
Works For Me! Characterizing
Non-reproducible Bug Reports

Mona Erfani Joorabchi Mehdi Mirzaaghaei Ali Mesbah
Electrical and Computer Engineering

University of British Columbia
Vancouver, BC, Canada

{merfani, mehdi, amesbah}@ece.ubc.ca

ABSTRACT
Bug repository systems have become an integral component
of software development activities. Ideally, each bug report
should help developers to find and fix a software fault. How-
ever, there is a subset of reported bugs that is not (easily) re-
producible, on which developers spend considerable amounts
of time and effort. We present an empirical analysis of non-
reproducible bug reports to characterize their rate, nature,
and root causes. We mine one industrial and five open-
source bug repositories, resulting in 32K non-reproducible
bug reports. We (1) compare properties of non-reproducible
reports with their counterparts such as active time and num-
ber of authors, (2) investigate their life-cycle patterns, and
(3) examine 120 Fixed non-reproducible reports. In addi-
tion, we qualitatively classify a set of randomly selected
non-reproducible bug reports (1,643) into six common cate-
gories. Our results show that, on average, non-reproducible
bug reports pertain to 17% of all bug reports, remain active
three months longer than their counterparts, can be mainly
(45%) classified as“Interbug Dependencies”, and 66% of Fixed
non-reproducible reports were indeed reproduced and fixed.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Measurement

Keywords
Non-reproducible bugs, mining bug reports, bug tracking
systems

1. INTRODUCTION
When a failure is detected in a software system, a bug

report is typically filed through a bug tracking system. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

developers then try to validate, locate, and repair the re-
ported bug as quickly as possible. In order to validate the
existence of the bug, the first step developers take is often
using the information in the bug report to reproduce the
failure. However, reproducing reported bugs is not always
straightforward. In fact, some reported bugs are difficult or
impossible to reproduce. When all attempts at reproducing a
reported bug are futile, the bug is marked as non-reproducible
(NR) [1, 5].

Non-reproducible bugs are usually frustrating for devel-
opers to deal with [9]. First, developers usually spend a
considerable amount of time trying to reproduce them, with-
out any success. Second, due to the very nature of these bug
reports, there is typically no coherent set of policies to follow
when developers encounter such bug reports. Third, because
they cannot be reproduced, developers are reluctant to take
responsibility and close them.

Mistakenly marking an important bug as non-reproducible
and ignoring it, can have serious consequences. An example
is the recent security vulnerability found in Facebook [17],
which allowed anyone to post to other users’ walls. Before
exposing the vulnerability, the person who had detected the
vulnerability had filed a bug report. However, the bug was
ignored by Facebook engineers: }Unfortunately your report
[...] did not have enough technical information for us to take
action on it. We cannot respond to reports which do not
contain enough detail to allow us to reproduce an issue.~

Researchers have analyzed bug repositories from various
perspectives including bug report quality [15], prediction
[20], reassignment [21], bug fixing and code reviewing [13,
30], reopening [31], and misclassification [23]. None of these
studies, however, has analyzed non-reproducible bugs in
isolation. In fact, most studies have ignored non-reproducible
bugs by focusing merely on the Fixed resolution.

In this paper, we provide an empirical study on non-
reproducible bug reports, characterizing their prevalence,
nature, and root causes. We mine six bug repositories and
employ a mixed-methods approach using both quantitative
and qualitative analysis. To the best of our knowledge, we
are the first to study and characterize non-reproducible bug
reports.

Overall, our work makes the following main contributions:

• We mine the bug repositories of one proprietary and five
open source applications, comprising 188,319 bug re-
ports in total; we extract 32,124 non-reproducible bugs
and quantitatively compare them with other resolution
types, using a set of metrics;

• We qualitatively analyze root causes of 1,643 non-re-
producible bug reports to infer common categories of
the reasons these reports cannot be reproduced. We sys-
tematically classify 1,643 non-reproducible bug reports
into the inferred categories;

• We extract patterns of status and resolution changes
pertaining to all the mined non-reproducible bug re-
ports. Further, we manually investigate 120 of these
non-reproducible reports that were marked as Fixed
later in their life-cycle.

Our results show that, on average:

1. NR bug reports pertain to 17% of all bug reports;

2. compared with bug reports with other resolutions, NR
bug reports remain active around three months longer,
and are similar in terms of the extent to which they
are discussed and/or the number of involved parties;

3. NR bug reports can be classified into 6 main cause
categories, namely “Interbug Dependencies”’ (45%),
“Environmental Differences” (24%), “Insufficient Infor-
mation” (14%), “Conflicting Expectations” (12%), and
“Non-deterministic Behaviour” (3%);

4. 68% of all NR bug reports are resolved directly from
the initial status (New/Open). The remaining 32%
exhibit many resolution transition scenarios.

5. NR bug reports are seldom marked as Fixed (3%) later
on; from those that are finally fixed, 66% are actu-
ally reproduced and fixed through code patches (i.e.,
changes in the source code).

2. NON-REPRODUCIBLE BUGS
Most bug tracking systems are equipped with a default

list of bug statuses and resolutions, which can be customized
if needed. Generally, each bug report has a status, which
specifies its current position in the bug report life cycle [5].
For instance, reports start at New and progress to Resolved.
From Resolved, they are either Reopened or Closed, i.e., the
issue is complete. At the Resolved status, there are different
resolutions that a bug report can obtain, such as Fixed,
Duplicate, Won’t Fix, Invalid, or Non-Reproducible [5, 1].

There are various definitions available for non-reproducible
bugs online. We adopt and slightly adapt the definition used
in Bugzilla [1]:

Definition 1 A Non-Reproducible (NR) bug is one that
cannot be reproduced based on the information provided in
the bug report. All attempts at reproducing the issue have
been futile, and reading the system’s code provides no clues
as to why the described behaviour would occur.

Other resolution terminologies commonly used for non-
reproducible bugs include Cannot Reproduce [11], Works on
My Machine [12] and Works For Me [10].

Our interest in studying NR bugs was triggered by realizing
that developers spend considerable amounts of time and effort
on these reports. For instance, issue #106396 in the Eclipse
project has 62 comments from 28 people, discussing how to
reproduce the reported bug [2]. This motivated us to conduct
a systematic characterization study of non-reproducible bug
reports to better understand their nature, frequency, and
causes.

Figure 1: Overview of our methodology.

3. METHODOLOGY
Our analysis is based on a mixed-methods research ap-

proach [18], where we collect and analyze both quantitative
as well as qualitative data. All our empirical data is available
for download [8]. We address the following research questions
in our study:

RQ1. How prevalent are NR bug reports? Are NR bug
reports treated differently than other bug reports?

