of states,
maximum crawling time, waiting time after each reload (for
the page to load fully), waiting time after an event is fired
(for the DOM-tree to get updated), and the crawl depth.

5 TESTING AJAX STATES THROUGH INVARIANTS

With access to different dynamic web states we can check
the user interface against different constraints. We propose
to express those as invariants, which we can use as an oracle
to automatically conduct sanity checks in any state.
Although the notion of invariants has predominantly been
applied to programming languages for software evolution
[12] and verification [3], we believe that invariants can also
be adopted for testing modern web applications to specify
and constrain DOM elements’ properties, their relations,
and occurrences.

In this work, we distinguish between generic and
application-specific invariants on the DOM-tree, between
DOM-tree states, and on the runtime JAVASCRIPT variables.
Each invariant is based on a fault model [7], representing
AJAX-specific faults that are likely to occur and which can
be captured through the given invariant.

5.1 Generic DOM Invariants

5.1.1 Validated DOM

Malformed HTML code can be the cause of many
vulnerability and browser portability problems. Although
browsers are designed to tolerate HTML malformedness to
some extent, such errors have led to browser crashes and
security vulnerabilities [2]. All current HTML validators
expect all the structure and content to be present in the
HTML source code. However, with AJAX, changes are
manifested on the single-page user interface by partially
updating the dynamic DOM through JAVASCRIPT. Since
these validators cannot execute client-side JAVASCRIPT,
they simply cannot perform any kind of validation.

To prevent faults, we must make sure that the
application has a valid DOM on every possible execution
path and modification step. We use the DOM tree obtained
after each state change while crawling and transform it
into the corresponding HTML instance. A W3C HTML
validator serves as an oracle to determine whether errors
or warnings occur.

5.1.2 No Error Messages in DOM

A client-site web state should never contain a string pattern
that suggests an error message [4] in the DOM tree. Error
messages that are injected into the DOM as a result of client-
side (e.g., 404 Not Found, 400 Bad Request) or server-side
errors (e.g., Session Timeout, 500 Internal Server Error,
MySQL error) can be detected automatically. The pre-
scribed list of potential fault patterns should be configur-
able by the tester.

5.1.3 Accessibility and i18n Compliant DOM

Many modern AJAX web applications pose accessibility
challenges to people with disabilities due to their dynamic
content and advanced user interface components. Evaluat-
ing the dynamic states against W3C standards such as the
web content accessibility guidelines (WCAG 1.0)11 or the
recent accessible rich internet applications suite (ARIA)12

can help find accessibility faults automatically.
The same is true for checking each DOM state against W3C

internationalization and localization (i18n)13 guidelines.

5.1.4 Secure States

Testing modern web applications for security vulnerabilities
is far from trivial. Capturing web security requirements in
terms of generic invariants that can be checked automati-
cally is very promising. Recently, we applied this technique
[6] for automatically detecting security vulnerabilities in
client-side self-contained web widgets that can coexist
independently on a single webpage. We focused on two
security invariants, namely, 1) no widget is able to change
the content (DOM) of another widget, and 2) no widget can
steal data from another widget and send it to the server via
an HTTP request, with promising detection results.

In addition, security vulnerabilities such as Cross-Site
Scripting (XSS) in AJAX applications can be captured in the
same manner. It is worth mentioning that detecting DOM-
based XSS requires an analysis of the runtime generated
DOM (which we have access to) and not just the pages’
syntax [37].

5.2 Application-Specific State Invariants

We can define invariants that should always hold and could
be checked on the dynamic states, specific to our AJAX

application in development. In our case studies, Section 8,
we describe a number of application-specific invariants.

Constraints over the DOM-tree can be easily expressed
as invariants. Typically, this can be coded into one or two
simple Java methods. The resulting invariants can be used
to dynamically search for invariant violations.

Table 2 shows the different generic ways the invariants
can be expressed. We currently have support for expressing
invariants in XPath, regular, or JAVASCRIPT expressions. In
addition, we support conditions such as the URL or
visibility of DOM elements, which can be used to express
invariants. The logical operators NOT, OR, AND, and
NAND can also be applied, on or between the invariants,
for more flexibility. In addition, each invariant type can be
constrained to a specific set of states using preconditions.
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Fig. 4. A URL crawl condition for only crawling the CRAWLJAX webpage.

11. http://www.w3.org/TR/WAI-WEBCONTENT/.
12. http://www.w3.org/WAI/intro/aria.
13. http://www.w3.org/International/publications.

TABLE 2
Expressing State Invariants



While crawling through the different states of the web
application, since we have access to the runtime JAVA-

SCRIPT we can also specify invariants on the values of any
JAVASCRIPT variable.

Fig. 5 shows an example of expressing an XPATH
invariant with a JAVASCRIPT precondition for checking
whether the menu item on the home page contains the class
attribute “menuElement.”

The generated templates capturing DOM patterns (dis-
cussed in Section 4.4) can also be augmented and used as
invariants on the DOM tree. Fig. 6 shows a DOM invariant
template that checks the structure of the list, whether the
item is between 2 and 50 alphanumeric characters, and
whether an item’s identifier is always an integer value.

