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Abstract—Deep learning-based program repair has received
significant attention from the research community lately. Most
existing techniques treat source code as a sequence of tokens
or abstract syntax trees. Consequently, they cannot incorporate
semantic contextual information pertaining to a buggy line of
code and its fix. In this work, we propose a program repair
technique called GLANCE that combines static program anal-
ysis with graph-to-sequence learning for capturing contextual
information. To represent contextual information, we introduce
a graph representation that can encode information about the
buggy code and its repair ingredients by embedding control
and data flow information. We employ a fine-grained graphical
code representation, which explicitly describes code change con-
text and embeds semantic relationships between code elements.
GLANCE leverages a graph neural network and a sequence-
based decoder to learn from this semantic code representation.
We evaluated our work against six state-of-the-art techniques,
and our results show that GLANCE fixes 52% more bugs than
the best performing technique.

Index Terms—deep learning, program repair, program slicing,
control flow, data flow, graph neural networks

I. INTRODUCTION

Automated program repair aims to reduce the cost of
software debugging and maintenance [1], [2]. With the recent
advancement of deep learning and the availability of a massive
open-source code corpus, neural program repair is gaining
significant traction [3]–[16]. Neural program repair can learn
repetitive fix patterns from numerous samples of developer-
written patch automatically.

Existing studies [17], [18] on developer behaviour during
code comprehension and program repair tasks show that usage
and inference of contextual information is an important part
of the development process. Consequently, it is essential to
leverage contextual information according to the need of a
source code processing task. Current neural program repair
techniques employ contextual information from the buggy
statement and its surrounding context in various ways. This
contextual information can be limited to the buggy state-
ment [19], [20], the surrounding lines of code, enclosing
function [8], [9], enclosing class [3], enclosing file [7], [21],
or encapsulated AST subtree [5].

Despite promising results achieved by existing neural pro-
gram repair techniques, they have several key limitations that
concern the selection and representation of contextual relation,
namely, they (1) focus on the buggy statement and choose

contextual information in an ad-hoc fashion, e.g., with a pre-
defined code token limit [3], [8], [9] or number of nodes
in the Abstract Syntax Tree (AST) [7], (2) treat code as
a sequence of tokens [3], [8], [9], [20] or AST [22] and
do not embed semantic relationships between code elements,
and (3) ignore control and data flow dependencies between
program entities such as variables, statements, or function calls
pertaining to the bug and its fix. For a program repair task to be
effective, context needs to encode possibly related information
pertaining to the buggy line that is meaningful to fix that bug.
We call this the repair ingredient. Our hypothesis is that the
contextual information based on program dependencies such
as control and data flow could be leveraged to extract repair
ingredients instead of treating context in an ad-hoc way.

In this paper, we present a framework GLANCE (Graph-
to-sequence LeArNing with Context Embedding) that lever-
ages contextual information using program analysis for repair
learning. We apply backward slicing [23] to extract related
repair ingredients pertaining to the buggy statement. Once
we isolate the fix ingredient, we extract control and data
flow dependencies through static program analysis and embed
this context as a graph. We call this graph with control and
data dependencies the Flow-Augmented Graph (FAG). This
graph has explicit control and data flow edges that makes the
code amenable to machine learning. We employ a graph-to-
sequence architecture for learning patterns from this graphical
representation of the code. This paper makes the following
contributions:

• A graph-based technique called GLANCE for neural pro-
gram repair tasks that leverages contextual information
using static program analysis.

• A novel flow-augmented graph for representing code as
a graph augmented with contextual information which
combines (a) backward slicing for isolating repair ingre-
dients, (b) buggy statement and context demarcation, and
(c) explicit modelling of control and data flow edges to
capture relevant semantic relationships between program
elements.

• An empirical evaluation of GLANCE against six state-
of-the-art techniques to assess the effectiveness through
quantitative and ablation analyses. GLANCE achieves
43.02% accuracy in fixing bugs, outperforming the
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two top-performing approaches, COCONUT [9] and
KATANA [24], by 74.3% and 52%, respectively.

• A replication package which is publicly available [25].

Our empirical results show that employing our novel flow-
augmented graph with abstraction and framing the program
repair objective as a graph-to-sequence learning task is effec-
tive in improving accuracy of GLANCE. Backward slicing
extracts contextual information while reducing noise for the
learning model. Furthermore, our results indicate explicit
modelling of control and data-flow edges helps the neural
model to learn from the underlying code structure. Given that
most current techniques rely on ad-hoc context representation,
our study highlights that the selection of context needs to be
more systematic, and program analysis techniques are helpful
for selecting and encoding relevant contextual information for
learning-based repair.

