Real Challenges in Mobile App Development

Mona Erfani Joorabchi

Ali Mesbah

Philippe Kruchten

University of British Columbia
Vancouver, BC, Canada
{merfani, amesbah, pbk} @ece.ubc.ca

Abstract—Context: Mobile app development is a relatively new
phenomenon that is increasing rapidly due to the ubiquity and
popularity of smartphones among end-users. Objective: The goal
of our study is to gain an understanding of the main challenges
developers face in practice when they build apps for different
mobile devices. Method: We conducted a qualitative study, fol-
lowing a Grounded Theory approach, in which we interviewed 12
senior mobile developers from 9 different companies, followed by
a semi-structured survey, with 188 respondents from the mobile
development community. Results: The outcome is an overview
of the current challenges faced by mobile developers in practice,
such as developing apps across multiple platforms, lack of robust
monitoring, analysis, and testing tools, and emulators that are
slow or miss many features of mobile devices. Conclusion: Based
on our findings of the current practices and challenges, we
highlight areas that require more attention from the research
and development community.

Index Terms—mobile app development; mobile platforms;
qualitative study

I. INTRODUCTION

The ubiquity and popularity of smartphones among end-
users has increasingly drawn software developers’ attention
over the last few years. There are currently around 800,000
mobile apps on Apple’s AppStore [1] (38% of marketshare
[2]), 650,000 on Android Market [3] (52%), 120,000 on
Windows Marketplace [4] (3%) and 100,000 on Blackberry
AppWorld [5] (6%). Recent estimations indicate that by 2015
over 70% of all handset devices will be smartphones, capable
of running mobile apps [6].

As with any new domain, mobile application development
has its own set of new challenges, which researchers have
recently started discussing [7], [8]. However, most of these
discussions are anecdotal in nature. While there are substantial
qualitative studies on different areas of software engineering,
to the best of our knowledge, no study has been conducted to
investigate the challenges that mobile app developers face in
practice.

Mobile apps fall broadly into three categories: native, web-
based, and hybrid [9], [10]. Native applications run on a
device’s operating system and are required to be adapted
for different devices. Web-based apps require a web browser
on a mobile device. Hybrid apps are ‘native-wrapped’ web
apps. A recent survey [11] revealed that developers are mainly
interested in building native apps, because they can utilize the
device’s native features (e.g., camera, sensors, accelerometer,
geolocation). Therefore, in this paper we mainly focus on
native apps. Henceforth, we use the term ‘mobile app’ to
denote ‘native mobile application’.

The goal of our study is to gain an understanding of the
current practices and challenges in native mobile app devel-
opment; we conducted an explorative study by following a
Grounded Theory approach, which is a research methodology
stemming from the social sciences [12], gaining increasing
popularity in software engineering research [13].

Thus, instead of starting with predetermined hypotheses, we
set our objective to discover the process and challenges of
mobile app development across multiple platforms. To that
end, we started by conducting and analyzing interviews with
12 senior mobile app developers, from 9 different industrial
companies, who are experts in platforms such as iOS, An-
droid, Windows Mobile/Phone, and Blackberry. Based on the
outcome of these interviews, we designed and distributed an
online survey, which has been completed by 188 mobile app
developers worldwide.

Our results reveal challenges of dealing with multiple
mobile platforms during mobile development. While mobile
devices and platforms are extensively moving toward frag-
mentation, the contemporary development process is miss-
ing the adaptation to leverage knowledge from platform to
platform. Developers currently treat the mobile app for each
platform separately and manually check that the functionality
is preserved across multiple platforms. Furthermore, mobile
developers need better analysis tools in order to track metrics
for their apps during the development phase. Additionally,
testing is a significant challenge. Current testing frameworks
do not provide the same level of support for different platforms
and current testing tools do not support important features for
mobile testing such as mobility, location services, sensors, or
different gestures and inputs.

II. STUDY DESIGN

The objective of our study is to gain an understanding of
the challenges mobile app developers face in practice.

A. Methodology

Considering the nature of our research goal, we decided to
conduct a qualitative study by following a Grounded Theory
approach [12], [14]. Grounded Theory is best suited when the
intent is to learn how people manage problematic situations
and how people understand and deal with what is happening
to them [15]. It is also useful when the research area has not
been covered in previous studies [16] and the emphasis is on
new theory generation [17] i.e., understanding a phenomenon.

TABLE I: Interview Participants.

1D Role Platform Experience Software Dev Mobile Dev Company (Mobile Company’s Platform Support
Exp (yr) Exp (yr) Dev Team Size)
P1 iOS Lead i0S, Android 6-10 6 A (20) i0S, Android, Windows, Blackberry
P2 Android Lead Android, i0S 6-10 6 A (20) i0S, Android, Windows, Blackberry
P3 Blackberry Lead Blackberry, i0S, Android 6-10 6 A (20) i0S, Android, Windows, Blackberry
P4 iOS Lead i0S 6-10 3-4 B (2-5) i0S, Android
P5 Android Lead Android 6-10 3 B (2-5) i0S, Android
P6 iOS Dev iOS 4-5 3-4 C (20+) i0S, Android
P7 Windows Mobile Dev Windows, Android 10+ 2 D (1) Windows
P8 Android Dev Android 4-5 2-3 E (2-5) i0S, Android
P9 Android Lead Android, i0S, Windows 10+ 5-6 F (6-10) iOS, Android, Windows
P10 iOS Dev iOS, Android 10+ 3 G (1) i0S, Android
P11 Android Lead Android, Blackberry 10+ 6+ H (1) Android, Blackberry
P12 iOS Dev i0S, Windows 10+ 2-3 1(2-5) i0S, Windows

Grounded Theory is gaining increasing popularity in software
engineering research [13], [15], [16], [18]-[22].

B. Data Collection and Analysis

Our approach for conducting a Grounded Theory research
includes a combination of interviews and a semi-structured
survey. The interviews targeted experts in mobile app de-
velopment and the survey was open to the general mobile
development community.