RQ2. Why can NR bug reports not be reproduced? What
are the most common cause categories?

RQ3. Which resolution transition patterns are common in
NR bug reports?

RQ4. What portion of NR bug reports is fixed eventually?
Were they mislabelled initially? What cause categories
do they belong to?

Figure 1 depicts our overall approach. We use this figure
to illustrate our methodology throughout this section.

3.1 Bug Repository Selection
To answer our research questions, we need bug tracking

systems that provide advanced search/filter mechanisms and
access to historical bug report life-cycles. Since Bugzilla
and Jira both support these features (e.g., Changed to/from

operators), we choose projects that use these two systems.
Table 1 shows the bug repositories we have selected for

this study. To ensure representativeness, we select five popu-
lar, actively maintained software projects from three sepa-
rate domains, namely desktop (Firefox and Eclipse), web
(MediaWiki and Moodle), and mobile (Firefox Android).
In addition, we include one commercial closed source appli-
cation (Industrial). The proprietary bug tracking system
is from a Vancouver-based mobile app development company.
The bug reports are filed by their testing team and end-users,

Table 1: Studied bug repositories and their rate of NR bugs.

ID Domain Repository Product/Component #All Bugs* #NR Bugs** NR(%) FixedNR(%)***

FF Desktop Bugzilla [3] Firefox 65,408 18,516 28% 1%
E Desktop Bugzilla [4] Eclipse/Platform 65,475 8,189 13% 4%
W Web Bugzilla [6] MediaWiki 9,335 1,125 12% 9%
M Web Jira [7] Moodle 22,175 2,503 11% 5%
FFA Mobile Bugzilla [3] FirefoxAndroid 7,902 1,148 15% 3%
PTY Mobile Jira Proprietary 18,024 643 4% 17%
Overall 188,319 32,124 17% 3%

*All Query: Resolution: All except (Duplicate, Invalid, Rejected) and Severity: All except (Enhancement, Feedback) and Status: All except
Unconfirmed
**NR Query: All Query and Resolution: Changed to/from Non-Reproducible
***FixedNR Query: Resolution: Fixed and Severity: All except (Enhancement, Feedback) and Status: All except Unconfirmed and Resolution
Changed from Non-Reproducible and Resolution: Changed to Fixed

and are related to different mobile platforms such as An-
droid, Blackberry, iOS, and Windows Phone, as well as their
content management platform and backend software.

3.2 Mining Non-Reproducible Bug Reports
In this study, we include all bug reports that are resolved

as non-reproducible at least once in their life-cycles. In
our search queries, we include all resolution terminologies
commonly used for non-reproducible bug reports, as outlined
in Section 2. We extract these NR bug reports in three main
steps (Box 1 in Figure 1):

Step 1. We start by filtering out all Invalid, Duplicate, and
Rejected reports. Where applicable, we also exclude
Enhancement, Feedback, and Unconfirmed reports. The
set of bug reports retrieved afterward is the total set
that we consider in this study (‘#All Bugs’ in Table 1).

Step 2. We use the filter/search features available in the bug
repository systems and apply the Changed to/from op-
erator on the resolution field to narrow down the list of
bug reports further to the non-reproducible resolution
(‘#NR Bugs’ in Table 1).

Step 3. We extract and save the data in XML format, con-
taining detailed information for each retrieved bug
report.

This mining step was conducted during August, 2013. We
did not constrain the start date for any of the repositories.
The detailed search queries used in our study are available
online [8]. Overall, our queries extracted 32,124 NR bug
reports from a total of 188,319 bug reports.

3.3 Quantitative Analysis
In order to perform our quantitative analysis, we measure

the following metrics from each extracted bug report:

Active Time pertains to the period between a bug report’s
creation and the last update in the report.

Number of Unique Authors measures the number of peo-
ple directly involved with the report, based on their
user ID.

Number of Comments provides information about the
extent to which a bug is discussed; this is an indication
of how much attention a bug report attracts.

Number of CCs/Watchers measures the number of peo-
ple that would receive update notifications for the re-
port. It provides insights as how many people are
interested in a particular bug report.

Historical Status and Resolution Changes collects data
on how the status and resolution of a bug report changes
throughout time.

To address RQ1, we measure the first four metrics for all
the bug reports to compare the properties of NR bug reports
(32,124) with the others (156,195). We built an analyzer
tool, called NR-Bug-Analyzer [8], to calculate these metrics.
It takes as input the extracted XML files and measures the
first four metrics (Box 2 in Figure 1). Since each repository
system has a different set of fields, we performed a mapping
to link common fields in Bugzilla and Jira, as presented
in Table 2.

To address RQ3, the last metric (historical changes) is
extracted for all NR bug reports and used to mine common
transition patterns. The data retrieved from bug repositories
does not contain any information on how the statuses and
resolutions change over time for each bug report. Thus our
tool parses the HTML source of each NR bug report to
extract historical data of status and resolution changes (Box
3 in Figure 1). Bugzilla provides a History Table with
historical changes to different fields of an issue, including the
status and resolution fields, attachments, and comments. We
extract the history of each bug report by concatenating the
issue ID with the base URL of the History Table.1 Jira
provides a similar mechanism called Change History. Our
bug report analyzer tool along with all the collected (open
source) empirical data are available for download [8].

3.4 Qualitative Analysis
In order to address RQ2, we perform a qualitative analysis

that requires manual inspection. To conduct this analysis
in a timely manner, we constrain the number of NR bug
reports to be analyzed through random sampling. The man-
ual classification is conducted in two steps, namely, common
category inference and classification.

Common Category Inference. In the first phase, we aim
to infer a set of common categories for the causes of NR
bugs, i.e., understanding why they are resolved as NR. We
randomly selected 250 NR reports from the open source
repositories and 250 NR reports from Industrial.

In order to infer common cause categories, each bug report
was thoroughly analyzed based on the bug’s description,
tester/developer discussions/comments, and historical data.
We defined a set of classification definitions and rules and

1
For example, the base URL for the History Table in Fire-

fox Bugzilla is https://bugzilla.mozilla.org/show_activity.cgi?id=
bug_id.

https://bugzilla.mozilla.org/show_activity.cgi?id=bug_id
https://bugzilla.mozilla.org/show_activity.cgi?id=bug_id

Table 2: Mapping of Bugzilla and Jira fields.

Bugzilla Jira Description

1 bug id key The bug ID.
2 comment id id (in com-

ment field)
A unique ID for a comment.

3 who author (in
comment
field)

Name and id of the user who
added a bug, a comment, or any
other type of text.