5.3 Generic State Machine Invariants

Besides constraints on the DOM-tree in individual states,
we can identify requirements on the state machine and its
transitions. Some of the generic invariants that can be
defined on any state machine inferred by our tool consist of
the following:

5.3.1 No Dead Clickables

One common fault in classical web applications is the
occurrence of dead links, which point to a URL that is
permanently unavailable. In AJAX, clickables that are
supposed to change the state by retrieving data from the
server, through JAVASCRIPT in the background, can also
be broken. Such error messages from the server are mostly
swallowed by the AJAX engine, and no sign of a dead link is
propagated to the user interface. By listening to the client/
server request/response traffic after each event (e.g.,
through a proxy), dead clickables can be detected.

5.3.2 Consistent Back Button

A fault that often occurs in AJAX applications is the broken
Back button of the browser. As explained in Section 4, a
dynamically changed DOM state does not register itself
with the browser history engine automatically, so triggering
the “Back” function makes the browser completely leave the
application’s webpage. It is possible to programatically
register each state change with the browser history and
frameworks are appearing which handle this issue. How-
ever, when the state space increases, errors can be made and
some states may be ignored by the developer to be
registered properly. Through crawling, upon each new
state one can compare the expected state in the graph with

the state after the execution of the Back button and find
inconsistencies automatically.

5.4 Application-Specific State Machine Invariants

Besides generic invariants on the state machine, we can also
define constraints on the temporal properties of the web
application using application-specific invariants. These
temporal properties are usually in a Source - Action ->

Target format, and can be checked as invariants after the
state machine is fully inferred, using, for instance, temporal
logic model checking. Examples include:

. from any state, clicking on the logoff button
should bring us to the logged off state (or the login
page);

. from state product list, clicking on the overview

link should take us to the overview state.

6 TESTING AJAX PATHS

While running the crawler to derive the state machine can
be considered as a first full test pass, the state machine itself
can be further used for testing purposes. For example, it can
be used to execute different paths to cover the state machine
in different ways. In this section, we explain how to derive a
test suite (implemented in JUnit) automatically from the
state machine, and how this suite can be used for testing
purposes.

6.1 Test Suite Generation

To generate a test suite, we use the K shortest paths [39]
algorithm, which is a generalization of the shortest path
problem in which several paths in increasing order of
length are sought. We collect all sinks in our graph, and
compute the shortest path from the index page to each of
them. Loops are included once. This way, we can easily
achieve all transitions coverage.

Given a rooted directed graph G with nonnegative edge
weights, a positive integer K, and two vertices v1 and v2, the
problem asks for the K shortest paths from v1 to v2, in
nondecreasing order of length. In our algorithm, first the set
of sink vertices (with no outgoing edges) in G is calculated.
Then, we use each sink in fs1; s2; . . . ; sng to find the
K shortest paths from the root (index) state to si. Loops
are included once.

Next, we transform each path found into a JUnit test
case, as shown in Fig. 7. Each test case captures the
sequence of events from the initial state to the target state.
The JUnit test case can fire events since each edge on the
state-flow graph contains information about the event-type
and the element the event is fired on to arrive at the target
state. We also provide all the information about the
clickable element, such as tag name and attributes, as code
comments in the generated test method. The test class
provides API’s to access the DOM (browser.getDom())
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Fig. 5. Example of an XPATH invariant with a JAVASCRIPT precondition.

Fig. 6. An augmented template that can be used as an invariant.



and elements (browser.getElementBy(how, value))
of the resulting state after each event, as well as its contents.

If a clickable element is associated with input fields,
input values are first inserted in the browser’s DOM tree
before triggering the event.

After each event invocation the resulting state in the
browser is compared with the expected state. The compar-
ison can take place at different levels of abstraction ranging
from textual [35] to schema-based similarity [25]. The states
are currently compared with our oracle comparator
pipelining mechanism as discussed in Section 4.4.

6.2 Test-Case Execution

Usually, extra coding is necessary for simulating the
environment where the tests will be run, which contributes
to the high cost of testing [5]. We provide a framework to
run all the generated tests automatically using a real web
browser and generating success/failure reports. At the
beginning of each test case, the embedded browser is
initialized with the URL of the AJAX site under test. For
each test case, the browser is first put in its initial index
state. From there, events are fired on the clickable elements
(and forms filled if present). After each event invocation,
assertions are checked to see if the expected results are seen
on the web application’s new UI state.

In short, a test case succeeds if:

1. every transition (edge) element can be successfully
found in the state;

2. the corresponding event can be fired on the
transition element;

3. there are no time-outs when loading each state;
4. the invariants are satisfied;
5. every visited state in the browser is equivalent to the

expected state in the state machine.

6.3 Applications

The generated JUnit test suite can be used in several ways.
First, it can be run as is on the current version of the AJAX

application, but, for instance, with a different browser to
detect browser incompatibilities.

Furthermore, the test suite can be applied to altered
versions of the AJAX application to support regression

testing: For the unaltered user interface, the test cases
should pass, and only for altered user interface code might
failures occur (also helping the tester to understand what
has truly changed). For further details on how this
technique is used for regression testing AJAX applications,
we refer to our recent paper [33].

The typical use of the derived test suite will be to take
apart specific generated test cases, and augment them with
application-specific assertions. In this way, a small test suite
arises capturing specific fault-sensitive click trails.