Our interviews were conducted in an iterative style, and
they are at the core of the data collection and analysis process.
At the end of each interview, we asked the interviewees for
feedback on our set of questions; what is missing and what is
redundant. The analytical process involves collecting, coding
and analyzing data after each interview, while developing
theory simultaneously. From the interview transcripts, we
analyze the data line-by-line, break down interviews into
distinct units of meaning (sentences or paragraphs), allocate
codes to the text and label them to generate concepts to these
units. Our codes, where appropriate, are taken from the text
itself. Otherwise, they are created by the authors to capture
the emerging concepts. Furthermore, these concepts are then
clustered into descriptive categories. They are re-evaluated and
subsumed into higher-order categories in order to generate
an emerging theory. Theoretical sampling evolves into an
ever-changing process, as codes are analyzed and categories
and concepts continue to develop [19]. We perform constant
comparison [12] between the analyzed data and the emergent
theory until additional data being collected from the interviews
adds no new knowledge about the categories. Thus, once the
interviewees’ answers begin to resemble the previous answers,
a state of saturation [23] is reached, and that is when we stop
the interviewing process.

Based on the theory emerging from the interview phase,
we designed a semi-structured survey, as another source of
data, to challenge this theory. Before publishing the survey and
making it publicly available, we asked four external people —
one senior PhD student and three mobile app developers — to
review the survey in order to make sure all the questions were
appropriate and easily comprehensible. Most of our survey
questions are closed-ended, but there are also a few optional
open-ended questions for collecting participants’ ‘insights’ and

‘experiences’. The responses to these open-ended questions
are fed into our coding and analysis step to refine the results,
where applicable. This survey, as distributed to participants, is
available online.'

C. PFarticipant Demographics

Interviews. We interviewed 12 experts from 9 different
companies. Each interview session took on average around
30 minutes. We recorded audio in the interview sessions and
then transcribed them for later analysis. Table I presents each
participant’s role in their company, the mobile platforms they
have expertise in, the number of years they have work experi-
ence in software development and in mobile app development,
the size of the mobile development team, and finally all the
mobile platforms that each company supports. Regarding the
participants’ experience in developing mobile app, five have
around 6 years, four have 3-4 years and three have 2-3 years
of experience. Five participants are mainly iOS experts, five
are Android experts, one is a Windows expert, and finally one
is a Blackberry expert.

Survey. Our survey was fully completed by 188 respon-
dents. We released the survey on Dec 13, 2012 to a wide
variety of mobile development groups. We targeted the popular
Mobile Development Meetup groups, LinkedIn groups related
to native mobile development and shared the survey through
our Twitter accounts. We kept the survey live for two and a
half months. In our attempt to distribute our online survey,
it was interesting to see people’s reactions; they liked our
post on LinkedIn groups and gave encouraging comments
such as “I hope it will help to make mobile app developers’
lives easier”. The demographics of the participants in the
survey are as follows: they are 92% male, 5% female. They
come from USA (48%), India (11%), Canada (10%), Israel
(5%), The Netherlands (3%), UK (3%), New Zealand (2%),
Mexico (2%), and 15 other countries. Regarding their work
experience in software development, 52% have more than 10
years, 15% between 6-10 years, 20% between 2-5 years, and
13% less than 2 years. Their experience in native mobile
development ranges from: 6% more than 6 years, 19% between
4-6 years, 59% have between 1-3 years, to 16% less than 1
year. The platforms they have expertise in include 72% iOS,

Ihttp://www.ece.ubc.ca/~merfani/survey.pdf

65% Android, 26% Windows, 13% Blackberry, and 6% chose
others (e.g., Symbian, J2ME).

III. FINDINGS

The findings from our study consist of 4 main categories,
and 25 subordinate concepts. For each concept, appropriate
codes and quotes are presented in this section.

In addition to the general challenges faced by mobile de-
velopers (Section III-A), two major themes emerged from the
study, namely (1) challenges of developing mobile apps across
multiple platforms (Section III-B), and (2) current practices
(Section III-C) and challenges (Section III-D) of mobile app
analysis and testing.

A. General Challenges for Mobile Developers

In this subsection, we present the most prominent general
challenges faced by mobile app developers, emerging from our
study results.

Moving toward Fragmentation rather than Unification.
76% of our survey participants see the existence of multiple
mobile platforms as a challenge for developing mobile apps,
while 23% believe it is an opportunity for technology advances
that drive innovation.

More than half of the participants mentioned that mobile
platforms are moving toward fragmentation rather than unifi-
cation:

o Fragmentation across platforms: Each mobile platform
is different with regard to the user interface, user experi-
ence, Human Computer Interaction (HCI) standards, user
expectations, user interaction metaphors, programming
languages, API/SDK, and supported tools.

o Fragmentation within the same platform: On the same
platform, various devices exist with different properties
such as memory, CPU speed, and graphical resolutions.
There is also a fragmentation possible on the operating
system level. A famous example is the fragmentation
on Android devices with different screen sizes and res-
olutions. Almost every Android developer in both our
interviews and survey mentioned this as a huge challenge
they have to deal with on a regular basis.

Furthermore, device fragmentation is not only a challenge
for development but also for testing. All of our participants
believe that platform versioning and upgrading is a major
concern; For example, a respondent said: “at the OS level,
some methods are deprecated or even removed”. So developers
need to test their apps against different OS versions and screen
sizes to ensure that their app works. Subject P5 said they
mostly maintain “a candidate list of different devices and
sizes”. P11 explained, “because we monitor our application
from the feedback of the users, we tend to focus on testing
on the devices that are most popular.”” Thus, the current state
of mobile platforms adds another dimension to the cost, with
a wide variety of devices and OS versions to test against.
P11 continued, “right now we support 5 or 6 different (app)
versions only because there are different OS versions, and
on each of those OS versions we also have 3-4 different

screen sizes to make sure the application works across each
of the Android versions.” A respondent stated, “we did a code
split around version 2.3 (Android). So we have two different
versions of the applications: pre 2.3 version and post 2.3
version. And in terms of our policy, we made that decision
since it is too difficult to port some features”.

Monitoring, Analysis and Testing Support. “Historically,
there has almost been no one doing very much in mobile app
testing”, stated P10 and explained that until fairly recently,
there has been very little testing, and very few dedicated
testing teams. However, that is changing now and they have
started to reach out for quality and testing. Automated testing
support is currently very limited for native mobile apps. This is
seen as one of the main challenges by many of the participants.
Current tools and emulators do not support important features
for mobile testing such as mobility, location services, sensors,
or different gestures and inputs. Our results indicate a strong
need of mobile app developers for better analysis and testing
support. Many mentioned the need to monitor, measure, and
visualize various metrics of their apps through better analysis
tools.

