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ABSTRACT
To assess the quality of web application test cases, web de-
velopers currently measure code coverage. Although code
coverage has traditionally been a popular test adequacy cri-
terion, we believe it alone is not adequate for assessing the
quality of web application test cases. We propose a set
of novel DOM-based test adequacy criteria for web appli-
cations. These criteria aim at measuring coverage at two
granularity levels, (1) the percentage of DOM states and
transitions covered in the total state space of the web appli-
cation under test, and (2) the percentage of elements covered
in each particular DOM state. We present a technique and
tool, called DomCovery, which automatically extracts and
measures the proposed adequacy criteria and generates a vi-
sual DOM coverage report. Our evaluation shows that there
is no correlation between code coverage and DOM coverage.
A controlled experiment illustrates that participants using
DomCovery completed coverage related tasks 22% more
accurately and 66% faster.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Design, Algorithms, Experimentation

Keywords
Test adequacy criteria, DOM, coverage, web applications

1. INTRODUCTION
To check the correct behaviour of their web applications,

developers today write test cases using automation frame-
works such as CasperJS [1] or Selenium [10]. These frame-
works provide APIs for instantiating a web browser capable
of executing JavaScript, HTML, and CSS code. Once the
application is loaded into the browser, test cases written
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in these frameworks directly interact with the application’s
runtime Document Object Model (DOM) [3].

To assess the quality of their test cases, developers mea-
sure code coverage of client-side JavaScript as well as server-
side (e.g., Java, PHP) code. Although code coverage has
traditionally been a popular test adequacy criterion [25], we
believe it alone is not an adequate metric for assessing the
quality of web application test cases.

Web application test cases generally interact with the DOM
to (1) write to form inputs, (2) generate events on specific
DOM elements to navigate and change the state of the appli-
cation, and (3) read and assert DOM element properties. Al-
though these actions can trigger the execution of code (e.g.,
JavaScript, Java) indirectly, the test cases merely check the
correctness of the DOM elements and their properties. As
such, we believe a proper coverage metric should be geared
towards the DOM of the web application under test, in ad-
dition to its code execution. In this perspective, the DOM
itself should be considered as an important structure of the
system that needs to be adequately covered by the test suite.

In this paper, we propose a set of DOM-based test ade-
quacy criteria for web applications. These criteria aim at
measuring web application coverage at two different granu-
larity levels, namely (1) the percentage of all DOM states
covered in the total state space of the application, and (2)
the percentage of all elements covered in a particular DOM
state. In general, our goal is not to replace code coverage
but to complement it with DOM coverage, a metric more
tangible for web developers and testers.

We present a technique that automatically extracts and
measures the proposed DOM-based adequacy criteria and
generates a visual DOM coverage report. This report helps
web developers to spot untested portions of their web appli-
cations. Our work makes the following main contributions:

• A set of test adequacy criteria targeting the DOM at
two granularity levels, namely:

1. Inter-state criteria focus on the overall state space
of the application and require each DOM state/-
transition to be covered at least once;

2. Intra-state criteria examine each covered DOM
state separately and require each DOM element
in the state to be covered at least once.

• A technique and algorithm to dynamically compute
the coverage criteria;
• An open source tool implementing our approach, called

DomCovery, which generates an interactive visualiza-
tion of the coverage report;



Figure 1: Running example: a simple gift card pur-
chasing web application.

• An empirical evaluation of DomCovery assessing its
efficacy and usefulness, through a controlled experi-
ment. The results show that participants using Dom-
Covery were able to accomplish test coverage under-
standing tasks 22% more accurately and 66% faster.
Our analysis also shows that the proposed DOM cover-
age criteria cover other dimensions of web applications
that are not correlated with traditional code coverage
metrics.

2. BACKGROUND AND MOTIVATION
Testing modern web applications is challenging since mul-

tiple languages interact with each other at runtime to realize
the application: (1) HTML code defines the structure of the
page, (2) Cascading Style Sheets (CSS) control the style
and layout of the elements, (3) Server-side code (e.g., Java,
Ruby) provides dynamic content, and (4) JavaScript code
connects everything together by interacting with the server-
side and dynamically mutating the HTML structure and its
style, to present application state changes.

The final result of all these interactions is manifested thro-
ugh the Document Object Model (DOM) [3] and presented
to the end-user. The DOM is a dynamic tree-like struc-
ture representing user interface components in the web ap-
plication. DOM elements can be dynamically generated,
changed, or removed at runtime.

To avoid dealing with all these complex interactions sepa-
rately, testers typically treat the web application as a black-
box and test it through its manifested DOM, using testing
frameworks such as Selenium [10].

Motivating Example. We use a simple gift card purchas-
ing web application, as shown in Figure 1, to motivate the
problem. We also use this application as a running example
to illustrate our approach throughout the paper.

This simple web application allows the users to add gift
cards with different values to their shopping carts. The user
can either enter an arbitrary amount manually or choose
from predefined gift cards by clicking on the pre-loaded

gift cards link, which populates the page with a list of
pre-loaded gift cards. In our running example, 4 pre-loaded
gift cards are presented to the user, as depicted in Figure 1.
Figure 2 shows the string representation of the DOM of
that particular state. Each card, when clicked, triggers a

1 Enter amount: <input id="amount" value="50">
2 <input value="add to gift card" type="button" ←↩

onclick="addTotal (parseInt(amount.value)+←↩
adminFee(amount.value))">

3 ...
4 <a href="/pre">pre -loaded gift cards</a>
5 ...
6 <input type="button" id="first" onclick="←↩

addTotal (150);" value="$100">
7 <input type="button" id="second" onclick="←↩

addTotal (250);" value="$200">
8 <input type="button" id="third" onclick="←↩

addTotal (350);" value="$300">
9 <input type="button" id="fourth" onclick="←↩

addTotal (400);" value="$400">
10 ...
11 Total:<div id="payable">$0</div>
12 <span id="xrt"/>

Figure 2: String DOM representation of state 1 of
the running example.

