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Abstract—Due to the increasing popularity and diversity of
mobile devices, developers write the same mobile app for different
platforms. Since each platform requires its own unique environ-
ment in terms of programming languages and tools, the teams
building these multi-platform mobile apps are usually separate.
This in turn can result in inconsistencies in the apps developed.
In this paper, we propose an automated technique for detecting
inconsistencies in the same native app implemented for iOS and
Android platforms. Our technique (1) automatically instruments
and traces the app on each platform for given execution scenarios,
(2) infers abstract models from each platform execution trace, (3)
compares the models using a set of code-based and GUI-based
criteria to expose any discrepancies, and finally (4) generates
a visualization of the models, highlighting any detected incon-
sistencies. We have implemented our approach in a tool called
CHECKCAMP. CHECKCAMP can help mobile developers in
testing their apps across multiple platforms. An evaluation of
our approach with a set of 14 industrial and open-source multi-
platform native mobile app-pairs indicates that CHECKCAMP
can correctly extract and abstract the models of mobile apps
from multiple platforms, infer likely mappings between the
generated models based on different comparison criteria, and
detect inconsistencies at multiple levels of granularity.

Index Terms—Cross-platform compatibility, mobile apps, dy-
namic analysis, Android, iOS

I. INTRODUCTION

Recent industry surveys [5], [4] indicate that mobile devel-
opers are mainly interested in building native apps, because
they offer the best performance and allow for advanced UI
interactions. Native apps run directly on a device’s operating
system, as opposed to web-based or hybrid apps, which run
inside a browser.

Currently, iOS [3] and Android [1] native mobile apps1

dominate the app market each with over a million apps in
their respective app stores. To attract more users, implementing
the same mobile app across these platforms has become a
common industry practice. Ideally, a given mobile app should
provide the same functionality and high-level behaviour on
different platforms. However, as found in our recent study
[33], a major challenge faced by industrial mobile developers
is to keep the app consistent across platforms. This challenge is
due to the many differences across the platforms, from the de-
vices’ hardware, to operating systems (e.g., iOS/Android), and

1In this paper, we focus on native apps; henceforth, we use the terms
‘mobile app’ or simply ‘app’ to denote ‘native mobile app’.

programming languages used for developing the apps (e.g.,
Objective-C/Java). We also found that developers currently
treat the mobile app for each platform separately and manually
perform screen-by-screen comparisons, often detecting many
cross-platform inconsistencies [33]. This manual process is,
however, tedious, time-consuming, and error-prone.

In this paper, we propose an automated technique, called
CHECKCAMP (Checking Compatibility Across Mobile Plat-
forms), which for the same mobile app implemented for iOS
and Android platforms (1) instruments and generates traces of
the app on each platform for a set of user scenarios, (2) infers
abstract models from the captured traces that contain code-
based and GUI-based information for each pair, (3) formally
compares the app-pair using different comparison criteria to
expose any discrepancies, and (4) produces a visualization of
the models, depicting any detected inconsistencies. Our work
makes the following main contributions:
• A technique to capture a set of run-time code-based and

GUI related metrics used for generating abstract models
from iOS and Android app-pairs;

• Algorithms along with an effective combination of mobile
specific criteria to compute graph-based mappings of
the generated abstract models targeting mobile app-pairs,
used to detect cross-platform app inconsistencies;

• A tool implementing our approach, called CHECK-
CAMP, which visualizes models of app-pairs, high-
lighting the detected inconsistencies. CHECKCAMP is
publicly available [15];

• An empirical evaluation of CHECKCAMP through a
set of seven industrial and seven open-source iOS and
Android mobile app-pairs.

Our results indicate that CHECKCAMP can correctly ex-
tract abstract models of the app-pairs to infer likely mappings
between the generated abstract models based on the selected
criteria; CHECKCAMP also detects 32 valid inconsistencies
in the 14 app-pairs.

II. PERVASIVE INCONSISTENCIES

A major challenge faced by industrial mobile developers is
to keep the app consistent across platforms. This challenge
and the need for tool support emerged from the results of
our qualitative study [33], in which we interviewed 12 senior
app developers from nine different companies and conducted a



Fig. 1: The overview of our technique for behaviour checking across mobile platforms.

semi-structured survey, with 188 respondents from the mobile
development community.

In this work, to identify the most pervasive cross-platform
inconsistencies between iOS and Android mobile app-pairs,
we conducted an exploratory study by interviewing three
industrial mobile developers, who actively develop apps for
both platforms. The following categories and examples are
extracted from the interviews as well as a document shared
with us by the interviewees, containing 100 real-world cross-
platform mobile app inconsistencies. Ranked in the order of
impact on app behaviour, the most pervasive inconsistency
categories are as follows:
Functionality: The highest level of inconsistencies is missing

functionality; e.g., “Notes cannot be deleted on Android
whereas iOS has the option to delete notes.” Or “After
hitting send, you are prompted to confirm to upload –
this prompt is missing on iOS.”

Data: When the presentation of any type of data is different
in terms of order, phrasing/wording, imaging, or text/time
format; e.g., “Button on Android says ‘Find Events’ while
it should say ‘Find’ similar to iOS.”

Layout: When a user interface element is different in terms of
its layout such as size, order, or position; e.g., “Android
has the ‘Call’ button on the left and ‘Website’ on the
right - iPhone has them the other way around.”

Style: The lowest level of inconsistency pertains to the user
interface style; i.e., colour, text style, or design differ-
ences, e.g., “iOS has Gallery with a blue background
while Android has Gallery with a white background”.