Open/Closed Development Platforms. Android is open
source whereas i0OS and Windows are closed source. Some
participants argued that Apple and Microsoft need to open
up their platforms. P5 explained: “We have real challenges
with i0S, not with Android. Because you don’t have API to
control, so you have to jump into loops and find a back door
because the front door is locked. Whatever Apple allows is
not enough sometimes.” An example of such lack of control is
given: “to find out whether we are connected to the Bluetooth.”
On the other hand, P9 explained that because Android is open
source and each manufacturer modifies the source code to their
own desires and releases it, sometimes they do not stick to
the standards. A simple example is provided: “the standard
Android uses commas to separate items in a list, but Samsung
phones use a semicolon.” A respondent stated, “Many Android
devices have been badly customized by carriers and original
equipment manufacturers.”

Data Intensive Apps. Dealing with data is tricky for apps
that are data intensive. As a respondent explained: “So much
data cannot be stored on the device, and using a network
connection to sync up with another data source in the backend
is challenging.” Regarding offline caching in hybrid solutions,
P1 said: “Our apps have a lot of data and offline caching
doesn’t seem to really work well.”

Keeping Up with Frequent Changes. One type of challenge
mentioned by many developers is learning more languages and
APIs for the various platforms and remaining up to date with
highly frequent changes within each software development kit
(SDK). “Most mobile developers will need to support more
than one platform at some point”, a respondent stated. “Each
platform is totally different (marketplaces, languages, tools,
design guidelines), so you need experts for every one of them.
Basically, it is like trying to write simultaneously a book in
Japanese and Russian; you need a native Japanese and a

native Russian, or quality will be ugly”, explained another
respondent. As a result, learning another platform’s language,
tools, techniques, best practices, and HCI rules is challenging.

Many developers complained about the lack of an integrated
development environment that supports different mobile plat-
forms. An exception was P1 who explained: “Right now we
develop in two main platforms: iPhone and Android. That is
not really that hard, the native SDKs are pretty mature and
they are easy to learn.”

B. Developing for Multiple Platforms

67% of our interview participants and 63% of our survey
respondents have experienced developing the same app for
more than one mobile platform.

Native vs. Hybrid Mobile Apps. Subjects P1 and P8 support
developing hybrid apps. The remaining 10 interviewees are
in favour of building pure native apps and believe that the
current hybrid model tends to look and behave much more
like webpages than mobile applications. P11 argued that “the
native approach offers the greatest features” and P4 stated
“user experience on native apps is far superior [compared] to
a web app.” In a number of cases the participants had com-
pletely moved away from the hybrid to the native approach.
A recurring example given is Facebook’s recent switch from
an HTML5-based mobile app to a native one.

On the other hand, P1 argued that “it really depends on
the complexity and type of the application”, for example,
“information sharing apps can easily adopt the hybrid model
to push news content and updates across multiple platforms.”

In the survey, 82% responded having native development
experience, 11% have tried hybrid solutions, and 7% have
developed mobile web apps. Most respondents are in favour
of the native approach: “Mobile web doesn’t feel or look like
any of the platforms.” Others said that: “HTMLS5 has much
potential and will likely address many of the current problems
in the future as it saves development time and cost’; or: “Since
many big players are investing a lot on HTMLS, it may take
a big chunk of the front-end side when it becomes stable.”

Most of the participants argued that when development cost
is not an issue, companies tend to develop native apps. Of
course it also depends on the application type; where better
user experience or device specific features are needed, native
seems to be the clear choice.

Lastly, when we asked our participants that whether na-
tive app development will be replaced by hybrid solutions
or mobile web development due to its challenges, all the
interviewees and 70% of survey participants disagreed, and
10% indicated that there will always be a combination of
native and hybrid approaches.

Limiting Capabilities of a Platform’s Devices. Not all
devices and operating systems of a platform have the same
capabilities. For instance, Android has different versions and
browsers in some of those versions have poor support for
HTML5. Most of the participants in favour of the hybrid
approach believe that once the adaptation is complete (e.g.,

40% 374% 33 79,

19.8%
20%
9.1%
0o L]
o & g
N w‘& &
3

of & eﬂo‘
& K ¥
N

KOl <&

Fig. 1: Have you developed the same native mobile app across
different platforms?

with mature web browsers in the platforms), there would be
more interest from the community for hybrid development.

Reusing Code vs. Writing from Scratch. 67% of our
interview participants have tried both methods of writing a
native mobile app from scratch for a different platform and
reusing some portions of the same code across platforms. The
majority stated that it is impossible or challenging to port
functionality across platforms and that when code is reused in
another platform, the quality of the results is not satisfactory.

Figure 1 shows that out of the 63% survey respondents,
who have experienced developing mobile apps across different
platforms, 34% have written the same app for each platform
from scratch, and 20% have experienced porting some of
the existing code. A respondent said, “every platform has
different requirements for development and porting doesn’t
always produce quality”; or: “At this moment, I believe that it
is best to create the apps from scratch targeting the individual
0S.” P11 argued that “we ported a very little amount of the
code back and forth between Android and Blackberry, but we
typically write the code from scratch. While they both use Java,
they don’t work the same way. Even when basic low levels of
Java are the same, you have to rewrite the code.”

In addition to the differences at the programming language
level (e.g., Objective-C versus Java), P9 elaborated why
migrating code does not work: “A simple example is the way
they [platforms] process push messages. In Android, a push
message wakes up parts of the app and it requests for CPU
time. In i0S the server would pass the data to Apple push
server. The server then sends it to the device and no CPU
time to process the data is required.” These differences across
platforms force developers to rewrite the same app for different
platforms, with no or little code reuse. This is seen as one of
the main disadvantages of native app development.

Behavioural Consistency versus Specific HCI Guidelines.
Ideally, a given mobile app should provide the same func-
tionality and behaviour regardless of the target platform it is
running on. However, due to the internal differences in various
mobile devices and operating systems, “a generic design for
all platforms does not exist”; For instance, P12 stated that “an
Android design cannot work all the way for the iPhone.” This
is mainly due to the fact that HCI guidelines are quite different

100%

50%

Fig. 2: How are your native mobile apps tested?

across platforms, since no standards exist for the mobile world,
as they do for the Web for instance. Thus, developers are
constantly faced with two competing requirements:

o Familiarity for platform users: Each platform follows a
set of specific HCI guidelines to provide a consistent
look-and-feel across applications on the same device.
This makes it easier for end users to navigate and interact
with various applications.

e Behavioural consistency across platforms: On the other
hand, developers would like their application to behave
similarly across platforms, e.g., user interaction with a
certain feature on Blackberry should be the same as on
iPhone and Android.