1 var currencyExchangeRate = getExchangeRate ();

3 function addTotal(x) {
4 var total = x * currencyExchangeRate;
5 $("#payable").html("$" + total);
6 $("#xrt").html("Exchange rate: " + ←↩

currencyExchangeRate);
7 }

Figure 3: JavaScript snippet of the running exam-
ple.

JavaScript function called addTotal with an input parame-
ter, as shown in Figure 3.

The application charges a $50 administration fee for all
gift cards less than or equal to $200. For instance, if the user
chooses a $200 gift card, the total will be $250 due to the
administration fee. For gift cards greater than $200, there is
no fee. In this example, there is a bug in the application: in
Line 8 of Figure 2, instead of calling addTotal with 300 as
input, the developer passes 350, which mistakenly includes
the fee.

Figure 4 shows two typical test cases written using the
Selenium framework. The first test case verifies the default
functionality by adding a $50 gift card to the shopping cart,
and the second verifies the total purchase price of a $200 pre-
loaded gift card. As it can be seen, these two test cases pro-
vide a 100% JavaScript code coverage (Figure 3), although
they fail to cover the erroneous $300 pre-loaded gift card.
Thus, a traditional source code coverage report would not
help developers in this regard.

Our insight is to look for novel, more relevant adequacy
criteria that would help developers understand how their
test cases cover the overall functionality of the web appli-
cation under test. For example, the test cases of Figure 4,
cover five elements directly (Lines 1, 2, 4, 7, 11 in Figure 2),
but leave out four other elements, including the erroneous
element (Lines 6, 8, and 9 in Figure 2). Simply sharing this
information with the developers could guide them to identify
untested elements of the application, increases the chance of
revealing the bug.



1 @Test
2 public void defaultCard () {
3 driver.get(baseUrl + "/giftcard");
4 driver.findElement(By.cssSelector("input←↩

type="button"")).click();
5 assertEquals("$100", driver.findElement(By.id←↩

("payable")).getText ());
6 }

8 @Test
9 public void loadedCards () {

10 driver.get(baseUrl + "/giftcard");
11 driver.findElement(By.linkText("pre -loaded ←↩

gift cards")).click();
12 driver.findElement(By.id("second")).click();
13 assertEquals("$250", driver.findElement(By.id←↩

("payable")).getText ());
14 }

Figure 4: DOM-based test cases of the running ex-
ample, using the Selenium framework.

3. ADEQUACY CRITERIA
In this section, we present a new set of test adequacy

criteria that target the client-side state of web applications
to highlight the potential inadequacy of their DOM-based
test cases.

Definition 1 (DOM State). A DOM State DS is a
rooted, directed, labeled tree. It is denoted by a 5-tuple, <
D,Q, o,Ω, δ >, where D is the set of vertices, Q is the set
of directed edges, o ∈ D is the root vertex, Ω is a finite set
of labels and δ : D → Ω is a labelling function that assigns
a label from Ω to each vertex in D.

In this tree, the vertices are DOM elements and the edges
are the hierarchical relations between the elements in the
DOM. The DOM state is essentially an abstracted version
of the DOM tree of a web application, displayed on the web
browser at runtime. This abstraction is conducted through
the labelling function δ, the implementation of which is dis-
cussed in Section 4.4.

Definition 2 (DOM-based test case). A DOM-ba-
sed test case t for a web application under test W is a tuple
< URL, l,A,S, Λ > where:

1. l represents the DOM state after W is fully loaded into
the browser using the initial URL in t.

2. S is a set of states. Each s ∈ S represents a DOM
state DS reachable by an action in t.

3. A is a sequence of event-based actions (such as clicks,
mouseovers). Each a ∈ A represents an action con-
necting two DOM states if and only if state s2 is reached
by executing a in state s1.

4. Λ is a set of DOM elements ∈ S. Each element ∈ Λ
represents an asserted element by t.

Definition 3 (Test Suite). A DOM-based test suite,
T , is a set of DOM-based test cases, T = {t1, t2, t3, ..., tn},
where ti ∈ T is the ith DOM-based test case in T .

In particular, we propose to assess how a given test suite,
T , covers the application’s overall DOM states and elements.
To this end, we propose two complimentary levels of test
adequacy criteria, namely inter-state and intra-state criteria,
described in the following two subsections, respectively.

V1 V2

Index

V4

V5

V3

e1 e2

e3 e4

e5

Figure 5: A state-flow graph of the running example.
Nodes Index and V 1 and edge e1 are covered (green)
by test cases of Figure 4.

3.1 Inter-state Adequacy Criteria
The first set of criteria we propose is concerned with the

overall state space of the web application under test, repre-
sented by all the possible DOM states and transitions be-
tween them. The number of states in most industrial web
applications is huge. Hence, it is intuitive to measure the
portion of the total state space covered (or missed) by a test
suite. Thus, the goal of the inter-state adequacy criteria is to
make sure that all DOM states and transitions are covered,
at least once.

We model the total state space of the web application
under test as a state-flow graph (SFG) [23].