We propose an approach that is able to automatically detect
such inconsistencies. Our main focus is on the first two since
these can impact the behaviour of the apps.

III. APPROACH

Figure 1 depicts an overview of our technique called
CHECKCAMP. We describe the main steps of our approach
in the following subsections.

A. Inferring Abstract Models

We build separate dynamic analyzers for iOS and Android,
to instrument the app-pair. For each app-pair, we execute the
same set of user scenarios to exercise similar actions that
would achieve the same functionality (e.g., reserving a hotel
or creating a Calendar event). As soon as the app is started,
each analyzer starts by capturing a collection of traces about
the runtime behaviour, UI structures, and method invocations.
Since the apps are expected to provide the same functionality,
our intuition is that their traces should be mappable at an
abstract level. The collected traces from each app are used to
construct a model:

Definition 1 (Model). A Model µ for a mobile app M is a
directed graph, denoted by a 4-tuple < α, η, V, E > where:

1) α is the initial edge representing the action initiating the
app (e.g., a tap on the app icon).

2) η is the node representing the initial state after M has
been fully loaded.

3) V is a set of vertices representing the states of M. Each
υ ∈ V represents a unique screen of M annotated with a
unique ID.

4) E is a set of directed edges (i.e., transitions) between
vertices. Each (υ1, υ2) ∈ E represents a clickable c
connecting two states if and only if state υ2 is reached
by executing c in state υ1.

5) µ can have multi-edges and be cyclic.

Definition 2 (State). A state s ∈ V represents the user inter-
face structure of a single mobile app screen. This structure
is denoted by a 6-tuple, < γ, θ, τ , λ, Ω, δ >, where γ is
a unique state ID, θ is a classname (e.g., name of a View
Controller in iOS or an Activity in Android), τ is the
title of the screen, λ is a screenshot of the current screen, Ω is
a set of user interface elements with their properties such as
type, action, label/data, and δ is a set of auxiliary properties
(e.g., tag, distance) used for mapping states.



Fig. 2: An edge object of MTG iPhone app with its touched
element and methods.

Definition 3 (Edge). An edge e ∈ E is a transition between
two states representing user actions. It is denoted by a 6-tuple,
< γ, θ, τ , λ, Ω, δ >, where γ is a unique edge ID, θ is a
source state ID, τ is a target state ID, λ is a list of methods
invoked when the action is triggered, Ω is a set of properties of
a touched element2 (i.e. type, action, label/data) and δ is a set
of auxiliary properties (e.g., tag, distance) used for mapping
purposes.

1) iOS App Model Inference: In iOS, events can be of
different types, such as touch, motion, or multimedia events.
We focus on touch events since the majority of actions are
of this type. A touch event object may contain one or more
finger gestures on the screen. It also includes methods for
accessing the UI view in which the touch occurs. We track the
properties of the UI element that the touch event is exercised
on. To capture this information, we employ the Category and
Extension [9] feature of Objective-C, which allows adding
methods to an existing class without subclassing it or knowing
the original classes. We also use a technique called Method
Swizzling [31], which allows the method implementation of
a class to be swapped with another method. To that end, we
define a category extension to the UIApplication class and
a new method in this category. We then swap a built-in method,
responsible for sending an event, with the new method. The
swap method call modifies the method implementations such
that calls to the original method at runtime result in calls to our
method defined in the category. Additionally, we capture the
invoked method calls after an event is fired. We use aspects to
dynamically hook into methods and log method invocations.
Once an event is fired at runtime, all the invoked methods and
their classes are traced and stored in a global dataset.

For each event fired, we add an edge to the model. Figure 2
shows an edge object of an iPhone app (called MTG, used
in our evaluation in Section V) including its captured touched
element and invoked methods.

To construct the model, we need to capture the resulting
state after an event is triggered. In iPhone apps, a UI state
includes the current visible view controller, its properties,
accompanied by its set of UI elements. We use a delay to wait
for the UI to update properly after an event, before triggering

2 A touched element is the UI element which has been exercised when executing a
scenario (e.g., a cell in a table, a button, a tab in a tab bar).

S t a t e (ID ,ClassName ,Title , #Elements )
(S4 ,DecklistCounterController ,− ,8)

UIElements
(Type ,Label ,Action ,Details )
(UIButton , 1 ,button1Pressed,−)
(UIButton , 2 ,button2Pressed,−)
(UIButton , 3 ,button3Pressed,−)
(UIButton , 4 ,button4Pressed,−)
(UILabel ,Total : 0 ( + 0 ) ,− ,−)
(UIButton ,Reset ,resetPressed,−)
(UIButton ,Undo ,undoPressed,−)
(UITabBar,− ,itemClicked , 5tabs )

Fig. 3: A snapshot of a state in MTG iPhone app with its
captured UI element objects.

another event on a UI element. Based on our empirical analy-
ses, a two second waiting time is enough for most iOS apps.
An event could potentially move the UI forward, backward,
or have no effect at all. If the action results in staying in
the current view controller, different state mutations could
still occur. For instance, UI element(s) could dynamically
be changed/added/removed, or the main view of the view
controller be swapped and replaced by another main view with
a set of different UI element(s). At a low level, moving the UI
forward or backward loads a view controller in iPhone apps.
Similar to capturing properties of each edge, our approach for
capturing UI-structure of each state, combines reflection with
code injection to observe loading view controller methods.

Once we obtain a reference to the view controller, our
approach takes a snapshot of the state and captures all the UI
element objects in an array associated to the view controller,
such as tables with cells, tab bars with tab items, tool bar
items, navigation items (left, right, or back buttons), and it
loops through all the subviews (e.g., labels, buttons) of the
view controller. For each of them, we create an element object
with its ID, type, action3, label, and details.

