
Feedback-Directed Exploration of Web Applications
to Derive Test Models

Amin Milani Fard
University of British Columbia

Vancouver, BC, Canada
aminmf@ece.ubc.ca

Ali Mesbah
University of British Columbia

Vancouver, BC, Canada
amesbah@ece.ubc.ca

Abstract—Dynamic exploration techniques play a significant
role in automated web application testing and analysis. However,
a general web application crawler that exhaustively explores
the states can become mired in limited specific regions of
the web application, yielding poor functionality coverage. In
this paper, we propose a feedback-directed web application
exploration technique to derive test models. While exploring,
our approach dynamically measures and applies a combination
of code coverage impact, navigational diversity, and structural
diversity, to decide a-priori (1) which state should be expanded,
and (2) which event should be exercised next to maximize the
overall coverage, while minimizing the size of the test model.
Our approach is implemented in a tool called FEEDEX. We
have empirically evaluated the efficacy of FEEDEX using six web
applications. The results show that our technique is successful in
yielding higher coverage while reducing the size of the test model,
compared to classical exhaustive techniques such as depth-first,
breadth-first, and random exploration.

Index Terms—model generation, web app, coverage, testing,
diversity

I. INTRODUCTION

Modern web applications make extensive use of JavaScript
to dynamically mutate the Document Object Model (DOM)
in order to provide responsive interactions within the browser.
Due to this highly dynamic nature of such applications,
dynamic analysis and exploration (also know as crawling) play
a significant role [10] in many automated web application
testing techniques [2], [4], [7], [16], [18], [20], [22], [23], [34].
Such testing techniques depend on data and models generated
dynamically through web application crawling.

Most web application exploration techniques used for test-
ing apply an exhaustive search in order to achieve a “complete”
coverage of the application state-space and functionality. An
assumption often made is that the state-space of the application
is completely coverable in a reasonable amount of time. In
reality, however, most industrial web applications have a huge
dynamic state-space and exhaustive crawling – e.g., through
breadth-first search (BFS), depth-first search (DFS), or random
search – can cause the state explosion problem. In addition,
a generic crawler that exhaustively explores the states can
become mired in irrelevant regions of the web application
[25], producing large test models that yield poor functionality
coverage.

Because exploring the whole state-space can be infeasible
(state explosion) and undesirable (time constrains), the chal-

lenge we are targeting in this paper is to automatically derive
an incomplete test model but with adequate functionality
coverage, in a timely manner.

To that end, we propose a novel feedback-directed explo-
ration technique, called FEEDEX, which is focused on effi-
ciently covering a web application’s functionality to generate
test models. We propose four metrics to capture different
aspects of a test model, namely code coverage impact, nav-
igational diversity, page structural diversity, and test model
size. Using a combination of these four metrics, our approach
dynamically monitors the exploration and its history. It uses
the feedback obtained to decide a-priori (1) which states
should be expanded, and (2) which events should be exercised
next, so that a subset of the total state-space is effectively
captured for adequate test case generation.

The main contributions of our work include:
• We present a feedback-directed exploration technique that

selectively covers a subset of the state-space of a given
web application to generate an adequate test model;

• We propose the notions of coverage impact and diversity
– i.e., navigational and page structural diversity – to
capture different aspects of derived test models;

• We describe an event execution method, which prioritizes
events based on their historical productivity in producing
relevant states;

• We implement our approach in a tool called FEEDEX,
which is freely available;

• We empirically evaluate the efficacy of our approach
on six Web 2.0 applications. The results show that
our method yields much better code coverage (10% at
the minimum), and diversity (23% at the minimum),
compared to traditional exhaustive methods. In addition,
our approach is able to reduce the size of the derived
test model and test suite by at least 38% and 42%,
respectively.

II. BACKGROUND AND MOTIVATION

Web 2.0 Applications. The advent of recent Web and browser
technologies has led to the proliferation of modern – also
known as Web 2.0 – web applications, with enhanced user
interaction and more efficient client-side execution. Building
on web technologies such as AJAX, Web 2.0 applications
execute a significant amount of JavaScript code in the browser.

Index

e0 s1
e1

s5e4

s7

e6

s6

e0 c1
e1

c2

e6

s8

e6

c3
e7

s4s3
e3

e5

e0 s2e2

e3

e2 e2

e3

e5

e4

Fig. 1. State-flow graph of the running example.

A large portion of this code is dedicated to interact with the
Document Object Model (DOM) to update the user interface at
runtime. In turn, these incremental updates lead to dynamically
generated execution states within the browser.
Automated Test Model Generation. Model-based testing
uses models of program behaviour to generate test cases.
These test models are either specified manually or derived
automatically.

Tool support for exploring (or “crawling”) dynamic states
of web applications enables automated test model derivation.
Unlike traditional static hyper-linked web pages, automatically
exploring Web 2.0 applications is challenging because many of
the user interface state changes are (1) event-driven, (2) caused
by the execution of client-side application code , and (3)
represented by dynamically mutating the internal DOM tree in
the browser. In the recent past, web crawlers have been pro-
posed that can explore event-driven DOM mutations in Web
2.0 applications. For instance, CRAWLJAX [19] uses dynamic
analysis to exercise and crawl client-side states of Web 2.0
applications. It incrementally reverse engineers a model, called
State-Flow Graph (SFG), which captures dynamic DOM states
and event-driven transitions connecting them. This SFG model
is formally defined as follows:

Definition 1: A state-flow graph SFG for a Web 2.0
application A, is a labeled directed graph, denoted by a 4
tuple < r,V ,E,L > where:

1) r is the root node (called Index) representing the initial
state after A has been fully loaded into the browser.

2) V is a set of vertices representing the states. Each v ∈ V
represents a runtime DOM state in A.

3) E is a set of (directed) edges between vertices. Each
(v1,v2) ∈ E represents a clickable c connecting two
states if and only if state v2 is reached by executing c in
state v1.

4) L is a labelling function that assigns a label, from a set of
event types and DOM element properties, to each edge.

5) SFG can have multi-edges and be cyclic. 2
To infer this SFG, events (e.g., clicks) are automatically

generated on candidate clickables, i.e., user interface elements
of the web application that can potentially change the state
of the application. An example is a DIV element, dynami-
cally bound to an event-listener, which when clicked calls a

JavaScript function, which in turn mutates the DOM inside the
browser (see Figures 3 and 4). Only when the event generated
results in a state change, the candidate clickable is seen as a
real clickable and the new state and the clickable are added
to the SFG.

