
Leveraging Existing Tests in Automated
Test Generation for Web Applications

Amin Milani Fard Mehdi Mirzaaghaei Ali Mesbah
University of British Columbia

Vancouver, BC, Canada
{aminmf, mehdi, amesbah}@ece.ubc.ca

ABSTRACT
To test web applications, developers currently write test
cases in frameworks such as Selenium. On the other hand,
most web test generation techniques rely on a crawler to
explore the dynamic states of the application. The first ap-
proach requires much manual effort, but benefits from the
domain knowledge of the developer writing the test cases.
The second one is automated and systematic, but lacks the
domain knowledge required to be as effective. We believe
combining the two can be advantageous. In this paper, we
propose to (1) mine the human knowledge present in the
form of input values, event sequences, and assertions, in the
human-written test suites, (2) combine that inferred knowl-
edge with the power of automated crawling, and (3) extend
the test suite for uncovered/unchecked portions of the web
application under test. Our approach is implemented in a
tool called Testilizer. An evaluation of our approach indi-
cates that Testilizer (1) outperforms a random test gen-
erator, and (2) on average, can generate test suites with
improvements of up to 150% in fault detection rate and up
to 30% in code coverage, compared to the original test suite.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification, Algorithms, Experimentation

Keywords
Automated test generation; test reuse; web applications

1. INTRODUCTION
Web applications have become one of the fastest growing

types of software systems today. Testing modern web ap-
plications is challenging since multiple languages, such as
HTML, JavaScript, CSS, and server-side code, interact with
each other to create the application. The final result of all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ASE’14, September 15 – 19, 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642991.

these interactions at runtime is manifested through the Doc-
ument Object Model (DOM) and presented to the end-user
in the browser. To avoid dealing with all these complex in-
teractions separately, many developers treat the web appli-
cation as a black-box and test it via its manifested DOM, us-
ing testing frameworks such as Selenium [6]. These DOM-
based test cases are written manually, which is a tedious
process with an incomplete result.

On the other hand, many automated testing techniques
[13, 19, 28, 31] are based on crawling to explore the state
space of the application. Although crawling-based tech-
niques automate the testing to a great extent, they are lim-
ited in three areas:

Input values: Having valid input values is crucial for proper
coverage of the state space of the application. Gener-
ating these input values automatically is challenging
since many web applications require a specific type,
value, and combination of inputs to expose the hidden
states behind input fields and forms.

Paths to explore: Industrial web applications have a huge
state space. Covering the whole space is infeasible
in practice. To avoid unbounded exploration, which
could result in state explosion, users define constraints
on the depth of the path, exploration time or num-
ber of states. Not knowing which paths are important
to explore results in obtaining a partial coverage of a
specific region of the application.

Assertions: Any generated test case needs to assert the
application behaviour. However, generating proper
assertions automatically without human knowledge is
known to be challenging. As a result, many web testing
techniques rely on generic invariants [19] or standard
validators [11] to avoid this problem.

These two approaches work at the two extreme ends of the
spectrum, namely, fully manual or fully automatic. We be-
lieve combining the two can be advantageous. In particular,
humans may have the domain knowledge to see which inter-
actions are more likely or important to cover than others;
they may be able to use domain knowledge to enter valid
data into forms; and, they might know what elements on
the page need to be asserted and how. This knowledge is
typically manifested in manually-written test cases.

In this paper, we propose to (1) mine the human knowl-
edge existing in manually-written test cases, (2) combine
that inferred knowledge with the power of automated crawl-
ing, and (3) extend the test suite for uncovered/unchecked
portions of the web application under test. We present our
technique and tool called Testilizer, which given a set of
Selenium test cases TC and the URL of the application, au-
tomatically infers a model from TC, feeds that model to a

crawler to expand by exploring uncovered paths and states,
generates assertions for newly detected states based on the
patterns learned from TC, and finally generates new test
cases.

To the best of our knowledge, this work is the first to pro-
pose an approach for extending a web application test suite
by leveraging existing test cases. The main contributions of
our work include:

• A novel technique to address limitations of automated
test generation techniques by leveraging human knowl-
edge from existing test cases.
• An algorithm for mining existing test cases to infer

a model that includes (1) input data, (2) event se-
quences, (3) and assertions, and feeding and expanding
that model through automated crawling.
• An algorithm for reusing human-written assertions in

existing test cases by exact/partial assertion match-
ing as well as through a learning-based mechanism for
finding similar assertions.
• An implementation of our technique in an open source

tool, called Testilizer [7].
• An empirical evaluation of the efficacy of the gener-

ated test cases on four web applications. On aver-
age, Testilizer can generate test suites with improve-
ments of up to 150% on the fault detection rate and up
to 30% on the code coverage, compared to the original
test suite.

2. BACKGROUND AND MOTIVATION
In practice, web applications are largely tested through

their DOM using frameworks such as Selenium. The DOM
is a dynamic tree-like structure representing user interface
elements in the web application, which can be dynamically
updated through client-side JavaScript interactions or server-
side state changes propagated to the client-side. DOM-based
testing aims at bringing the application to a particular DOM
state through a sequence of actions, such as filling a form
and clicking on an element, and subsequently verifying the
existence or properties (e.g., text, visibility, structure) of
particular DOM elements in that state. Figure 1 depicts a
snapshot of a web application and Figure 2 shows a simple
DOM-based (Selenium) test case for that application.

For this paper, a DOM state is formally defined as:

Definition 1 (DOM State). A DOM State DS is a
rooted, directed, labeled tree. It is denoted by a 5-tuple, <
D,Q, o,Ω, δ >, where D is the set of vertices, Q is the set
of directed edges, o ∈ D is the root vertex, Ω is a finite set
of labels and δ : D → Ω is a labelling function that assigns
a label from Ω to each vertex in D. 2

The DOM state is essentially an abstracted version of
the DOM tree of a web application, displayed on the web
browser at runtime. This abstraction is conducted through
the labelling function δ, the implementation of which is dis-
cussed in subsection 3.1 and section 4.

Motivation. Overall, our work is motivated by the fact
that a human-written test suite is a valuable source of do-
main knowledge, which can be exploited for tackling some
of the challenges in automated web application test genera-
tion. Another motivation behind our work is that manually
written test cases typically correspond to the most common
happy-paths of the application that are covered. Automated
analysis can subsequently expand these to cover unexplored
bad-weather application behaviour.

Figure 1: A snapshot of the running example and
its partial DOM structure.

1 @Test
2 public void testAddNote (){
3 get("http :// localhost :8080/ theorganizer/");
4 findElement(By.id("logon_username")).sendKeys("←↩

user");
5 findElement(By.id("logon_password")).sendKeys("←↩

pswd");
6 findElement(By.cssSelector("input type="image"")).←↩

click();
7 assertEquals("Welcome to The Organizer!", ←↩

closeAlertAndGetItsText ());
8 findElement(By.id("newNote")).click();
9 findElement(By.id("noteCreateShow_subject")).←↩

sendKeys("Running Example");
10 findElement(By.id("noteCreateShow_text")).sendKeys←↩

("Create a simple running example");
11 findElement(By.cssSelector("input type="image"")).←↩

click();
12 assertEquals("Note has been created.", driver.←↩

findElement(By.id("mainContent")).getText ());
13 findElement(By.id("logoff")).click();
14 }

Figure 2: A human-written DOM-based (Selenium)
test case for the Organizer.

Running example. Figure 1 depicts a snapshot of the Or-
ganizer [4], a web application for managing notes, contacts,
tasks, and appointments, which we use as a running example
to show how input data, event paths, and assertions can be
leveraged from the existing test cases to generate effective
test cases.