4 creation ts created The date/time of bug creation.
5 delta ts resolved

(updated)
The timestamp of the last up-
date. If resolved field is not
available, updated field is used.

6 bug status status The bug’s latest status.
7 resolution resolution The bug’s latest resolution.
8 cc watches Receive notifications.

generated the initial set of categories and sub-categories (Box
4 in Figure 1). Then, the generated (sub)categories were
cross validated through discussions, merged, and refined (Box
5 in Figure 1). Based on an analysis of the reasons the bug
reports could not be reproduced, in total, we extracted six
high level cause categories, each with a set of sub-categories,
which were fed into our classification step. The categories
and our classification rules are presented in Table 3. In the
given examples in Table 3 and throughout the paper, R refers
to reporter and D refers to anyone else other than reporter.

Classification. In the second phase, we randomly selected
200 NR bug reports from each of the open source repositories.
In addition, to have a comparable number of NR bug reports
from the commercial application, we included all the 643
NR bug reports from Industrial in this step. We then
systematically classified these 1,643 NR bug reports, using
the rules and (sub)categories inferred in the previous phase.
Where needed, the sub-categories were refined in the process
(Box 6 in Figure 1). Similar to the category inference step,
each bug report was manually classified by analyzing its
descriptions, discussions/comments, and historical activities.
At the end of this step, each of the 1,643 NR bug reports
was distributed into one of the 6 categories of Table 3.

Inspecting Fixed NR Bug Reports. To address RQ4,
we performed a query on the set of NR bug reports to extract
the subset that is finally changed to a Fixed resolution.

We randomly selected 20 fixed NR bug reports from the
6 repositories and manually inspected them (120) to under-
stand why they were marked as Fixed (Box 7 in Figure 1),
to understand whether the reports were initially mislabelled
[23] or became reproducible/fixable, e.g., through additional
information provided by the reporter. In addition, this would
provide more insights in types of NR bug reports that are
expected to be fixed, and the additional information that is
commonly asked for, which helps reproduce NR bugs.

4. RESULTS
In this section, we present the results of our study for each

research question.

4.1 Frequency and Comparisons (RQ1)
Table 1 presents the percentage of NR bug reports for each

repository. The results of our study show that, on average,
17% of all bug reports are resolved as non-reproducible at
least once in their life-cycles.

Figures 2–5 depict the results of comparing NR bug re-
ports with other resolution types. For each bug repository,

Table 3: NR Categories and Rules.

1) Interbug Dependencies: NR report cannot be reproduced
because it has been implicitly fixed:

a) as a result or a side effect of other bug fixes
b) although it is not clear what patch fixed this bug
c) and the bug is a possible duplicate of or closely related to

other fixed bugs.

Example #759127 in Firefox: R: }It is now working with Fire-
fox 15.0.1. I believe it was fixed by the patches to #780543 and
#788600 [...].~

2) Environmental Differences: NR report cannot be repro-
duced due to different environmental settings such as:

a) cashed data (e.g., cookies), user settings/preferences, build-
s/profiles, old versions

b) third party software, plugins, add-ons, local firewalls, ex-
tensions

c) databases, Virtual Machines (VM), Software Development
Kits (SDK), IDE settings

d) hardware(mobile/computer) specifics such as memory,
browser, Operating System (OS), compiler

e) network, server configuration, server being down/slow.

Example #261055 in Firefox: D: }This is probably an exten-
sion problem. Uninstall your extensions and see if you can still
reproduce these problems.~ R: }that did it, I just uninstalled
all themes and extensions, and afterwards reinstalled everything
from the getextensions website. And now everything works again
[...].~

3) Insufficient Information: NR report cannot be reproduced
due to lack of enough details in the report; developers request
more detailed information:

a) regarding test case(s)
b) pertaining to precise steps taken by the reporter leading to

the bug
c) regarding different conditions that result in the reported

bug.

Example in Industrial: D: }Cannot reproduce this problem. [...]
go to the main screen of the blackberry device, hold ALT and
press L+O+G, it will show the logs. That information can help
us to some degree.~

4) Conflicting Expectations: NR report cannot be reproduced
when there exist conflicting expectations of the application’s func-
tionality between end-users/developers/testers:

a) misunderstanding of a particular functionality or system
behaviour when it works as designed (i.e., lack of documentation)

b) misunderstanding of (non)supported features, out of scope,
dropping support or obsolete functionality in newer versions

c) change in requirements
d) misunderstandings turning into QA conversations

Example #29825 in Eclipse: D: }PDE Schema works as de-
signed [...] Since we cannot tell when you want to use tags and
when you want to use reserved chars as-is, you need to escape
them yourself EXCEPT, again, when between the ’<pre>’ and
’</pre>’ tags that we recognize as a special case [...].~

5) Non-deterministic Behaviour: NR report cannot be repro-
duced deterministically.

Example #MDLSITE-2255 in Moodle: R: }This happened for
me again, and then went away again (started working). It seems
there is an intermittent problem.~

6) Other: NR report cannot be reproduced due to various other
reasons, such as mistakes of reporters:

Example #MDL-35391 in Moodle: R: }I’m so sorry... This is
not a bug. It occurred because I have been using Moodle 2.3 since
beta and overwriting old source in the same directory. Could
admin please delete this ticket? Sorry again.~ D: }Thanks for
the explanation, closing.~

F
F

−
N

R
F

F
−

 O
th

er
s

E
−

N
R

E
−

O
th

er
s

W
−

N
R

W
−

O
th

er
s

M
−

N
R

M
−

O
th

er
s

F
FA

−
N

R
F

FA
−

O
th

er
s

P
T

Y
−

N
R

P
T

Y
−

O
th

er
s

0
10

00
20

00
30

00
A

ct
iv

e
T

im
e

(D
ay

s)