Definition 4 (State-flow Graph). A state-flow graph
SFG for a web application W is a labeled, directed graph,
denoted by a 4 tuple < r,V, E ,L > where:

1. r is the root node (called Index) representing the ini-
tial DOM state after W has been fully loaded into the
browser.

2. V is a set of vertices representing the states. Each
v ∈ V represents a DOM state DS of W.

3. E is a set of (directed) edges between vertices. Each
(v1, v2) ∈ E represents a clickable c connecting two
states if and only if state v2 is reached by executing c
in state v1.

4. L is a labelling function that assigns a label, from a set
of event types and DOM element properties, to each
edge.

5. SFG can have multi-edges and be cyclic.

DOM State Coverage (DSC). The DOM State Coverage
(DSC) adequacy criterion is satisfied by a test suite T , for
a web application W , if each DOM state in W is visited by
at least one test case in T , formally defined as:

Definition 5 (DSC). T . DSC ⇔ ∀v ∈ V, ∃t ∈ T :
v ∈ St,



where T . C is defined as the adequacy of the test suite,
i.e., T satisfies criterion C, St is the set of all states covered
by t, and V is the set of all states in SFG.

Lets assume that Figure 5 presents the state-flow graph
of our running example, which consists of 6 states in total.
Ideally, a test suite should cover all the 6 states. However,
the test suite shown in Figure 4 only covers two of these
states, namely, Index and S1. This suggests that the test
suite is inadequate and not capable of satisfying the DSC
criterion.

The DOM State Coverage for a test suite T can be calcu-
lated as below:

DSC(T ) =

∣∣∣∣ n⋃
i=1

Sti
∣∣∣∣

|V| , (1)

where n is the total number of test cases in T . For instance,
the test suite of Figure 4 has a DSC coverage of 33% (2/6).

DOM Transition Coverage (DTC). The test suite ex-
ecution can be mapped to a path in the state-flow graph
of the web application. To transition from one state to an-
other, a test case typically performs a series of actions by
firing events (e.g., click) on a source element; if the action
mutates the DOM, a target state is visited. The goal of this
coverage criterion is to ensure that the test suite covers all
actions from one state to another, at least once.

Definition 6 (DTC). T . DTC⇔ ∀e(vi, vj) ∈ E , ∃t ∈
T : vi, vj ∈ St and (vi, vj) ∈ At

In other words, a test suite T satisfies the DTC criterion
if and only if for each transition edge e in SFG, there is at
least one test case t ∈ T that covers e.

Similarly, the DOM transition coverage for a test suite T
can be computed as follows:

DTC(T ) =

∣∣∣∣ n⋃
i=1

Ati

∣∣∣∣
|E| (2)

Going back to the running example, the transition (index,-
s1) in Figure 5 is covered, however, the other 4 transitions
are missed, resulting in a DTC of 20% (1/5).

3.2 Intra-state Adequecy Criteria
The second set of criteria we propose examines each indi-

vidual DOM state to highlight the elements covered by the
test suite, within each state. The goal is to make sure that all
DOM elements of the application are covered at least once.
We distinguish between four different categories of DOM
element coverage at this level. Our intra-state adequacy cri-
teria focus on elements that are (1) explicitly covered, (2)
actionable, i.e., capable of causing a state transition, (3)
implicitly covered, and (4) checked through explicit oracles
(i.e., in assertions).

Explicit Element Coverage (EEC). Each test case t is
composed of one or more steps in which various DOM ele-
ments are directly accessed through element location strate-
gies such as ID, XPath, Tag-name, text-value, attribute-
value, or CSS selectors. For example, Line 4 in the default-
Card test case of Figure 4 uses the cssSelector method to
retrieve the INPUT element and perform a click action.

Definition 7 (EEC). A DOM element, ee ∈ vi, is ex-
plicitly covered if and only if there is at least one test case

ti ∈ T such that ee is directly accessed from t through an
element location strategy.

Actionable Element Coverage (AEC). When a given
JavaScript function f is set as an event-handler of a DOM
element d of a DOM state vi, d becomes a potential ac-
tionable element in vi, capable of changing the state. Ex-
amples of event types typically attached to DOM elements
are onclick, ondblclick, and onmouseover. Since these ac-
tionable elements are responsible for state transitions in a
web application, we believe it is important to measure their
coverage when assessing the quality of a test suite.

Definition 8 (AEC). A DOM element, ae ∈ vi, is a
covered actionable element if and only if ae has an event-
handler h, is explicitly covered, and there is at least one test
case ti ∈ T such that ti triggers h.

For instance, Line 12 in Figure 2 covers the actionable
element with ID “second” of Figure 1, which has an event-
listener for the click event type. Note that the test cases
do not cover the erroneous actionable element in Line 8 of
Figure 2.

Implicit Element Coverage (IEC). Interactions with
actionable DOM elements in a test case fire their event-
listeners, which can result in the execution of client-side
JavaScript code. The JavaScript code executed can in turn
access elements from the DOM. We call these DOM elements
implicitly covered elements.

Definition 9 (IEC). A DOM element, ie ∈ vi, is im-
plicitly covered if and only if there is at least one test case
ti ∈ T such that ie is indirectly accessed from ti through the
execution of the client-side source code of the web applica-
tion.

For instance, the DOM element with ID “xrt” is implicitly
accessed through the JavaScript function addTotal (Line 6
in Figure 3) when the test case clicks on the button with ID
“second” (Line 12 in Figure 4).