Suppose we have a small test suite that verifies the appli-
cation’s functionality for “adding a new note” and “adding
a new contact”. Due to space constraints, we only show the
testAddNote test case in Figure 2. The test case contains
valuable information regarding how to log onto the Orga-
nizer (Lines 4–5), what data to insert (Lines 9–10), where
to click (Lines 6, 8, 11, 13), and what to assert (Lines 7, 12).

We believe this information can be extracted and lever-
aged in automated test generation. For example, the paths
(i.e., sequence of actions) corresponding to these covered
functionalities can be used to create an abstract model of
the application, shown in thick solid lines in Figure 3. By
feeding this model that contains the event sequences and in-
put data leveraged from the test case to a crawler, we can
explore alternative paths for testing, shown as thin lines in
Figure 3; alternative paths for deleting/updating a note/-
contact that result in newly detected states (i.e., s10 and
s11) are highlighted as dashed lines.

Further, the assertions in the test case can be used as
guidelines for generating new assertions on the newly de-

s1
s2notes

s5

logoff

s6

contacts

s4

dayAtAGlance

ok
logoff

logoff

contacts

s8

dayAtAGlance

notes

logoff
ok

s11

dayAtAGlance

delete
update

logoff
contacts

s10

dayAtAGlance
delete
update

notes

logoff

contacts

Index
logOn

s9
createAccount dayAtAGlance

edit

s3newNote

contacts

dayAtAGlance

savenotes
logoff

contacts

dayAtAGlance

edit

notes

logoff

s7

newContact

dayAtAGlance

save
notes

logoff
contacts

createAccount

Figure 3: Partial view of the running example application’s state-flow graph.

tected states along the alternative paths. These original as-
sertions can be seen as parallel lines inside the nodes on the
graph of Figure 3. For instance, line 12 of Figure 2 verifies
the existence of the text “Note has been created” for an ele-
ment (span) with id="mainContent", which can be assigned
to the DOM state s4 in Figure 3.

By exploring alternative paths around existing paths and
learning assertions from existing assertions, new test cases
can be generated. For example the events corresponding
to states 〈Index, s1, s2, s10, s4, s5〉 can be turned into a new
test method testUpdateNote(), which on state s4, verifies
the existence of a element with id="mainContent".
Further, patterns found in existing assertions can guide us
to generate similar assertions for newly detected states (e.g.,
s9, s10, s11) that have no assertions.

3. APPROACH
Figure 4 depicts an overview of our approach. At a high

level, given the URL of a web application and its human-
written test suite, our approach mines the existing test suite
to infer a model of the covered DOM states and event-based
transitions including input values and assertions (blocks 1,
2, and 3). Using the inferred model as input, it explores
alternative paths leading to new DOM states, thus expand-
ing the model further (blocks 3 and 4). Next it regenerates
assertions for the new states, based on the patterns found in
the assertions of the existing test suite (block 5), and finally
generates a new test suite from the extended model, which
is a superset of the original human-written test suite (block
6). We discuss each of these steps in more details in the
following subsections.

3.1 Mining Human-Written Test Cases
To infer an initial model, in the first step, we (1) instru-

ment and execute the human-written test suite T to mine an
intermediate dataset of test operations. Using this dataset,
we (2) run the test operations to infer a state-flow graph (3)
by analyzing DOM changes in the browser after the execu-
tion of each test operation.

Instrumenting and executing the test suite. We in-
strument the test suite (block 1 Figure 4) to collect informa-
tion about DOM interactions such as elements accessed in
actions (e.g., clicks) and assertions as well as the structure
of the DOM states covered.

Definition 2 (Manual-test Path). A manual-test path
is the sequence of event-based actions performed while exe-
cuting a human-written test case t ∈ T . 2

Test
Operations

Dataset

Human-Written
Test Suite

(1)
Instrument

and Execute
Test Suite

(2)
Execute Test
Operations

Browser

(4)
Explore

Alternative
Paths

State-flow
graph

(3)
Analyze

DOM

update

(6)
Generate
Test Suite

Generated
Test Suite

(5)
Regenerate
Assertionsadd

assertions

Figure 4: Processing view of our approach.

Definition 3 (Manual-test State). A manual-test state
is a DOM state located on a manual-test path. 2

The instrumentation hooks into any code that interacts
with the DOM in any part of the test case, such as test
setup, helper methods, and assertions. Note that this in-
strumentation does not affect the functionality of the test
cases (more details in Section 4). By executing the instru-
mented test suite, we store all observed manual-test paths
as an intermediate dataset of test operations:

Definition 4 (Test Operation). A test operation is
a triple <action, target, input>, where action specifies an
event-based action (e.g., a click), or an assertion (e.g., veri-
fying a text), target pertains to the DOM element to perform
the action on, and input specifies input values (e.g., data for
filling a form). 2

The sequence of these test operations forms a dataset that
is used to infer the initial model. For a test operation with an
assertion as its action, we refer to the target DOM element
as a checked element, defined as follows:

Definition 5 (Checked Element). A checked element
ce ∈ vi is an element in the DOM tree in state vi, whose ex-
istence, value, or attributes are checked in an assertion of a
test case t ∈ T . 2

For example in line 12 of the test case in Figure 2, the text
value of the element with ID "mainContent" is asserted and
thus that element is a checked element. Part of the DOM
structure at this state is shown in Figure 1, which depicts
the checked element .

For each checked element we record the element location
strategy used (e.g., XPath, ID, tagname, linktext, or csss-
elector) as well as the access values and innerHTML text.

Algorithm 1: State-Flow Graph Inference

input : A Web application url URL, a DOM-based test
suite TS, crawling constraints CC

output: A state-flow graph SFG

Procedure InferSFG(URL,TS,CC)
begin

1 TSinst ← Instrument(TS)
2 Execute(TSinst)
3 TOP ← ReadTestOperationDataset()
4 SFGinit ← ∅
5 browser.Goto(URL)
6 dom← browser.GetDOM()
7 SFGinit.AddInitialState(dom)
8 for top ∈ TOP do
9 C ← GetClickables(top)

10 for c ∈ C do
11 assertion← GetAssertion(top)
12 dom← browser.GetDOM()
13 robot.FireEvent(c)
14 new dom← browser.GetDOM()
15 if dom.HasChanged(new dom) then
16 SFGinit.Update(c, new dom, assertion)

17 browser.Goto(URL)

18 SFGext ← SFGinit

19 ExploreAlterntivePaths(SFGext,CC)
20 return SFGext

Procedure ExploreAlterntivePaths(SFG,CC) begin
21 while ConstraintSatisfied(CC) do
22 s← GetNextToExploreState(SFG)
23 C ← GetCandidateClickables(s)
24 for c ∈ C do
25 browser.Goto(SFG.GetPath(s))
26 dom← browser.GetDOM()
27 robot.FireEvent(c)
28 new dom← browser.GetDOM()
29 if dom.HasChanged(new dom) then
30 SFG.Update(c, new dom)
31 ExploreAlterntivePaths(SFG,CC)

This information is later used in the assertion generation
process (in Section 3.3).

Constructing the initial model. We model a web appli-
cation as a State-Flow Graph (SFG) [18, 19] that captures
the dynamic DOM states as nodes and the event-driven tran-
sitions between them as edges.

Definition 6 (State-flow Graph). A state-flow graph
SFG for a web application W is a labeled, directed graph,
denoted by a 4 tuple < r,V, E ,L > where:

1. r is the root node (called Index) representing the ini-
tial DOM state after W has been fully loaded into the
browser.