Figure 3 shows a snapshot of a state in the MTG iPhone
app including its UI element objects. For instance, the top left
button in Figure 3 has ‘UIButton’ as type, ‘1’ as label,
‘button1Pressed’ as action (the event handler). We set
details for extra information such as the number of cells
in a list. Using this information, we create a state node in the
model.

2) Android App Model Inference: At a high level, our
Android dynamic analyzer intercepts method calls executed
while interacting with an app and captures UI information
(state) upon the return of these methods. Similar to iOS,
Android has different types of events. In our approach, we
focus on user-invoked events since they contribute to the
greatest changes in the UI and allow the app to progress
through different states. These types of events get executed
when a user directly interacts with the UI of an app, for
instance by clicking a button or swiping on the screen. When a
user interacts with a UI element, the associated event listener
method is invoked, and the element is passed as one of its
arguments. To create a new edge in our model, we inspect

3 action pertains to the event handler, representing the method that will handle the
event.



Algorithm 1: Pruning a Given Model
input : State Graph (G) of a Given Model (M)
output: Pruned State Graph (P)

1 begin
2 S ← GETVERTICES(G)
3 E ← GETEDGES(G)
4 foreach i = 0, i <COUNT(S), i++ do
5 s1 ← S[i]
6 foreach j = i+ 1, j <COUNT(S), j++ do
7 s2 ← S[j]
8 if s1(class) ≡ s2(class) &

s1(#elements) ≡ s2(#elements) then
9 elFlag ← TRUE

10 foreach e1 ∈ s1.Elements do
11 e2 ← GETELEMENTATINDEX(s1, e1)
12 if e1.type 6= e2.type ‖

e1.action 6= e2.action then
13 elFlag ← FALSE
14 break
15 end
16 end
17 if elF lag then
18 REMOVEDUPLICATESTATE(S,s2)
19 UPDATEEDGES(E,s1,s2)
20 end
21 end
22 end
23 end
24 return P(S,E)
25 end

these arguments and extract information about the UI element
that was interacted with by the user. This inspection also
allows us to separate user-invoked events from other types, by
checking whether the method argument was a UI element such
as a button or table that the user can interact with. We compare
the argument against the andoird.widget package [11], which
contains visual UI elements to be used in apps.

In our android analyzer, a UI state includes the current
visible screen, its properties, accompanied by its set of UI
elements. When an executed method returns, we use the
activity that called the method to retrieve information about
the state of the UI. To access the UI layout of the current
view, we use a method provided by the Android library
called getRootView [11]. This method returns a ViewGroup
object, which is a tree-like structure of all the UI elements
present in the current screen of the app. We traverse this
tree recursively to retrieve all the UI elements. Additionally,
we capture some unique properties of the UI elements such
as labels for TextViews and Buttons, and number of
items for ListViews. These properties are used during the
mapping phase to compare iOS and Android states at a lower
level.

B. Mapping Inferred Models

Next, we analyze each model-pair to infer likely mappings
implied by the states and edges through a series of phases.
Prior to the Mapping phase, two preprocessing steps are
required namely Pruning and Merging.

1) Pruning: The first step in our analysis, is to prune the
graph obtained for each platform, in order merge duplicate
states. This step is required as our dynamic analyzers capture

any state we encounter after an event is fired without checking
if it is a unique state or a duplicate state. This check can be
carried out either separately in each analyzer tool or once in
the mapping phase. Having it in the mapping phase ensures
that the pruning procedure is consistent across platforms.
Identifying a new state of a mobile app while executing and
changing its UI is challenging. In order to distinguish a new
state from previously detected states, we compare the state
nodes along with their properties, as shown in Algorithm 1.

As input, Algorithm 1 takes all States and Edges, obtained
from the graph (G), and outputs a pruned graph (P). We loop
through all the states captured (line 4), and compare each state
with the rest of state space (line 6) based on their classes
and number of UI elements (line 8). Next, we proceed by
checking their UI elements (line 10) for equivalency of types
and actions (line 12). Thus, data changes do not reflect a
unique state in our algorithm. In other words, two states are
considered the same if they have the same class and set of
UI elements along with their respective properties. Detected
duplicate states are removed (line 18) and the source and target
state IDs for the edges are adjusted accordingly (line 19).

2) Merging: Platform-specific differences that manifest in
our models are abstracted away in this phase. This step is
required since such irrelevant differences can occur frequently
across platforms. For instance, the iPhone app may offer
More as an option in its tab controller which is different
from the Android app. If the iPhone app has more than five
items, the tab bar controller automatically inserts a special
view controller (called the More view controller) to handle
the display of additional items. The More view controller
lists the additional view controllers in a table, which appears
automatically when it is needed and is separate from custom
content. Thus, our approach merges the More state with the
next state (view controller) to abstract away iPhone differ-
ences that are platform-specific and as such irrelevant for
our analysis. Similarly, the Android app may offer an option
Menu panel to provide a set of actions. The contents of the
options menu appear at the bottom of the screen when the user
presses the Menu button. When a state is captured on Android
and then the option Menu is clicked, our approach merges
the two states together to abstract away Android differences.
Other differences such as Android’s hardware back button vs.
iPhone’s soft back button are taken into account in our graph
representations.