Thus, creating a reusable basic design that will translate
easily to all platforms while preserving the behavioural con-
sistency is challenging. As P9 stated: “The app should be
re-designed per platform/OS to make sure it flows well”; A
respondent put it: “We do screen by screen design review for
each new platform”; or: “Different platforms have different
strengths and possibilities. It is foolish to try to make the apps
exactly the same between platforms”; and: “It requires multi-
platform considerations at the designing stage and clever
decisions should be made where platform-specific design is
necessary.”

Time, Effort, and Budget are Multiplied. Due to the lack
of support for automated migration across platforms, devel-
opers have to redesign and reimplement most of the appli-
cation. Therefore, creating quality products across platforms
is not only challenging, but also time consuming and costly,
i.e.“developing mobile apps across platforms natively is like
having a set of different developers per each platform”, stated
P11. As a result, “re-coding against wildly different API sets”
increases the cost and time-to-market within phases of design,
development, testing, and maintenance, which is definitely a
large issue for start-up and smaller companies.

C. Current Testing Practices

As outlined in Subsection III-A, many developers see anal-
ysis and testing of mobile apps as an important activity to
provide dependable solutions for end-users. Our study results
shed light on the current practices of mobile application
analysis and testing.

27.7%
. 1.1% 32%
£ D S £
(2 & X3 . G2
éeQ & & .@é\ 0'&

Fig. 3: Who is responsible for testing your native mobile apps?

Manual Testing is Prevalent. As shown in Figure 2, 64%
of our survey participants test their mobile apps manually,
31% apply a hybrid approach, i.e., a combination of manual
and automated testing, and only 3% engage in fully automated
testing. P3 explained: “Right now, manually is the best option.
It’s kind of like testing a new game, testing on consoles and
devices. It is that kind of testing I believe just maybe smaller,
but you have to worry about more platforms and versions.”
A respondent stated: “Organizations, large and small, believe
only in manual testing on a small subset of devices”; and
another one said: “It’s a mess. Even large organizations are
hard to convince to do automated testing.”

Developers are Testers. There are different combinations
of testing processes and approaches currently taken by the
industry. They can be categorized based on a company’s size,
clients, development culture, testing policy, application type,
and the mobile platforms supported. These testing approaches
are performed by various people such as developers, testing
teams, beta testers, clients, as well as third party testing
services. As indicated in Table I, our interviewees’ companies
vary from small size with 1-2 developers to larger mobile
development companies or teams with over 20 developers.
As expected, larger companies can afford dedicated testing
teams, while in smaller companies testing is mainly done by
developers or clients (end-users). Figure 3 depicts the results
of our survey with regard to roles responsible for testing. 80%
of the respondents indicated that the developers are the testers,
53% have dedicated testing teams or testers, and 28% rely on
beta testers.

The majority of the participants, with or without testing
teams, stated that after developing a new feature, the devel-
opers do their own testing first and make sure it is functional
and correct. This is mostly manual testing on simulators and
if available on physical devices.

Test the App for Each Platform Separately. Our interviews
reveal that our participants treat each platform completely
separately when it comes to testing. Currently, there is no
coherent method for testing a given mobile app across different
platforms; being able to handle the differences at the Ul
level is seen as a major challenge. Testers write “scripts that
are specific for each platform”, and they “are familiar with

the functionality of the app, but are testing each platform
separately and individually”. We also notice that there are
usually separate teams in the same company, each dedicated to
a specific platform with their own set of tools and techniques;
P6, an iOS developer, said: “I am not sure about Android,
as the teams in our company are so separate and I don’t
even know what is going on with the other side.” Responses
provided by 63% of our survey participants, who develop
the same native mobile app for more than one platform,
confirmed the interview results, stating: “The test cases apply
to each platform, but they must be implemented uniquely on
each platform”, or: “Same as for one platform, but multiple
times”, and: “I have to do it twice or more depending on how
many platforms I have to build it on”, or: “Treat them as
separate projects, as they essentially are, if native. Do testing
independently.”

Levels of Testing. Figure 4 illustrates different levels of testing
applied on mobile apps. There is very little automation for
different levels of testing, e.g., around 3% for each of GUI,
acceptance, and usability testing. P2 noted: “It is not really
well structured or formal what we do. We do some pieces of
all of them but the whole testing is a manual process.”

GUI Testing. More than half of the participants admitted that
GUI testing is challenging to automate. P2 said: “Automated
Ul testing is labor intensive, and can cause inertia when you
want to modify the UlL. We have a manual tester, core unit
testing, then employ beta field testing with good monitoring.”

P7 stated: “Our company has Microsoft products. With
Microsoft studio interface you can emulate a lot of sensors
for testing GUI where as in Eclipse for Android, you need to
click a lot of buttons. You can emulate the position in your
phone, but Android doesn’t do this.”

P3 elaborated: “Blackberry is actually really hard to create
test scripts for GUI testing. Because it is not like other
platforms, which are touch-based and layout-based. With
Blackberry, you have to know what field manager is and it
is hard to actually get this information by clicking on buttons.
You have to go through the whole array of elements.”

Some tools were highlighted such as ROBOTIUM [24]
and MONKEYRUNNER [25] for Android. A few iOS devel-
opers said they have tried MONKEYTALK (formerly called
FONEMONKEY) [26] and KIF [27] for GUI testing; P1 stated:
“I find KIF to be a lot more mature than the testing tools
provided by Apple but it is still hard to be used for our custom
and dynamic applications.”

Unit Testing. Our study shows that the use of unit testing
in the mobile development community is relatively low. Both
interview and survey results (See Figure 4) reveal that unit
testing for native mobile app is not commonplace yet.

On the one hand, some respondents argued that “the rela-
tively small size of mobile apps makes unit testing overkill’;
or: “Deciding whether it’s worth writing unit tests or save the
time and test manually is always difficult’; and: “Complete
unit testing to get full coverage is overkill. We only unit test
critical code”; or: “Small projects with small budgets - the

100%

N/A
7 v Z 7 “ Hybrid
L7 v)
50% “ Automatic
I B Manual
0%
SR I C N C R R R C R)
9\\0 é\Q G}\‘Q %\\Q é\Q G}\Q %,00 5}\9 é\Q
. \&e Q&z &&e K& &% e&z z&z d&@ %&e
» . . Q X
TP FTEE
g,‘é S q}e K & 0%‘”’ r,é'
0\ < ©° g@
¢ &

Fig. 4: What levels of testing do you apply and how?

overhead of creating rigorous test plans and test cases would
have a serious impact on the budget.”