2. V is a set of vertices representing the states. Each
v ∈ V represents an abstract DOM state DS of W,
with a labelling function Φ : V → A that assigns a
label from A to each vertex in V, where A is a finite
set of DOM-based assertions in a test suite.

3. E is a set of (directed) edges between vertices. Each
(v1, v2) ∈ E represents a clickable c connecting two
states if and only if state v2 is reached by executing c
in state v1.

4. L is a labelling function that assigns a label, from a set
of event types and DOM element properties, to each
edge.

5. SFG can have multi-edges and be cyclic. 2

An example of such a partial SFG is shown in Figure
3. The abstract DOM state is an abstracted version of
the DOM tree of a web application, displayed on the web
browser at runtime. This abstraction can be conducted by

using a DOM string edit distance, or by disregarding spe-
cific aspects of a DOM tree (such as irrelevant attributes,
time stamps, or styling issues) [19]. The state abstraction
plays an important role in reducing the size of SFG since
many subtle DOM differences do not represent a proper state
change, e.g., when a row is added to a table.

Algorithm 1 shows how the initial SFG is inferred from
the manual-test paths. First the initial index state is added
as a node to an empty SFG (Algorithm 1, lines 5–7). Next,
for each test operation in the mined dataset (TOP), it finds
DOM elements using the locator information and applies the
corresponding actions. If an action is a DOM-based asser-
tion, the assertion is added to the set of assertions of the
corresponding DOM state node (Algorithm 1, lines 8–17).
The state comparison to determine a new state (line 15) is
carried out via a state abstraction function (more explana-
tion in Section 4).

3.2 Exploring Alternative Paths
At this stage, we have a state-flow graph that represents

the covered states and paths from the human-written test
suite. In order to further explore the web application to find
alternative paths and new states, we seed the graph to an
automated crawler (block 4 Figure 4).

The exploration strategy can be conducted in various ways:
(1) remaining close to the manual-test paths, (2) diverging
[20] from the manual-test paths, or (3) randomly exploring.
However, in this work, we have opted for the first option,
namely staying close to the manual-test paths. The reason
is to maximize the potential for reuse of and learning from
existing assertions. Our insight is that if we diverge too
much from the manual-test paths and states, the human-
written assertions will also be too disparate and thus less
useful.

To find alternative paths, events are automatically gener-
ated on DOM elements and if as a result the DOM is mu-
tated, the new state and the corresponding event transition
are added to the SFG. Note that the state comparison to de-
termine a new state (line 29) is carried out via the same state
abstraction function used before (line 15). The procedure
ExploreAlternativePaths (Algorithm 1, lines 21–31) recur-
sively explores the application until a pre-defined constraint
(e.g., maximum time, or number of states) is reached. The
algorithm is guided by the manual-test states while exploring
alternative paths (Line 22); GetNexToExploreState decides
which state should be expanded next. It gives the high-
est priority to the manual-test states and when all manual-
test states are fully expanded, the next immediate states
found are explored further. More specifically, it randomly
selects a manual-test state that contains unexercised candi-
date clickables and navigates the application further through
that state. The GetCandidateClickable method (Line 23)
returns a set of candidate clickables that can be applied on
the selected state. This process is repeated until all manual-
test states are fully expanded.

For example, consider the manual-test sates shown in grey
circles in Figure 3. The method starts by randomly select-
ing a state, e.g., s2, navigating the application to reach to
that state from the Index state, and firing an event on s2
resulting in an new state s10.

3.3 Regenerating Assertions
The next step is to generate assertions for the new DOM

states in the extended SFG (block 5 Figure 4). In this work,
we propose to leverage existing assertions to regenerate new
ones. By analyzing human-written assertions we can infer
information regarding (1) portions of the page that are con-

Algorithm 2: Assertion Regeneration

input : An extended state-flow graph SFG = < r, V,E, L >

Procedure RegenerateAssertions(SFG)
begin

/*Learn from DOM elements in the manual-test states*/
1 dataset←MakeDataset(SFG.GetManualTestStates())
2 Train(dataset)
3 for si ∈ V do
4 for ce ∈ si.GetCheckedElements() do
5 assert← ce.GetAssertion()
6 cer ← ce.GetCheckedElementRegion()
7 si.AddRegFullAssertion(cer)
8 for sj ∈ V & sj 6= si do
9 dom← sj .GetDOM()

/*Generate exact element assertion for sj*/
10 if ElementFullMatched(ce, dom) then
11 sj .ReuseAssertion(ce,assert)

12 else if ElementTagAttMatched(ce, dom)
then

13 sj .AddElemTagAttAssertion(ce)

/*Generate exact region assertion for sj*/
14 if RegionFullMatched(cer, dom) then
15 sj .AddRegFullAssertion(cer)

16 else if RegionTagAttMatched(cer, dom)
then

17 sj .AddRegTagAttAssertion(cer)

18 else if RegionTagMatched(cer, dom) then
19 sj .AddRegTagAssertion(cer)

/* Generate similar region assertions for si */
20 for be ∈ si.GetBlockElements() do
21 if Predict(be) == 1 then
22 si.AddRegTagAttAssertion(be.GetRegion())

sidered important for testing; for example, a banner section
or decoration parts of a page might not be as important as an
inner content that changes according to a main functionality,
(2) patterns in the page that might be part of a template.
Therefore, extracting patterns from existing assertions may
help us in generating new but similar assertions.

We formally define a DOM-based assertion as a function
A : (s, c) → {True, False}, where s is a DOM state, and
c is a DOM condition to be checked. It returns True if s
matches/satisfies the condition c, denoted by s |= c, and
False otherwise. We say that an assertion A subsumes (im-
plies) assertion B, denoted by A =⇒ B, if A → True, then
B → True. This means that B can be obtained from A by
weakening A’s condition. In this case, A is more specific/-
constrained than B. For instance, an assertion verifying the
existence of a checked element
can be implied by an assertion which verifies both the exis-
tence of that element and its attributes/textual values.

Algorithm 2 shows our assertion regeneration procedure.
We consider each manual-test state si (Definition 3) in the
SFG and try to reuse existing associated assertions in si
or generate new ones based on them for another state sj .
We extend the set of DOM-based assertions in three forms:
(1) reusing the same assertions from manual-test states for
states without such assertions, (2) regenerating assertions
with the exact assertion pattern structure as the original
assertions but adapted for another state, and (3) learning
structures from the original assertions to generate similar
assertions for other states.

3.3.1 Assertion Reuse
As an example for the assertion reuse, consider Figure

3 and the manual-test path with the sequence of states
〈Index, s1, s2, s3, s4, s5〉 for adding a note. Assertions in Fig-
ure 2 line 7 and 12 are associated to states s1 and s4, re-

Table 1: Summary of the assertion reuse/regenera-
tion conditions for an element ej on a DOM state sj,
given a checked element ei on state si.

Condition Description
ElementFullMatched Tag(ei)=Tag(ej)∧Att(ei)=Att(ej)∧

Txt(ei)=Txt(ej)
ElementTagAttMatched Tag(ei)=Tag(ej) ∧ Att(ei)=Att(ej)
RegionFullMatched Tag(R(ei, si))=Tag(R(ej , sj)) ∧

Att(R(ei, si))=Att(R(ej , sj)) ∧
Txt(R(ei, si))=Txt(R(ej , sj))

RegionTagAttMatched Tag(R(ei, si))=Tag(R(ej , sj)) ∧
Att(R(ei, si))=Att(R(ej , sj))

RegionTagMatched Tag(R(ei, si))=Tag(R(ej , sj))

spectively. Suppose that we explore an alternative path for
deleting a note with the sequence 〈Index, s1, s2, s10, s4, s5〉,
which was not originally considered by the developer. Since
the two test paths share a common path from Index to s1,
the assertion on s1 can be reused for the new test case (note
deletion) as well. This is a simple form of assertion reuse on
new test paths.