3) Mapping: The collected code-based (e.g., classname)
and GUI-based (e.g., screen title) data for states and edges
are used in this phase to map the two models, as shown
in Algorithm 2. As input, Algorithm 2 takes iPhone (IG)
and Android (AG) graphs, produced after the pruning and
merging phases, and outputs those models with a set of
computed auxiliary mapping properties for their states and
edges (MIG and MAG). The algorithm operates on the basis
of the following assumptions (1) the model of an app starts
with an initial edge that leads to an initial state and (2)
conceptually, both models start with the same initial states.
An array, edgePairs, holds the initial iPhone and Android



Algorithm 2: Mapping two (iOS & Android) Models
input : iPhone State Graph (IG)
input : Android State Graph (AG)
output: IG with Mapping Properties (MIG)
output: AG with Mapping Properties (MAG)

1 begin
2 IS ← GETVERTICES(IG)
3 AS ← GETVERTICES(AG)
4 IE ← GETEDGES(IG)
5 AE ← GETEDGES(AG)
6 edgePairs[0] ← INSERTEDGEPAIR(IE[0], AE[0])
7 foreach i = 0, i <COUNT(edgePairs), i++ do
8 pair ← edgePairs[i]
9 if NOTMAPPED(pair) then

10 s1 ← GETSTATE(IS,pair[iphTrgtId])
11 s2 ← GETSTATE(AS,pair[andTrgtId])
12 iphEdges ← GETOUTGOINGEDGES(s1,IE)
13 andEdges ← GETOUTGOINGEDGES(s2,AE)
14 /*Find closest edge-pairs*/
15 nextPairs ← FINDEDGEPAIRS(iphEdges,andEdges)
16 SETSTATEMAPPINGPROPERTIES(s1,s2)
17 SETEDGEMAPPINGPROPERTIES(nextPairs)
18 end
19 foreach j = 0, j <COUNT(nextPairs),j++ do
20 edgePairs[i+j+1] ← INSERTEDGEPAIR(nextPairs[j])
21 end
22 end
23 return (MIG,MAG)
24 end

edges (line 6) and other edge-pairs are inserted through the
main loop (line 20). To find the edge-pairs, we first obtain the
initial iPhone and Android states (line 10 and 11) based on the
target state IDs in the initial edge-pair. We then obtain all the
outgoing iPhone edges (iphEdges in line 12) and Android
edges (andEdges in line 13) from the already mapped state-
pair. To identify closest iPhone and Android edge-pairs (line
15), we loop through the outgoing edges and calculate σEd,
based on a set of comparison criteria as defined in Formula 1:

σEd = min
∀Ediph∈iphEdges

∀Edand∈andEdges

(
f(Ediph, Edand)∑Nflags

i=1 Fi

) ∗ 100 (1)

where

f(Ediph, Edand) = Faction ∗ LD(Iphaction, Andaction)

+ Flabel ∗ LD(Iphlabel, Andlabel)

+ Ftype ∗ Corresponds(Iphtype, Andtype)

+ Fclass ∗ LD(Iphclass, Andclass)

+ Ftitle ∗ LD(Iphtitle, Andtitle)

+ Felms ∗
NElPairs∑

i=1

Similarity(Iphelms, Andelms)

+ Fmethods ∗ LD(Iphmethods, Andmethods)

with the action, label, and type of the touched element,
classname, title and attributes of UI elements in the
target state, and the method calls invoked by the event.

The edge-pair with the lowest computed σEd value is
selected as the closest Android-iPhone edge-pair and their
mapping properties are appended to the model accordingly
(line 17). To instantiate different combinations of this metric,
we use a set of binary flags, denoted as Faction, Flabel, Ftype,
Fclass, Ftitle, Felms and Fmethods. The value of each flag

is 1 or 0 to activate or ignore a criterion. We propose six
different instantiations, listed in Table I, and compare them
in our evaluation to assess their effectiveness (discussed in
Section V).

TABLE I: Six combinations for mapping.

ID Combinations of Comparison Criteria

Comb1 ClassName
Comb2 TouchedElement (action, label, type)
Comb3 TouchedElement+ClassName
Comb4 TouchedElement+ClassName+Title
Comb5 TouchedElement+ClassName+Title+UIElements
Comb6 TouchedElement+ClassName+Title+UIElements+Methods

LD in Formula 1 is a relative Levenshtein Distance [37] be-
tween two strings, calculated as the absolute distance divided
by the maximum length of the given strings (See Formula 2).
Some string patterns that are known to be equivalent are
chopped from the strings before calculating their distance.
For instance, the words “Activity” in Android classname
and “ViewController”/“Controller” in iPhone classname are
omitted.

LD(str, str
′
) =

distance(str, str′)

maxLength(str, str′)
(2)

Corresponds in Formula 1 is used for comparing the ele-
ment’s type based on the corresponding Android-iPhone UI
element equivalent mappings. Since iOS and Android have
different UI elements, a mapping is needed to find equivalent
widgets. We analyzed GUI elements that exist for both native
Android [2] and iPhone [23] platforms and identified the
differences and similarities on the two platforms. We used
and extended upon existing mappings that are available online
[17]. During the interview sessions (See Section II), we cross-
validated over 30 control, navigation, and UI element map-
pings (such as button, label, picker and slider) that function
equivalently on the two platforms, so that the generated models
can be used in this phase. We have made these UI equivalent
mappings publicly available [15]. Corresponds returns 1 if two
elements are seen as equivalent and thus can be mapped, and
0 otherwise.

Further, Similarity in Formula 1 is a relative number ([0,1])
between two sets of elements in the two (target) states calcu-
lated as follows:

Similarity(elAry, elAry
′
) =

elPairCount(elAry, elAry′)

maxCount(elAry, elAry′)
(3)

where the number of elements that can be mapped is divided
by the maximum size of the given arrays. Similar to the
touched element, action, label, and type properties of
UI elements are used to compute mapping between them.