An example of such a SFG is shown in Figure 1. Such an
automatically inferred test model can be utilized in test case
generation [20], by adopting different graph coverage methods
(e.g., all states/edges/paths/transitions coverage).

Motivation. Given that (1) most industrial web applications
have a huge dynamic state-space, which can cause the state ex-
plosion problem, (2) dynamic exploration is time-consuming,
and (3) in any realistic software development environment, the
amount of time dedicated to testing is limited, opting for the
exploration of a partial subset of the total state-space of a given
web application seems like a pragmatic feasible solution.

Given a specific amount of time, there are, however, dif-
ferent ways of exploring this partial subset. For example,
assume that the SFG in Figure 1, including the dashed nodes
and edges, represents the complete state model of a web
application. Also assume that our allowed crawling time is
limited to 4 event executions and our crawler applies a depth-
first search. If the explored sequence of exercised clickables
is e1, e2, e2, e2, we retrieve states s1, s2, s3, and s4, all of
which belong to same crawling path. It could also be the case
that the crawler has a predetermined order for event execution.
Consider a crawler in which e3 always executes before e2.
The sequence of the resulting clicks would then become e1,
e2, e3, e2 which results in discovering only 3 states, namely
s1, s2, and s3. Another example, depicted in Figures 3–4,
includes exploring states behind next and previous links. This
is a typical scenario in which exhaustive crawlers can become
mired in specific parts of the web application, yielding poor
functionality coverage.

Because a complete exploration of the whole application
can be infeasible (state explosion), undesirable (time con-
strains), and inefficient (large test model derived that yields
low coverage), the challenge we are targeting in this paper is
to derive an incomplete test model that can adequately provide
functionality coverage.

III. APPROACH

The goal of our work is to automatically derive a test model
that captures different aspects of the given web application’s
client-side functionality. In the next subsections, we present
these desired aspects of a test model, followed by a salient
description of our feedback-directed exploration technique,
called FEEDEX.

A. Deriving Test Models

A web crawler is generally evaluated on its ability to retrieve
relevant and desirable content [1], [25], [31]. In this work,
we propose metrics that target relevance and desirability in
the context of web application testing. We believe that a test
model derived automatically from a web application should

Intercept &
Instrument JS

code
Generate

event

Execution
Trace

Server Browser

Measure Code
Coverage Impact

Guided
Crawler

State-flow
Graph

Analyze
DOM

Calculate
state scores

Calculate
event productivity

update

Fig. 2. Processing view of FEEDEX, our feedback-directed exploration
approach.

possess the following properties to effectively cover different
aspects of the application under test:
Functionality Coverage. A test suite generated from a de-

rived test model can only cover the maximum functional-
ity contained in the test model, and not more. For instance
consider Figure 1. If the inferred test model does not
capture events e6 and e7 the generated test suite will
not be able to cover the underlying functionality behind
those two events. Therefore, it is important to derive a
test model that possesses adequate coverage of the web
application when the end goal is test suite generation.

Navigational Coverage. The navigational structure of a web
application allows its users to navigate it in various
directions. For instance s3 and s4 are both on the same
navigational path, whereas s3 and s8 are on different
branches (Figure 1). To cover the navigational structure
adequately, we believe that a test model should cover
different navigational branches of the web application.

Page Structural Coverage. The structure of a webpage in
terms of its internal DOM elements, attributes, and val-
ues, provides the main interaction interface with end
users. Each page structure provides a different degree of
content and functionality. To capture this structural func-
tionality adequately, we believe a test model should cover
heterogeneous DOM structures of the web application.

Size. The size of the derived test model has a direct impact on
the number of generated test cases and event executions
within each test case. Reducing the size of the test model
can decrease both the cost of maintaining the generated
test suite and the number of test cases that must be rerun
after changes are made to the software [12]. Thus, while
deriving test models, the size should be optimized as
long as the reduction does not adversely influence the
coverage. We consider the number of events (edges) in
the SFG as an indicator of the model size since test case
generation is done by traversing the sequence of events.

B. Feedback-directed Exploration Algorithm

In this paper, we refer to the process of executing candidate
clickables of a state as state expansion. Figure 2 depicts an

Algorithm 1: Feedback-directed Exploration
input : A Web 2.0 application A, the maximum

exploration time t, the maximum number of states
to explore n, exploration strategy STR

output: The inferred state-flow graph SFG

1 SFG ← ADDINITIALSTATE(A)
Procedure EXPLORE() begin

2 while CONSTRAINTSATISFIED(t, n) do
3 PES ← GETPARTIALLYEXPANDEDSTATES(SFG)
4 for si ∈ PES do
5 for sj ∈ PES & sj 6= si do
6 Score(si, sj)← GETSCORE(si, sj ,STR)

7 MinScore(si)← GETMINSCORE(si)

8 s← GETNEXTTOEXPLORESTATE(PES,MinScore)
9 C ← PRIORITIZEEVENTS(s)

10 for c ∈ C do
11 browser.GOTO(SFG.GETPATH(s))
12 dom← browser.GETDOM()
13 robot.FIREEVENT(c)
14 new dom← browser.GETDOM()
15 if dom.HASCHANGED(new dom) then
16 SFG.UPDATE(c, new dom)
17 EXPLORE()

18 return SFG

overview of our approach. At a high level, it dynamically an-
alyzes the exploration history at runtime, including previously
covered states and events, to anticipate about and decide a-
priori (1) which state should be expanded next, and (2) from
the state that is selected for expansion, which event (i.e.,
clickable element) should be exercised.

Given a Web 2.0 application, a maximum exploration time
t, and a maximum number of states to explore n, the intent is
to maximize the test model coverage while reducing the model
size within t. The rationale behind our technique is to reward
states and events that have a substantial impact on different
aspects of a test model (and penalize those that do not). Our
exploration strategy, shown in Algorithm 1, applies a greedy
approach to select and expand a partially expanded state.

Definition 2: A partially expanded state is a state, during
exploration, which still contains one or more unexercised
candidate clickables. 2

In Figure 1, both s6 and s8 are partially expanded states.
To expand the next partially expanded state, while exploring,
we calculate a state score (explained in Section III-C) for
each state that needs to be expanded, at runtime; this score
prioritizes partially expanded states selectively so that a test
model with enhanced aspects can be inferred for testing. Our
key insight is that by dynamically measuring and expanding
states with the highest scores, we can construct a state-flow
graph of an application, yielding higher overall coverage. In
addition to the state score, our approach prioritizes events
based on their productivity ratio (described in Section III-D).