3.3.2 Assertion Regeneration
We regenerate two types of precondition assertions namely

exact element-based assertions, and exact region-based asser-
tions. By “exact” we mean repetition of the same structure
of an original assertion on a checked element.

The rationale behind our technique is to use the location
and properties of checked elements and their close-by neigh-
bourhood in the DOM tree to regenerate assertions, which
focus on the exact repeated structures and patterns in other
DOM states. This approach is based on our intuition that
checking the close-by neighbour of checked elements is just
as important.

Exact element assertion generation. We define asser-
tions of the form A(sj , c(ej)) with a condition c(ej) for el-
ement ej on state sj . Given an existing checked element
(Definition 5) ei on a DOM state si, we consider 2 condi-
tions as follows:

1. ElementFullMatched : If a DOM state sj contains an
element with exact tag, attributes, and text value as
ei, then reuse assertion on ei for checking ej on sj .

2. ElementTagAttMatched : If a DOM state sj contains
an element ej with exact tag and attributes, but dif-
ferent text value as ei, then generate assertion on ej
for checking its tag and attributes.

Table 1 summarizes these conditions. An example of a
generated assertion is assertTrue(isElementPresent(By.i
d("mainContent"))) which checks the existence of a checked
element with ID "mainContent". Such an assertion can be
evaluated in any state in the SFG that contains that DOM
element (and thus meets the precondition). Note that we
could also propose assertions in case of mere tag matches,
however, such assertions are not generally considered useful
as they are too generic.

Exact region assertion generation. We define the term
checked element region to refer to a close-by area around a
checked element:

Definition 7 (Checked Element Region). For a
checked element e on state s, a checked element region R(e, s),
is a function R : (e, s) → {e,P(e), Ch(e)}, where P(e) and
Ch(e) are the parent node, and children nodes of e respec-
tively. 2

For example, for the element e = (Figure 1), which is in fact a checked

element in line 12 of Figure 2 (at state s4 in Figure 3),
we have R(e, s4) = {e,P(e), Ch(e)}, where P(e)=<td
class="cssMain" valign="top">, and Ch(e)={, <p>, <input id="ok"
src="img/ok0.gif">}.

We define assertions of the form A(sj , c(R(ej , sj))) with
a condition c(R(ej , sj)) for the region R of an element ej on
state sj . Given an existing checked element ei on a DOM
state si, we consider 3 conditions as follows:

1. RegionFullMatched : If a DOM state sj contains an
element ej with exact tag, attributes, and text val-
ues of R(ej , sj) as R(ei, si), then generate assertion
on R(ej , sj) for checking its tag, attributes, and text
values.

2. RegionTagAttMatched : If a DOM state sj contains
an element ej with exact tag, and attributes values
of R(ej , sj) as R(ei, si), then generate assertion on
R(ej , sj) for checking its tag and attributes values.

3. RegionTagMatched : If a DOM state sj contains an el-
ement ej with exact tag value of R(ej , sj) as R(ei, si),
then generate assertion on R(ej , sj) for checking its
tag value.

Note that the assertion conditions are relaxed one af-
ter another. In other words, on a DOM state s, if s |=
RegionFullMatched, then s |= RegionTagAttMatched;
and if s |= RegionTagAttMatched, then we have s |=
RegionTagMatched. Consequently it suffices to use the
most constrained assertion. We use this property for re-
ducing the number of generated assertions in subsubsec-
tion 3.3.4.

Table 1 summarizes these conditions. Assertions that we
generate for a checked element region, are targeted around a
checked element. For instance, to check if a DOM state con-
tains a checked element region with its tag, attributes, and
text values, an assertion will be generated in the form of as-
sertTrue(isElementRegionFullPresent(parentElement,
element, childrenElements)), where parentElement,
element, and childrenElements are objects reflecting
information about that region on the DOM.

For each checked element ce on si, we also generate a
RegionFull type of assertion for checking its region, i.e.,
verifying RegionFullMatched condition on si (Algorithm 2
line 5). Lines 10–13 perform exact element assertion gener-
ation. The original assertion can be reused in case of Ele-
mentFullMatched (line 11). Lines 14–19 apply exact region
assertion generation based on the observed matching. No-
tice the hierarchical selection which guarantees generation
of more specific assertions.

3.3.3 Learning Assertions for Similar Regions
The described exact element/region assertion regener-

ation techniques only consider the exact repetition of a
checked element/region. However, there might be many
other DOM elements that are similar to the checked ele-
ments but not exactly the same. For instance, consider
Figure 2 line 12 in which a el-
ement was checked in an assertion. If in another state, a
<div id="centreDiv"> element exists, which is similar to
the element in certain aspects such as content and
position on the page, we could generate a DOM-based as-
sertion for the <div> element in the form of assertTrue(i
sElementPresent(By.id("centreDiv")));.

We view the problem of generating similar assertions
as a classification problem which decides whether a block
level DOM element is important to be checked by an as-
sertion or not. To this end, we apply machine learning

to train a classifier based on the features of the checked
elements in existing assertions. More specifically, given a
training dataset D of n DOM elements in the form D =
{(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}ni=1, where each xi is a p-
dimensional real vector representing the features of a DOM
element ei, and yi indicates whether ei is a checked element
(+1) or not (−1), the classification function F : xj → yi
maps a feature vector xj to its class label yj . To do so, we
use Support Vector Machine (SVM) [32] to find the max-
margin hyperplane that divides the elements with yi = 1
from those with yi = −1. In the rest of this subsection, we
describe our used features, how to label the feature vectors,
and how to generate similar region DOM-based assertions.

DOM element features. We present a set of features for
a DOM element to be used in our classification task. A fea-
ture extraction function ψ : e → x maps an element e to
its feature set x. Many of these features are based on and
adapted from the work in [29], which performs page segmen-
tation ranking for adaptation purpose. The work presented
a number of spatial and content features that capture the
importance of a webpage segment based on a comprehen-
sive user study. Although they targeted a different problem
than ours, we gained insight from their empirical work and
use that to reason about the importance of a page segment
for testing purposes. Our proposed DOM features are pre-
sented in Table 2. We normalize feature values between [0–1]
as explained in Table 2, to be used in the learning phase.
For example, consider the element e = in Figure 1,
then ψ(e) = <0.5, 0.7, 0.6, 0.5, 1, 0.2, 0, 0.3> correspond-
ing to features BlockCenterX, BlockCenterY, BlockWidth,
BlockHeight, TextImportance, InnerHtmlLength, LinkNum,
and ChildrenNum, respectively.

Labelling the feature vectors. For the training phase,
we need a dataset of feature vectors for DOM elements an-
notated with +1 (important to be checked in assertion) and
-1 (not important for testing) labels. After generating a
feature vector for each “checked DOM element”, we label it
by +1. For some elements with label -1, we consider those
with“most frequent features”over all the manual-test states.
Unlike previous work that focuses on DOM invariants [25],
our insight is that DOM subtrees that are invariant across
manual-test states, are less important to be checked in as-
sertions. In fact, most modern web applications execute
a significant amount of client-side code in the browser to
mutate the DOM at runtime; hence DOM elements that re-
main unchanged across application execution are more likely
to be related to fixed (server-side) HTML templates. Con-
sequently, such elements are less likely to contain function-
ality errors. Thus, for our feature vectors we consider all
block elements (such as div, span, table) on the manual-
test states and rank them in a decreasing order based on
their occurrences. In order to have a balanced dataset of
items belonging to {-1,+1}, we select the k-top ranked (i.e.,
k most frequent) elements with label -1, were k equals the
number of label +1 samples.