7 TOOL IMPLEMENTATION

7.1 The Testing Framework

Our approach, called Automatically Testing UI States of
AJAX (ATUSA), is implemented in Java. It is based on the
crawling capabilities of our open-source crawler CRAWL-

JAX and provides plugin hooks for testing AJAX applica-
tions at different levels. More implementation details of the
crawler can be found on the CRAWLJAX website.14 The
state-flow graph is based on the JGrapht15 library. Apache
Velocity templates assist us in the code generation process
of JUnit test cases.

ATUSA offers generic invariant checking components, a
plugin-mechanism to add application-specific state valida-
tors, and generation of a test suite from the inferred state-
flow graph.

Furthermore, ATUSA provides a number of generic
comparators (see Section 4.4), each of which is responsible
for ignoring merely one type of difference. The list of
comparators currently available includes Whitespace,
Attributes, Style, Datetime, Structure, List, Table, Regex,
and XPathExpression, each addressing a particular way of
eliminating tree differences.

ATUSA supports looking for many different types of
faults in AJAX-based applications, from errors in the DOM
instance to errors that involve the navigational path, e.g.,
constraints on the length of the deepest paths [4] or number
of clicks to a certain state. Whenever a fault is detected, the
error report along the causing execution path is saved so
that it can be easily reproduced later.

ATUSA explores a large number of execution paths that
may result from unpredictable user behavior. This is thus
complementary to that of capture/replay testing tools,
which are useful for testing the correctness of a few specific
paths in the web application.

ATUSA offers implemented a Java-based API for config-
uring the tool with merely a few lines, as depicted in Fig. 8.
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Fig. 7. A generated JUnit test case.

14. http://crawljax.com.
15. http://jgrapht.sourceforge.net.

Fig. 8. Tool configuration example.



This figure shows how 1) the user can include (click) and

exclude (dontClick) certain element types from the crawling

process, 2) invariants can be added for testing, 3) plugins

can be added for analysis and test suite generation.

7.2 Plugins

ATUSA provides the tester with APIs to implement plugins

for validation and fault detection. The main interface for

extending the framework is Plugin, which is extended by

the different types of plugins. Each plugin type serves as an

extension point that is called in a different phase of the

crawling execution. Table 3 summarizes the main plugin

types and their invocation phases. Fig. 9 depicts the

execution flow of each type of plugin and Fig. 10 depicts

the processing view of ATUSA, showing only the DOM

Validator and TestSuite Generator as examples of possible

plugin implementations.
The list of currently available plugins is shown in

Table 4. Most of these plugins are open source.16

Understanding why a test case fails is very important to
determine whether a reported failure is caused by a real
fault or a legal change. To that end, our toolset generates a
detailed web report that visualizes the failures. We format
and pretty-print the DOM trees without changing their

structure and use XMLUnit17 to determine the DOM
differences. The elements related to the differences are
highlighted with different colors in the DOM trees. We also
capture a snapshot of the browser at the moment the test
failure occurs and include that in the report. Other
important data, such as the sequence of fired events,

JAVASCRIPT debug variables and the list of applied state
comparators, are also displayed.

8 EMPIRICAL EVALUATION

In order to assess the usefulness of our approach in

supporting modern web application testing, we have

conducted a number of case studies, set up following Yin’s

guidelines [40].

8.1 Goal and Research Questions

Our goal in this experiment is to evaluate the fault revealing

capabilities, scalability, required manual effort, and level of

automation of our approach. Our research questions can be

summarized as:

. RQ1. What kind of meaningful invariants can be

obtained for AJAX applications and how can they be

expressed in ATUSA?
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TABLE 3
Plugin Types

Fig. 9. Plugins invocation flow.

Fig. 10. Processing view of ATUSA, showing only the DOM Validator and
TestSuite Generator as examples of possible plugin implementations.

16. http://crawljax.com/plugins/.
17. http://xmlunit.sourceforge.net.



. RQ2. What is the fault revealing capability and
effectiveness of our testing approach?

. RQ3. What is the performance of the proposed
approach, and how well does it scale?

. RQ4. What is the automation level and how much
manual effort is involved in the testing process?

8.2 Study 1: Invariants

In our fist study, our goal is to assess to what extent

meaningful invariants can be obtained for AJAX applications

(RQ1). To thatn end, we analyze four open-source AJAX

applications.

8.2.1 Case Study Setup

Our assessment involves the following steps:

1. We run our tool on the subject system (using the
default configurations) to obtain a state-flow
graph. We visualize the graph with the Crawl
Overview plugin.

2. We analyze the graph manually to assess its
completeness and to see if the most important user
interface states are covered. If necessary, we adjust
the crawler’s configuration parameters and settings
to increase the coverage, for example by providing
specific elements that should be clicked or input
values that need to be filled in.

3. We inspect the states from the graph, analyzing the
DOM (with tools such as Firebug18) and JAVASCRIPT

code in search of candidate invariants.
4. To identify candidate invariants, we use tools such

as Firefinder19 and our own regular expression tool
to extract and evaluate XPath and regular expres-
sions over the DOM-tree.