Figure 2: Active Time
F

F
−

N
R

F
F

−
 O

th
er

s
E

−
N

R
E

−
O

th
er

s
W

−
N

R
W

−
O

th
er

s
M

−
N

R
M

−
O

th
er

s
F

FA
−

N
R

F
FA

−
O

th
er

s
P

T
Y

−
N

R
P

T
Y

−
O

th
er

s

0

2

4

6

8

10

12

N
um

be
r

of
 U

ni
qu

e
A

ut
ho

rs

Figure 3: #Authors

F
F

−
N

R
F

F
−

 O
th

er
s

E
−

N
R

E
−

O
th

er
s

W
−

N
R

W
−

O
th

er
s

M
−

N
R

M
−

O
th

er
s

F
FA

−
N

R
F

FA
−

O
th

er
s

P
T

Y
−

N
R

P
T

Y
−

O
th

er
s

0

5

10

15

20

25

N
um

be
r

of
 C

om
m

en
ts

Figure 4: #Comments

F
F

−
N

R
F

F
−

 O
th

er
s

E
−

N
R

E
−

O
th

er
s

W
−

N
R

W
−

O
th

er
s

M
−

N
R

M
−

O
th

er
s

F
FA

−
N

R
F

FA
−

O
th

er
s

P
T

Y
−

N
R

P
T

Y
−

O
th

er
s

0

2

4

6

8

10

12

14

N
um

be
r

of
 C

C

Figure 5: #Watchers

the NR bug reports are shown with grey background. We
ignore outliers for legibility. Table 4 shows the mean, median,
standard deviation, max and p-value (Mann-Whitney) for
each comparison metric.2 The results show that active time
is significantly different, i.e., NR bug reports are on average
three months longer active than non-NR bug reports. For
the number of unique authors, comments, and CC/watch-
ers, the results are statistically significant (p < 0.05), but
the observed differences, having almost the same medians,
are not indicative, meaning that NR bug reports receive as
much attention from reporters and developers as any other
resolution type.

4.2 Cause Categories (RQ2)
Table 3 shows the classification rules we used in our cause

category investigation. Figure 6 shows the six main cate-
gories that emerged in our analysis, with their overall rate.
As shown, “Interbug Dependencies” is the most common
category with having 45% of the NR bugs, followed by “En-
vironmental Differences” (24%), “Insufficient Information”
(14%), “Conflicting Expectations” (12%), “Non-deterministic
Behaviour” (3%) and “Other” (2%). Additionally, Figure 7
depicts the rate of the six cause categories per bug repository.
We provide examples of each category below.

Interbug Dependencies. Bug reports in this category are
those that cannot be reproduced because they have been
indirectly fixed with or without explicit software patches.
This category implies that there are bug reports that perhaps
are not identical but semantically closely related to each other.
Overall, this is the most common cause category we observed
in the study (45%). Examples include:

#767543 in Firefox: }D: Works for me for Beta 15,
Aurora 16, and Nightly 17 with Swype Beta 1.0.3.5809 on
Galaxy Nexus. I think my fix for bug #767597 fixed this
bug.~

#177769 in Firefox: }D: Will resolve this as NR since
we don’t know which checkin fixed this.~

#259652 in Eclipse: }D: I remember fixing this but can’t
find the bug. Since it doesn’t happen in HEAD, marking as
NR.~

#723250 in Firefox Android: }D: This should be fixed
now with my latest changes on inbound. Specifically, bug
728369.~

2
Min was 0 in all cases.

Table 4: Descriptive statistics between NR and Oth-
ers, for each defined metric: Active Time (AT), #
Unique Authors (UA), # Comments (C), # Watch-
ers (W), from all repositories.

Metric Type Mean Median SD Max p-value

AT
NR 396 154 553 4534

0.00
Others 313 40 531 4326

UA
NR 3.16 3 2.22 85

0.00
Others 3.06 2 2.61 103

C
NR 5.14 3 7.9 459

0.03
Others 5.93 3 12.5 1117

W
NR 2.1 1 3 159

0.00
Others 2.7 2 4.3 145

Environmental Differences. Bug reports in this category
cannot be reproduced due to environmental settings that
are different for developers/testers/end-users. This category
accounts for 24%. Examples include:

#353838 in Eclipse: }D: [..] your install got corrupted
because of incompatible bundles. You could first try to disable
or uninstall Papyrus and if that doesn’t help try to remove
the Object Teams bundles.~

#DTP-01 in Industrial: }D: This has something to
do with the Xcode settings on the build machine. Try to
build it on another computer and see if it works. I cannot
reproduce this on my iPhone, iPad + simulators.~

#456734 in Firefox: }R: I solved the problem by unin-
stalling firefox (without extensions) and installing version
3.0.1 again, and then updating it again to 3.0.2. It’s a mys-
tery for me but it helped so it’s solved.~

Insufficient Information. This is when developers need
more specific and detailed information from the reporters.
This category accounts for 14% of NR bug reports. Examples
of this category include:

#125142 in Eclipse:: }D: I haven’t been able to repro-
duce this bug in the Java debugger [...]. Do you have a test
case that displays the launch happening in the foreground?
marking as NR. Please reopen with a reproducible test case
if this is still occurring.~

#3103 in MediaWiki: }D: I’m going to resolve this bug
(as NR) on the grounds that without further details of the
circumstances in which it occurs, there’s really not much we
can do... ~

Interbug
Dependencies

45%

Other
2% Non-deterministic

Behaviour
3%	

Conflicting
Expectations

12%

Insufficient
Information

14%

Environmental
Differences

24%

Figure 6: Overall Rate of NR Categories.

#19880 in MediaWiki: }D: I’ve tested ru.wikipedia.org
in IE5.5 on Windows 2000, IE6 on Windows XP, IE7 on
Windows Vista, IE8 on Windows Vista. I was unable to
reproduce this problem. Perhaps the reporter of this bug
could be more specific.~

Also tickets are also resolved as NR when there is no
response from reporters for several months. For example:

#10014 in MediaWiki: }D: Closing ‘support bug’ due
to lack of response; if the problem persists, please consider
taking it up on the mediawiki-l mailing list.~

In the Firefox project, an automated message is set up in
the bug tracking system, which states }This bug has had no
comments for a long time. Statistically, we have found that
bug reports that have not been confirmed by a second user
after three months are highly unlikely to be the source of a
fix to the code. [...] If this bug is not changed in any way in
the next two weeks, it will be automatically resolved (NR).~

Conflicting Expectations. This category represents bug
reports in which there exist conflicting expectations of the
software between end-users/developers/testers. Such con-
flicts could be related to a particular system behaviour, func-
tionality, feature, software support, activity, input/output
types and ranges, or specification documentation. In these
scenarios the user believes there is a bug in the system since
what they see is different from their mental model and/or
expectations. As a result, the reported bugs are not really
bugs and thus cannot be reproduced by developers. 12% of
NR bug reports fall into this category. Some examples are:

#956483 in Firefox Android: }D: [...] getDefault-

UAString is not what you think. That controls the UA of the
Java HTTP requests we make in Fennec. This is not used
by the Gecko networking and rendering engine. You need to
use the normal Gecko preferences to change the UA. This
might work: [...] R: Thanks. That works.~

#12593 in MediaWiki: }R: [...] I can live with this
because it is consistent and predictable behaviour. Thinking
about it, it is probably desirable that the system works this
way for migration purposes; for example: when importing a
dump into a newer MediaWiki version.~ says the reporter.