Predicting new DOM elements. Once the SVM is
trained on the dataset, it is used to predict whether a
given DOM element should be checked in an assertion (al-
gorithm 2, Lines 20–23). If the condition F(ψ : e → x)=1
holds, we generate a RegionTagAtt type assertion (i.e.,
checking tag and attributes of a region). We do not con-
sider a RegionFull (i.e., checking tag, attributes, and text
of a region) assertion type in this case because we are deal-
ing with a similar detected region, not an exact one. Also,
we do not generate a RegionTag assertion type because a

Table 2: DOM element features used to train a classifier.
Feature Name Definition Rationale
ElementCenterX,
ElementCenterY

The (x,y) coordinates of the centre of a DOM ele-
ment. BlockCenterX and BlockCenterY are normal-
ized by dividing by PageWidth and PageHeight (i.e.,
the width and height of the whole page) respectively.

Web designers typically put the most important information (main
content) in the centre of the page, the navigation bar on the header
or on the left side, and the copyright on the footer [29]. Thus, if
the (x,y) coordinate of the centre of a DOM block is close to the
(x,y) coordinate of the web page centre, that block is more likely
to be part of the main content.

ElementWidth,
ElementHeight

These are the width and height of the DOM element,
which are also normalized by dividing by PageWidth
and PageHeight, respectively.

The width and height of an element can be an indication for an im-
portant segment. Intuitively, large blocks typically contain much
irrelevant noisy content [29].

TextImportance This binary value feature indicates whether the block
element contains any visually important text.

Text in bold/italic style, or header elements (such as h1, h2,...,
h5) to highlight and emphasize textual content usually imply im-
portance in that region.

InnerHtmlLength The innerHtmlLength is the length of all HTML code
string (without whitespace) in the element block. We
normalize this value by dividing it by InnerHtml-
Length of the whole page.

The normalized feature value can indicate the block content size.
Intuitively, blocks with many sub-blocks and elements are consid-
ered to be less important than those with fewer but more specific
content [29].

LinkNum The LinkNum is the number of anchor (hyperlink)
elements inside the DOM element and is normalized
by the link number of the whole page.

If a DOM region contains clickables, it is likely part of a naviga-
tional structure (menu) and not part of the main content [29].

ChildrenNum The ChildrenNum is the number of child nodes under
a DOM node. We normalize this value by dividing it
by a constant number (10 in our implementation) and
setting the normalized value to 1 if it exceeds 1.

We have observed in many DOM-based test cases that checked
elements do not have a large number of children nodes. Therefore,
this feature can be used to discourage elements with many children
to be selected for a region assertion, to enhance test readability.

higher priority should be given to the similar region-based
assertions.

3.3.4 Assertion Minimization
The proposed assertion regeneration technique can gen-

erate many DOM-based assertions per state, which in turn
can make the generated test method hard to comprehend
and maintain. Therefore, we (1) avoid generating redun-
dant assertions, and (2) prioritize assertions based on their
constraints and effectiveness.

Avoiding redundant assertions. A new reused/gener-
ated assertion for a state (Algorithm 2, lines 5, 11, 13, 15,
17, 19, and 22), might already be subsumed by, or may sub-
sume other assertions, in that state. For example an exact
element assertion which verifies the existence of a checked
element can be subsumed by an
exact region assertion which has the same span element in
either its checked element, parent, or its children nodes. As-
sertions that are subsumed by other assertions are redun-
dant and safely eliminated to reduce the overhead in testing
time and increase the readability and maintainability of test
cases. For a given state s with an existing assertion B, a
new assertion A generated for s is treated as follows:{

Discard A ; if B =⇒ A
Replace B with A ; if A =⇒ B ∧B 6∈ original assertions
Add A to s ; otherwise

Prioritizing assertions. We prioritize the generated as-
sertions such that given a maximum number of assertions to
produce per state, the more effective ones are ranked higher
and chosen. We prioritize assertions in each state in the
following order; the highest priority is given to the original
human-written assertions. Next are the reused, the Region-
Full, the RegionTagAtt, the ElementTagAtt, and the Re-
gionAtt assertions. This ordering gives higher priorities to
more specific/constrained assertions first.

3.4 Test Suite Generation
In the final step, we generate a test suite from the ex-

tended state-flow graph. Each path from the Index node to
a sink node (i.e., node without outgoing edges) in the SFG is
transformed into a unit test. Loops are included once. Each
test case captures the sequence of events as well as any as-
sertions for the target states. To make the test case more
readable for the developers, information (such as tag name

and attributes) about related DOM elements is generated as
code comments.

After generating the extended test suite, we make sure
that the reused/regenerated assertions are stable, i.e., do
not falsely fail, when running the test suite on an unmodi-
fied version of the web application. Some of these assertions
are not only DOM related but also depend on the specific
path through which the DOM state is reached. Our tech-
nique automatically identifies and filters these false positive
cases from the generated test suite. This is done through
executing the generated test suite and eliminating failing
assertions form the test cases iteratively, until all tests pass
successfully.

4. IMPLEMENTATION
The approach is implemented in a tool, called Testilizer,

which is publicly available [7]. The state exploration compo-
nent is built on top of Crawljax [18]. Testilizer requires
as input the source code of the human-written test suite and
the URL of the web application. Testilizer currently sup-
ports Selenium tests, however, our approach can be easily
applied to other DOM-based tests as well.

To instrument the test cases, we use JavaParser [2] to
get a abstract syntax tree. We instrument all DOM related
method calls and calls with arguments that have DOM ele-
ment locaters. We also log the DOM state after every event
in the tests, capable of changing the DOM. For the state
abstraction function (as defined in Definition 1), we gener-
ate an abstract DOM state by ignoring recurring structures
(patterns such as table rows and list items), textual content
(such as ignoring the text node “Note has been created” in
the partial DOM shown in Figure 1), and contents in the
<script> tags. For the classification step, we use LIBSVM
[12], which is a popular library for support vector machines.

5. EMPIRICAL EVALUATION
To assess the efficacy of our proposed technique, we have

conducted a controlled experiment to address the following
research questions:

RQ1 How much of the information (input data, event se-
quences, and assertions) in the original human-written
test suite is leveraged by Testilizer?

RQ2 How successful is Testilizer in regenerating effective
assertions?

Table 3: Experimental objects.
Name SLOC #Test #Assertions

Methods
Claroline e-learning PHP (295K) 23 35
(1.11.7) JS (36K)
PhotoGallery PHP (5.6K) 7 18
(3.31) JS (1.5K)
WolfCMS PHP (35K) 12 42
(0.7.8) JS (1.3K)
EnterpriseStore Java (3K) 19 17
(1.0.0) JS (57K)

RQ3 Does Testilizer improve coverage?

Our experimental data along with the implementation of
Testilizer are available for download [7].

5.1 Experimental Objects
We selected four open source web applications that make

extensive use of client-side JavaScript, fall under different
application domains, and have Selenium test cases. The ex-
perimental objects and their properties are shown in Table
3. Claroline [1] is a collaborative e-learning environment,
which allows instructors to create and administer courses.
Phormer [5] is a photo gallery equipped with upload, com-
ment, rate, and slideshow functionalities. WolfCMS [8] is a
content management system. EnterpriseStore [9] is an en-
terprise asset management web application.