Finally, going back to our algorithm, mapped edge-pairs
are inserted to the main array (line 20), and the next set of
states and edges are considered for mapping recursively until
no other outgoing edges are left.



IPH AND

Fig. 4: Visualization of mapping inferences for MTG
iPhone (left) and Android (right) app-pairs. The result
indicates 3 unmatched states shown with red border
(including 2 functionality inconsistencies where iPhone
has more states than Android and 1 platform specific
inconsistency with MoreViewsController on iPhone). Other
5 matched states have data inconsistencies shown with
yellow border.

4) Detecting Inconsistencies: Any unmatched state left
without mapping properties from the previous phase is con-
sidered as a functionality inconsistency. For a matched state-
pair, since their incoming edges are mapped, we assume that
these target states should be equivalent conceptually. Data
inconsistencies pertain to text properties of the screen such
as titles, labels, buttons, and also the number of cells in a
table and tabs. Image related and style related properties are
out of scope. We calculate data inconsistencies, σState, in a
pair of mapped states by computing LD between two titles as
well as text properties of the elements-pairs.

σState = dLD(Iphtitle, Andtitle)e+
NElPairs∑

i=1

dLD(Iphtxt, Andtxt)e

(4)

To compute the correspondence between the elements, we
loop through the two arrays of elements. First, we compare the
elements’ types based on the corresponding Android-iPhone
UI element equivalent mappings [14]. For any two elements
with the same type and a textual label, we compute LD. We
ignore image element types e.g., a button with an image.
Where we have multiple elements of the same type, the lowest
computed LD is selected as the closest elements-pairs. The
σState is added as mapping distance to the models with the
same mapping tag for the two states (line 16). Additionally,
the detected inconsistencies are added to mapping result which
are later manifested through our visualization.

Eventually, at the end of this phase, each state is marked as
either unmatched, matched with inconsistencies or completely
matched in the two models, ready to be visualized in the next
phase. Thus, we automatically detect mismatched screens by
using one platform’s model as an oracle to check another
platform’s model and vice versa.

IPH AND

Fig. 5: Zooming into a selected State (or Edge) repre-
sents detected inconsistencies and UI-structure (or touched
element and methods) information of iPhone (left) and
Android (right) app-pairs.

C. Visualizing the Models

After calculating the likely mappings and detecting potential
inconsistencies, we visualize the iOS and Android models,
side-by-side, colour coding the mapping results. Red, yellow
and dark green border colours around states show unmatched,
matched with inconsistencies and completely matched states,
respectively. Matched states and edges share the same mapping
tag>. Figure 4 depicts an example of the output of the visual-
ization phase (it is minimized because of space restrictions).
The models can be zoomed in and list detected inconsistencies
as well as UI-structure information on selected state(-pair) or
touched element and methods information on selected edge(-
pair) (See Figure 5).

IV. TOOL IMPLEMENTATION

Our approach is implemented in a tool called CHECK-
CAMP [15].

Its iPhone analyzer is implemented in Objective-C. We use
and extend a number of external libraries. ASPECTS [6] uses
Objective-C message forwarding and hooks into messages
to enable functionality similar to Aspect Oriented Program-
ming for Objective-C. DCINTROSPECT [10] is a library for
debugging iOS user interfaces. We extend DCINTROSPECT
to extract a UI element’s action message, target object, it’s
properties and values.

The Android analyzer is implemented in Java (using An-
droid 4.3). To intercept method calls, we rely mainly on
ASPECTJ.

Our Mapping and visualization engine is written in
Objective-C and implements the states recognition and the
states/edges mapping steps of the technique. The output of the
mapping engine is an interactive visualization of the iOS and
Android models, which highlights the inconsistencies between
the app-pairs. The visualization is implemented as a web
application and uses the CYTOSCAPE.JS library [14], which
is a graph theory library to create models.

V. EVALUATION

To evaluate the efficacy of our approach we conducted an
empirical evaluation, which addresses the following research
questions:



TABLE II: Characteristics of the experimental objects, together with total number of edges, unique states, elements
and manual unique states counts (MC) across all the scenarios.

#LOC #Edges #Unique States #Elements #MC States
ID App [URL] (#Scenarios) AND IPH AND IPH AND IPH AND IPH AND IPH

1 MTG-Judge [16] (2) 3,139 1,822 23 38 11 14 118 125 11 14
2 Roadkill-Reporter [20], [22] (1) 1,799 474 3 17 1 5 48 103 4 5
3 NotifyYDP [26] (1) 1,673 1,960 5 18 2 5 101 96 2 5
4 Family [13] (1) ∼12K ∼14K 10 24 3 4 93 372 3 4
5 Chirpradio [19], [21] (1) 1,705 881 3 4 1 1 9 24 1 1
6 Whistle [24] (1) 702 111 3 4 1 1 6 4 1 1
7 Redmine [18] (1) 1,602 48 6 8 5 4 68 26 5 4
8 Industry App A (2) 8,376 4,015 37 46 13 14 1,041 1,286 13 13
9 Industry App B (4) ∼70k ∼28K 49 53 22 22 715 796 22 22
10 Industry App C (6) ∼68K ∼30K 76 87 37 36 1,142 1,028 37 36
11 Industry App D (4) ∼69K ∼28K 66 71 29 31 940 1,803 29 29
12 Industry App E (2) ∼68K ∼26K 23 28 11 12 353 265 11 12
13 Industry App F (3) ∼68K ∼28K 53 57 28 28 635 2,182 28 28
14 Industry App G (4) ∼69K ∼29K 53 56 27 27 813 1,128 27 27

RQ1. How accurate are the models inferred by CHECK-
CAMP?