Checked Element Coverage (CEC). Test cases contain
assertions on specific DOM elements to check whether the
application behaves as expected. Finding out which portion
of the program is actually checked through explicit asser-
tions can be valuable for assessing the quality of a test suite
[30].

Definition 10 (CEC). A DOM element, ce ∈ vi, is a
checked element if and only if it is checked in at least one
oracle of a test case ti ∈ T .

Test cases typically check for the presence of DOM ele-
ments, their attributes, or values. For example, in the de-

faultCard test case of Figure 4, the textual value of the
DOM element with ID “payable” is explicitly checked and is
expected to be $100.

EEC, IEC, and CEC criteria can be computed as follows:

Xvi(T ) =

∣∣∣∣∣ n⋃
j=1

Ytj

∣∣∣∣∣
|Dvi |

, (3)

where X is an adequacy criteria in {EEC, IEC, CEC}, Ytj

is set of Explicit, Implicit, or Checked elements of test case
tj , and Dvi contains all the elements in DOM state vi.
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Figure 6: Overview of our DOM coverage approach.

AEC is calculated as follows:

AECvi(T ) =

n∑
j=1

∣∣(EEtj ∪ CEtj ) ∩AEvi

∣∣
|AEvi |

, (4)

Where EEtj and CEtj are sets of covered explicit and
checked elements of test case tj , respectively. AE is the set
of all actionable elements in state vi.

Subsumption Relations. A test adequacy criterion A
subsumes test adequacy criterion B if every test suite satisfy-
ing A also satisfies B [27]. A test suite satisfying checked el-
ement coverage also covers explicitly covered elements, thus
CEC subsumes EEC. Moreover, if a test suite satisfying
explicit element coverage also satisfies actionable elements.
Hence, EEC subsumes AEC.

4. MEASURING DOM COVERAGE
In this section, we present a technique to automatically

measure the adequacy criteria proposed in Section 3. The
main steps of our DOM coverage approach are depicted in
Figure 6 and described in the following subsections.

4.1 Instrumenting the Test Suite
We instrument all the test cases of the application to yield

information regarding particular (1) element access strate-
gies (e.g., findElement in Selenium) and element identifica-
tion methods (e.g., By.id), and (2) snapshots of intermedi-
ate DOM states visited after each action, in each test case.
The instrumentation wraps around any method call that
directly accesses (i.e., reads/writes) DOM elements, which
can happen in the body of test methods, setup of test cases,
helper methods, page objects, or test oracles. The instru-
mentation is non-intrusive, meaning that it alters neither
the functionality of the application nor the behaviour of the
test cases. The output of this step helps us to measure the
DOM states and explicit elements covered by the test suite.

4.2 Rewriting DOM API Calls in JavaScript
Test suite instrumentation alone is not enough to extract

coverage data for some of our adequacy criteria such as im-

Algorithm 1: Clustering DOM States.

input : New State: NS, Covered Elements: elements,
Cluster of states: Clusters, Similarity threshold: T

output: Updated clusters
1 begin
2 ME ← 0
3 foreach Cluster ∈ Clusters do
4 foreach S ∈ Cluster do
5 ME ← contains(S, elements)?1 : 0

6 dissimilarityScore← distance(NS, S)/2ME

7 if dissimilarityScore ≤ T then
8 addToCluster(NS,Cluster)

9 else
10 NC ← newCluster()
11 addToCluster(NS,NC)
12 Clusters.add(NC)

13 return Clusters

plicit or actionable elements. These elements are typically
manipulated by client-side JavaScript code. Hence, we auto-
matically inject a JavaScript file into the application before
its initial execution (box 2 in Figure 6). This code is re-
sponsible for wrapping all DOM API method calls, in the
JavaScript code of the application under test. These wrap-
pers log exactly which DOM elements are accessed when
the test cases execute. For implicit elements, we rewrite
calls pertaining to DOM element accesses such as getEle-

mentByID and getElementsByTagName. For actionable ele-
ments, we rewrite DOM event APIs that add/remove event-
handlers to DOM elements such as addEventListener and
removeEventListener. We annotate these elements so that
we know exactly which elements are actionable and which
of these are covered by the test suite.

4.3 Collecting Trace Data
Next, we execute the instrumented test suite. For each

test case, we collect data pertaining to the fully qualified
name of each test case, and the DOM states visited by
each test case. For each visited DOM state, we annotate
the explicit, actionable, implicit, and checked elements on
the DOM tree and save a snapshot. For each of these four
element types, we also record the location strategy (e.g.,
XPath, ID, cssSelector) and values used in the correspond-
ing test case to access them.

4.4 DOM State Abstraction and Clustering
An event-based action in a test case can change the state

of the web application and thus the DOM of a web ap-
plication can undergo various permutations to reflect these
changes. However, some of such intermediate permutations
are small in nature, which do not represent a proper state
change, e.g., a row is added to a table. Hence, a transforma-
tion on the raw DOM tree is required to abstract away these
subtle differences (see labelling function δ in Definition 1).

DOM Meta-Models. To capture the essential structural
pattern of a DOM state, we automatically reverse engineer
a meta-model of each DOM state in the form of an XML
Schema. This meta-model abstracts away subtle differences
between DOM structures, e.g., same table but with different
number of rows. To find semantic structural differences we
compute the edit distance between the syntax trees of the
schemas. We define a threshold beyond which such differ-
ences become significant to represent a new state.