On the other hand, others said that “the rapidly changing
user expectations and technology means unit testing is cru-
cial.” Our interviewees believe that having a core script for
generic features is the best approach in the long term. P12
said: “Unit tests are still the best. They are easy to run, and
provide immediate feedback when you break something.”

Unit testing seems to be more popular among Android and
Windows developers, using JUunit and NUnit, respectively.

Two i0S participants have tried writing unit tests for iPhone
using SENTESTINGKITFRAMEWORK [28], a built-in Xcode
tool, as well as XCODE INSTRUMENTS [29]. P1 stated: “iOS
apps are not really built to be unit tested”, P12 argued: “iOS
doesn’t make it easy to have test automation” and a respondent
said: “Apple’s Developer testing tools don’t play well.”

Beta Testers and Third Party Testing Services. Beta testing,
mostly with TESTFLIGHT [30], seems to be quite popular
in mobile app development; although P5 emphasized that
“the beta testers are in the order of dozens not thousands.”
TestFlight automates parts of the process, from deploying the
app to collecting feedback. Further, there are many cases in
which the clients are responsible for testing, i.e., recruiting
beta testers or acceptance testing. P6 explained that they have
internal and external client tracking systems: “Basically we
have two bug tracking systems, internal and client tracking
system (external). The client create bugs in that tracking
system and our testing team try to reproduce bugs to see if
it is a valid and reproducible bug. If so they duplicate it in
our internal tracking system. Then developers will look at it
again.”

Additionally, some developers rely on third party testing
services such as PERFECTOMOBILE [31] and DEVICEANY-
WHERE [32]. However, “it is usually too volatile and the
tools in many cases support very simple apps. Honestly not
really worth the effort”, said one of our interviewees. Other
participants’ attitudes toward testing services are varied; P12
argued: “Services should be affordable, and not just report
bugs but also provide some documents that indicate how
people test the application, and give a high level overview

of all the paths and possibilities that are tested.” Another
respondent said: “Most online testing services charge a very
hefty premium even for apps that are distributed for free”; and:
“It is nice to test an app by a third party, someone who is not
the developer. At the same time, just random testing doesn’t
do the trick. You need to have a more methodical approach
but the problem with methodical approaches is that they turn
the price up.” P11 said: “We don’t want to lock in on one
specific vendor and tend to use open-source tools, such as
JUnit.” Another problem mentioned is that “if we want to
change something the way we want to, we don’t have access
to the source code. So we can’t change the services of the
framework.”

D. Analysis and Testing Challenges

In this subsection, we present the challenges experienced,
by our interview participants and survey respondents, for
analyzing and testing native mobile apps.

Limited Unit Testing Support for Mobile Specific Features.
Although JUnit is used by more than half of the Android
participants, many also point out that “JUnit is designed for
stationary applications and it has no interface with mobile
specifics such as sensors (GPS, accelerometer, gyroscope),
rotation, navigation”. As a result, “there is no simple way
to inject GPS positions, to rotate the device and verify it that
way”. P11 explained: “we are creating a 'map application’,
which requires users typically being out doors, moving around
and navigating, which is not supported by current testing
tools.” Writing mobile specific test scenarios requires a lot
of code and is time consuming and challenging. A number of
participants indicated that having “a JUnit type of framework
with mobile specific APIs and assertions” would be very
helpful.

Monitoring and Analysis. Both our interview and survey data
indicate a strong need of mobile app developers for better
analysis and monitoring support. Many mentioned the need to
monitor, measure, and visualize various metrics of their apps
such as memory management (to spot memory leaks), battery
usage (to optimize battery life), CPU usage, pulling/pushing
data, and network performance (over various networks, e.g.,
2G, 3G, 4G and wireless connections) through better analysis
tools. “A visualization tool such as those hospital monitoring
devices with heart rate, blood pressure, etc., would help to gain
a better understanding of an app’s health and performance”,
explained PS.

Handling Crashes. One major problem mentioned in mobile
app testing is about crashes, which are often intermittent,
non-deterministic, and irrecoverable. It is challenging for
developers to capture enough information about these crashes
to analyze and reproduce them [33], so that they can be
fixed. Many developers in our study found it helpful to have
a set of tools that would enable capturing state data as a
crash occurs and creating a bug report automatically. P5
stated: “Dealing with the crashes that are very hard to catch
and harder to reproduce is an issue. It would be good that

when the crashes happen, system logs and crash logs can be
immediately captured and sent to developer over the phone.”

Emulators/Simulators. Emulators are known to mimic the
software and hardware environments found on actual devices
whereas simulators only mimic the software environment.
Many mobile developers believe that better support is needed
to mimic real environments (e.g., network latency, sensors)
for testing. Another issue mentioned is that rooted simulators
and emulators are needed in order to access features outside
of the application, such as settings, play store, bluetooth and
GPS, which could be part of a test case. Also, performance
of emulators is a key factor mentioned by many of our
participants. Compared to iOS Simulator, “Android emulator
is very slow. I use my device for testing instead”, said P8.

Missing Platform-Supported Tools. Almost all of the par-
ticipants mentioned that current tools are weak and unreli-
able with no or limited support for important features for
mobile testing such as mobility, location services, sensors
and different inputs. They have experienced many automation
failures, or many cases where testing tools actually slowed the
development process down substantially.

Some of our participants stated that platform-supported
tools are needed, e.g., “unit testing should be built-in”. A
respondent said: “the platforms have to support it (testing). 3rd
party solutions will never be good enough.”, and another one
said they need “strong integrated development environment
support”. Some noted that the process will be similar to that
for web applications, “it took years to create powerful tools
for analyzing and testing web apps, and we are still not there
completely”.

Rapid Changes Over Time. Our interview reveals that re-
quirements for mobile app projects change rapidly and very
often over time. This is the reason our participants argued
that they have difficulties to keep the testing code up to date.
A respondent said: “changing requirements means changing
Ul/logic, so GUI and integration tests must be constantly
rewritten.” P1 stated: “there are some testing tools out there,
but we don’t use any of them because we can’t keep the tests
updated for our dynamic apps”. P10 stated that due to rapid
changes they have “time constraints for creating test scripts
and performing proper testing.”.