II. MOTIVATION

Debugging software is an unavoidable part of software
development and maintenance [26]. During the software de-
bugging step, at first, developers need to locate the buggy
piece of code. Once the buggy piece of code is localized,
developers examine the code context systematically. Devel-
opers essentially try to narrow down the search space so
that they can gather sufficient information that is relevant
to fix that bug. To do so, developers started to examine
statements surrounding the buggy code, enclosing method,
and class to gather contextual information for that bug. As a
complementary step to better understand the repair context,
it is common for developers to also analyze the flow of
execution between code blocks. To achieve this, developers
track how variables are initialized and values are modified
at different parts of a program. Intuitively, there are two
consecutive steps (a) isolate: what is the region of interest
to fix this buggy piece of code without getting overwhelmed
with the codebase, and (b) understand: how different code
elements are related in this chosen program segment. Current
learning-based program repair techniques attempt to leverage
context in varied ways. Sequence-based approaches [3], [8],
[9] treat source code from a lexical perspective and use the
enclosing method, enclosing class, or enclosing file as the
context. Furthermore, these sequence-based approaches cannot
embed richer semantic information in the streams of text. On
the other hand, graph-based approaches [7] use the whole file
as AST with a predefined limit to select context in an ad-
hoc way. A recent work [24] applied a slicing-based approach
to select code statements related to the buggy line. These
techniques are limited in how additional information, such as
control and data flow, could be embedded.

As a running example, we will use Listing 1, which shows
a bug and its fix for a JavaScript project. This type of bug for
dereferencing non-values is frequent in JavaScript [27]. Once
the developer localizes the buggy line 55, they investigate the
buggy file to locate the function getMarkerAtDocumentPos.
Following that, developers attempt to understand related code
segments that are relevant to the buggy line. At this point, they

scan the highlighted code region that are depicted in yellow
in Listing 1. Now they need to understand how the variable
match is manipulated in the selected code region. To do so,
they analyze the flow of control statements and data flow of
variables to understand the program path. In our example, the
conditional statement (line-39) branches off to two possible
paths to modify the variable match. By tracking where the
variable match is defined and modified, they observe that the
variable is set to null in the else block (line-42). At this point,
they realized how this bug is introduced while dereferencing
a null value. To fix this bug, they use the optional chaining
operator (?.) that is available in ES6.

1 use strict;
2
3 var DocumentManager = require("docs/DocumentManager"),
4 ...

25 function getMarkerAtDocumentPos(editor, pos, markCache){
26 var marks, match;

30 markCache = markCache || {};

35 marks = getSortedMarks();

36 if (!marks.length) {
37 return null;
38 }

39 if (marks.length > 1) {
40 match = { mark: marks[marks.length - 2] };
41 } else {
42 match = null;
43 }

45 markTags(editor, pos)
46 ....

55 - return match.mark;

55 + return match?.mark;
56 }

60 function markTags(cm, node) {
61 ...

Listing 1: Sliced program with incorrect null dereference

Current learning-based repair techniques [3], [7]–[9] either
arbitrarily choose context, which adds noise to learning or
cannot embed relationships between code elements. While
a recent technique [24] uses slicing-based program analysis,
the relationship that could be derived from control flow and
data flow is still not leveraged. However, source code has
richer semantics that could be leveraged from the program’s
control, data, and call dependencies. Using the program data
and control flow as a graphical code structure would make the
representation more amenable to learn from. We hypothesize
that the code region relevant to the buggy line and the
relationship within that region are important for a repair task.
To that end, we build a framework that enables us to embed
semantic information using control and data flow.

III. APPROACH

In this section, we describe the design of GLANCE, a
novel framework that combines program analysis with graph-
to-sequence learning for source code. At a high level, given
a code segment, GLANCE first derives a flow-augmented
graph, as illustrated in Figure 1, by employing backward
slicing, context delineation, and embedding control, data-flow
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dependencies. The resulting flow-augmented graph is then fed
to a graph-to-sequence (Graph2Seq) based model. This ap-
proach initially learns word embedding, then derives final node
embedding via message passing. GLANCE then employs an
RNN-based decoder to generate the final output sequence. Our
overall approach, including the model architecture, is shown
in Figure 2. Next, we elaborate on each step.