5. We express the selected invariants in Java using
ATUSA’s invariant expression mechanisms (see
Section 5.2).

6. We run our tool to check the invariants at runtime
automatically.

8.2.2 THEORGANIZER

THEORGANIZER20 is an open-source web application that

can be used as a task manager and organizer. It is written as

a J2EE application using WebWork, Spring JDBC, and the
Prototype AJAX library.

The configuration setup for THEORGANIZER was
straightforward: include all images as candidate clickables
and use the random input-value generator for form inputs.
THEORGANIZER requires authentication; thus we wrote a
plugin to log into the web application automatically.

Fig. 11 depicts some parts of the inferred graph
visualized by the CrawlOverview plugin. This graph shows
the outgoing and incoming edges from each state. In
addition, we can zoom into each state by clicking on the
snapshot image of the state (taken during crawling) to
conduct further examination.

After manually inspecting the states, we documented five
invariants for THEORGANIZER, listed as invariants O1-O5 in
Table 5. These consisted of one generic, one XPath, and one
Regular expression state invariant, as well as two applica-
tion-specific state machine invariants (see Section 5.4).

We detected violations through invariants O2, O4, O5, as
well as generic invariant A1, which was relevant for all
cases. The most interesting violation was O4, in which the
expected behavior was that after clicking on the logoff
button, we would land on a logged off state. This invariant
failed when we used Firefox as our embedded browser.
Closer inspection revealed that the logoff element has an
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TABLE 4
Available Plugins

Fig. 11. The graph overview for THEORGANIZER, generated by the
CrawlOverview plugin.

18. http://getfirebug.com/.
19. https://addons.mozilla.org/en-US/firefox/addon/11905/.
20. http://www.apress.com/book/downloadfile/2931.



onclick event listener attached to it which calls a
JAVASCRIPT function called logoff(). Firefox seems to
have a conflict with this function name. One explanation
could be that the word logoff is a hidden keyword in Firefox.

Invariant 5 is also worth mentioning. This invariant
captures a pattern: Clicking on an image element with id=X

results in a state with an image as header having
src=head_X, where X is, for instance, “Tasks” or “Con-
tacts.” This invariant passes for all states except for
“Appointments.” Clicking on the Appointments element takes
us to a state with an image as header having src=head_

dayView as the header. Such inconsistencies in dynamic
web applications are commonplace and usually difficult to
spot manually. With automated invariant testing they can be
detected and fixed in a systematic manner. The manual effort
for THEORGANIZER case was less than 30 minutes.

8.2.3 TASKFREAK

TASKFREAK21 is a simple task management and to-do list
application written in PHP. Configuring CRAWLJAX re-
quired specifying the username and password to be used,
as well as the HTML input fields where these needed to be
entered, which was done through a simple OnUrlLoad
plugin (Section 7.2). Furthermore, a quick inspection of the
first page revealed that table data is clickable in TASK-

FREAK, which is why we specified that td- and th-
elements are candidate clickables (Section 4.3). Since
TASKFREAK includes a ticking clock in its page, we enabled
the DateOracleComparator (Section 4.4), thus removing the
current time before determining DOM-equality.

The random data for input fields (Section 4.7) works well
for most of the data entry points for TASKFREAK. In order to
permit reaching additional user interface states, we config-
ured CRAWLJAX with custom values for a valid e-mail
address as well as an invalid one. Furthermore, when
attempting to change the password we ensured that the
password entered the second time was the same as the one
entered the first time. Identifying these data entry points
requires a manual exploration of the application and the

derived graph obtained through the CrawlOverview plugin,
which for TASKFREAK took less than one hour.

A selection of the application-specific invariants for
TASKFREAK is listed in Table 5. The first invariant T1
expresses the high-level design decision that at any time
the top-level body-element of TASKFREAK consists of
three div-elements: a header for the top navigation menu,
a container for the actual list of to-do items, and an
optional pop-up area for, e.g., data entry in a calendar
popping up. While simple in nature, this invariant already
reveals an issue in TASKFREAK: After closing a pop-up,
the corresponding div in the DOM-tree should be
removed. In TASKFREAK, however, this is only correctly
done for the calender pop-up when the user presses the
save button: If cancel is pressed instead, the div-entry is
not removed, leading to a (slowly) growing DOM tree. The
invariant that at most one calendar pop-up can exist at any
time spots this problem.

Note that the pop-up problem corresponds to a common
AJAX-idiom: Parts of the DOM tree can be rendered
invisible and can be used for representing data, user-
interface elements, and so on. It is the programmer’s
responsibility to manage these DOM-elements and to
“garbage collect” them in order to avoid endlessly growing
DOM trees. Invariants can be used to express constraints
over these parts of the DOM tree, ensuring proper DOM-
tree management.

Other invariants include the use of a template (see
Section 5.2) to ensure that all states displaying the list of
actions have the same structure (T2), as well as invariants
on the state machine expressing that the reload button
always leads to the required state (T3), and that the
browser’s Back button behaves as expected (A1, which is
violated in TASKFREAK).

8.2.4 HITLIST

Our third experimental subject for this study is the AJAX-
based open-source HitList,22 which is a task manager based
on PHP and jQuery.
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Invariants for Study 1

21. http://www.taskfreak.com., TaskFreak! Original, v0.6.4. 22. HitList Version 0.01.09b, http://code.google.com/p/hit-list/.