Algorithm 1 repeats the following main steps until the given
time limit t, or state-space limit n is reached:

• For each partially expanded state, compute the state score
with respect to other unexpanded states (Lines 4-6). The
score of a state is the minimum pair-wise state score of
that state (Line 7);

• Choose the state with the highest fitness (score) value as
the next state to expand (Line 8);

• On the chosen state for expansion, prioritize the events
based on their event score (Line 9);

• Take the browser to the chosen state and execute the
highest ranked event according to the prioritized order
(Lines 10-3);

• If the DOM state is changed after the event execution,
update the SFG accordingly (Lines 14-16) and call the
Explore procedure (line 17).

C. State Expansion Strategy
In this section, we describe our state expansion strategy,

which is used to prioritize partially expanded states based
on their overall contributions towards the different desired
properties of the test model.
Code Coverage Impact. One primary objective for generating
a test model is to achieve an adequate code coverage of the
core functionality of the system. Note that we only consider
the client-side code coverage and the server-side code coverage
is not the goal of this work. The following example shows how
state expansion can affect the code coverage.

Example 1: Figure 3 depicts a simple JavaScript code.
Figure 4 shows the corresponding DOM state. Assume that
the state-flow graph as shown in the Figure 1 was generated
by exploring this simple example. If the crawler finishes after
clicking on the next and the previous clickables multiple times,
only the function show and the first two lines of the script
code will be covered, i.e., 9 lines in total. Assuming that the
total number of JavaScript lines of code is 27 (not all the
code is shown in the figure), coverage percentage would be
9
27 = 33.33%. This indicates that no matter what test case
generation method we apply on the inferred SFG, we can
not achieve a higher code coverage than 33.33%. However, if
the crawler was able to click on the Update clickable before
termination, the function load would be executed as well,
yielding a coverage of 15

27 = 55.55%. 2
The code coverage impact for a state s, denoted by CI(s),

is defined as the amount of increase in the code coverage
after s is created. Considering the example again, when
the Index page is loaded, the first two JavaScript lines are
executed and thus initial coverage is 2

27 = 7.4%, and
the CI(Index)=0.074. After executing onclick="show()",
coverage would reach 33.33% with a 25.93% increase and
thus CI(s1) = 0.259. For each newly discovered state, we
calculate the CI in this manner. If a resulting state of an event
is an already discovered state in the SFG, the CI value will
be updated if the new value is larger. The CI score is taken
into consideration when making decisions about expanding
partially expanded states.
Path Diversity. Given a state-flow graph, states located on
different branches are more likely to cover different naviga-

myImg = new Array("1.jpg","2.jpg","3.jpg","4.jpg");
curIndex = 1;

function show (offset) {
curIndex = curIndex + offset;
if (curIndex > 4) {
curIndex = 1; }

if (curIndex == 0) {
curIndex = 4 ; }

document.imgSrc.src = myImg[curIndex - 1];
}
...
function load () {

var xhr = new XMLHttpRequest();
xhr.open('GET', '/update/', true);
xhr.onreadystatechange = function(e) {

document.getElementById("container").innerHTML = ←↩
this.responseText

};
xhr.send();

}

Fig. 3. Simple JavaScript code snippet.

<body>

previous
next
...
Update!
<div id="container"></div>

</body>

Fig. 4. A simple DOM instance.

tional functionality (as in Section III-A) than those on a same
path. Thus, guiding the exploration towards diversified paths
can yield a better navigational functionality coverage.

Definition 3: A simple event path Psi of state si is a path
on SFG from the Index node to si, without repeated nodes. 2

Note that in our definition we only consider “simple paths”
without repeated nodes to avoid the ambiguity of having cycles
and loops, such as those shown in Figure 1, where for instance,
there exists an infinite number of paths from Index to s2. We
formulate the path similarity of two states si and sj as:

PathSim(si, sj) =
2× |Psi ∩ Psj |
|Psi |+ |Psj |

(1)

where |Psi | is the length of Psi , and |Psi ∩ Psj | denotes
the number of shared events between Psi and Psj . The path
similarity notion captures the percentage of events shared by
two simple paths. The less events two states share in their
paths, the more diverse their navigational functionality. Thus,
let MaxPathSim(si, sj) be the maximum path similarity of
si and sj considering all possible simple paths, from Index
to si and sj , respectively. The path diversity of si and sj ,
denoted by PD(si, sj), is then calculated as:

PD(si, sj) = 1−MaxPathSim(si, sj) (2)

Example 2: Consider the running example of Figure 1. We
calculate pair-wise path diversity scores for states s4, s6, and
s8. PathSim(s4, s6) = 2×|Ps4∩Ps6|

|Ps4|+|Ps6| can be computed in two
ways as there exist two simple event paths from Index to s6:

<html>

<head> <body>

<title> <h1> <div>

(a) DOM tree t1

<html>

<head> <body>

<title> <table> <div>

<tr>

<td> <td>

(b) DOM tree t2

<html>

<head> <body>

<title> <table> <div>

<tr> <tr>

<td> <td> <td> <td>

(c) DOM tree t3

Fig. 5. DOM tree comparison.

For Ps6 through s1, PathSim(s4, s6) = 2×1
4+2 = 2

6 = 1
3 ,

and for Ps6 through s5, PathSim(s4, s6) = 2×0
4+2 = 0. Thus

MaxPathSim(s4, s6) = 1
3 and PD(s4, s6) = 1 − 1

3 = 2
3 .

Similarly, PD(s4, s8)=1-0=1, and PD(s6, s8)=1-0=1. This
indicates that s4 and s6 are not that diverse with respect to
each other, but they are very diverse with respect to s8. 2

DOM Diversity. In many Web 2.0 applications, the DOM
is mutated dynamically through JavaScript to reflect a state
change, without requiring a URL change. Many of such
dynamic DOM mutations are, however, incremental in nature
and correspond to small delta changes, which might not be
interesting from a testing perspective, especially given the
space and time constraints. Therefore, guiding the exploration
towards diversified DOM states can result in a better page
structural coverage.