A. Flow-Augmented Context Representation

Given a JavaScript file with a buggy line of code, GLANCE
employs a static analysis technique, namely backward slic-
ing [28], to determine the relevant ingredients for program
repair, such as the variables, objects, function calls, and where
these ingredients have been defined, used and modified. In ad-
dition, for each of these ingredients, GLANCE captures con-
trol and data-flow information where applicable. We employ
both intra-procedural (within function) and inter-procedural
(within program) analysis. As JavaScript code allows stepwise
execution in the global code without requiring a main method
(e.g., in Java), we opted to go beyond intra-procedural analysis,
but limit the analysis scope to the enclosing file as a significant
portion of the fixing ingredients can be found in the file
containing the bug [29].

We perform a pre-processing step where whitespaces, empty
lines and comments are removed from the sliced code. We
then construct a JSON object which contains the buggy line
number, backward sliced code as context with respect to the
buggy line, control flow and data flow analysis of the sliced
code, and the target fixed line, as shown in Figure 2. Next, we
represent this contextual information by constructing a Flow-
Augmented Graph (FAG).

function getMarkerAtDocumentPos ( editor , pos )

var marks , match ; marks = getSortedMarks ( ) ;

if marks( . length

match : marks marks . length - 2 ] } ;

else match = null ;

return match ;

)> 1

mark

, markCache

= { mark [

.START_BUG END_BUG

→ True      → False
→ UseBy  →DefineIn    
→ NextToken

Fig. 1: Flow-augmented graph.

We tokenize the sliced code snippet to form a stream of
tokens using the word-level tokenization – a widely used
technique in NLP. GLANCE then performs code abstraction
wherein strings and literals in the code snippet are replaced
with tokens $STRING$ and $LITERAL$, similar to a previous
work [9].

With the extracted stream of tokens, GLANCE creates
a graph where each token is a node and has a directed
edge connecting it to the next token in the stream. We then
enclose the tokens from buggy line with two additional tokens
– START_BUG and END_BUG for delineation of the buggy
line. We refer to this resulting graph as a Sequence Graph
(SEQGRAPH).

Next, we add control and data-flow edges to this SE-
QGRAPH using the information extracted during program
analysis phase. The control flow edges are added to indicate
the flow of program execution for conditionals, loops and try-
catch blocks. For example, in Figure 1, the green and red edges
indicate the control flow in a conditional statement, where the
edges point to the first token in the particular code path. The
data-flow edges represent the result of the def-use analysis.
For example, the orange and blue edges indicate the data flow
(DefineIn, UseBy) from the nodes of variables marks and
match to the nodes in lines where they have been defined and
used. Similarly, the output of call-graph analysis is indicated
through CallBy edges. The buggy line is color encoded in red
and enclosed within two bug delineation tokens, START_BUG
and END_BUG, as illustrated in Figure 1. We refer to this
resulting graph where SEQGRAPH is enhanced with control
and data-flow edges to be a flow-augmented graph (FAG). To
the best of our knowledge, we are the first to utilize program
analysis output in a graphical representation for a learning
based repair task. A flow-augmented graph (FAG) is different
from a program-dependence graph (PDG) [30] in two ways:
(i) the smallest possible unit in a FAG are tokens instead
of statements and (ii) the control and data-flow edges in a
FAG are applied on individual tokens which provides more
granularity in determining the exact locations of identifier
definition and use. We employ the extracted FAG as input
for our learning model. Next, we describe how FAGs are
employed for training and inference of a learning model built
for program repair task.

B. Model Architecture

Overall, we designed our model, shown in Figure 2, to fol-
low an encoder-decoder architecture pattern where we employ
a GNN as encoder and an RNN as decoder. We choose GNN as
our encoder because of their ability to process graph-structured
data [31]–[33]. We employ RNN as decoder because of their
popularity in generation tasks. In the rest of this subsection,
we describe details of the model components.

Embedding construction module. To apply learning-based
techniques, source code needs to be vectorized. As shown in
Figure 2, at first we feed FAG into the embedding construction
module. The goal of the embedding construction module is to
learn the initial node embedding from the input FAG before
feeding it to the subsequent GNN encoder. The initialization
of node embedding is critical for GNN-based models [34].
To capture the name-based semantics of source code [35], we
first use word2vec [36] embeddings to initialize the tokens.
Following that, we apply a BiLSTM [37] encoder to update
the initial embedding further. The intuition behind using the
bidirectional sequential information is it would capture the
relationship between preceding tokens and subsequent code
tokens in the source code corpus.