For HITLIST, the configuration of our tool consisted of
including all anchor tags as well as all input elements
having a class attribute equal to add_button as candidate
clickables. Furthermore, we excluded from crawling all the
elements that deleted items from the application (e.g.,
<a title=Delete...>, <a class=delete-but-

ton...>). To ignore subtle DOM differences, we pipelined
the generic Table and List oracle comparators. These
comparators abstract away the differences in structures of
the HITLIST tables and lists.

To constrain the state space, we created a CrawlCondition
that ensures a contact can only be added once during the
crawling phase. This was done by checking a JAVASCRIPT

condition in the Add Contact state, as shown in Fig. 12.
When the precondition (a state containing the text “Add
Contact”) is satisfied, the JAVASCRIPT condition retrieves
the list of contacts from the server and checks whether there
are no contacts present during execution. In that case it
returns true, allowing our tool to add a new contact.

From the output of the Crawl Overview plugin we
generated a regular expression for the contact state. We
manually augmented this generated template and created a
custom Contact regular expression invariant for the contact
list. This template, shown in Fig. 13, serves as a DOM
invariant, since it checks the structure as well as the validity
of the contact’s name, phone number, e-mail, and id.

With H1, we were able to detect a violation in a
regression version of HITLIST, namely, leading zeros in
phone numbers were missing (e.g., 0641288822 was saved
as 641288822).

8.2.5 THETUNNEL

Our last subject for this study is an open-source web-based
implementation of a tunnel game.23 In this game, the player
controls an airplane and the objective is to avoid hitting a
moving wall. It is written using jQuery.

For this web application, we were interested in doc-
umenting JAVASCRIPT invariants. Therefore, we analyzed
the JAVASCRIPT source code manually and documented a
number of invariants on the global variables that could be
used as assertions to test the program state.

A few of the invariants we obtained are listed in Table 5.
These invariants were turned into assertions and used for
regression testing the JAVASCRIPT code automatically.
Assertions on global variables can be checked through
ATUSA’s invariant checking APIs. For instance, Fig. 14
shows how U2 in Table 5 can be checked through ATUSA.

Checking local variables can be done by injecting the
assertion code into the JAVASCRIPT source code through a
proxy. The details of this technique can be found in [14].

8.2.6 Findings

Going back to our first research question (RQ1), from the
four case studies described, we conclude the following:

. Writing invariants captures and requires an under-
standing of the design of the web application. The
automatically generated crawl overview helps us in
the process of program comprehension.

. Invariants over the relations of elements and their
attributes on the DOM tree can be naturally
expressed using XPath expressions. Invariants cap-
turing the structure of the elements can be expressed
using template-based regular expressions. Those
constraining actions and their consequences can be
captured in state machine invariants. Finally, code-
level JAVASCRIPT design contracts can be easily
expressed as JAVASCRIPT expressions.

. Invariants can be used to find various faults,
including DOM memory leaks (TASKFREAK), cross-
browser inconsistencies (THEORGANIZER), and re-
gressions (HITLIST).

. The manual effort involved in configuring CRAWL-

JAX and writing the described invariants in this
study, is minimum, amounting to less than one hour
for each of the cases covered.

8.3 Study 2: TUDU

In this study, we are particularly concerned with assessing
the fault revealing capabilities, scalability, and required
manual effort our approach (RQ2-RQ4).

8.3.1 Subject System

Our experimental subject in this study is the AJAX-based
open-source TUDU web application24 for managing
personal to-do lists, which has also been used by other
researchers [22]. The server side is based on J2EE and
consists of around 12K lines of Java/JSP code, of which
around 3K forms the presentation layer we are interested
in. The client side extends on a number of AJAX libraries
such as DWR25 and Scriptaculous,26 and consists of
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Fig. 12. A JAVASCRIPT crawl condition, with regular expression
precondition, for adding a contact once in HITLIST.

Fig. 13. Regular expression (template) invariant for HITLIST contact list.

Fig. 14. Checking invariants on JAVASCRIPT global variables.

23. http://arcade.christianmontoya.com/tunnel/.

24. http://tudu.sourceforge.net.
25. http://directwebremoting.org.
26. http://script.aculo.us.



around 11k LOC of external JAVASCRIPT libraries and
580 internal LOC.

8.3.2 Case Study Setup

For RQ2 and RQ3, we configured ATUSA (1 minute), setting
the URL of the deployed site, the tag elements that should be
included (A,DIV) and excluded (A:title=Logout) during
the crawling process, the depth level (2), the similarity
threshold (0.89), and a maximum crawling time of 60 minutes.
Since TUDU requires authentication, we wrote (10 minutes) a
preCrawling plugin to log into the web application
automatically. We use the TestSuite Generator plugin in this
case study to automatically generate a test suite from the
inferred state machine. To address RQ4, we report the time
spent on parts that required manual work.

As shown in Table 6, we measure average DOM string
size, number of candidate elements analyzed, detected
clickables and states, detected data entry points, detected
faults, number of generated test cases, and performance
measurements, all of which are printed in a log file by
ATUSA after each run.