In most current AJAX crawlers, string representations of
the DOM states are used for state comparison. The strings
are compared by either calculating the edit distance [19], a
strip and compare method [19], or by computing a hash of
the content [9]. These approaches ignore the tree structure of
DOM trees. To account for the actual structural differences,
we adopt the tree edit distance between two ordered labeled
trees, which was proposed [32] and implemented [27] as the
minimum cost of a sequence of edit operations that transforms
one tree into another. The operations include deleting a node
and connecting its children to the parent, inserting a node
between a node and the children of that node, and relabelling
a node.

We define state DOM diversity as the normalized DOM tree
edit distance. Let ti and tj be the corresponding DOM trees of
two states si and sj . The DOM diversity of si and sj , denoted
by DD(si, sj), is defined as:

DD(si, sj) =
TED(ti, tj)

max(|ti|, |tj |)
(3)

where TED(ti, tj) is the tree edit distance between ti and tj ,
and max(|ti|, |tj |) is the maximum number of nodes in ti and
tj .

Example 3: Figure 5 depicts three DOM trees with |t1|=7,
|t2|=10, and |t3|=13. t2 can be produced from t1 by (1)
relabelling <h1> in t1 to <table>, and (2) inserting three
nodes under <table>. Thus TED(t1, t2) = 4 and their DOM

diversity equals 4
10=0.4. Similarly TED(t1, t3) = 7 and thus

their DOM diversity equals 7
13=0.53. This shows t3 is more

DOM diverse than t2 with respect to t1. TED(t2, t3) = 3 and
their DOM diversity equals 3

13=0.23 2

Overall State Score. The state score is a combination of code
coverage impact, path diversity, and DOM diversity. Our state
expansion fitness function is a linear combination of the three
metrics as follows:

Score(si, sj) = wCI · CI(si, sj) + wPD · PD(si, sj)
+wDD ·DD(si, sj)

(4)
where, wCI , wPD, and wDD are user-defined weights (be-
tween 0 and 1) for code coverage impact, path diversity, and
DOM diversity, respectively.

D. Event Execution Strategy

The goal of our event execution strategy is to reduce the
size of events sequences (edges) in the SFG, while preserving
the coverage. Reducing the size of events is important since
it reduces the size of generated test cases, which in turn
minimizes the time overhead of test rerun [12].

Intuitively, we try to minimize the execution of events
that are not likely to produce new states. We categorize web
application user interface events into four groups based on
their impact on the application state transitional behaviour:
(1) An event that does not change the DOM state is called
a self-loop, e.g., events that replace the DOM tree with an
exact replica, e.g., refresh with no changes, or clear data in
a form; (2) A state-independent event is an event that always
causes the same resulting state, e.g., events that always result
in the Index page; (3) A state-dependent event is an event that
after its first execution, always causes the same state, when
triggered from the same state. (4) A Nondeterministic event is
an event that may results in a new state, regardless of where
it is triggered from. Such events can result in different states
when triggered from the same state. In Figure 1, for instance,
e0 is a self-loop event, e5 is a state-independent event, and e4
is a state-dependent event.

A crawler that distinguishes between these different events
can avoid self-loops, minimize state-independent and nonde-
terministic event executions, and emphasize state-dependent
events to explore uncovered states. To that end, we define
event productivity (EP) as follows.

Let RSi(e) denote the resulting state of the i-th execution
of the event e, and n be the total number of executions of e
(including the last execution). The event productivity ratio of
e, denoted by EP (e), is defined as:

EP (e) =

1 ; if n = 0

∑n
i=1 MinDD(RSi(e))

n ; otherwise
(5)

where MinDD(RSi(e)) = min
s∈SFG

{DD(RSi(e), s)}, i.e., the

minimum diversity of RSi(e) and all existing states in the
SFG. Note that 0 ≤ EP (e) ≤ 1 and its value can change
after each execution of e, while exploring.

The above definition captures three properties. Firstly, it
gives the highest ratio to the unexecuted events (in case
n = 0) since the resulting state is more likely to be a new
state compared to already executed events. Naturally, this
also helps in covering more of the JavaScript code, since
the event-listeners typically trigger the execution of one or
more JavaScript function(s). Secondly, it penalizes events that
result in an already discovered state, such as self-loops and
state-independent events, with MinDD(RSi(e))=0. Thirdly,
the productivity ratio is proportional to the structural diversity
of the resulting state with respect to previously discovered
states. This gives a higher productivity ratio to events that have
resulted in more diverse structures, guiding the exploration
towards more DOM diverse states.

Remark 1. We do not consider path-diversity (PD) in the
calculation of EP . This is because when the execution of an
event results in a new state, the resulting state shares much of
its navigational path with the source state that leads to PD
close to 0, which discourages new state discovery. On the other
hand, if the resulting state is an already discovered state in the
SFG, its shortest event path may not share much with other
paths and therefore might get a high PD. This is also contrary
to penalizing events causing already discovered states.

The next example shows how this definition is applied
on self-loops, state-independent events, and forward-backward
events.

Example 4: Consider Figure 1 again. For simplicity assume
DOM diversity is 1 for new states and 0 for existing states.
An example of a self-loop event is e0. Assume that the first
observation of e0 is at state Index. Since we have never
executed e0 before, EP (e0) = 1. After the first execution,
EP (e0) = 0

1 = 0 because MinDD(Index) = 0 as the
diversity of the source state (Index) and the resulting state
(Index) is 0. By the second execution, say at s1, EP (e0) =
0+0
1+1 = 0. Now consider e5 as a state-independent event.
For the first time, say at s1, EP (e5) = 1. After its first
execution, since s6 is a new state (we assume diversity is
1), the productivity ratio will be EP (e5) = 1

1 = 1. However,
the second execution results in a duplicate (s6 again) and thus
EP (e5) = 1+0

1+1 = 0.5. Events e2 and e3 are examples of
previous-next events (see Figure 4). After the first execution
of e3 at state s2, EP (e3) = 0

1 = 0, because s1 was already
in the SFG before executing e3 and thus MinDD(s1)=0. 2

Remark 2. Prioritizing events only makes sense when we
allow the crawler to exercise the same clickable multiple
times. If the objective of the test model generation is to
merely achieve high code coverage, then clicking on the same
clickable again is unlikely to increase the code coverage;
however, if the event is state-dependent or nondeterministic,
multiple execution of the same clickable can have an impact
on DOM and path diversity.