RQ2. How accurate are the mapping methods? Which set of
comparison criteria provides the best results?

RQ3. Is CHECKCAMP capable of detecting valid inconsis-
tencies in cross-platform apps?

A. Experimental Objects

We include a set of seven large-scale industrial and seven
open-source iPhone and Android app-pairs (14 app-pairs in
total). The industrial app-pairs are collected from two local
mobile companies in Vancouver. The open-source app-pairs
are collected from Github. We require the open-source app-
pairs to be under the same GitHub repository to ensure that
their functionally is meant to be similar across iPhone and An-
droid. Table II shows the app-pairs included in our evaluation.
Each objects’s ID, name, resource, and their characteristics in
terms of their size and complexity is also presented. XCODE
STATISTICIAN [25] and ECLIPSEMETRICS [12] are used to
measure lines of code (LOC) in the iOS and Android apps,
respectively.

B. Experimental Procedure

We used iOS 7.1 simulator and a Samsung Galaxy S3, to run
the iPhone and Android apps, respectively. To collect traces,
two graduate students were recruited. First, they installed a
fresh version of each pair of the apps, which were then
instrumented by CHECKCAMP. Next, to collect consistent
traces, we wrote a set of scenarios for our collected app-pairs
and gave each student one scenario for each app to access
all use-cases of the Android or iPhone versions of the apps
according to the given scenarios. Note that the same user
scenario is used for both the iOS and Android versions of an
app. The scenarios used in our evaluation are available online
[15].

Once traces were collected, CHECKCAMP was executed
to obtain the models and mappings. To asses the accuracy
of the models generated (RQ1), we compare the number of
generated unique states to the actual number of unique states

for each app-pair. To form a comparison baseline, we manually
examine and navigate the user scenarios for each app-pair and
document the number of unique states.

To evaluate the accuracy of the mappings (RQ2), we mea-
sure precision, recall, and F-measure for each combination,
listed in Table I, and app-pair as follows:
Precision is the rate of mapped states reported by CHECK-

CAMP that are correct: TP
TP+FP

Recall is the rate of correct mapped states that CHECKCAMP
finds: TP

TP+FN
F-measure is the harmonic mean of precision and recall:

2×Precision×Recall
Precision+Recall

where TP (true positives), FP (false positives), and FN
(false negatives), respectively, represent the number of states
that are correctly mapped (both fully matched or matched with
inconsistencies), falsely mapped, and missed. To document
TP , FP , and FN , associated with each app for our combi-
nations of comparison criteria, we manually examine the apps
and compare the formed baseline against the reported output.

To validate detected inconsistencies (RQ3), for the best
combination calculated in RQ2, we manually examine the
reported inconsistencies in each app-pair. The results from our
analysis are presented in the next section.

Note that, to the best of our knowledge, there are currently
no similar tools to compare the results of CHECKCAMP
against. That is why our baselines are created manually.

C. Results and Findings

RQ1: Inferred models. We ran multiple Scenarios to cover
all the screens/states in each app. For each scenario, the
initial model is constructed over its traces and analyzed by
CHECKCAMP. Table II presents the total number of Edges,
Unique States, and UI Elements for all the scenarios running
on each Android and iPhone app, produced by CHECKCAMP.
The last column of the table also shows the number of Unique
States counted manually. As far as RQ1 is concerned, our
results show that CHECKCAMP is able to identify unique
states of a given iPhone and Android app-pair and generate
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Fig. 6: Plot of precision and recall for the five mapping
combinations of each app-pair.

their state models correctly for each scenario. However, there
is a few cases in our industry iPhone apps (IDs 8 and 11) and
Android app (ID 2) where the number of manual unique states
does not exactly match the number of unique states collected
by the dynamic analyzer. This is mainly because our approach
currently takes into account the type of the class (either
Activity in Android or View Controller in iOS) in defining
a state and thus separate states are captured for different View
Controllers (discussed in Section VI under Limitations).

RQ2: Different mapping combinations. The precision and
recall rates, measured for the first five combinations, listed in
Table I, for our 14 app-pairs, are presented in Figure 6. The F-
measure is shown in Figure 7. We do not include Combination
6 in these figures since apart from the touched element’s event-
handler (i.e., action), comparing the rest of the method calls
did not improve the mapping (discussed in Section VI under
Conclusive Comparison Criteria). As far as RQ2 is concerned,
our results show that CHECKCAMP is highly accurate in
mapping state-pairs. As expected, the results are higher in the
open-source apps due to the relative simplicity compared to
the industry apps. The comparisons in Figure 6 and Figure 7
reveal that Combination 5 followed by Combination 4 provide
the best mapping results in recall, precision, and F-measure for
the industry apps. While the results of the combinations have
less variation in the open-source apps, Combination 2 shows
the best results for them. For the best combinations:
• The recall is 1 for the open-source apps, and for the

industry apps it oscillates between 0.68–1 (average 0.88)
meaning that our approach can successfully map most of
the state-pairs present in an app-pair.

• The precision is 1 for the open-source apps, and for the
industry apps it oscillates between 0.88–1 (average 0.97),
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Fig. 7: F-measure obtained for the five mapping combina-
tions on each app-pair.

which is caused by a low rate of false positives (discussed
in Section VI under Limitations).

• The F-measure is 1 for open-source apps, and varies
between 0.75–1 (average 0.92), for industry apps.