In the initial run, after the login process, ATUSA crawled
the TUDU application, finding the doorways to new states
and detecting all possible data entry points recursively. We
analyzed the data entry points and provided each with
custom input values (15 minutes to evaluate the input
values and provide useful values). For the second run, we
activated (50 seconds) the DOM Validator, Back Button,
Error Detector, and Test Case Generator plugins and started
the process. ATUSA started crawling and, when forms were
encountered, the custom input values were automatically
inserted into the browser and submitted. Upon each
detected state change, the invariants were checked and
reports were generated if any inconsistencies were found.
At the end of the crawling process, a test suite was
generated from the inferred state-flow graph.

To the best of our knowledge, there are currently no tools
that can automatically test AJAX dynamic states. Therefore,
it is not possible to form a baseline for comparison using,
for instance, external crawlers. To assess the effectiveness of
the generated test suite, we measure code coverage on the
client as well as the presentation tier of the server. Although
the effectiveness is not directly implied by code coverage, it
is an objective and commonly used indicator of the quality
of a test suite [16].

To that end, we instrumented the presentation part of the
server-side Java code (tudu-dwr) with Clover. We exclude

the server-side business logic and database layers since we

are merely interested in the user interface parts. For the

client side, we instrumented JAVASCRIPT libraries and

custom code with JSCoverage,27 and deployed the whole

web application to an application server (Apache Tomcat).

For each test run, we bring the TUDU database to the

original state using a SQL script. We run all the test cases

against the instrumented application, through ATUSA’s

embedded browser, and compute the amount of coverage

achieved for server and client-side code. In addition, we

manually seeded 10 faults, capable of causing inconsistent

states (e.g., DOM malformdness, adding values longer than

allowed by the database, adding duplicate to-do items,

removing all items instead of one), and measured the

percentage of faults detected.

8.3.3 Findings

The results of this study are presented in Table 6. Based on

these observations we conclude that:

. The use of ATUSA can help to reveal generic faults,
such as DOM violations, automatically.

. As far as RQ2 is concerned, the generated test suite
can give us useful code coverage: 73 percent of
server-side presentation code and 75 percent of
client-side JAVASCRIPT custom code. Note that only
partial parts of the external JAVASCRIPT libraries are
actually used by TUDU resulting in a low-coverage
percentage (35 percent). ATUSA revealed most of
the DOM-based faults: 8 of the 10 seeded faults were
detected, two faults were undetected because,
during the test execution, they were silently swal-
lowed by the JAVASCRIPT engine and did not affect
the DOM. It is worth mentioning that increasing the
depth level to 3 significantly increased the measured
crawling time past the maximum 60 minutes, but
did not influence the fault detection results. The
code coverage, however, improved by approxi-
mately 10 percent.

. The performance and scalability of the crawling and
testing process is very acceptable: It takes ATUSA less
than 6 minutes to crawl and test TUDU, analyzing
332 clickables and detecting 34 states (RQ3).

. The manual effort involved in setting up ATUSA

(less than half an hour in this case) is minimal (RQ4).
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TUDU Case Study

27. http://siliconforks.com/jscoverage/.



8.4 Study 3: Finding Real-Life Bugs

Our final case study involves the development of an AJAX

user interface in a small commercial project. We use this

case study to evaluate the manual effort required to use

ATUSA (RQ4) and to assess the capability of ATUSA to find

faults that actually occurred during development (RQ2).

8.4.1 Subject System

The case at hand is Coachjezelf (CJZ, “Coach Yourself”),28 a

commercial application allowing high school teachers to

assess and improve their teaching skills. CJZ is currently in

use by 5,000-6,000 Dutch teachers, a number that is growing

with approximately 1,000 paying users every year.
The relevant part for our case is the interactive table of

contents (TOC), which is to be synchronized with an actual

content widget. In older versions of CJZ this was imple-

mented through a Java applet; in the new version this is to

be done through AJAX in order to eliminate a Java virtual

machine dependency.
The two developers working on the case study spent

around one week (two person-weeks) building the AJAX

solution, including requirements elicitation, design, under-

standing and evaluating the libraries to be used, manual

testing, and acceptance by the customer.
The AJAX-based solution made use of the jQuery

29

library, as well as the treeview, history-remote, and

listen plugins for jQuery. The libraries are comprised

of around 10,000 lines of JAVASCRIPT and the custom code

is around 150 lines of JAVASCRIPT, as well as some HTML

and CSS code.

8.4.2 Case Study Setup

The developers were asked 1) to try to document their design

and technical requirements using invariants, and 2) to write

the invariants in ATUSA plugins to detect errors made during

development. After the delivery of the first release, we

evaluated 1) how easy it was to express these invariants in

ATUSA, and 2) whether the (generic or application-specific)

plugins were capable of detecting faults.

8.4.3 Application-Specific Invariants

Two sets of invariants were proposed by the developers.
The first essentially documented the (external) treeview
component, capable of (un)folding tree structures (such as a
table of contents).

The treeview component operates by setting HTML
class attributes (such as collapsible, hit-area, and
lastExpandable-hitarea) on nested list structures. The
corresponding style sheet takes care of properly displaying
the (un)folded (sub)trees, and the JAVASCRIPT intercepts
clicks and rearranges the class attributes as needed.

Invariants were devised to document constraints on the
class attributes. As an example, the div-element immedi-
ately below a li-element that has the class expandable

should have class expandable-hitarea. Another invar-
iant is that expandable list items (which are hidden) should
have their CSS display type set to “none.”