E. Implementation
Our proposed approach is implemented in a tool called

FEEDEX, which is publicly available.1

1http://salt.ece.ubc.ca/content/feedex/

To explore Web 2.0 applications, we build on top of
CRAWLJAX [19], [20]. The default engine supports both depth-
first and breadth-first (multi-threaded, multi-browser) crawling
strategies. FEEDEX replaces the default crawling strategy of
CRAWLJAX (as described in [19]) with our feedback-directed
exploration algorithm. The tool can be configured to constrain
the state space, by setting parameters such as the maximum
number of states to crawl, maximum crawling time, and search
depth level.

As shown in Figure 2, FEEDEX intercepts and instruments
the JavaScript code to collect execution traces while crawling.
To parse and instrument the JavaScript code, we use Mozilla
Rhino.2 After each event execution, FEEDEX analyzes the
collected execution trace and measures the code coverage
impact, which in turn is used in our overall exploration
decision making.

State path diversity is calculated according to Equation 2
by finding simple paths (Definition 3) from Index state to
each state in the SFG. In order to compute each simple event
path, we apply a DFS traversal from the Index state to a state
node in the SFG and disregard already visited ones to avoid
cycles or loops. For the computation of the tree edit distance
for DOM state diversity as in Equation 3, we take advantage
of the Robust Tree Edit Distance (RTED) algorithm [27],
which has optimal O(n3) worst case complexity and is robust,
where n is the maximum number of nodes of the two given
trees. Considering that the number of nodes in a typical DOM
tree is relatively small, the overhead of the DOM diversity
computation is negligible.

In order to calculate the productivity ratio for an event, we
store, for each event, a set of tuples comprising of source and
target states, corresponding to all the previous executions of
that event.

IV. EMPIRICAL EVALUATION

To assess the efficacy of the proposed feedback-directed
exploration, we have conducted a controlled experiment. Our
main research question is whether our proposed exploration
technique is able to derive a better test model compared to
traditional exhaustive methods.

Our experimental data along with the implementation of
FEEDEX are available for download.1

A. Experimental Objects

Because our approach is targeted towards Web 2.0 appli-
cations, our selection criteria included applications that (1)
use extensive client-side JavaScript, (2) are based on dynamic
DOM manipulation and AJAX interactions, and (3) fall under
different domains. Based on these criteria, we selected six
open source applications from different domains which are
shown in Table I. We use CLOC3 to count the JavaScript
lines of code (JS LOC). The reported LOC in Table I is
excluding blank lines, comment lines, and JavaScript libraries
such as jQuery, DWR, Scriptaculous, Prototype, Bootstrap,

2https://github.com/mozilla/rhino/
3http://cloc.sourceforge.net

TABLE I
EXPERIMENTAL OBJECTS (STATISTICS EXCLUDING BLANK/COMMENT LINES, AND JAVASCRIPT LIBRARIES).

ID Name JS LOC Description Resource
1 ChessGame 198 A JavaScript-based simple game p4wn.sourceforge.net
2 TacirFormBuilder 209 A JavaScript-based simple HTML form builder https://github.com/ekinertac/TacirFormBuilder
3 TuduList 782 An AJAX-based todo lists manager in J2EE and MySQL julien-dubois.com/tudu-lists/
4 FractalViewer 1245 A JavaScript-based fractal zoomer http://onecm.com/projects/canopy
5 PhotoGallery 1535 An AJAX-based photo gallery in PHP without MySQL sourceforge.net/projects/rephormer
6 TinyMCE 26908 A JavaScript-based WYSIWYG editor tinymce.com

TABLE II
STATE-SPACE EXPLORATION METHODS EVALUATED.

Method Exploration Criteria
DFS Expand the last partially expanded state
BFS Expand the first partially expanded state
RND Randomly expand a partially expanded state
FEEDEX Expand the partially expanded state with the highest score

(wCI = 1, wPD = 0.5, wDD = 0.3), and prioritize events

and google-analytics. Note that we also exclude these libraries
in the instrumentation step.

B. Experimental Setup

All our experiments are performed on a core-2 Duo
2.40GHz CPU with 3.46 GB memory, running Windows 7
and Firefox web browser.

1) Independent Variables: We compare our feedback-
directed exploration approach with different traditional explo-
ration strategies.

Exploration Constraints. We confine the designated explo-
ration time for deriving a test model to 300 seconds (5
minutes) for all the experimental runs.4 We set no limits on
the crawling depth nor the maximum number of states to be
discovered. We configure the tool to allow multiple executions
of the same clickable element, as the same clickable can cause
different resulting states.

State-space Exploration. Table II presents the different state
expansion strategies we evaluate in the first part of our
experiment. The first three (DFS, BFS, RND) are exhaustive
crawling methods. DFS expands states in a depth-first fashion,
i.e., the last discovered state would be expanded next. BFS
applies breath-first exploration by expanding the first discov-
ered state next. RND performs random exploration in which
a partially expanded state is chosen uniformly at random to
be expanded next. Note that for these traditional exhaustive
exploration methods we consider the original event execution
strategy, i.e., a user-defined order for clicking on elements. For
this experiment, the order is defined as: A, DIV, SPAN, IMG,
BUTTON, INPUT, and TD.The last method is an instantiation
of our feedback-directed exploration score (See Equation 4)
where wCI = 1, wPD = 0.5, and wDD = 0.3. We empirically
evaluated different weightings and found this setting among
other settings can generally produce good results. FEEDEX
prioritizes clickable elements based on the event productivity

4Dedicating 5–10 minutes to test generation is acceptable in most testing
environments [13].

ratio EP (Equation 5) and executes them in that order (see
Section III-D).

2) Dependent Variables: We analyze the impact of different
state-space exploration strategies on the code coverage, the
overall average path diversity and DOM diversity, as well as
the size of the derived test model.
Code Coverage Score. We measure the final statement code
coverage achieved by each method, after 5 minutes of explo-
ration. In order to measure the JavaScript code coverage, we
instrument the JavaScript code as explained in Section III-E.
Diversity Scores. In order to measure the path diversity of
a SFG, we measure average pair-wise navigational diversity
of leaf nodes (states without any outgoing edges) since the
position of the leaf nodes in the graph is an indication of the
diversity of its event paths (i.e., paths from the Index node to
the leaves). The AvgPD is defined as:

AvgPD(SFG) =

∑
∀si,sj∈L(V) PD(si, sj)

2 ·m · (m− 1)
(6)

where L(V) denotes the set of leaf nodes in the SFG and
m = |L(V)|, i.e., the number of leaf nodes. This value is in
the range of 0 to 1.