#19943 in MediaWiki: }D: Seems ok to me. As long
as extensions are passing their path as either a full URL
(with protocol) or relative from the docroot they should be
fine [...] Checked all extensions in MW SVN that call this,
and they all seem to be ok, [...]. Works for me, no real

0%

50%

100%

Fir
efo

x

Ec
lip

se

Med
iaW

iki

Moodle

Fir
efo

xA
ndroid

Proprie
tar

y

Interbug Dependencies

Environmental Differences

Insufficient Information

Conflicting Expectations

Non-deterministic Behaviour

Other

Figure 7: Rate of root cause categories in each bug
repository.

issue with addExtensionStyle() here. R: Ah, I see. Needs
documenting, then [...].~

#17265 in MediaWiki: }R: Preferably, the user and talk
page of the other username should be deleted, because it’ll
be impracticable to merge. I hope this will be implemented
and will help a lot of people. D: Works for me. There’s an
extension [...] that does this. Also, there’s a maintenance
script [...] that can be used for edit attribution, if someone
wanted to manually merge two users.~

Non-deterministic Behaviour. This category represents
bugs that cannot be reproduced deterministically, meaning
that the failure is intermittent and triggered at random; and
thus difficult to analyze. 3% of NR bug reports are in this
category. An example of a developer comment is given below:

#DTP-02 in Industrial: }D: This crash is very random,
hard to reproduce. But my guess is it is network/analytics
related. It may have to do with the user scrolling through
a number of events in the Schedule section which the app
cannot keep up with and then eventually crashes.~

Other. Any other reason not covered in the other 5 cate-
gories would fall under this category (2%). One common
instance in this category is bug reports that are mistakenly
reported, such as opening an old ticket by mistake, or running
the system with incorrect permissions.

#152 in MediaWiki: }R: For the last 3 hours I made
the assumption that we could only import articles from the
template namespace ... Additionally I made an error in my
testing page that I just figured out. Closing...~

#8966 in MediaWiki: }R: Shame on me, The function
is not broken, I [mis]understood the syntax.~

4.3 Common Transition Patterns (RQ3)
68% of NR bug reports are resolved directly from the ini-

tial status (New/Open→Resolved(NR)). For the remaining
32%, there are various transition scenarios that NR bugs
go through, changing their status and resolution. Table 5
presents some of the observed examples of the status transi-
tions of NR bug reports. For instance, the bug report in row
#6 changes resolutions 5 times: Fixed → Fixed → Invalid
→ NR → Fixed.

We examined resolution transitions of NR bug reports
more closely, and plotted a resolution change pattern graph
for the six bug repositories, which is depicted in Figure 8. In

Table 5: Examples of Status (Resolution) transitions of NR bug reports.

Status (Resolution)

1 NEW→RESOLVED(NR)→REOPENED→RESOLVED(NR)→REOPENED→RESOLVED(NR)
2 NEW→RESOLVED(NR)→REOPENED→ASSIGNED→RESOLVED(FIXED)→REOPENED→ RESOLVED(FIXED)
3 NEW→RESOLVED(FIXED)→REOPENED→RESOLVED(WONTFIX)→RESOLVED(NR)
4 NEW→RESOLVED(FIXED)→REOPENED→RESOLVED(NR)→REOPENED→NEW→RESOLVED(WONTFIX)
5 NEW→RESOLVED(FIXED)→REOPENED→RESOLVED(NR)→REOPENED→RESOLVED(FIXED)
6 UNCONFIRMED→NEW→RESOLVED(FIXED)→REOPENED→RESOLVED(FIXED)→REOPENED→RESOLVED(INVALID)

→REOPENED →RESOLVED(NR)→REOPENED→RESOLVED(FIXED)
7 NEW→ASSIGNED→NEW→RESOLVED(NR)→REOPENED→ASSIGNED→RESOLVED(FIXED)→VERIFIED
8 NEW→ASSIGNED→RESOLVED(NR)→REOPENED→ASSIGNED→RESOLVED(LATER)→REOPENED→NEW→ASSIGNED

→NEW →ASSIGNED→RESOLVED(FIXED)
9 UNCONFIRMED→RESOLVED(INCOMPLETE)→UNCONFIRMED→RESOLVED(INCOMPLETE)→RESOLVED(FIXED)

→RESOLVED(NR)

order to extract a common pattern for all the six repositories,
we abstracted away custom (repository-specific) resolutions
such as Later, Remind, Expired, Rejected, Unresolved, and
NotEclipse. The custom resolutions are clustered as Custom
Resolutions in Figure 8. The other resolutions shown in the
graph were common in all the repositories.

We distinguish between two types of transitions in Figure 8:
the black arrows indicate all the direct connections to the NR
resolution, i.e., all the fan-ins and fan-outs; the grey arrows
indicate the indirect connections between other resolutions
and NR resolution. To avoid cluttering the figure, we only
show weights larger than 2% on the graph. As the figure
illustrates, 69% of the transitions are resolved as NR from
the beginning. 4.6% of the transitions are from Fixed to
NR. For instance, #376902 in Firefox was first resolved as
Fixed then changed to NR with a comment: }Fixed refers
to problems fixed by actual code changes to Firefox. Here
NR is the correct resolution.~

Interestingly, 5.1% of the transitions are from NR to Fixed.
We explore fixed NR bug reports further in the following
subsection.

4.4 Fixed Non-reproducible Bugs (RQ4)
The last column in Table 1 shows that, on average, 3% of

all NR bugs become Fixed. From these, around 66% actually
become reproducible as valid bugs and are fixed with code
patches. They mainly fall into “Insufficient Information”,
“Environmental Differences”, and “Conflicting Expectations”
cause categories. Some examples include:

#209834 in Eclipse: }D: Now, when you described the
problem more precisely I realized it’s a valid bug. I checked it
in both 3.3.1.1 (which you’re using) and N20071221-0010 (on
which I’m on at this moment) and I can see the problem by
clicking the ‘Apply’ button several times - a resource matched
to *.a rule changes it’s state even though the rule is enabled
all the time. I’ll put up a fix in a minute [...]~ (“Insufficient

Information” category)

#533470 in Firefox: }R: [...] I think I got to the bottom
of it. The confusion was caused by kernel settings: I thought
it was fixed, but actually it was just a ipv6 module getting
automatically loaded. The problem still exists when there
is no kernel ipv6 support available. I’ve submitted a simple
patch to pulseaudio which will hopefully be accepted and solve
the problem.~ (“Environmental Differences” category)