5.2 Experimental Setup
Our experiments are performed on Mac OS X, running

on a 2.3GHz Intel Core i7 CPU with 8 GB memory, and
FireFox 28.0.

5.2.1 Independent Variables
We compare the original human-written test suites with

the test suites generated by Testilizer.

Test suite generation method. We evaluate different
test suite generation methods for each application as pre-
sented in Table 4. We compare Testilizer (EXND+AR)
with three baselines, (1) ORIG: original human-written test
suite, (2) EXND+RND: test suite generated by traversing
the extended SFG, equipped with random assertion gener-
ation, and (3) RAND+RND: random exploration and ran-
dom assertion generation. In random assertion generation,
for each state we generate element/region assertions by ran-
domly selecting from a pool of DOM-based assertions. These
random assertions are based on the existence of an elemen-
t/region in a DOM state. Such assertions are expected to
pass as long as the application is not modified. However,
due to our state abstraction this can result in unstable as-
sertions, which are also automatically eliminated following
the approach explained in subsection 3.4.

We further evaluate various instantiations of our asser-
tion generation in EXND+AR, i.e., using only (a) original
assertions, (b) reused assertions (Section 3.3.1), (c) exact
generated (Section 3.3.2), (d) similar region generated (Sec-
tion 3.3.3), and (e) a combination of all these types.

Exploration constraints. We confine the exploration
time to five minutes in all the experiments, which should
be acceptable in most testing environments. Suppose in the
EXND approach, Testilizer spends time t to generating
the initial SFG for an application. To make a fair compari-
son, we add this time t to the five minutes for the RAND ex-
ploration approach. We set no limits on the crawling depth
nor the maximum number of states to be discovered while
looking for alternative paths. Note that for both EXND and

Table 4: Test suite generation methods evaluated.
Test Suite Action Sequence Assertion
Generation Generation Method Generation
Method Method
ORIG Manual Manual
Testilizer
(EXND+AR)

Traversing paths in the extended
SFG generated from the original
tests

Assertion
regeneration

EXND+RND Traversing paths in the extended
SFG generated from the original
tests

Random

RAND+RND Traversing paths in the SFG gen-
erated by random crawling

Random

RAND crawling, after a clickable element on a state was ex-
ercised, the crawler resets to the index page and continues
crawling from another chosen state.

Maximum number of generated assertions. We con-
strain the maximum number of generated assertions for
each state to five. To have a fair comparison, for the
EXND+RND and RAND+RND methods, we perform the
same assertion prioritization used in Testilizer and select
the top ranked.

Learning parameters. We set the SVM’s kernel function
to the Gaussian RBF, and use 5-fold cross-validation for
tuning the model and feature selection.

5.2.2 Dependent Variables
Original coverage. To assess how much of the information
including input data, event sequences, and assertions of the
original test suite is leveraged (RQ1), we measure the state
and transition coverage of the initial SFG (i.e., SFG mined
from the original test cases). We also measure how much of
the unique assertions and unique input data in the original
test cases has been utilized.

Fault detection rate. To answer RQ2 (assertions effective-
ness), we evaluate the DOM-based fault detection capability
of Testilizer through automated first-order mutation anal-
ysis. The test suites are evaluated based on the number of
detected mutants by test assertions.

We apply the DOM, jQuery, and XHR mutation opera-
tors at the JavaScript code level as described in [21], which
are based on a study of common mistakes made by web
developers. Examples include changing the ID/tag name
used in getElementById and getElementByTagName meth-
ods, changing the attribute name/value in setAttribute,
getAttribute and removeAttribute methods, removing the
$ sign that returns a jQuery object, changing the name of the
property/class/element in the addClass, removeClass, re-
moveAttr, remove, attr, and css methods in jQuery, swap-
ping innerHTML and innerText properties, and modifying
the XHR type (Get/Post). On average we generate 36 mu-
tant versions for each application.

Code coverage. Code coverage has been commonly used
as an indicator of the quality of a test suite by identifying
under-tested parts, while it does not directly imply the ef-
fectiveness of a test suite [16]. Although Testilizer does
not target code coverage maximization, to address RQ3, we
compare the JavaScript code coverage of the different test
suites using JSCover [3].

5.3 Results
Original SFG Coverage (RQ1). Table 5 shows the av-
erage results of our experiments. As expected, the number
of states, transitions, and generated test cases are higher in
Testilizer. The random exploration (RAND) on average
generates fewer states and transitions, but more test cases

Table 5: Results showing statistics of the test models
and original test suite information usage, average
over experimental objects.

Test
Suite

#
S
t
a
t
e
s

#
T

r
a
n
s
it

io
n
s

#
T

e
s
t

C
a
s
e
s

O
r
ig

S
t
a
t
e

C
o
v
e
r
a
g
e

O
r
ig

T
r
a
n
s
it

io
n

C
o
v
e
r
a
g
e

O
r
ig

In
p
u
t

D
a
t
a

U
s
a
g
e

O
r
ig

A
s
s
e
r
t
io

n
U

s
a
g
e

J
S

C
o
d
e

C
o
v
e
r
a
g
e
s

ORIG 37 46 15 100% 100% 100% 100% 20%
EXND 54 63 47 98% 96% 100% 100% 26%
RAND 33 40 25 65% 60% 0% 0% 22%

compared to the original test suite. This is mainly due to the
fact that in the SFG generated by RAND, there are more
paths from Index to the sink nodes than in the SFG mined
from the original test suite.

Regarding the usage of original test suite information
(RQ1), as expected Testilizer, which leverages the event
sequences and inputs of the original test suite, has almost
full state (98%) and transition (96%) coverage of the initial
model. The few cases missed are due to the traversal algo-
rithm we used, which has limitations on dealing with cycles
in the graph that do not end with a sink node and thus are
not generated. Note that we can select the missing cases
from the original manual-written test suite and add them
to the generated test suite. By analyzing the generated test
suites, we found that on average, Testilizer reused 22 in-
put values (in addition to the login data) from the average
of 15 original inputs. The RAND exploration approach cov-
ered about 60% of the states and transitions, without any
usage of input data (apart from the login data, which was
provided to RAND manually).

0	

1	

2	

3	

4	

5	

EXND	 +	
Original	

EXND	 +	
Reused	

EXND	 +	
Exact	

Generated	

EXND	 +	
Similar	

Generated	

EXND	 +	
Combined	
(TesDlizer)	

EXND	 +	
RND	

RAND	 +	
RND	

Av
g	
#	
As
se
(o

ns
	 p
er
	 S
ta
te
	

Before	 Filtering	 AKer	 Filtering	

Figure 5: Average number of assertions per state,
before and after filtering unstable assertions.

Figure 5 presents the average number of assertions per
state before and after filtering the unstable ones. The dif-
ference between the number of actual generated assertions
and the stable ones reveals that our generated assertions
(combined, similar/exact generated) are more stable than
the random approach. The reduction percentage is 25%,
49%, 22%, 11%, 20%, 35%, and 45% for the original, reused,
exact generated, similar generated, combined (Testilizer),
EXND+RND and RAND+RND, respectively.

A major source of this instability is the selection of dy-
namic DOM elements in the generated assertions. For in-
stance, RND (random assertion generation) selects many
DOM elements with dynamic time-based attributes. Also
the more restricted an assertion is, the less likely it is to
remain stable in different paths. This is the case for some
of the (1) reused assertions that replicate the original as-
sertions and (2) exact generated ones specially FullRegion-
Matchs type. On the other hand, learned assertions are less
strict (e.g., AttTagRegionMatchs) and are thus more stable.