To assess the page structural diversity of the derived test
models from each method, we compute the overall average
pair-wise structural diversity (AvgDD) in the derived SFG as:

AvgDD(SFG) =

∑
∀si,sj∈V DD(si, sj)

2 · n · (n− 1)
(7)

where n = |V |, i.e., the number of states in the SFG and
AvgDD is in the range of 0 to 1.
Test Model and Test Suite Size. As discussed in Section
III-A, the derived test model (SFG) can be used to generate test
cases through different graph traversal and coverage methods.
The event size of the derived test model has a direct impact
on the number and size of test cases that can be generated,
regardless of the test generation method used. We consider (1)
the number of edges (events) in the SFG, as the size of test
model, and (2) the number of “distinct” simple event paths in
the SFG, as the size of test suite (equal to the number of all
possible Selenium5 test cases generated from the test model).
Two simple event paths (Definition 3) are distinct if they visit
different sequence of states. Note that simple event paths can
not have cycles or loops. As described in Section III-E, simple
paths are generated using DFS traversal from the Index state
to every other state in the SFG.

5http://seleniumhq.org

TABLE III
RESULTS OF DIFFERENT EXPLORATION METHODS.

Exploration Statement Navigational Page Structural Size of the Size of the
Method Coverage Path Diversity Diversity Test Model Test Suite
DFS 37.55% 0.010 0.035 578 247
BFS 43.82% 0.410 0.065 475 165
RND 40.44% 0.369 0.066 450 241
FEEDEX 48.13% 0.443 0.081 280 95
Improvement (min–max%) 10–28% 7–4000% 23–130% 38–86% 42–61%

C. Results and Findings

Table III shows the results of different exploration methods.
We report the average values obtained from the six experimen-
tal objects. For the random state expansion method (RND),
we report the average values over five runs. The table shows
statement code coverage, navigational path diversity (AvgPD),
page structural diversity (AvgDD), number of edges (events) as
well as the number of distinct paths in the derived test model.

Results present that for FEEDEX, there is on average
between (min–max%) 10–28% improvement on the final state-
ment coverage (after 5 minutes), 7–4000% on path diversity,
23–130% on page structural diversity, 38–86% reduction in the
number of edges, and 42–61% reduction in the distinct paths
in the test model. It is evident from the results that FEEDEX
is capable of generating test models that are enhanced in all
aspects compared to the traditional exploration methods. Test
models created using FEEDEX have smaller size (thus need
less time to execute test cases) and higher code coverage
and state diversity. The simultaneous improvement in all the
evaluation criteria points to the the effectiveness of our state
expansion and event execution strategy.

Given the limited amount of exploration time, we believe
the achieved improvements for code coverage is substantial.
Our approach also significantly increases the average DOM
diversity compared to the RND method. Note that the main
reason for having small AvgDD values for all the methods, is
the normalization by the large number of possible pair-wise
links in the computation of AvgDD (Equations 7). There is
a low improvement of 7% achieved by FEEDEX over BFS
with respect to the navigational path diversity (AvgPD). This
is expected due to the fact that BFS, by its nature, generates
models with many branches that do not share too many event
paths, and are more sparse, compared to the other methods.
The amount of shared paths also contribute to reducing the
number of distinct paths, thus reducing the size of test suite.
Therefore, although there is some improvement, FEEDEX can
not improve AvgPD significantly compared to BFS. Among
traditional methods, DFS is the least effective. Specifically,
AvgPD achieved by DFS is much lower than others due to the
fact that it keeps expanding states in the same branch in most
cases, and FEEDEX can improve the navigational diversity
significantly (4000%).

While evaluating different weights in FEEDEX scoring
function, we found that assigning 1 to wDD and 0 to the
rest, is effective in producing more structural diverse models,
if an application has many different DOM states, such as

PhotoGallery, and not that effective for applications with
minimum DOM changes, such as ChessGame (a chess board
that remains relatively the same). Similarly, assigning 1 to
wPD and 0 to the rest, is more effective in increasing AvgPD
in applications with many navigational branches (features)
such as TinyMCE. In general, feedback-directed exploration
technique, with the settings we used, is superior over the
exhaustive methods with respect to all aspects of generated test
models. Considering the significant improvements achieved by
using FEEDEX, the computational overhead of our method is
negligible.

V. DISCUSSION

Limitations. A limitation of FEEDEX is that the maximum
effectiveness depends on the weights used in the scoring
function (Equation 4) and on the application state-space and
functionality, which is not known in advance. For example in
our other experiments we observed that setting wDD, wPD =
0 and wCI = 1, can generate test models with higher code
coverage but less diversity and larger test model size. In
general, the setting we used in this paper can generate a test
model which enhances all aspects of a test model compared
to traditional methods. We do not claim that Equation 4 is the
best way to combine CI, PD, and DD, or the weights that we
empirically found, always outperform previous work. Instead,
we rely on the intuition of the feedback-directed heuristic
which we believe effectively works most of the time.

Applications. The main application of our technique is in
automated testing of Web 2.0 applications. The automatically
derived test model, for instance, can be used to generate
different types of test cases used for invariant-based assertions
after each event, regression testing, cross-browser testing [4],
[7], [16], [18], [20], [22]. Our exploration technique towards
higher client-side code coverage can also help with a more
accurate detection of unused/dead JavaScript code [21]. More-
over, FEEDEX is generic in terms of its scoring function, thus
by changing the fitness function (line 6 of Algorithm 1), it can
generate a test model based on other user-defined criteria.

Threats to Validity. A threat to the external validity of our
experiment is with regard to the generalization of the results
to other web applications. We acknowledge that more web
applications should be evaluated to support the conclusions.
To mitigate this threat we selected our experimental objects
from four different domains: gallery, task management, game,
and editor. The selected Web 2.0 applications exhibit varia-

tions in functionality and structure and we believe they are
representative of modern web applications.

One threat to the internal validity of our experiment is
related to the evaluation metrics including AvgDD and AvgPD
proposed by the authors of the paper based on which the
effectiveness of FEEDEX is evaluated. However, we believe
these metrics capture different properties of a test model as
described in Section III.