#245584 in Firefox: }D: the problem was because NS New-
URI was failing - perhaps it was failing because there was
something about the URL from IE’s data that our networking

No Resolution

INCOMPLETE)

WONTFIX

FIXED

4.4

NR69.1

INVALID

DUPLICATE

CUSTOM RESOLUTIONS

4.6

5.1 2

Figure 8: Resolution-to-Resolution Transition Pat-
terns of NR Bug Reports. To avoid cluttering the
figure, only weights larger than 2% are shown on the
graph.

system couldn’t handle? Since this was particular to that
URL in that person’s set of typed URLs in IE, it didn’t show
up for everyone [...]~ (“Environmental Differences” category)

Interestingly, there were no code patches assigned to the
rest of Fixed NR bug reports (34%). These are mislabelled
reports, as the Fixed resolution is used when }a fix for a
bug is checked into the tree and tested~ [1]. From these,
around 24% are in the “Interbug Dependencies” category.
For example:

#705166 in Firefox: }D1: [...], guess this bug is fixed
in the latest nightly. Working fine for me too. D2: [...]
WorksForMe is not a correct resolution for this one. The
bug was actually fixed by the patch in bug 704575.~

5. DISCUSSION
In this section, we discuss our general findings related to

non-reproducible bug reports and discuss some of the threats
to validity of our results.

5.1 Quantitative Analysis of NR Bug Reports

Our investigation in the quantitative attributes of NR and
other types of bug reports shows that NR bug reports are as
costly and important as the rest since they receive the same
amount of attention as other bug report types, in terms of the
number of comments and developers involved. Developers
are typically reluctant to close these bug reports, and they try
to involve more people and ask questions through comments.
As a result, NR bug reports remain open substantially —
around three months on average— longer than other types of
bug reports. This clearly points to the uncertainly and low
level of confidence developers have when dealing with NR
bugs. Possible explanations for leaving NR bug report open
longer could be that (1) they do not want to be responsible
in case the NR bug turns out to be a real (reproducible) bug
that needs fixing, (2) they hope more concrete information
will be provided to help reproduce the bug, and/or (3) they
wait for someone else to be assigned to the report who knows
how to reproduce the bug.

5.2 Fixing NR Bugs
As our results from the six repositories have shown, on

average 17% of all bug reports are resolved as NR. Among
those, 3% are later marked as Fixed. A deeper investigation
into the Fixed NR reports revealed that around 66% of them
become indeed reproducible and fixed with code patches. The
rest (34%) have no code patches assigned to them, from which
around 24% are in the “Interbug Dependencies” category.
This means overall only 1.98% of all NR bug reports are
fixed with an explicit code patch. This indicates that the
majority of NR bug reports remain unreproducible.

5.3 Interbug Dependencies
On the other hand, 45% of all NR bugs were categorized as

“Interbug Dependencies”, where they were non-reproducible
because they were implicitly fixed in other bug reports.
Therefore, we expected the percentage of the explicit fixed
NR bugs to be higher than 3%. However, it turns out that
developers use the NR resolution for reports that are resolved
as a consequence of other bug fixes. This implies that al-
most half of all NR bugs are actually (implicitly) fixed bugs.
We believe coming up with automatic solutions that would
cluster these interbug dependent reports based on inferred
historical characteristics would help the developers in this
regard.

5.4 Mislabelling
Our findings indicate that many reports are misclassified.

These misclassifications happen not due to human errors
but also because of the fact that the available resolutions
in the repositories do not cover all possible scenarios. For
instance, many developers use the NR (or WorksForMe) res-
olution when they actually mean the bug report is irrelevant,
unimportant, or even fixed. This is different than the formal
definition of NR bugs (see Section 2). We observed many
inconsistencies and ambiguities around the usage of the Fixed
and NR resolutions, in particular in cases where a bug report
needs to be marked as “fixed with no code patches”. Bugs
376902 and 705166 (subsections 4.3 and 4.4, respectively)
are examples of these cases.

5.5 Different Domains and Environments
The active time of NR bug reports in the Industrial

repository is much lower than the open source repositories

(see Figure 2). According to Table 1, NR bugs are more
prevalent in the studied open-source projects, i.e., they per-
tain to 11–28% in the open source repositories and 4% in the
industrial case. In addition, as presented in the last column
of Table 1, although the rate of NR bug reports is lower in
the Industrial case, the rate of fixed NR bug reports is
higher, compared to the open source repositories. Although
these findings apply to our sample repositories, possible rea-
sons behind these differences could be that in commercial
projects, there is more at stake and, therefore, developers
(1) spend more time and effort in reproducing even hard to
reproduce bugs, and (2) cannot afford to simply ignore NR
bugs. It could also be that the company has a brute force
policy in terms of closing bug reports as soon as possible.
On the other side, developers in open source projects have
less time to spend and less urgency to fix/close a bug report.

Additionally, in the mined repositories, the rate of NR bug
reports in desktop applications is more than web and mobile
applications, i.e., they are in the range of 13–28% for desktop,
11–12% for web, and 4–15% for mobile applications. Figure 2
indicates that NR bug reports have a lower active time in
the repositories of the mobile applications, compared to the
desktop and web applications. In addition, the difference
between the medians of NR and other bug reports is the
highest in the web applications, followed by the desktop, and
mobile applications in our study.

5.6 Communication Issues
The two categories “Insufficient Information” (14%) and

“Conflicting Expectations” (12%) indicate that there is a
source of uncertainty and lack of proper communication be-
tween the reporters and resolvers. Herzig et al. [23] observed
this uncertainty as a source of misclassification patterns in
their recent bug report study. Equipping bug tracking sys-
tems with better collaboration tools would facilitate and
enhance the communication needs between the two parties.
For the category “Environmental Differences” (24%), tech-
niques that make it easier to capture the steps leading to
the bug through, e.g., record/replay methods [22], monitor-
ing the dynamic execution of applications [14], or capturing
user interactions [27] would be helpful to reproduce the bug
report.

5.7 Threats to Validity
Our manual classification of the bug reports could be a

source of internal threats to validity. In order to mitigate
errors and possibilities of bias, we performed our manual
classification in two phases where (1) the inference of rules
was initially done by the first author; the rules were cross
validated and uncertainties were resolved through extensive
discussions and refinements between the first two authors;
the generated categories were discussed and refined by all
the three authors, (2) the actual distribution of bug reports
into the 6 inferred categories was subsequently conducted by
the first author following the classification rules inferred in
the first step.