The second set of invariants specifically dealt with the
code written by the developers themselves. This code took
care of synchronizing the interactive display of the table of
contents with the actual page shown. Clicking links within
the page affects the display of the table of contents and
vice versa.

This resulted in essentially two invariants: one to ensure
that within the table of contents at most one path (to the
current page) would be open and the other that, at any time,
the current page as marked in the table of contents would
actually be displayed in the content pane.

Expressing such invariants on the DOM tree was quite
easy, requiring a few lines of Java code using XPath. An
example is shown in Fig. 15.

8.4.4 Failures Detected

At the end of the development week, ATUSA was used to
test the new AJAX interface. For each type of application-
specific invariant, an inCrawling plugin was added to
ATUSA. Six types of failures were automatically detected:
three through the generic plugins, and three through the
application-specific plugins just described. An overview of
the type of failures found and the invariant violations that
helped to detect them is provided in Table 7.

The application-specific failures were all found through
two invariant types: the Consistent current page, which
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Fig. 15. Application-specific invariants expressed using XPath.

TABLE 7
Faults Found in CJZ-AJAX

28. See www.coachjezelf.nl for more information (in Dutch).
29. jquery.com.



expresses that in any state the table and the actual content
should be in sync, and the treeview invariants. Note that for
certain types of faults, for instance, the treeview corrupted
table, a very specific click trail had to be followed to expose
the failure. ATUSA gives no guarantee of covering the
complete state of the application; however, since it tries a
huge combination of clickables recursively, it was able to
detect such faults, which were not seen by developers when
the application was tested manually.

8.4.5 Findings

Based on these observations we conclude that:

. The use of ATUSA can help to reveal bugs that are
likely to occur during AJAX development and are
difficult to detect manually (RQ2).

. Application-specific invariants can help to document
and test the essence of an AJAX application, such as the
synchronization between two widgets (RQ1-RQ2).

. The manual effort in expressing such invariants in
Java and using them in ATUSA is minimal (RQ4).

9 DISCUSSION

9.1 Automation Scope

User interface testing is a broad term, dealing with testing
how the application and the user interact. This typically is
manual in nature, as it includes inspecting the correct
display of menus, dialog boxes, and the invocation of the
correct functionality when clicking them. The type of user
interface testing that we propose does not replace this
manual testing, but augments it: Our focus is on finding
programming faults, manifested through failures in the
DOM tree. As we have seen, the highly dynamic nature and
complexity of AJAX make it error-prone, and our approach
is capable of finding such faults automatically.

9.2 Invariants

Our solution to the oracle problem is to include invariants
(as also advocated by, e.g., Meyer [29]). AJAX applications
offer a unique opportunity for specifying invariants thanks
to the central DOM data structure. Thus, we are able to
define generic invariants that should hold for all AJAX

applications, and we allow the tester to use the DOM to
specify generic or application-specific invariants. Further-
more, the state machine derived through crawling can be
used to express invariants, such as correct Back-button
behavior. Again, this state machine can be accessed by the
tester to specify his or her own invariants. These invariants
make our approach much more sophisticated than smoke
tests for user interfaces (as proposed by, e.g., Memon
[23])—which we can achieve thanks to the presence of the
DOM and state machine data structures. Note that just
running CRAWLJAX would correspond to conducting a
smoke test: The difficulty with web applications (as
opposed to, e.g., Java Swing applications) is that it is very
hard to determine when a failure occurs—which is solved
in ATUSA through the use of invariants.

9.3 Generated versus Hand-Coded JAVASCRIPT

The case studies we conducted involve two different
popular JAVASCRIPT libraries (i.e., jQuery and Prototype)
in combination with hand-written JAVASCRIPT code.

Alternative frameworks exist, such as Google’s web toolkit
(GWT)30 in which most of the client-side code is generated.
ATUSA is entirely independent of the way the AJAX

application is written, so it can be applied to such systems
as well. This will be particularly relevant for testing the
custom JAVASCRIPT code that remains to be handwritten,
and which can still be tricky and error-prone. Furthermore,
ATUSA can be used by the developers of such frameworks
to ensure that the generated DOM states are correct.

9.4 Manual Effort

The manual steps required to run ATUSA consist of
configuration, plugin development, and providing custom
input values, which for the cases conducted took less than
an hour. The hardest part is deciding which application-
specific invariants to adopt. This is a step that is directly
connected with the design of the application itself. Making
the structural invariants explicit not only allows for
automated testing, it is also a powerful design documen-
tation technique. Admittedly, not all web developers will
be able to think in terms of invariants, which might limit
the applicability of our approach in practice. Those
capable of documenting invariants can take advantage of
the framework ATUSA provides to actually implement the
invariants.

9.5 Performance and Scalability

The state space of any realistic web application is huge
and can cause the well-known state explosion problem. To
constrain the state space, we provide the tester with a set
of configurable options. These constraints include the
maximum search depth level, similarity threshold for
comparing states, maximum number of states per domain,
maximum crawling time, and the option of ignoring
external links and links that match some predefined set of
regular expressions. The main component that can
influence the performance and scalability is the crawling
part. The performance of crawling an AJAX site depends
on many factors, such as the speed at which the server
can handle requests, how fast the browser and client-side
JAVASCRIPT can update the interface, and the size of the
DOM tree.