Many Possibilities to Check. An issue mentioned by more
than half of the participants is the fact that there are so
many different possibilities to test, and places that could go
potentially wrong on mobile apps. Thus, “it is difficult to
identify all the usage scenarios and possible use cases while
there is a lot of hidden states; for example, enabling/disabling
for the location services, and weak and strong network for
network connectivity”. P12 finds: “The relation between apps
should be well managed, you might be interrupting other apps,
or they might be interrupting yours”. P12 provides an example:
“manage the states when an audio recoding app goes into
background.” Furthermore, a participant argued that based on
missing or misleading usage specifications, they should avoid
under-coverage (missing test cases) and over-coverage (waste

of time and human resources for testing situations that won’t
happen in the real world).

App Stores and Usability Testing. Developers have to follow
mobile app stores’ (e.g., AppStore, Google Play) requirements
to distribute their apps to end users. These requirements
change often, and developers need a way to test their apps’
conformance. “I would like to have something more robust
for me to mimic what the publisher (store) will be doing so
that I can catch the error earlier in the development process.”
said a respondent. Additionally, “pushing the app to individual
devices is more complex than necessary”, for instance in
iPhone.

At the same time, end-users nowadays have the ability to
collectively rank apps on the stores. If users like an app, they
download and start using it. If not, they delete it and move on
immediately. If they really like it, they rank it high; Or if they
really dislike it, they go on social media and complain. Thus,
a low-quality release can have devastating consequences for
mobile developers. As a result, there is a huge emphasis on
usability testing. As P8 explained, “definitely one of our big
challenges is usability testing, which is manual. I do heuristic
evaluations personally and then evaluate with real users”. P11
elaborated: “Our usability testing encompasses a large portion
of not only features but also UL”

IV. THREATS TO VALIDITY

Similar to quantitative research, qualitative studies could
suffer from threats to validity, which is challenging to assess
as outlined by Onwuegbuzie et al. [34].

For instance, in codification, the researcher bias can be
troublesome, skewing results on data analysis [21]. We tried
to mitigate this threat through triangulation; The codification
process was conducted by two researchers, one of whom
had not participated in the interviews, to ensure minimal
interference of personal opinions or individual preferences.
Additionally, we conducted a survey to challenge the results
emerging from the interviews.

Both the interview and survey questionnaire were designed
by a group of three researchers, with feedback from four
external people — one senior PhD student and three industrial
mobile app developers — in order to ensure that all the
questions were appropriate and easily comprehensible.

Another concern was a degree of generalizability. We tried
to draw representative mobile developer samples from nine
different companies. Thus, the distribution of participants
includes different companies, development team sizes, plat-
forms, application domains, and programming languages —
representing a wide range of potential participants. Of course
the participants in the survey also have a wide range of
background and expertise. All this gives us some confidence
that the results have a degree of generalizability.

One risk within Grounded Theory is that the resulting
findings might not fit with the data or the participants [12].
To mitigate this risk, we challenged the findings from the
interviews with an online survey, filled out by 188 practitioners
worldwide. The results of the survey confirmed that the

main concepts and codes, generated by the Grounded Theory
approach, are in line with what the majority of the mobile
development community believes.

Lastly, in order to make sure that the right participants
would take part in the survey, we shared the survey link
with some of the popular Mobile Development Meetup and
LinkedIn groups related to native mobile app development.
Furthermore, we did not offer any financial incentives nor any
special bonuses or prizes to increase response rate.

V. DISCUSSION

We discuss some of the challenges that are worth further
investigation by the research and development community.

Same App across Multiple Platforms. A prominent challenge
emerging from our study is the fact that developers have
to build the same native app for multiple mobile platforms.
Although developing for multiple platforms is a recurring
problem that is not unique to the mobile world, the lack
of proper development and analysis support in the mobile
environment exacerbates the challenges.

Opting for standardized cross-platform solutions, such as
HTMLS5, seems to be the way to move forward. However,
HTMLS needs to be pushed towards maturation and adoption
by major mobile manufactures, which in turn can mitigate
many of the cross-platform development problems. Another
possible direction to pursue is exploring ways to declaratively
construct [35] native mobile applications, by abstracting the
implementation details into a model, which could be used to
generate platform-specific instances.

Checking Consistency across Platforms. Another related
challenge is checking the correctness and consistency of the
app across different platforms. One way to tackle this problem
is by constructing tools and techniques that can automatically
infer interaction models from the app on different platforms.
Our recent work reverse engineers a model of 10S applications
[36]. Similarly, others [37], [38] are looking into Android apps.
The models of the app, generated from different platforms, can
be formally compared for equivalence on a pairwise-basis [39]
to expose any detected discrepancies. Such automated tech-
niques would drastically minimize the difficulty and effort in
consistency checking, since many mobile developers manually
“do screen by screen design review for each new platform”.

Testing Apps for Multiple Platforms. Regarding the test-
ing challenges, follow-up studies could focus on generating
test cases for mobile apps. A centralized automatic testing
system that generates a (different) test case for each target
platform could be a huge benefit. While platform-specific
features can be customized, core features could share the
same tests. Thus, further research should focus on streamlining
application development and testing efforts regardless of the
mobile platform.

Testing APIs from App Stores. Mobile developers need better
and easier ways of checking their apps’ conformance to app
stores’ guidelines. Currently, after a submission, sometimes
they have to wait for considerable amounts of time to receive

feedback from the stores. In order to catch the inconsistencies
of their code with a store’s guidelines and internal APIs earlier,
it would be beneficial if the stores provided a set of testing
APIs (e.g., as services), which developers could use to check
their code against, before submitting to the stores.

Testing Mobile Specific Features. The existing testing frame-
works have serious limitations for testing mobile specific
features and scenarios such as sensors (GPS, Accelerome-
ter, gyroscope), rotation, navigation, and mobility (changing
network connectivity). As a consequence developers either
need to write much test fixture code to assert mobile specific
scenarios or opt for manual testing. Thus, creating “a JUnit
type of framework with mobile specific APIs and assertions”
would be really beneficial.

Other Challenging Areas. There are also serious needs for
(1) rooted emulators that can mimic the hardware and software
environments realisticly; (2) better analysis tools, in order
to measure and monitor different metrics of the app under
development; (3) techniques that would help debugging apps
by capturing better state data when unexpected crashes occur.