In addition, since this is the first study classifying NR
bug reports, we had to infer new classification rules and
categories. Thus, one might argue that our NR rules and
categories are subjective with blurry edges and boundaries.
By following a systematic approach and triangulation we
tried to mitigate this threat. Another threat in our study is
the selection and use of these bug repositories as the main

source of data. However, we tried to mitigate this threat by
selecting various large repositories and randomly selecting
NR bug reports for analysis.

In terms of external threats, we tried our best to choose
bug repositories from a representative sample of popular and
actively developed applications in three different domains
(desktop, web, and mobile). With respect to bug tracking
systems, Jira and Bugzilla are well-known popular systems,
although bug reports in projects using other bug tracking
systems could behave differently. Thus, regarding a degree
of generalizability, replication of such studies within different
domains and environments (in particular for industrial cases)
would help to generalize the results and create a larger body
of knowledge.

All repositories except the Industrial case are publicly
available, making the quantitative findings of our study re-
producible.

6. RELATED WORK
We categorize related work into two classes: empirical bug

report studies and failure reproduction studies.

Empirical Bug Report Studies. Empirical bug report
studies have so far focused on different perspectives including
understanding the quality of bug reports [15, 16, 24, 25], reas-
signments [21], bug report misclassifications [23], reopenings
[31, 29], prediction and statistical models [26, 28, 19, 20],
bug fixing and code reviewing process [30], and coordination
patterns and activities around the bug fixing process [13].

Herzig et al. [23] recently reported that every third ‘bug
report’ is not really a bug report. In a manual examination
of more than 7,000 bug reports of five open-source projects,
they found 33.8% of all bug reports to be misclassified - that
is, rather than referring to a code fix, they resulted in a
new feature, an update to documentation, or an internal
refactoring. This misclassification introduces errors in bug
prediction models: on average, 39% of files marked as defec-
tive actually never had a bug. They estimated the impact
of this misclassification on earlier studies and recommended
manual data validation for future studies. The results of our
study also confirm this finding.

Aranda et al. [13] report on a field study of coordination
activities around bug fixing, through a combination of case
study and a survey of software professionals. They found
that the histories of even simple bugs are strongly dependent
on social, organizational, and technical knowledge, which
cannot be solely extracted through automation of electronic
repositories, and that such automation provides incomplete
and often erroneous accounts of coordination.

Zimmermann et al. [31] characterized how bug reports are
reopened, by using the Microsoft Windows operating system
project as a case study, using a mixed-methods approach.
They categorized the reasons for reopening based on a survey
of 358 Microsoft employees and ran a quantitative study
of Windows bug reports, focusing on factors related to bug
report edits and relationships between people involved in
handling the bug. They propose statistical models to describe
the impact of various metrics on reopening bugs ranging from
the reputation of the opener to how the bug was found.

Guo et al. [21] present a quantitative and qualitative
analysis of the bug reassignment process in the Microsoft
Windows Vista project. They quantify social interactions
in terms of both useful and harmful reassignments. They

list five reasons for reassignments: finding the root cause,
determining ownership, poor bug report quality, hard to
determine proper fix, and workload balancing. Based on
their study, they propose recommendations for the design of
more socially-aware bug tracking systems.

To the best of our knowledge, our work is the first to report
a characterization study on non-reproducible bug reports.

Failure Reproduction Studies. Apart from the empirical
bug studies, there have been a number of studies [22, 14, 27]
analyzing and proposing solutions for failure reproduction.
Roehm et al. [27] present an approach to monitor interactions
between users and their applications selectively at a high
level of abstraction, which enables developers to analyze user
interaction traces. Herbold et al. [22] use a record/replay
approach and monitor messages between GUI objects. Such
messages are triggered by user interactions such as mouse
clicks or key presses. We believe these techniques can help
make NR bug reports easier to understand and reproduce. In
this paper, however, we perform a mining study of NR bug
reports to understand their nature, leaving possible solutions
for future work.

7. CONCLUSION
Working on non-reproducible bug reports is notoriously

frustrating and time consuming for developers. In this pa-
per, we presented the first empirical study on the frequency,
nature, and root cause categories of non-reproducible bug
reports. We mined 6 bug tracking repositories from three
different domains, and found that 17% of all bug reports
are resolved as non-reproducible at least once in their life-
cycles. Non-reproducible bug reports, on average, remain
active around three months longer than other resolution
types while they are treated similarly in terms of the extent
to which they are discussed or the number of developers
involved. In addition, our analysis of resolution transitions
in non-reproducible bug repots revealed that such reports
change their resolutions many times. Furthermore, around
2% of all NR bug reports are eventually fixed with code
patches, while around half are implicitly ‘fixed’.

Our manual examination revealed 6 common root cause
categories. Our classification indicated that “Interbug De-
pendencies” forms the most common category (45%), fol-
lowed by “Environmental Differences” (24%), “Insufficient
Information” (14%), “Conflicting Expectations” (12%), and
“Non-deterministic Behaviour” (3%).

Our study shows that many NR bug reports are misla-
belled pointing to the need for bug repository systems and
developers to resolve inconstancies in the usage of the Fixed
and NR resolutions.

For future work, we plan to focus on (1) bug reports in
the “Interbug Dependencies” category to design techniques
that would facilitate identifying, linking, and clustering them
upfront so that developers would not have to waste time on
them, (2) incorporating better collaboration tools into bug
tracking systems to facilitate better communication between
different stakeholders to address the problem with the other
NR categories.

8. ACKNOWLEDGMENTS
This work was supported in part by NSERC, UBC (4YF),

and Swiss National Science Foundation (PBTIP2145663).

9. REFERENCES
[1] Bugzilla. http://www.bugzilla.org/docs/.

[2] Bugzilla: Eclipse Bug #106396. https:
//bugs.eclipse.org/bugs/show_bug.cgi?id=106396.

[3] Bugzilla@Mozilla. https://bugzilla.mozilla.org.

[4] Eclipse Bugzilla. https://bugs.eclipse.org/bugs/.

[5] JIRA. https://confluence.atlassian.com/display/
JIRA050/JIRA+Documentation.

[6] MediaWiki Bugzilla.
https://bugzilla.wikimedia.org/.

[7] Moodle Tracker!
https://tracker.moodle.org/issues/?jql=.

[8] Non-reproducible bug report analyser and empirical
data.
https://github.com/saltlab/NR-bug-analyzer.

[9] Works on my machine - How to fix non-reproducible
bugs? http:

//stackoverflow.com/questions/1102716/works-on-
my-machine-how-to-fix-non-reproducible-bugs.

[10] Bug fields. https:
//bugzilla.mozilla.org/page.cgi?id=fields.html,
Sep 2013.