Overall, the test suite generated by Testilizer, on aver-
age, consists of 12% original assertions, 11% reused asser-
tions, 31% exact generated assertions, and 45% of similar
learned assertions.

0%	

5%	

10%	

15%	

20%	

25%	

30%	

ORIG	 EXND	 +	
Original	

EXND	 +	
Reused	

EXND	 +	
Exact	

Generated	

EXND	 +	
Similar	

Generated	

EXND	 +	
Combined	
(TesElizer)	

EXND	 +	
RND	

RAND	 +	
RND	

Fa
ul
t	 D

et
ec
Eo

n	
Ra

te
	

Figure 6: Comparison of average fault detection rate
using different test suite generation methods.

Fault detection (RQ2). Figure 6 depicts a comparison
of fault detection rates for the different methods. Figure 6
shows that exact and similar generated assertions are more
effective than original and reused ones. The effectiveness of
each assertion generation technique solely is not more than
the random approach. This is mainly due to the fact that
the number of random assertions per state is more than the
assertions reused/generated by Testilizer, since we always
select 5 random assertions at each state from a pool of asser-
tions but not always find 5 exact/similar match in a state.

More importantly, the results show that Testilizer out-
performs fault detection capability of the original test suite
by 150% (15% increase) and the random methods by 37%
(7% increase). This supports our insight that leveraging
input values and assertions from human-written test suites
can be helpful in generating more effective test cases.

Code Coverage (RQ3). Although code coverage improve-
ment is not the main goal of Testilizer in this work, the
generated test suite has a slightly higher code coverage. As
shown in Table 5, there is a 30% improvement (6% increase)
over the original test suite and 18% improvement (4% in-
crease) over the RAND test suite. Note that the original
test suites were already equipped with proper input data,
but not many execution paths (thus the slight increase). On
the other hand, the random exploration considered more
paths in a blind search, but without proper input data.

5.4 Discussion
Test case dependencies. An assumption made in
Testilizer is that the original test suite does not have any
test case dependencies. Generally, test cases should be exe-
cutable without any special order or dependency on previous
tests. However, while conducting our evaluation, we came
across multiple test suites that violated this principle. For
such cases, although Testilizer can generate test cases,
failures can occur due to these dependencies.

Effectiveness. The effectiveness of the generated test suite
depends on multiple factors. First, the size and the quality
of the original test suite is very important; if the original
test suite does not contain paths with effective assertions, it
is not possible to generate an effective extended test suite.
In the future we plan to use other adequacy metrics, such as
DOM coverage [22], to measure the quality of a given test
suite. Second, the learning-based approach can be tuned
in various ways (e.g., selecting other features, changing the
SVM parameters, and choosing sample dataset size) to ob-
tain better results. Third, the size of the DOM subtree (re-
gion) to be checked can be increased to detect changes more
effectively, however, it might come at the cost of making the
test suite more brittle.

Efficiency. The larger a test suite, the more time it takes
to test an application. Since in many testing environments
time is limited, not all possible paths of events should be
generated in the extended test suite. The challenge is finding
a balance between effectiveness and efficiency of the test
cases. The current graph traversal method in Testilizer
may produce test cases that share common paths, which do
not contribute much to fault detection or code coverage. An
optimization could be realized by guiding the test generation
algorithm towards states that have more constrained DOM-
based assertions.

Threats to validity. Although Selenium is widely used
in industry for testing commercial web applications, unfor-
tunately, very few open source web applications are publicly
available that have (working) Selenium test suites. There-
fore, we were able to include a limited number of applications
in our study. A threat to the external validity of our exper-
iment is with regard to the generalization of the results to
other web applications. To mitigate this threat, however,
we selected our experimental objects from different domains
with variations in functionality and structure. With respect
to reproducibility of our results, Testilizer, the test suites,
and the experimental objects are publicly available, making
the experiment reproducible.

6. RELATED WORK
Elbaum et al. [15] leverage user-sessions for web applica-

tion test generation. Based on this work, Sprenkle et al. [30]
propose a tool to generate additional test cases based on the
captured user-session data. McAllister et al. [17] leverage
user interactions for web testing. Their method relies on
prerecorded traces of user interactions and requires instru-
menting one specific web application framework. None of
these techniques considers leveraging knowledge from exist-
ing test cases as Testilizer does.

Xie and Notkin [34] infer a model of the application un-
der test by executing the existing test cases. Dallmeier et
al. [14] mine a specification of desktop systems by executing
the test cases. Schur et al. [28] infer behaviour models from
enterprise web applications via crawling. Their tool gener-
ates test cases simulating possible user inputs. Similarly,
Xu et al. [35] mine executable specifications of web applica-
tions from Selenium test cases to create an abstraction of
the system. Yuan and Memon [39] propose an approach to
iteratively rerun automatically generated test cases for gen-
erating alternating test cases. This is inline with feedback-
directed testing [24], which leverages dynamic data produced
by executing the program using previously generated test
cases. For instance, Artemis [11] is a feedback-directed tool
for automated testing of JavaScript applications that uses
generic oracles such as HTML validation. Our previous
work, FeedEx [20], applies a feedback-directed exploration

technique to guide the exploration at runtime towards more
coverage and higher navigational and structural diversity.
These approaches, however, do not use information in exist-
ing test cases, and they do not address the problem of test
oracle generation.

Yoo and Harman [37] propose a search-based approach
to reuse and regenerate existing test data for primitive
data types. They show that the knowledge of existing test
data can help to improve the quality of new generated test
data. Alshahwan and Harman [10] generate new sequences
of HTTP requests through a def-use analysis of server-side
code. Pezze et al. [26] present a technique to generate inte-
gration test cases from existing unit test cases. Mirzaaghaei
et al. [23] use test adaptation patterns in existing test cases
to support test suite evolution.

This work is also related to test suite augmentation tech-
niques [36, 27] used in regression testing. In test suite
augmentation the goal is to generate new test cases for the
changed parts of the application. More related to our work
is [33], which aggregates tests generated by different ap-
proaches using a unified test case language. They propose a
test advice framework that extracts information in the ex-
isting tests to help improve other tests or test generation
techniques.

A generic approach used often as a test oracle is checking
for thrown exceptions and application crashes [38]. This is,
however, not very helpful for web applications as they do not
crash easily and the browser continues the execution even
after exceptions. Current web testing techniques simplify
the test oracle problem in the generated test cases by using
soft oracles, such as generic user-defined oracles, and HTML
validation [19, 11].

Our work is different from these approaches in that we
(1) reuse knowledge in existing human-written test cases in
the context of web application testing, (2) reuse input values
and event sequences in test cases to explore alternative paths
and news states of web application, and (3) reuse oracles of
the test cases for regenerating assertions to improve the fault
finding capability of the test suite.

7. CONCLUSIONS AND FUTURE WORK
This work is motivated by the fact that a human-written

test suite is a valuable source of domain knowledge, which
can be used to tackle some of the challenges in automated
web application test generation. Given a web application
and its DOM-based (such as Selenium) test suite, our tool,
called Testilizer, utilizes the given test suite to generate ef-
fective test cases by exploring alternative paths of the appli-
cation, and regenerating assertions for new detected states.
Our empirical results on four real-world applications show
that Testilizer easily outperforms a random test gener-
ation technique, provides substantial improvements in the
fault detection rate compared with the original test suite,
while slightly increasing code coverage too.

For future work, we plan to evaluate the effectiveness of
other state space exploring strategies, e.g., diversification
of test-paths, and investigate correlations between the ef-
fectiveness of the original test suite and the generated test
suite.