VI. RELATED WORK

We categorize related work into two classes: mobile ap-

plication development and ground theory studies in software
engineering.
Mobile application development. There have been a number
of studies [40]-[44] analyzing different web-based or hybrid
mobile app development frameworks. For instance, Palmieri
et al. [40] report a comparison between four different cross-
platform tools (RHODES, PHONEGAP, DRAGONRAD and
MOSYNC) to develop applications on different mobile OSs.
Huy er al. [45] studied and analyzed four types of mobile
applications, namely, native, mobile widgets, mobile web,
and HTML5. Masi et al. [9] propose a framework to support
developers with their technology selection process for the
development of a mobile application, which fits the given
context and requirements.

Researchers have recently started discussing [7], [8] some of
the challenges involved in mobile app development. However,
most of these discussions are anecdotal in nature. Our study,
on the other hand, aims at understanding the challenges by
interviewing and surveying mobile developers in the field.

Grounded theory studies in software engineering. Many re-
searchers have used a grounded theory approach in qualitative
software engineering studies [15]-[22], [46]-[48] in order to
understand software development practices and challenges of
industrial practitioners [13].

Adolph et al. [15] use grounded theory in a field study
to understand how people manage the process of software
development to “get the job done”.

Greiler et al. [18] conduct a grounded theory study to
understand the challenges involved in Eclipse plug-in testing.
The outcome of their interviews with 25 senior practitioners
and a structured survey of 150 professionals provides an
overview of the current testing practices, a set of barriers

to adopting test practices, and the compensation strategies
adopted because of limited testing by the Eclipse community.

Coleman et al. [17], [19] adopt the grounded theory method-
ology to report on the results of their study of how software
processes are applied in the Irish software industry. The
outcome is a theory that explains when and why software
process improvement is undertaken by software developers.

Through a grounded theory approach, Sulayman et al
[20] perform interviews with 21 participants representing 11
different companies, and analyze the data qualitatively. They
propose an initial framework of key software process improve-
ment success factors for small and medium Web companies.

Wiklund et al. [49] report a case study on factors that con-
tribute to inefficiencies in use, maintenance, and development
of automated testing.

Kasurinen et al. [48] discuss the limitations, difficulties, and
improvement needs in software test automation for different
types of organizations. They surveyed employees from 31
software development organizations and qualitatively analyzed
12 companies as individual cases. They found that 74% of
surveyed organizations do not use test automation consistently.

To the best of our knowledge, our work is the first to report
a qualitative field study targeting mobile app development
practices and challenges.

VII. CONCLUSIONS

Our study has given us a better, more objective understand-
ing of the real challenges faced by the mobile app developers
today, beyond anecdotal stories.

Our results reveal that having to deal with multiple mobile
platforms is one of the most challenging aspects of mobile
development. Since mobile platforms are moving toward frag-
mentation rather than unification, the development process
cannot leverage information and knowledge from a platform
to another platform. When the ‘same’ app is developed for
multiple platforms, developers currently treat the mobile app
for each platform separately and manually check that the
functionality is preserved across multiple platforms. Also
creating a reusable user-interface design for the app is a
trade-off between consistency and adhering to each platform’s
standards. Our study also shows that mobile developers need
better analysis tools to measure and monitor their apps. Also,
testing is a huge challenge currently. Most developers test
their mobile apps manually. Unit testing is not common within
the mobile community and current testing frameworks do not
provide the same level of support for different platforms.
Additionally, most developers feel that current testing tools
are weak and unreliable and do not support important features
for mobile testing such as mobility (e.g., changing network
connectivity), location services, sensors, or different gestures
and inputs. Finally, emulators seem to lack several real features
of mobile devices, which makes analysis and testing even more
challenging.

ACKNOWLEDGEMENTS

We are grateful to all the participants of our study (inter-
views and the survey). This work was supported in part by the

Institute for Computing, Information and Cognitive Systems
(ICICS) at the University of British Columbia (UBC).

[1]
[2]

[3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

“App Store Metrics,” http://148apps.biz/app-store-metrics/.
“Smartphone Platform Market Share,” http://www.comscore.com/
Insights/Press_Releases/2013/3/comScore_Reports_January_2013_U.S.
_Smartphone_Subscriber_Market_Share.

“Android Market Stats,” http://www.appbrain.com/stats/.

“Windows Marketplace,” http://windows-phone.co/tag/
windows-phone-apps/.

“Blackberry AppWorld,” http://drippler.com/rim/blackberry_playbook_
1te#1295631.

Berg Insight, “The mobile application market,” http://www.berginsight.
com/ReportPDF/ProductSheet/bi-app1-ps.pdf.

J. Dehlinger and J. Dixon, “Mobile application software engineering:
Challenges and research directions,” in Proceedings of the Workshop on
Mobile Software Engineering. Springer, 2011, pp. 29-32.

A. 1. Wasserman, “Software engineering issues for mobile application
development,” in FSE/SDP workshop on Future of software engineering
research, ser. FOSER’10. ACM, 2010, pp. 397-400.

E. Masi, G. Cantone, M. Mastrofini, G. Calavaro, and P. Subiaco,
“Mobile apps development: A framework for technology decision mak-
ing,” in Proceedings of International Conference on Mobile Computing,
Applications, and Services., ser. MobiCASE’4, 2012, pp. 64-79.
“Native, web or hybrid mobile-app development,”
IBM Software, Thought Leadership =~ White Paper. [On-
line]. Available: http://www.computerworld.com.au/whitepaper/371126/
native-web-or-hybrid-mobile-app-development/download/

“Voice of the Next-Generation Mobile Developer, Appcelerator / IDC
Q3 2012 Mobile Developer Report,” http://www.appcelerator.com.s3.
amazonaws.com/pdf/Appcelerator-Report-Q3-2012-final.pdf.

B. Glaser and A. Strauss, The discovery of Grounded Theory: Strategies
for Qualitative Research. Aldine Transaction, 1967.

S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Softw. Engg.,
vol. 16, no. 4, pp. 487-513, 2011.

J. W. Creswell, Qualitative inquiry and research design : choosing
among five approaches (2nd edition). Thousand Oaks, CA: SAGE,
2007.

S. Adolph, P. Kruchten, and W. Hall, “Reconciling perspectives: A
grounded theory of how people manage the process of software de-
velopment,” J. Syst. Softw., vol. 85, no. 6, pp. 1269-1286, 2012.