RQ3: Valid inconsistencies. As far as RQ3 is concerned, for
the best combinations calculated in RQ2, Table III depicts the
number of reported inconsistencies by CHECKCAMP along
with some examples. We manually examined and validated
(inconsistency categories) in each app-pair across the scenar-
ios. We also computed the average rank and percentage of
severity of the valid detected inconsistencies. The used severity
ranks are presented in Table IV, which are adopted from
Bugzilla [7] and slightly adapted to fit inconsistency issues
in mobile apps. We computed the percentage of the valid
inconsistencies’ severity as the ratio of the average severity
rank to the maximum severity rank (which is 5).

We found a number of valid functionality inconsistencies in
the open-source apps, and interestingly, two in the industrial
apps (IDs 10 and 12). However, in some app-pairs, functions
such as email clients or opening browsers behaved differently
on the two platforms. For instance, in the case of app-pair with
ID 3, opening browsers and email clients take the Android app
user to outside of the application while that is not the case in
the iPhone app. As such, the two models have mismatched
states in Table II as CHECKCAMP is not capturing states
outside of the app.

Among the data inconsistencies in Table III, are incon-
sistencies in the number of cells and text of titles, labels,
and buttons. Most of the false positives in the reported data
inconsistencies (in particular in app-pair with ID 8) are due to
the UI structure of a state being implemented differently on
the two platforms (discussed in Section VI under Limitations).



TABLE III: Number of reported inconsistencies by CHECKCAMP, validated, average and percentage of their severity
with examples in each app-pair.

ID #Reported (Categories) #Validated (Categories) Severity (Avg,%) Examples of Reported Inconsistencies

1 13 (2 func, 11 data) 13 (2 func, 11 data) 2.6 52% Android missing ‘Draft Time’/‘Update’ functionality (Figure 4)
# table cells: iPhone(12628) vs. Android(6336)

2 4 (3 func, 1 data) 1 (1 func) 5 100% Android missing ‘Help’ functionality
3 2 (2 data) 2 (2 data) 2 40% Title: iPhone ‘Notify YDP’ vs. Android ‘’
4 3 (1 func, 2 data) 1 (1 func) 5 100% Android missing ‘Change Password’ functionality
5 1 (1 data) 1 (1 data) 2 40% Button: iPhone ‘’ vs. Android ‘Play’
6 0 0 – – –
7 5 (1 func, 4 data) 5 (1 func, 4 data) 2.6 52% iPhone missing a functionality
8 14 (14 data) 2 (2 data) 2 40% Button: iPhone ‘Reset’ vs. Android ‘RESET’
9 2 (2 data) 0 – – –
10 5 (1 func, 4 data) 3 (1 func, 2 data) 3 60% iPhone missing ‘Map’ functionality
11 2 (2 data) 1 (1 data) 2 40% Title: iPhone ‘May 14’ vs. Android ‘Schedule’
12 2 (1 func, 1 data) 2 (1 func, 1 data) 3.5 70% Android missing ‘Participants’ functionality
13 1 (1 data) 1 (1 data) 2 40% Title: iPhone ‘Details’ vs. Android ‘Hotels’
14 0 0 – – –

All 54 (9 func, 45 data) 32 (7 func, 25 data) 3 60% –

TABLE IV: Bug severity description.

Severity Description Rank

Critical Functionality loss, no work-around 5
Major Functionality loss, with possible work-around 4
Normal Makes a function difficult to use 3
Minor Not affecting functionality, behaviour is not natural 2
Trivial Not affecting functionality, cosmetic issue 1

Thus, CHECKCAMP could not map the elements correctly
and reported incorrect inconsistencies.

VI. DISCUSSION

In this section, we discuss our general findings, limitations
of CHECKCAMP, and some of the threats to validity of our
results.

A. Comparison Criteria

Among the code-based and GUI-based comparison criteria,
our evaluation shows that the most effective in the mapping
phase pertains to information about the text, action, and type of
UI elements that events are fired on, as well as the classname
and title of the states. In addition, while we extract a set of
method calls after an event fires, our investigation shows that
only the action of the touched UI element is effective. We
found that even after omitting OS built-in methods, such as
delegate methods provided by the native SDK, or library API
calls, the method names are quite different in the two platforms
and thus provided no extra value in the mapping phase.

B. Limitations

There are some limitations to our current implementation.
First, deciding what constitutes a UI state is not always straight
forward. For instance, consider two screens with a list of
different items. In the Android version of an app the same
Activity is used to implement the two screens while on the
iPhone version separate View Controllers exist and currently
as shown in Algorithm 1, the type of the class (either Activity

in Android or View Controllers in iOS) is checked (line 8) for
identifying a state and thus (mistakenly) separate states are
captured in iPhone.

Next, the low rate of false positives in RQ2 include ex-
amples where even considering our selected properties all
together, CHECKCAMP still lacks enough information to
conclude correct mappings. For instance, if an ImageButton
which contains an image as a background is exercised, there
would be no text/label to be compared. Another limitation is
with respect to the string edit distance used in our algorithm;
for instance, the two classnames DetailedTipsViewController
and TipsDetailActivity are falsely reported as being different
based on their distance. This means, if the outgoing edges can
not be mapped correctly in Algorithm 2, CHECKCAMP halts
and cannot go any further. Backtracking based approaches can
be considered to recover if it performs incorrect matches.