Algorithm 2: Merging a cluster of DOM states.

input : Cluster of DOM states Φ
output: Merged DOM

1 begin
2 mergedDOM ← NULL
3 i,MaxIndex← 0
4 MaxSize← Φ[0].size
5 while i < Φ.size do
6 V isSize← Φ[i].getAllElements.size()
7 if V isSize > MaxSize then
8 MaxSize← V isSize
9 MaxIndex← i

10 mergedDOM ← Φ[MaxIndex]
11 Φ.remove(MaxIndex)
12 foreach dom ∈ Φ do
13 coveredElements← getCoveredElements(dom)
14 annotateElements(coveredElements,mergedDOM)

15 return mergedDOM

Matching Covered Elements. In addition to the meta-
model, we track the presence of matching elements (i.e., ex-
plicit, actionable, implicit, checked) to identify similar DOM
states in each test case. The rationale here is that two DOM
trees cannot be clustered if they contain different sets of el-
ements accessed by a test case.

Our clustering algorithm, presented in Algorithm 1, puts
a DOM state in the same cluster if the dissimilarity with
respect to another DOM state in the cluster is less than
a certain threshold. The dissimilarity score is computed
through Equation 5:

Score =
∆(MMdom1 ,MMdom2)

2ME
, (5)

where Score is the dissimilarity score between dom1 and
dom2, MM computes the meta-models, and the matching
elements ME is calculated using Equation 6.

ME =

{
1 elementsdom1 ⊆ Ddom2

0 otherwise
(6)

where elementsdom1 represents all the explicit, actionable,
implicit, checked elements of dom1, and Ddom2 is the set of
all elements in dom2.

4.5 Merging States in Clusters
In this phase, we merge the states in each cluster into one

single state. This reduction makes it easier for the users to
distinguish covered elements.

Algorithm 2 presents our merging algorithm. We start
with the DOM state with the largest tree among all the
states in the cluster (Lines 3-9). We select the largest DOM
state to show as many annotated covered elements as pos-
sible on a single state. We highlight the matching elements
that are covered in other DOM states of the cluster. Method
getCoveredElements() in Line 13 extracts covered elements
including explicit, actionable, implicit, and checked elements.
Then, annotateElements() in Line 14 annotates all the cov-
ered elements inside the merged state. annotateElements
extracts each element’s location strategy and access identifi-
cation type, then it finds the elements in the mergedDOM
to tag the element with corresponding annotations. We per-
form these actions until all states in each cluster are merged.

Inter-state Coverage

Map States

Merged DOM 
States

Server
Deployed 
WebApp

Browser

Crawler

Monte Carlo 
Estimation

Exploration
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Figure 7: Inter-state Coverage Extraction.

4.6 Extracting Inter-state Coverage
The sum of merged states produced in the previous step

represents the total number of DOM states covered by the
test suite. However, to compute the inter-state coverage ac-
cording to Equations 1–2, we need to know the total num-
ber of DOM states and transitions for the application under
test.

Knowing the exact state space size of many large dynamic
web applications is an undecidable problem. Hence, we ex-
trapolate an estimate of the state space through a Monte
Carlo estimation method [31], which combines (1) dynamic
exploration, (2) sampling, and (3) estimation. The method
assumes there are limited resources, such as time, available.
Figure 7 depicts our inter-state coverage extraction proce-
dure.

Dynamic Exploration. We use an event-based dynamic
crawling technique [23], which given a URL of the web ap-
plication under test, and a dedicated amount of time, ex-
haustively explores the application and produces a state-flow
graph (see Definition 4) as output. Total number of DOM
explored states in this step is CS. We use the meta-model
DOM state abstraction mechanism in the crawling step, as
described in Section 4.4.

Sampling. The resulting state-flow graph could be partial
for large applications, given the time constraints. In the
second step, the method randomly samples states from the
state-flow graph that still contain unexecuted actions (e.g.,
clickables). If a sampled unexecuted action, when executed,
results in a productive state, i.e., a state that does not ex-
ist in the state-flow graph, the sampling step continues in
a depth-first manner, until no other unexecuted actions are
found or a depth limit (3) is reached. A sampled transition
that results in a productive state is called a productive tran-
sition. The random sampling continues until the dedicated
sampling time quota is reached.

Estimation. Once we know the number of sampled states,
sampled productive transitions, and unexplored transitions,
the total number of unvisited states can be estimated using
the following formula [31]:

Sampled States

Sampled Prod. Trans.
≈ M
Unexplored Trans.

, (7)

whereM is the number of unvisited DOM states that is es-
timated. We run this estimation method multiple times and



Figure 8: Inter-state coverage report for Phormer:
the SFG highlighted with covered states (green bor-
der) and transitions (green arrow). Upper left cor-
ner shows one of the DOM states with intra-state
coverage details.

use average numbers obtained for M as an approximation
of unvisited states.

We calculate DOM state coverage by revising Equation 1
as follows:

DSC(T ) =

∣∣∣∣ n⋃
i=1

MSti

∣∣∣∣∣∣∣∣ n⋃
i=1

MSti ∪ CS
∣∣∣∣+M

(8)

whereMSti is the merged states covered by test case ti ∈ T
and CS is the set of states crawled during the dynamic ex-
ploration. The denominator is a summation of (1) the con-
junction of covered merged states and crawled states (Map
States in Figure 7) and, (2) the estimated unvisited states.
Note that DOM transition coverage is computed in a similar
way.

4.7 Extracting Intra-state Coverage
At this point, each merged state is annotated with cov-

ered elements. These annotations are in the form of styling
attributes so that they can easily be highlighted in the fi-
nal coverage report. Figure 9 shows the coverage report
generated for the test cases (Figure 4) of our running exam-
ple. The report highlights the covered elements in different
colours. For each merged state, since we know the total num-
ber of DOM elements and actionable elements, we calculate
the coverage of the four intra-state element types according
to Equations 3–4.