[11] What is an issue?
https://confluence.atlassian.com/display/JIRA/
What+is+an+Issue, Sep 2013.

[12] “works on my machine” - how to fix non-reproducible
bugs? http://stackoverflow.com/q/1102716, Sep
2013.

[13] J. Aranda and G. Venolia. The secret life of bugs:
Going past the errors and omissions in software
repositories. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
298–308. IEEE Computer Society, 2009.

[14] J. Bell, N. Sarda, and G. Kaiser. Chronicler:
Lightweight recording to reproduce field failures. In
Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 362–371. IEEE
Press, 2013.

[15] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software
engineering, pages 308–318. ACM, 2008.

[16] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C.
Koduru. An empirical analysis of bug reports and bug
fixing in open source Android apps. In Proceedings of
the European Conference on Software Maintenance and
Reengineering (CSMR), pages 133–143. IEEE
Computer Society, 2013.

[17] CNET. Researcher posts Facebook bug report to Mark
Zuckerberg’s wall, 2013. http://news.cnet.com/8301-
1023_3-57599043-93/researcher-posts-facebook-

bug-report-to-mark-zuckerbergs-wall/.

[18] J. W. Creswell. Research design: Qualitative,
quantitative, and mixed methods approaches. Sage
Publications, Incorporated, 2013.

[19] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall.
Method-level bug prediction. In Proceedings of the
International Symposium on Empirical Software
Engineering and Measurement, ESEM, pages 171–180.
ACM, 2012.

[20] P. J. Guo, T. Zimmermann, N. Nagappan, and
B. Murphy. Characterizing and predicting which bugs
get fixed: an empirical study of Microsoft Windows. In
Proceedings of the International Conference on Software
Engineering (ICSE), pages 495–504. ACM, 2010.

[21] P. J. Guo, T. Zimmermann, N. Nagappan, and
B. Murphy. ‘not my bug!’ and other reasons for
software bug report reassignments. In Proceedings of
the Conference on Computer Supported Cooperative
Work, CSCW, pages 395–404. ACM, 2011.

[22] S. Herbold, J. Grabowski, S. Waack, and U. Bünting.
Improved bug reporting and reproduction through
non-intrusive gui usage monitoring and automated
replaying. In Proceedings of the 2011 IEEE Fourth
International Conference on Software Testing,
Verification and Validation Workshops, ICSTW ’11,
pages 232–241. IEEE Computer Society, 2011.

[23] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a
feature: how misclassification impacts bug prediction.
In Proceedings of the International Conference on
Software Engineering (ICSE), pages 392–401. IEEE
Computer Society, 2013.

[24] P. Hooimeijer and W. Weimer. Modeling bug report
quality. In Proceedings of the International Conference
on Automated Software Engineering (ASE), pages
34–43. ACM, 2007.

[25] A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi.
Characterizing failures in mobile OSes: A case study
with Android and Symbian. In Proceedings of the
International Symposium on Software Reliability
Engineering (ISSRE), pages 249–258. IEEE Computer
Society, 2010.

[26] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J.
Whitehead Jr. Does bug prediction support human
developers? findings from a Google case study. In
Proceedings of the International Conference on
Software Engineering, ICSE, pages 372–381. IEEE
Computer Society, 2013.

[27] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and
W. Maalej. Monitoring user interactions for supporting
failure reproduction. In International Conference on
Program Comprehension (ICPC), pages 73–82. IEEE,
2013.

[28] H. Seo and S. Kim. Predicting recurring crash stacks.
In Proceedings of the International Conference on
Automated Software Engineering (ASE), pages 180–189.
ACM, 2012.

[29] E. Shihab, A. Ihara, Y. Kamei, W. Ibrahim, M. Ohira,
B. Adams, A. Hassan, and K.-i. Matsumoto. Predicting
re-opened bugs: A case study on the eclipse project. In
Proceedings of the Working Conference on Reverse
Engineering (WCRE), pages 249–258. IEEE Computer
Society, 2010.

[30] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and
L. Bairavasundaram. How do fixes become bugs? In
Proceedings of ESEC/FSE, pages 26–36. ACM, 2011.

[31] T. Zimmermann, N. Nagappan, P. J. Guo, and
B. Murphy. Characterizing and predicting which bugs
get reopened. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
1074–1083. IEEE Computer Society, 2012.

http://www.bugzilla.org/docs/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=106396
https://bugs.eclipse.org/bugs/show_bug.cgi?id=106396
https://bugzilla.mozilla.org
https://bugs.eclipse.org/bugs/
https://confluence.atlassian.com/display/JIRA050/JIRA+Documentation
https://confluence.atlassian.com/display/JIRA050/JIRA+Documentation
https://bugzilla.wikimedia.org/
https://tracker.moodle.org/issues/?jql=
https://github.com/saltlab/NR-bug-analyzer
http://stackoverflow.com/questions/1102716/works-on-my-machine-how-to-fix-non-reproducible-bugs
http://stackoverflow.com/questions/1102716/works-on-my-machine-how-to-fix-non-reproducible-bugs
http://stackoverflow.com/questions/1102716/works-on-my-machine-how-to-fix-non-reproducible-bugs
https://bugzilla.mozilla.org/page.cgi?id=fields.html
https://bugzilla.mozilla.org/page.cgi?id=fields.html
https://confluence.atlassian.com/display/JIRA/What+is+an+Issue
https://confluence.atlassian.com/display/JIRA/What+is+an+Issue
http://stackoverflow.com/q/1102716
http://news.cnet.com/8301-1023_3-57599043-93/researcher-posts-facebook-bug-report-to-mark-zuckerbergs-wall/
http://news.cnet.com/8301-1023_3-57599043-93/researcher-posts-facebook-bug-report-to-mark-zuckerbergs-wall/
http://news.cnet.com/8301-1023_3-57599043-93/researcher-posts-facebook-bug-report-to-mark-zuckerbergs-wall/

	Introduction
	Non-Reproducible Bugs
	Methodology
	Bug Repository Selection
	Mining Non-Reproducible Bug Reports
	Quantitative Analysis
	Qualitative Analysis

	Results
	Frequency and Comparisons (RQ1)
	Cause Categories (RQ2)
	Common Transition Patterns (RQ3)
	Fixed Non-reproducible Bugs (RQ4)

	Discussion
	Quantitative Analysis of NR Bug Reports
	Fixing NR Bugs
	Interbug Dependencies
	Mislabelling
	Different Domains and Environments
	Communication Issues
	Threats to Validity

	Related Work
	Conclusion
	ACKNOWLEDGMENTS
	References