With respect to reliability of our results, FEEDEX and all
the web-based systems are publicly available, making the
experiment reproducible.

VI. RELATED WORK

Crawling Web Applications. Web crawling techniques for
traditional hypertext-based websites have been extensively
studied in the past two decades. More related to our work
is the idea behind “scoped crawling” [25] to constrain the
exploration to webpages that fall within a particular scope;
this way, obtaining relevant content becomes more efficient
than through a comprehensive crawl. Well-known examples
of scoped crawling include hidden-web crawling [15] and
focused crawling [17]. Scope can also be defined in terms of
geography, language, genre, format, and other content-based
properties of webpages. All these techniques focus on the
textual contents of webpages. Our approach, on the other hand,
is geared towards functionality coverage of a web application
under test.

Crawling modern Web 2.0 applications engenders more
challenges due to the dynamic client-side processing (through
JavaScript and AJAX calls), and is relatively a new research
area [5], [9], [19]. Many web testing techniques [2], [4], [7],
[16], [18], [20], [22], [23], [33], [34] depend on data gathered
and models generated through crawling. However, such tech-
niques rely on exhaustive search methods. To the best of our
knowledge, this work is the first to propose a feedback-directed
exploration of web applications that enhances different aspects
of a test model.

Some metrics have been proposed to measure crawling ef-
fectiveness and diversity. Marchetto et al. [2] propose crawla-
bility metrics that capture the degree to which a crawler is
able to explore the web application. These metrics combine
dynamic measurements such as code coverage, with static
indicators, such as lines of code and cyclomatic complexity.
Their crawlibility metrics are geared towards the server-side
of web applications. Regarding our diversity metrics, although
the notion of diversity has been used for classifying search
query results [1], [28], [29], we propose new metrics for
capturing state and navigational diversity as two aspects of
a web application test model.

More related to our work are guided test generation [33]
and efficient AJAX crawling techniques [5], [6], [8]. Thum-
malapenta et al. [33] recently proposed a guided test gener-
ation technique for web applications, called WATEG. Their
work crawls the application in an exhaustive manner, but
directs test generation towards higher coverage of specific
business rules, i.e., business logic of an application’s GUI. Our

work differs from WATEG in two aspects. Firstly, we guide
the exploration and not the test generation, and secondly, our
objective is to increase code coverage and state diversity, and
at the same time decrease test model size. Efficient strategies
for AJAX crawling [5], [6], [8] try to discover as many states
as possible in the shortest amount of time. The goal of our
work is, however, not to crawl the complete state-space as
soon as possible (which is infeasible for many industrial web
applications), but to drive a partial model, which adequately
covers different desired properties of the application.
Static analysis. Researchers have used static analysis to detect
bugs and security vulnerabilities in web apps [11], [35]. Jensen
et al. [14] model the DOM as a set of abstract JavaScript
objects. However, they acknowledge that there are substantial
gaps in their static analysis, which can result in false-positives.
Because JavaScript is a highly dynamic language, such static
techniques typically restrict themselves to a subset of the
language. In particular, they ignore dynamic JavaScript inter-
actions with the DOM, which is error-prone and challenging
to detect and resolve [24].
Dynamic Analysis. Dynamic analysis and automated test-
ing of JavaScript-based web applications has gained more
attention in the recent past. Marchetto et al. [16] proposed a
state-based testing technique for AJAX applications in which
semantically interacting event sequences are generated for
testing. Mesbah et al. proposed [20] an automated technique
for generating test cases with invariants from models inferred
through dynamic crawling. JSArt [22] and DoDOM [26]
dynamically derive invariants for the JavaScript code and
the DOM respectively. Such inferred invariants are used for
automated regression and robustness testing.

Artemis [3] is a JavaScript testing framework that uses
feedback-directed random testing to generate test inputs. Com-
pared to FEEDEX, Artemis randomly generates test inputs, ex-
ecutes the application with those inputs and uses the gathered
information to generated new test inputs. FEEDEX on the other
hand, explores the application by dynamically running it and
building a state-flow graph that can be used for test generation.
The strength of FEEDEX is that it guides the application at
runtime towards a better code and more diverse navigational
and structural coverage.

Kudzu [30] combines symbolic execution of JavaScript
with random test generation to explore sequence of events
and produce input values depending on the execution of the
control flow paths. Their approach uses a complex string
constraint solver to increase the code coverage by producing
acceptable input string values. In our work we did not intend to
increase the code coverage by considering the problem of input
generation for the crawler and only focused on improving
the crawling strategy. Compared to Kudzu, FEEDEX is much
simpler, more automated, and does not require such heavy
computation.

VII. CONCLUSIONS AND FUTURE WORK

An enabling technique commonly used for automating web
application testing and analysis is crawling. In this paper we

proposed four aspects of a test model that can be derived
by crawling, including functionality coverage, navigational
coverage, page structural coverage, and size of the test model.
We have presented a generic feedback-directed exploration
approach, called FEEDEX, to guide the exploration towards
client-side states and events that produce a test model with
enhanced aspects. Our experiment on six Web 2.0 applications
shows that FEEDEX yields higher code coverage, diversity,
and smaller test models, compared to traditional exhaustive
methods (DFS, BFS, and random).

In this work, we only measure the client-side coverage. In
future work, we intend to include the server-side code coverage
in the feedback loop to our guided exploration engine. Our
state expansion method is currently based on a memory-
less greedy algorithm. We plan to incorporate a learning
mechanism into the approach to improve its effectiveness.
Finally, we will continue to conduct more experiments on
different types of web applications.

Acknowledgment: This work was supported by the Na-
tional Science and Engineering Research Council of Canada
(NSERC) through its Strategic Project Grants programme and
Alexander Graham Bell Canada Graduate Scholarship (CGS-
D).

REFERENCES

[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying
search results. In Proc. of the International Conference on Web Search
and Data Mining, pages 5–14. ACM, 2009.

[2] N. Alshahwan, M. Harman, A. Marchetto, R. Tiella, and P. Tonella.
Crawlability metrics for web applications. In Proc. International
Conference on Software Testing, Verification and Validation (ICST),
pages 151–160. IEEE Computer Society, 2012.

[3] S. Artzi, J. Dolby, S. Jensen, A. Møller, and F. Tip. A framework for
automated testing of JavaScript web applications. In Proc. International
Conference on Software Engineering (ICSE), pages 571–580, 2011.