4.8 Tool Implementation: DOMCovery
We have implemented our DOM coverage approach in

an automated tool called DomCovery, which is written in
Java and is freely available [4]. The current implementation
of DomCovery supports Selenium 2.0 test cases written
in Java. To parse and instrument test cases, we use Java-
Parser [6]. To collect implicit and actionable elements, we

Figure 9: Intra-state coverage report: Explicit El-
ements in green, Implicit Elements in red, Checked
Elements in blue, and Actionable Elements in yellow.

inject the rewriting JavaScript code through a web proxy,
into the HTML documents originating from the server. For
the dynamic exploration and sampling steps, we build upon
Crawljax [23, 24]. DomCovery accepts as input the test
suite and URL of a given web application and automat-
ically performs all the operations and computes the cov-
erage. Moreover, DomCovery generates a visual report,
which specifies all the DOM states and highlights the cov-
ered DOM states and transitions in the resulting state-flow
graph. For each DOM state, DomCovery shows the DOM
structure and highlights the explicit, implicit, checked, and
actionable elements. A snapshot of the generated report is
depicted in Figure 8. The overview page of the report in-
cludes all the coverage percentages as well.

5. EMPIRICAL EVALUATION
To evaluate the efficacy of our approach, we conducted two

studies pertaining to (1) a correlation analysis between our
DOM-based coverage and traditional code coverage, (2) a
controlled experiment for assessing the effectiveness of Dom-
Covery in helping testers identify (un)covered portions of
a web application under test. Our research questions:

RQ1 Is there a correlation between code-based and DOM-
based test adequacy criteria?

RQ2 Is DomCovery effective in helping testers identify
covered and untested portions of a web application un-
der test?

5.1 Experimental Objects
We selected two open source web applications of mod-

erate size. Phormer [9] is an online photo gallery written
in JavaScript, CSS, XHTML, and PHP. It provides fea-
tures such as uploading, commending, rating, and display-
ing slideshows for photos. Phormer has around 6,000 lines
of JavaScript, PHP and CSS code in total. It was rated 5.0
star on SourceForge and had over 39,000 downloads when
this evaluation was conducted. The second application in
our study is Claroline [2], an open source collaborative and
online learning platform. It has been downloaded more than
330,000 times. Claroline consists of 3.8 KLOC of JavaScript,



Table 1: Kandall τ correlation coefficients for code-
based and DOM-based coverage criteria.

XXXXXXXCode
DOM

DSC DTC EEC IEC CEC AEC

Function 0.18 0.17 -0.07 0.43 -0.16 0.00
Statement 0.19 0.19 -0.15 0.47 -0.26 -0.09
Branch 0.06 0.03 -0.06 0.43 -0.15 -0.05

3.2 KLOC of CSS, 6.2 KLOC of HTML, and 293.7 KLOC
of PHP.

Since these applications come with no test suites,1 we
asked two students – with expertise in web development –
to write test cases for these two objects, individually. 20
test cases were written for each experimental object using
Selenium (WebDriver) [10].

Based on a preliminary study, DOM comparison threshold
values (see Section 4.4) of 34 and 17 were determined and
used for Phormer and Caroline, respectively.

5.2 Correlation Analysis
To address RQ1, we measured correlations between client-

side JavaScript code coverage metrics – i.e., function, state-
ment, branch coverage – and DOM coverage criteria – i.e.,
DSC (state), DTC (transition), EEC (explicit element), AEC
(actionable element), IEC (implicit element), and CEC (chec-
ked element) coverage.

We use the Kendall rank coefficient (τ) [11], since it as-
sumes neither that the data is distributed normally nor that
the variables are related linearly. Kendall coefficient values
are in [−1,+1], where −1 shows a strong negative corre-
lation, 0 indicates no correlation, and +1 shows a strong
positive correlation.

For each of the experimental objects, we executed each
test case in isolation and measured (1) code coverage using
JSCover [7]; we configured JSCover to measure all appli-
cation specific JavaScript code excluding libraries, and (2)
DOM coverage using DomCovery.

Table 1 shows the correlation coefficients between code
and DOM-based coverage criteria. As the results show,
there is no strong correlation between code-based metrics
and DOM-based metrics. For instance, the correlation co-
efficient of statement coverage and DOM state coverage
(DSC) is 0.19, which is considered as no correlation. The
same is true for all the other data points in the table except
for IEC. IEC shows a “moderate” correlation with function
(0.43), statement (0.47), and branch (0.43) coverage. This
is, however, not surprising. By the definition of implicit ele-
ment coverage (see Definition 9), the more JavaScript code
is covered, the more implicit DOM elements can be covered
by a test case.

5.3 Controlled Experiment
To address RQ2, we conducted a controlled experiment [33].

In this experiment, we compared how effective DomCovery
is when compared to current web application code coverage
and development tools.2

Experimental Object and Subjects. We used Phormer
as the experimental object in this study.

1This is the case for many open source web applications.
2Documents including tasks and questionaries used for our
experiment can be viewed at [4].