8. ACKNOWLEDGMENTS
This work was supported by the National Science and En-

gineering Research Council of Canada (NSERC) through its
Strategic Project Grants programme and Alexander Gra-
ham Bell Canada Graduate Scholarship, and Swiss National
Science Foundation (PBTIP2145663).

9. REFERENCES
[1] Claroline. http://www.claroline.net/.
[2] JavaParser.

https://code.google.com/p/javaparser/.
[3] Jscover. http://tntim96.github.io/JSCover/.
[4] Organizer. http://www.apress.com/9781590596951.
[5] Phormer Photogallery.

http://sourceforge.net/projects/rephormer/.
[6] Selenium HQ. http://seleniumhq.org/.
[7] Testilizer.

http://salt.ece.ubc.ca/software/testilizer.
[8] WolfCMS. https://github.com/wolfcms/wolfcms.
[9] WSO2 EnterpriseStore.

https://github.com/wso2/enterprise-store.
[10] N. Alshahwan and M. Harman. State aware test case

regeneration for improving web application test suite
coverage and fault detection. In Proceedings of the
International Symposium on Software Testing and
Analysis (ISSTA), pages 45–55, 2012.

[11] S. Artzi, J. Dolby, S. Jensen, A. Møller, and F. Tip. A
framework for automated testing of JavaScript web
applications. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
571–580. ACM, 2011.

[12] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[13] S. R. Choudhary, M. Prasad, and A. Orso.
Crosscheck: Combining crawling and differencing to
better detect cross-browser incompatibilities in web
applications. In Proc. International Conference on
Software Testing, Verification and Validation (ICST),
pages 171–180. IEEE Computer Society, 2012.

[14] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and
A. Zeller. Generating test cases for specification
mining. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), pages
85–96, 2010.

[15] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher.
Leveraging user-session data to support web
application testing. IEEE Transactions on Software
Engineering, 31(3):187–202, 2005.

[16] L. Inozemtseva and R. Holmes. Coverage is not
strongly correlated with test suite effectiveness. In
Proceedings of the International Conference on
Software Engineering (ICSE), 2014.

[17] S. McAllister, E. Kirda, and C. Kruegel. Leveraging
user interactions for in-depth testing of web
applications. In Recent Advances in Intrusion
Detection, volume 5230 of LNCS, pages 191–210.
Springer, 2008.

[18] A. Mesbah, A. van Deursen, and S. Lenselink.
Crawling Ajax-based web applications through
dynamic analysis of user interface state changes. ACM
Transactions on the Web (TWEB), 6(1):3:1–3:30,
2012.

[19] A. Mesbah, A. van Deursen, and D. Roest.
Invariant-based automatic testing of modern web
applications. IEEE Transactions on Softw. Eng.,
38(1):35–53, 2012.

[20] A. Milani Fard and A. Mesbah. Feedback-directed
exploration of web applications to derive test models.
In Proceedings of the International Symposium on

Software Reliability Engineering (ISSRE), pages
278–287. IEEE Computer Society, 2013.

[21] S. Mirshokraie, A. Mesbah, and K. Pattabiraman.
Efficient JavaScript mutation testing. In Proc. of the
International Conference on Software Testing,
Verification and Validation (ICST). IEEE Computer
Society, 2013.

[22] M. Mirzaaghaei and A. Mesbah. DOM-based test
adequacy criteria for web applications. In Proceedings
of the International Symposium on Software Testing
and Analysis (ISSTA), pages 71–81. ACM, 2014.

[23] M. Mirzaaghaei, F. Pastore, and M. Pezze. Supporting
test suite evolution through test case adaptation. In
Proceedings of the International Conference on
Software Testing, Verification and Validation (ICST),
pages 231–240. IEEE Computer Society, 2012.

[24] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In Proc.
International Conference on Software Engineering
(ICSE), pages 75–84. IEEE Computer Society, 2007.

[25] K. Pattabiraman and B. Zorn. DoDOM: Leveraging
DOM invariants for web 2.0 application robustness
testing. In Proceedings of the International Symposium
on Sw. Reliability Eng. (ISSRE), pages 191–200. IEEE
Computer Society, 2010.

[26] M. Pezze, K. Rubinov, and J. Wuttke. Generating
effective integration test cases from unit ones. In Proc.
International Conference on Software Testing,
Verification and Validation (ICST), pages 11–20.
IEEE, 2013.

[27] K. Rubinov and J. Wuttke. Augmenting test suites
automatically. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages
1433–1434, Piscataway, NJ, USA, 2012. IEEE Press.

[28] M. Schur, A. Roth, and A. Zeller. Mining behavior
models from enterprise web applications. In
Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, Proceedings of
the Foundations of Software Engineering
(ESEC/FSE), pages 422–432. ACM, 2013.

[29] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma. Learning
important models for web page blocks based on layout
and content analysis. ACM SIGKDD Explorations
Newsletter, 6(2):14–23, 2004.

[30] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock.
Automated replay and failure detection for web
applications. In Proceedings of the ACM/IEEE
International Conference on Automated Software
Engineering (ASE), pages 253–262. ACM, 2005.

[31] S. Thummalapenta, K. V. Lakshmi, S. Sinha,
N. Sinha, and S. Chandra. Guided test generation for
web applications. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
162–171. IEEE Computer Society, 2013.

[32] V. Vapnik. The nature of statistical learning theory.
springer, 2000.

[33] Y. Wang, S. Person, S. Elbaum, and M. B. Dwyer. A
framework to advise tests using tests. In Proc. of
ICSE NIER. ACM, 2014.

[34] T. Xie and D. Notkin. Mutually enhancing test
generation and specification inference. In Formal
Approaches to Software Testing, pages 60–69.
Springer, 2004.

[35] D. Xu, W. Xu, B. K. Bavikati, and W. E. Wong.
Mining executable specifications of web applications
from selenium ide tests. In Software Security and

http://www.claroline.net/
https://code.google.com/p/javaparser/
http://tntim96.github.io/JSCover/
http://www.apress.com/9781590596951
http://sourceforge.net/projects/rephormer/
http://seleniumhq.org/
http://salt.ece.ubc.ca/software/testilizer
https://github.com/wolfcms/wolfcms
https://github.com/wso2/enterprise-store
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Reliability (SERE), 2012 IEEE Sixth International
Conference on, pages 263–272. IEEE, 2012.

[36] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B.
Cohen. Directed test suite augmentation: techniques
and tradeoffs. In Proceedings of the International
Symposium on Foundations of Software Engineering
(FSE), pages 257–266. ACM, 2010.

[37] S. Yoo and M. Harman. Test data regeneration:
generating new test data from existing test data.
Software Testing, Verification and Reliability,
22(3):171–201, 2012.

[38] X. Yuan and A. M. Memon. Using GUI run-time state
as feedback to generate test cases. In Proceedings of
the 29th International Conference on Software
Engineering, ICSE ’07, pages 396–405, Washington,
DC, USA, 2007. IEEE Computer Society.

[39] X. Yuan and A. M. Memon. Iterative
execution-feedback model-directed GUI testing.
Information and Software Technology, 52(5):559–575,
2010.

	Introduction
	Background and Motivation
	Approach
	Mining Human-Written Test Cases
	Exploring Alternative Paths
	Regenerating Assertions
	Assertion Reuse
	Assertion Regeneration
	Learning Assertions for Similar Regions
	Assertion Minimization

	Test Suite Generation

	Implementation
	Empirical Evaluation
	Experimental Objects
	Experimental Setup
	Independent Variables
	Dependent Variables

	Results
	Discussion

	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