Graph Encoder. The embedding vectors are now fed into
the graph convolutional network (GCN) layer, as presented
in Figure 2. GCN is a variant of the graph neural network
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{
    "data_flow": {
       “marks”: [{"line": 26, "edge":
“DefineIn}],
       “match”: [{“line”: 26, “edge”: 
“DefineIn”}]
    },
    "control_flow": {
       "39”: { "yes": 40, "no": 42, 
"type": “if” }
    },
    "source": {
       "25": "function 
getMarkerAtDocumentPos(editor, pos, 
markCache) {“,
       "26”: "var i, marks, match;",
       "35”: "marks = getSortedMarks();",
       "39”: "if (marks.length > 1) {",
       ...
       “55”: “return match.mark;”
    },
    "buggy_line_num": 55,
    "parent_type": "Function",
    "target": “return match?.mark“
}

Dataset

Flow-Augmented 
Graph Generator
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Fig. 2: Overview of our approach.

that uses spectral-based graph filters [38]. At this stage, we
aggregate the feature information among all neighbour nodes
in FAG. GCN can capture information only about immedi-
ate neighbours with one layer of convolution. So we adopt
multiple-layer GCN to learn from the larger neighbourhood
and perform a layer-wise propagation rule following spectral
graph theory [38].

Sequence Decoder. For sequence generation, we employ a
Recurrent Neural Network (RNN) as the decoder. This se-
quence decoder is responsible for decoding the target sequence
from vectors produced by the graph encoder. The graph-based
decoder, like most sequence-to-sequence decoders, uses an
attention mechanism to learn the soft alignment between the
input FAG and the bug fixing code sequence [39]. How-
ever, there are differences in how the attention mechanism
is leveraged. Unlike other sequence-to-sequence decoders,
the decoder attends to both the sequential output and the
tokens in the graph encoder. Then it fuses two vectors using
concatenation to obtain the attention result into a single context
vector to generate the next token. The decoder predicts the
next token until <EOS> tag is read and produces the correct
patch sequence as the final output during inference, as shown
in Figure 2. We apply the copy [40] and coverage [41]
mechanism in the decoder. For the copy mechanism, the model
copies words directly from the source sequence using a pointer
network [42].

Patch Generation. After training, we use the test dataset to
evaluate the model during inference. Given a buggy program,
we assume a fault localization step already identifies the
potential buggy statement, which is consistent with other
learning-based program repair techniques [3], [5], [9]. For the
evaluation of SEQGRAPH representation, input to the infer-
ence engine is the SEQGRAPH, constructed from backward
sliced buggy file and bug delineation tokens as defined in
Section III-A. On the other hand, to evaluate FAG, input to

the inference engine is a FAG, which is constructed from the
backward sliced buggy file and augmented with control and
data flow edges along with bug delineation tokens, as shown
in Figure 1. The output of the model is a sequence of tokens
which is the predicted fix for the bug. Therefore, given a buggy
FAG, gbug fed into the graph encoder, the sequence decoder
tries to predict the next token yi, following the previously
predicted tokens y<i = y1, ...yi−1, RNN hidden state si and
the context vector ci [43]. Instead of greedy search, we use
beam search to select the top k candidates as the candidate
output sequence, where k is the beam size.

IV. EXPERIMENTAL SETUP

A. Dataset

Our technique is evaluated on JavaScript bugs collected
from open source GitHub projects. JavaScript, which was
initially used primarily for client-side web development, has
gained popularity for backend development with the emer-
gence of the Node.js [44] framework. Due to its weak and
dynamic typing, coding with JavaScript poses unique chal-
lenges which can lead to a myriad of language-specific bugs
and code smells e.g. let and const interchangeability, null
exception, incorrect comparison [27], scoping errors caused
by var [45] etc. Therefore, we opted to use JavaScript as our
target language for repairing bugs.

Data Deduplication. To train a model and evaluate it faith-
fully, we need to eliminate duplicate data points [46]. We
remove all duplicates from the test dataset as well as any
recurrent data points between the test and training datasets.

Data Collection. The dataset is collected from open-source
GitHub repositories. We further filter out commits based on
the number of AST node differences. This heuristic, employed
by an existing work [7], considers a difference of one node
between buggy and fixed files because it is more likely to be
considered a bug than refactoring or ad-hoc code change. Our
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TABLE I: Hyperparameters and the optimal configuration
Hyperparameter Possible Values Tuned Value

GNN layers [1, 2, 3] 2
Learning rate [0.1, 0.01, 0.001] 0.001
GNN Dropout [0.1, 0.2, 0.3] 0.2

dataset consists of top 1,100 open-source projects (based on
GitHub stars) containing buggy commits from both frontend
and backend JavaScript code. We collected a total of 113,975
pairs of buggy and fixed JavaScript files having one AST node
difference between the pairs. We folded the dataset into 80%
(91,181) training, 10% (11,397) validation and 10% (11,397)
testing sets.