K. Karhu, T. Repo, O. Taipale, and K. Smolander, “Empirical obser-
vations on software testing automation,” in Proceedings of the Inter-
national Conference on Software Testing Verification and Validation
(ICST). IEEE Computer Society, 2009, pp. 201-209.

G. Coleman and R. O’Connor, “Investigating software process in prac-
tice: A grounded theory perspective,” J. Syst. Softw., vol. 81, no. 5, pp.
772-784, 2008.

M. Greiler, A. van Deursen, and M.-A. Storey, “Test confessions: a
study of testing practices for plug-in systems,” in Proceedings of the
International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2012, pp. 244-254.

G. Coleman and R. O’Connor, “Using grounded theory to understand
software process improvement: A study of Irish software product com-
panies,” Inf. Softw. Technol., vol. 49, no. 6, pp. 654-667, 2007.

M. Sulayman, C. Urquhart, E. Mendes, and S. Seidel, “Software process
improvement success factors for small and medium web companies: A
qualitative study,” Inf. Softw. Technol., vol. 54, no. 5, pp. 479-500, 2012.
V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, “A study on
agility and testing processes in software organizations,” in Proceedings
of the International Symposium on Software Testing and Analysis
(ISSTA). ACM, 2010, pp. 231-240.

A. C. C. Franca, D. E. S. Carneiro, and F. Q. B. da Silva, “Towards
an explanatory theory of motivation in software engineering: A qual-
itative case study of a small software company,” 2012 26th Brazilian
Symposium on Software Engineering, vol. 0, pp. 61-70, 2012.

B. Glaser, Doing Grounded Theory: Issues and Discussions. Sociology
Press, Mill Valley, California, 1998.

[24]
[25]

[26]
[27]
[28]
[29]

[30]
(31]
[32]
(33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

“Robotium,” http://code.google.com/p/robotium/.

“MonkeyRunner,” http://developer.android.com/tools/help/
monkeyrunner_concepts.html.
“MonkeyTalk for iOS & Android,”
testing-tools/monkeytalk.

“KIF iOS Integration Testing Framework,” https://github.com/square/
KIF.

“SenTestingKit Framework,” http://cocoadev.com/wiki/SenTestingKit.
“About Instruments,” https://developer.apple.com/library/mac/
#documentation/developertools/Conceptual/InstrumentsUserGuide/
Introduction/Introduction.html.

“TestFlight,” https://testflightapp.com/.

“Perfecto Mobile,” http://www.perfectomobile.com/.
“DeviceAnywhere,” http://www.keynotedeviceanywhere.com/.

P. Zhang and S. Elbaum, “Amplifying tests to validate exception han-
dling code,” in Proceedings of the International Conference on Software
Engineering (ICSE). 1EEE Computer Society, 2012, pp. 595-605.

A. Onwuegbuzie and N. Leech, “Validity and qualitative research: An
oxymoron?” Quality and Quantity, vol. 41, pp. 233-249, 2007.

Z. Hemel and E. Visser, “Declaratively programming the mobile web
with Mobl,” in Proceedings of Intl. Conf. on Object oriented program-
ming systems languages and applications (OOPSLA). ACM, 2011, pp.
695-712.

M. Erfani Joorabchi and A. Mesbah, “Reverse engineering iOS mobile
applications,” in Proceedings of the Working Conference on Reverse
Engineering (WCRE). 1EEE Computer Society, 2012, pp. 177-186.
C. Hu and I. Neamtiu, “Automating GUI testing for Android applica-
tions,” in Proceedings of the 6th International Workshop on Automation
of Software Test, ser. AST *11. ACM, 2011, pp. 77-83.

W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for auto-
mated GUI-model generation of mobile applications,” in Proceedings of
the International Conference on Fundamental Approaches to Software
Engineering (FASE). Springer-Verlag, 2013, pp. 250-265.

A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility
testing,” in Proceedings of the International Conference on Software
Engineering (ICSE). ACM, 2011, pp. 561-570.

M. Palmieri, I. Singh, and A. Cicchetti, “Comparison of cross-platform
mobile development tools,” in Intelligence in Next Generation Networks
(ICIN), 2012 16th International Conference on, 2012, pp. 179 —186.
M.-C. Forgue and D. Hazagl-Massieux, ‘“Mobile web applications:
bringing mobile apps and web together,” in Proceedings of the 21st
international conference companion on World Wide Web, ser. WWW
12 Companion. ACM, 2012, pp. 255-258.

T. Paananen, “Smartphone Cross-Platform Frameworks,” Bachelor’s
Thesis., 2011.

S. Diewald, L. Roalter, A. Moller, and M. Kranz, “Towards a holistic ap-
proach for mobile application development in intelligent environments,”
in Proceedings of the 10th International Conference on Mobile and
Ubiquitous Multimedia, ser. MUM ’11. ACM, 2011, pp. 73-80.
Y.-W. Kao, C.-F. Lin, K.-A. Yang, and S.-M. Yuan, “A cross-platform
runtime environment for mobile widget-based application,” in Cyber-
Enabled Distributed Computing and Knowledge Discovery (CyberC),
2011 International Conference on, 2011, pp. 68 —71.

N. P. Huy and D. vanThanh, “Evaluation of mobile app paradigms,”
in Proceedings of the International Conference on Advances in Mobile
Computing and Multimedia, ser. MoMM. ACM, 2012, pp. 25-30.

S. P. Ng, T. Murnane, K. Reed, D. Grant, and T. Y. Chen, “A preliminary
survey on software testing practices in Australia,” in Proceedings of the
Australian Software Engineering Conference. IEEE Computer Society,
2004, pp. 116-125.

D. Falessi, M. A. Babar, G. Cantone, and P. Kruchten, “Applying
empirical software engineering to software architecture: challenges and
lessons learned,” Empirical Softw. Engg., vol. 15, no. 3, pp. 250-276,
2010.

J. Kasurinen, O. Taipale, and K. Smolander, “Software test automation
in practice: empirical observations,” Adv. Soft. Eng., vol. 2010, pp. 4:1-
4:13, 2010.

K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, “Technical debt in
test automation,” in Proc. International Conference on Software Testing,
Verification and Validation (ICST). 1EEE Computer Society, 2012, pp.
887-892.

http://www.gorillalogic.com/