Table 2: Experimental Tasks

Id Task Description
T1 Locating the explicit elements covered by a test suite
T2 Locating the implicit elements accessed via a test suite
T3 Locating the checked elements asserted in a test suite
T4 Locating the actionable elements covered by a test suite
T5 Identifying the features under tests given a test suite
T6 Identifying the untested features given a test suite

As subjects, a group of 10 participants were recruited from
the graduate students (5 Master and 5 PhD) at UBC. The
participants had an average of 3.6 years experience in web
development and 1.7 years in software testing. We chose to
use a“between-subject”design; i.e., the subject is either part
of the control (Ctrl) or experimental (Exp) group. The ex-
perimental group used only DomCovery while the control
group was allowed to use existing tools such as JSCover for
JavaScript code coverage and web development/debugging
tools such as Firebug [5]. The assignment of participants
to groups was done randomly. None of the participants had
any previous experience with DomCovery and all of them
volunteered for the study.

Independent and Dependent Variables. The tool used
for performing the tasks is our independent variable and
has two levels: DomCovery represents one level, and other
tools used in the experiment represent the other level (i.e.,
JSCover: code coverage tool, Firebug: development/debug-
ging plugin). Task completion time (i.e., measure of effi-
ciency) and correctness (i.e., measure of effectiveness) are
our dependent variables.

Task Design. The subjects were required to perform a set
of tasks pertaining to test case quality analysis.

We designed six tasks in total, presented in Table 2. The
first four tasks were specifically designed to evaluate cor-
rectness and time savings of our tool in finding explicit, ac-
tionable, implicit and checked elements. We printed a spe-
cific state of the Phormer application (as seen in a browser)
and asked the participants to highlight the explicit, implicit,
checked, and actionable elements. We counted the number
of correct identifications of the elements as a correctness
measure. Tasks 5 and 6 were designed to evaluate the use-
fulness of DomCovery in helping users to identify tested
and untested features of the application. We extracted a list
of features from the documentation of Phormer. For exam-
ple, one feature is Photo Rating : users can rate the photos
in a scale of 1 to 5. For task 5, we gave the participants
a list of features on a sheet together with a test suite and
asked them to checkmark the tested features of the applica-
tion. We then counted the number of correct identifications
of tested features. For example, in Task 5, there were eight
features in total out of which only three were tested by the
given test suite. Task 6 was designed similarly, but instead
we asked the participants to identify the untested features
of the application.

Experimental Procedure. After obtaining the consent,
the participants were asked to fill a pre-questionnaire form,
specifying their level of expertise in areas related to web
development and testing. Next, the participants in the ex-
perimental group were trained to use DomCovery for per-
forming the basic operations needed in the study. They were
debriefed on features and capabilities of DomCovery; they
were given the opportunity to use the tool until they felt
comfortable using it. Finally, they were given a user manual



T1
,2
,3
:E
xp

T1
,2
,3
:C
trl

T4
:E
xp

T4
:C
trl

T5
:E
xp

T5
:C
trl

T6
:E
xp

T6
:C
trl

To
ta
l:E
xp

To
ta
l:C
trl

Completion Time
M
in
ut
es
:S
ec
on
ds

3:20

6:40

10:00

13:20

16:40

20:00

Figure 10: Box plots of task completion duration for
experimental (Exp) and control (Ctrl) groups.

of DomCovery, which could be used during the experiment
if needed. The participants in the control group were given a
tutorial on using JSCover and Firebug, although most were
already familiar with Firebug.

After the training sessions, the participants were asked
to perform the six tasks. We collected and measured total
task completion duration for all tasks. For assessing the
correctness, we had prepared an answer-key for each task
separately, prior to the study.

Finally, participants were asked to fill out a short post-
questionnaire form to gather qualitative feedback.

Results. Figure 10 shows box plots of task completion
time. We measured the amount of time (minutes) spent
on each task by the participants, and compared the task
completion duration for experimental and control groups us-
ing a t-test. There was a statistically significant difference
(p-value=0.05) in the task completion time for DomCov-
ery (Mean=4:23, SD=2:04) and other tools (Mean=11:59,
SD=5:37).To investigate whether certain categories of tasks
(Table 2) benefit more from using DomCovery, we then
tested each task separately. The results showed improve-
ments in time for all tasks. The improvements were statisti-
cally significant for tasks 1–4, and showed a 174% reduction
in time on average, with DomCovery. For tasks 5 and 6 the
completion time were not statistically significant. Our re-
sults show that on average, participants using DomCovery
require 66% less time than the control group, for performing
the same tasks.

Figure 11 shows box plots for the correctness measure-
ments of the individual tasks and in total. We analyzed the
scores of correctness (percentage) of participants’ answers
using a t-test. The results were in favour of DomCovery
and were statistically significant (p-value=0.05) in tasks 1,
2, and 4: DomCovery (Mean=84%, SD=17%) and other
tools (Mean=65%, SD=34%). The results show that, on av-
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Figure 11: Box plots of task completion correctness
for experimental (Exp) and control (Ctrl) groups.

erage, participants using DomCovery achieved 22% higher
correctness than those in the control group.

6. DISCUSSION

6.1 Identifying Covered Elements
Identifying explicit elements covered was relatively easier

for the participants in the control group compared with find-
ing implicit elements. The reason is that explicit elements
can be identified by inspecting the code of the test cases.
However, many industrial test cases use patterns such as
Page Objects [8] to hide element location information. In
these scenarios, locating event explicitly covered elements
becomes difficult for testers. As our results show, having an
automated tool can significantly reduce the efforts involved
in finding these elements.