9.6 Application Size

The six experimental subjects involve around 20,000 lines
of JAVASCRIPT library code, several hundred lines of
custom application code, and several thousand dynamic
DOM states. One might wonder whether the size of the
subjects counts against the external validity of our study.
Our results, however, are based on dynamic analysis rather
than static code analysis; hence, the amount of JAVASCRIPT

code is not the determining factor in our view. The number
of dynamic states is, in this case, a more realistic measure.
The limiting factor for the number of states to be examined
is the amount of memory available and the size of the
DOM tree. Based on our experiments, the maximum
number of states can be calculated by sizeOfðmemoryÞ

3�sizeOfðDOMÞ . The
average DOM size of enterprise applications is around
0.25 MB [24]. On a workstation with 4 GB of memory, this
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would result in around 5,460 states, which is sufficient for
most enterprise web applications.

9.7 Threats to Validity

Some of the issues concerning the external validity of our
empirical evaluation have been covered in the above
discussion on scope, generated code, application size, and
scalability. The main goal of Study 1 (Section 8.2) was to
demonstrate what type of invariants can be found in modern
web applications and how different types of invariants can
be expressed in ATUSA for automated testing. We have
merely provided a few examples of each type and the list is
not exhaustive. The small number of examples could,
however, be a threat to external validity. More studies need
to be done to extend the instances of each type.

With respect to internal validity, we minimized the
chance of ATUSA errors by including a rigorous JUnit test
suite. ATUSA, however, also makes use of many (complex)
third party components, and we did encounter several
problems in some of them. While these bugs do limit the
current applicability of our approach, they do not affect
the validity of our results. As far as the choice of faults in
the second study (Section 8.3) is concerned, we selected
them from the TUDU bug tracking system, based on our
fault models, which we believe are representative of the
types of faults that occur during AJAX development. The
choice is therefore not biased toward the tool but possibly
toward the fault models we have. With respect to
reliability, our tools and all the subject systems of studies 1
and 2 are open source, making these cases fully
reproducible.

9.8 Ajax Testing Strategies

ATUSA is a first, but essential step in automating the
testing process of AJAX applications. Thanks to the plugin-
based architecture of ATUSA, it now becomes possible to
extend, refine, and evaluate existing software testing
strategies (such as evolutionary, state-based, category-
partition, and selective regression testing) for the domain
of AJAX applications.

In our recent work [33], we have presented how our
approach can be used for conducting regression testing of
highly dynamic web applications. The initial results are
very promising: Through a number of case studies, we
show how generated test suites can detect regressions in
different versions of a web application through oracle
comparator pipelining.

Another direction involves the application to security
testing of Web 2.0 widget interactions [6], which we have
conducted in close collaboration with the industry.31

Application in the area of accessibility testing involves
compliance to W3C accessibility standards. Initial results
in this area involve an application to Google’s AdSense
Front End, 3.032 through an internship at Google
(London) [32].

Further, the technique is currently being applied by
Fujitsu Laboratories of America to a number of industrial
web applications. The approach is also being adopted for

web model-checking using the inferred state machine.

Recently, we have used the approach to automate cross-

browser compatibility testing of modern web applications [26].

10 CONCLUDING REMARKS

In this paper, we have proposed a method for testing AJAX

applications automatically. Our starting point for support-
ing AJAX-testing is CRAWLJAX, a crawler for AJAX

applications that we proposed in our earlier work [24],
which can dynamically make a full pass over an AJAX

application. Our current work consists of extending the
crawler substantially for supporting automated testing of

modern web applications. We developed a series of
plugins, collectively called ATUSA, for invariant-based

testing and test suite generation.
To summarize, this paper makes the following con-

tributions:

1. A series of fault models that can be automatically
checked on any user interface state, capturing
different categories of errors that are likely to occur
in AJAX applications (e.g., DOM violations, error
message occurrences), through (DOM-based) generic
and application-specific invariants that serve as
oracles.

2. A series of generic invariant types (e.g., XPath,
template-based Regular Expression, JAVASCRIPT

expression) for expressing web application invar-
iants for testing.

3. An algorithm for deriving a test suite achieving all
transitions coverage of the state-flow graph obtained
during crawling. The resulting test suite can be
refined manually to add test cases for specific paths
or states, and can be used to conduct regression
testing of AJAX applications.

4. An extension of our open-source AJAX crawler,
CRAWLJAX and the implementation of the testing
approach ATUSA, offering generic invariant check-
ing components as well as a plugin-mechanism to
add application-specific state validators and test
suite generation.

5. An empirical evaluation, by means of three case
studies, of the fault revealing capabilities and the
scalability of the approach, as well as the level of
automation that can be achieved and manual effort
required to use the approach.

Given the growing popularity of AJAX applications, we

see many opportunities for using ATUSA in practice.

Furthermore, the open source and plugin-based nature

makes our tool a suitable vehicle for other researchers

interested in experimenting with other new techniques for

testing AJAX applications.
Our future work will include conducting further case

studies, as well as the development of more testing plugins

for spotting development errors and security vulnerabilities
in Web 2.0 applications. Automatically detecting dynamic

structural and JAVASCRIPT invariants in modern web
applications [14] is another route we will be pursuing in

future work.
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