Another limitation is related to the high false-positive rate
in the reported data inconsistencies in RQ3. In states with
multiple elements of the same type, e.g., buttons with images
or text properties, our programatic approach in CHECKCAMP
cannot map them correctly. Another reason, occurred in some
cases, is the UI structure of a state-pair is implemented
differently. For instance, in an Android state, buttons exist
with text properties whereas in the corresponding iPhone state,
those texts are implemented through labels along with buttons.
However, this limitation could be addressed through image-
processing techniques [28], [42] on the iPhone and Android
screenshots collected by the dynamic analyzers. This could
enable the detection of other types of inconsistencies between
app-pairs including image-related data, layout, or style.

C. Applications
There are various applications for our technique. First of all,

our technique supports mobile developers in comprehending,
analyzing, and testing their native mobile apps that have
implementations in both iOS and Android. Many developers
interact with GUI to comprehend the software by creating a
mental model of the application [41]. On average, 48% of



a desktop applications’s code is devoted to GUI [40]. We
believe the amount of GUI-related code is higher in mobile
applications due to their highly interactive nature. Thus, using
the models to provide a visualization of the apps accompanied
with the UI-structure and method calls in the visualization
output, would support mobile developers and testers in their
program comprehension and analysis tasks and to obtain a
better understanding of their mobile apps. The models inferred
by CHECKCAMP can also be used for generating test cases.
In terms of scalability, the results in Table II show that our
approach is scalable to large industrial mobile apps consisting
of tens of thousands of LOC and many states.

D. Threats to Validity

The fact that we form the comparison baselines manually
could be a threat to internal validity. We did look for other
similar tools to compare our results against, without success.
Manually going through the different applications to create
baselines is labour intensive and potentially subject to errors
and author’s bias. We tried to mitigate this threat by asking the
first two authors to create the comparison baselines together
before conducting the experiment. Additinally, we had a small
number of scenarios in particular for the open source apps. We
tried to mitigate this threat by assuring that these scenarios
covered the app screens/states fully. A threat to the external
validity of our experiment is with regards to the generalization
of the results to other mobile apps. To mitigate this threat, we
selected our experimental objects from industrial and open-
source domains with variations in functionality, structure and
size. With respect to reproducibility of our results, CHECK-
CAMP, the open-source experimental objects, their scenarios
and results are publicly available [15].

VII. RELATED WORK

Dealing with multiple platforms is not specific to the mobile
domain. The problem also exists for cross-browser compati-
bility testing. However, in the mobile domain, each mobile
platform is different with regard to the OS, programming
languages, API/SDKs, and supported tools, making it much
more challenging to detect inconsistencies automatically.

Mesbah and Prasad [38] propose a functional consistency
check of web application behaviour across different browsers.
Their approach automatically analyzes the given web appli-
cation, captures the behaviour as a finite-state machine and
formally compares the generated models for equivalence to
expose discrepancies. Their model generation [39] and map-
ping technique is based on DOM states of a web application
while CHECKCAMP deals with native iOS and Android states
and mappable code-based and GUI related metrics of the two
mobile platforms. Choudhary et al. [30] propose a technique
to analyze the client-server communication and network traces
of different versions of a web application to match features
across platforms.

In the mobile domain, Rosetta [34] infers likely mappings
between the JavaME and Android graphics APIs. They exe-
cute application pairs with similar inputs to exercise similar

functionality and logged traces of API calls invoked by the
applications to generate a database of functionally equivalent
trace pairs. Its output is a ranked list of target API methods
that likely map to each source API method. Cloud Twin [36]
natively executes the functionality of a mobile app written for
another platform. It emulates the behaviour of Android apps on
a Windows Phone where it transmits the UI actions performed
on the Windows Phone to the cloud server, which then mimics
the received actions on the Android emulator. To our best
knowledge, none of the related work addresses inconsistency
detection across iOS and Android mobile platforms.

VIII. CONCLUSION AND FUTURE WORK

This work is motivated by the fact that implementation of
mobile apps for multiple platforms – iOS and Android – has
become an increasingly common industry practice. As a result,
a challenge for mobile developers and testers is to keep the app
consistent, and ensure that the behaviour is the same across
multiple platforms. In this paper, we proposed CHECKCAMP,
a technique to automatically detect and visualize inconsisten-
cies between iOS and Android versions of the same mobile
app. Our empirical evaluation on 14 app-pairs shows that the
GUI model-based approach can provide an effective solution;
CHECKCAMP can correctly infer models, and map them with
a high precision and recall rate. Further, CHECKCAMP was
able to detect 32 valid functional and data inconsistencies
between app versions.

While we are encouraged by the evaluation results of
CHECKCAMP, there are several opportunities in which our
approach can be enhanced and extended for future research.
The immediate step would be to conduct an in-depth case
study, carried out in an industrial setting with a number of
developers using CHECKCAMP. This would help validate the
efficiency of the mapping and the visualizations. Additionally,
the execution of consistent scenarios can be enhanced by the
use of mobile apps that have test suites such as CALABASH
[8] scripts. The traces generated by test suites can be leveraged
in the mapping engine to enhance the approach.

Systematically crawling to recover models is also an alter-
native to using scenarios. While there are limitations of auto-
mated model recovery, it could complement human-provided
scenarios, to ensure better coverage. We have taken the
first required steps for automatically generating state models
of iPhone applications [32] through a reverse engineering
technique. There have been similar techniques for Android
applications [27], [29], [35], [43].

Another direction is to improve the current dynamic ana-
lyzers to capture information regarding each device’s network
communication (client-server communication of platform-
specific versions of a mobile application), as well as the API
calls made to utilize the device’s native functionality such as
GPS, SMS, Calendar, Camera, and Gallery.
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