Locating implicit elements covered was the most challeng-
ing task for the control group. The participants spent most
of their time trying to find these elements. Most of the par-
ticipants used Firebug to trace the JavaScript code. With
dynamic characteristics of client-side code, even one of the
most experienced participants made a mistake in spotting
implicit elements in the control group. For example, click-
ing a DOM element triggered a JavaScript function, which
in turn read values of a specific DOM element when a certain
condition held. The participant assumed that the condition
always held and identified that element as implicitly covered
by the test case, which was wrong. Other intricate charac-
teristics of modern web applications such as event capturing
and bubbling further complicate the understanding [14] and
identification of implicit elements. DomCovery makes this
task easy by dynamically tracking JavaScript-DOM interac-
tions and providing a visualized report of all the implicitly
covered elements to the user.



6.2 Identifying (Un)tested Features
To perform tasks 5 and 6, the participants in the experi-

mental group followed highlighted (meaning covered) states
in the state-flow graph visualized in the coverage report.
They mapped these states to the given list of features. Al-
though a DOM state does not directly map to a feature,
the participants could identify the features under test by in-
vestigating multiple covered states of the web application.
Although the results were not statistically significant, par-
ticipants using DomCovery performed the tasks more ac-
curately and faster. Particularly for task 6, participants in
the control group struggled to find the untested features.

6.3 Post-questionnaire Feedback
All participants using DomCovery found the visual DOM

coverage report helpful, especially how it gave them a broad
overview of the covered states of the web application. Some
mentioned that they liked the implicit element coverage the
most, since those are hard to find manually. Some partici-
pants mentioned that although they found the graph visu-
alization useful, if the application is very large, the graph
could become difficult to navigate. Currently DomCovery
supports zooming in and out so that users can concentrate
their focus on the states that matter most to them. Oth-
ers suggested to include a navigation flow between covered
states when interacting with the state-flow graph so that
they do not have to go back and forth in order to go to
another state.

6.4 Threats to Validity
A threat to the validity of our results could be that the

participants are not representative of industrial web develop-
ers. We tried to mitigate this threat by recruiting graduate
students who possessed moderate expertise with web devel-
opment. Our study could, however, benefit from an increase
in the number and expertise of the participants. Another
threat could pertain to the fact that the test cases were writ-
ten by students. Unfortunately, very few open source web
applications are available that have (working) test cases. To
mitigate this threat, again we made sure the undergrad stu-
dents had expertise in the web development and testing area.
Concerning reproducibility of our results, DomCovery, the
experimental objects, and all our experimental results are
available for download making the study replicable.

7. RELATED WORK
The most common approach to assess the quality of a

test suite in the literature is through code coverage [34].
However, code coverage has limitations when it comes to
test suite assessment [32, 26, 20, 18, 19, 15]. Most empirical
studies conclude that code coverage metrics are too generic
and not adequate for assessing test quality. Researchers have
proposed various domain-specific test adequacy criteria to
mitigate this problem, which span from security-aware, GUI
event based, to database-level criteria.

Koster and Kao [21] propose a state coverage method for
assessing the adequacy of unit tests. Although they consider
the state of the application, their approach works on unit
test level and does not apply to the web applications.

Memon et al. [22, 16] propose event-based interaction cov-
erage criteria for GUI test cases of desktop applications.
They exploit the hierarchical structure of the GUI to iden-
tify important events to be covered. Their approach, on

covering event sequences is similar to our state transition
criteria. We propose a whole set of new adequacy criteria
that are geared towards modern web applications.

Sampath et al. [29] introduce page-level coverage crite-
ria such as URL coverage. They report the coverage of a
test suite as static pages visited during test execution for
a given web application. However with increasing usage of
JavaScript and dynamic DOM, the applicability of this ap-
proach is limited to traditional multi-page web applications.
Our approach focuses on modern dynamic web applications
that go through DOM mutations at runtime.

Dao et al. [17] discuss a set of criteria for security testing,
including wrapper coverage, vulnerability-aware sink cover-
age, and vulnerability-aware wrapper coverage. Their ap-
proach is used for evaluating the quality of a test suite in
revealing security vulnerabilities. Sakamoto et al. [28] use
template variable coverage, accompanied with a framework,
to generate test cases that improve that coverage. However,
this criteria works only on web applications that are gener-
ated using template engines.

Alalfi et al. [12, 13] present a coverage criterion for dy-
namic web applications based on page access, use of server
variables, and interactions with the backend database. The
goal of their coverage criteria is different from our work.
Namely the are interested in data related coverage, whereas
we focus on client-side functionality coverage.

Finally, Zou et al. [35] propose a hybrid coverage criteria,
which combines HTML coverage with statement coverage
of the code. However, their approach and evaluation seems
preliminary; they support neither inter-state coverage es-
timation nor intra-sate element coverage extraction as our
work does.

8. CONCLUSION
In this paper, we presented six DOM-based coverage cri-

teria for assessing the quality of web application test suites.
Our criteria fall into two main categories of inter and intra-
state coverage. Inter-state criteria include DOM state and
transition coverage. Intra-state criteria pertain to explicit,
implicit, checked, and actionable DOM element coverage.
We presented the implementation of our approach in a tool
called DomCovery. DomCovery generates a visual cov-
erage report along with coverage percentages. The results
of our empirical evaluation show that DOM-based cover-
age criteria are not correlated with traditional code-based
coverage metrics. Our controlled experiment with ten par-
ticipants shows that DomCovery can improve time (66%)
and correctness (22%) of tasks related to test suite quality
analysis of web applications.

For future work, we plan to include more fine-grained
DOM-based coverage criteria such as DOM attribute cov-
erage, build a state navigation flow for DomCovery, and
perform an industrial experiment to further assess the effec-
tiveness of our approach.
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