[4] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Automatically testing
dynamic web sites. In Proc. of the International World Wide Web
Conference (WWW), pages 654–668, 2002.

[5] K. Benjamin, G. von Bochmann, M. E. Dincturk, G.-V. Jourdan, and
I.-V. Onut. A strategy for efficient crawling of rich internet applications.
In Proc. of the International Conference on Web Engineering (ICWE),
pages 74–89. Springer-Verlag, 2011.

[6] S. Choudhary, M. E. Dincturk, S. M. Mirtaheri, G.-V. Jourdan, G. von
Bochmann, and I. V. Onut. Building rich internet applications models:
Example of a better strategy. In Proc. of the International Conference
on Web Engineering (ICWE). Springer, 2013.

[7] S. R. Choudhary, M. Prasad, and A. Orso. Crosscheck: Combining
crawling and differencing to better detect cross-browser incompatibilities
in web applications. In Proc. International Conference on Software Test-
ing, Verification and Validation (ICST), pages 171–180. IEEE Computer
Society, 2012.

[8] M. E. Dincturk, S. Choudhary, G. von Bochmann, G.-V. Jourdan,
and I. V. Onut. A statistical approach for efficient crawling of rich
internet applications. In Proc. of the International Conference on Web
Engineering (ICWE), pages 362–369. Springer, 2012.

[9] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou. Ajax crawl:
Making Amax applications searchable. In Proc. of the 2009 IEEE
International Conference on Data Engineering, ICDE ’09, pages 78–
89. IEEE Computer Society, 2009.

[10] V. Garousi, A. Mesbah, A. Betin Can, and S. Mirshokraie. A systematic
mapping study of web application testing. Information and Software
Technology, 2013.

[11] A. Guha, S. Krishnamurthi, and T. Jim. Using static analysis for Ajax
intrusion detection. In Proc. of the International World Wide Web
Conference (WWW), pages 561–570. ACM, 2009.

[12] M. Harrold, R. Gupta, and M. Soffa. A methodology for controlling
the size of a test suite. ACM Transactions on Software Engineering and
Methodology (TOSEM), 2(3):270–285, 1993.

[13] J. Humble and D. Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley Professional, first edition, 2010.

[14] S. H. Jensen, M. Madsen, and A. Møller. Modeling the HTML DOM
and browser API in static analysis of JavaScript web applications. In
Proc. ESEC/FSE, pages 59–69. ACM, 2011.

[15] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and
A. Halevy. Google’s deep web crawl. Proc. VLDB Endow., 1(2):1241–
1252, 2008.

[16] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of Ajax
web applications. In Proc. of the International Conference on Software
Testing, Verification, and Validation (ICST), pages 121–130. IEEE
Computer Society, 2008.

[17] F. Menczer, G. Pant, and P. Srinivasan. Topical web crawlers: Evaluating
adaptive algorithms. ACM Transactions on Internet Technology (TOIT),
4(4):378–419, 2004.

[18] A. Mesbah and M. R. Prasad. Automated cross-browser compatibility
testing. In Proc. of the International Conference on Software Engineer-
ing (ICSE), pages 561–570. ACM, 2011.

[19] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-based web
applications through dynamic analysis of user interface state changes.
ACM Transactions on the Web (TWEB), 6(1):3:1–3:30, 2012.

[20] A. Mesbah, A. van Deursen, and D. Roest. Invariant-based automatic
testing of modern web applications. IEEE Transactions on Softw. Eng.,
38(1):35–53, 2012.

[21] A. Milani Fard and A. Mesbah. JSNose: Detecting JavaScript code
smells. In Proc. of the IEEE International Conference on Source Code
Analysis and Manipulation (SCAM). IEEE Computer Society, 2013.

[22] S. Mirshokraie and A. Mesbah. JSART: JavaScript assertion-based
regression testing. In Proc. of the Internatinoal Conference on Web
Engineering (ICWE), pages 238–252. Springer, 2012.

[23] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Efficient JavaScript
mutation testing. In Proc. of the International Conference on Software
Testing, Verification and Validation (ICST). IEEE Computer Society,
2013.

[24] F. J. Ocariza, K. Pattabiraman, and A. Mesbah. AutoFLox: An automatic
fault localizer for client-side JavaScript. In Proc. of the International
Conference on Software Testing, Verification and Validation (ICST’12),
pages 31–40. IEEE Computer Society, 2012.

[25] C. Olston and M. Najork. Web crawling. Foundations and Trends in
Information Retrieval, 4(3):175–246, 2010.

[26] K. Pattabiraman and B. Zorn. DoDOM: Leveraging DOM Invariants for
Web 2.0 Application Robustness Testing. In Proc. of the International
Symposium on Sw. Reliability Eng. (ISSRE), pages 191–200. IEEE
Computer Society, 2010.

[27] M. Pawlik and N. Augsten. RTED: a robust algorithm for the tree edit
distance. Proc. VLDB Endow., 5(4):334–345, Dec. 2011.

[28] T. Sakai. Evaluation with informational and navigational intents. In
Proc. of the International Conference on World Wide Web (WWW), pages
499–508. ACM, 2012.

[29] R. Santos, C. Macdonald, and I. Ounis. Selectively diversifying web
search results. In Proc. of the International Conference on Information
and knowledge management, pages 1179–1188. ACM, 2010.

[30] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A symbolic execution framework for javascript. In Proc. of the 2010
IEEE Symposium on Security and Privacy, SP ’10, pages 513–528,
Washington, DC, USA, 2010. IEEE Computer Society.

[31] P. Srinivasan, F. Menczer, and G. Pant. A general evaluation framework
for topical crawlers. Information Retrieval, 8(3):417–447, 2005.

[32] K.-C. Tai. The tree-to-tree correction problem. Journal of the ACM
(JACM), 26(3):422–433, 1979.

[33] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra.
Guided test generation for web applications. In Proc. of the International
Conference on Software Engineering (ICSE), pages 162–171. IEEE
Computer Society, 2013.

[34] P. Tonella and F. Ricca. Statistical testing of web applications. Journal
of Software Maintenance and Evolution: Research and Practice, 16(1-
2):103–127, 2004.

[35] Y. Zheng, T. Bao, and X. Zhang. Statically locating web application bugs
caused by asynchronous calls. In Proc. of the International World-Wide
Web Conference (WWW), pages 805–814. ACM, 2011.