B. Hyperparameter Optimization and Training

GNNs need to be tuned for optimal performance with a
hyperparameter optimization step. As shown in Table I, we
constructed a search space of various configurations following
previous studies [47], [48]. We tuned the model with unsliced
code, i.e., without slicing, as it is the closest to the actual code.
We trained 27 different models, and the tuned value is shown
in Table I. We use Adam optimizer [49] to update network
weights. After 5 epochs, we observed negligible improvement
in the accuracy score with this optimal configuration. As a
result, the stopping criterion for training 5 epochs. For the
sliced code, the batch size was fixed at 16 for all training.
However, since unsliced code has a larger graph size, it
consumes more GPU memory. As a consequence, we kept the
batch size for unsliced code fixed at 4 since that was the largest
batch size our infrastructure could handle. We describe details
of our infrastructure in Section IV-D. Throughout the training,
the embedding size was set at 300. For the decoder, we set
dropout to 0.3, following best practices [50]. We evaluate all
techniques with a beam size of 5 and use top-1 inference
to calculate accuracy. Our final input vocabulary size for the
dataset is 110,470 tokens.

C. Evaluation Metrics

We use commonly used evaluation metrics such as accu-
racy [11], [51], [52] and BLEU-n score [53]. For all the
metrics, a higher value is considered a better score and the
metrics are reported as an average for the entire test set.
Accuracy. Accuracy is measured as the percentage of unseen
test dataset for which the model can suggest an expected out-
put. Recent work [51] has highlighted the need to employ top-
1 accuracy as the primary criteria for assessment, which has
been also adopted in other studies [10], [11], [52]. Similarly,
we choose top-1 exact match accuracy as the key evaluation
metric since it is the most stringent assessment criterion for
evaluation. There are also approaches that propose suggesting
top-k patch candidates and filtering the actual patch based
on available test cases. However, test cases may not always
be available for learning-based program repair. Furthermore,
showing a large number of patch candidates to the developer
would limit the usability of a technique. Hence, we adopt top-1
accuracy throughout this study.
BLEU-n score. BLEU [54] is a number between 0 and
1, which measures the precision of generated sequences by

calculating the average of the n-gram precision (i.e., 1-gram,
2-grams, 3-grams and 4-grams for BLEU-4). It is a widely
used metric in the SE literature [53], [55]–[59]. The n-gram
precision is defined as the ratio of the number of matched
n-grams to the number of all the n-grams in the generated
sequence. This metric is used to determine the similarity
between the expected patch and the actual patch.

D. Implementation

Dataset collection. For collecting our dataset, we employ Py-
Driller [60] library to crawl commits from the selected GitHub
projects based on the keywords ‘bug’, ‘fix’ and ‘resolve’.

Curation of FAG. We use the tool Understand by Sci-
Tools [61] for static program analysis of the buggy JavaScript
files. As we were unable to find any existing slicing tool that
supports the latest JavaScript ES10 features, we implemented a
slicer for extracting the control and data flow information with
respect to the slicing criterion, following previous work [24],
[62]. The slicer takes as input a buggy JavaScript file, correct
line and the slicing criterion, which is the buggy line and the
entities (variables, objects or functions) used in that line. It
produces as output a JSON object containing the sliced code,
control flow object, data flow object, buggy line number and
the correct line, which is parsed for creating the FAG.

GNN model. We implemented our model architecture
using a recently released graph neural network library,
GRAPH4NLP [34], [50]. We customized the graph encoder
and sequencer decoder components from this library to build
the learning framework for GLANCE.

Infrastructure. Hyperparameter tuning, training, and
inference were performed on a single Amazon EC2
G4DN.12XLARGE instance running Ubuntu 18.04.2 LTS,
which is optimized for running deep-learning workload. This
server was equipped with 48 Intel Cascade Lake vCPUs, 4
NVIDIA T4 GPUs, 192 GB memory, and 500 GB SSD.

V. EVALUATION

We address the following research questions in order to
assess the effectiveness of GLANCE:

RQ1 What are the contributing factors on the overall accuracy
of GLANCE?

RQ2 What is the effect of embedding contextual semantics
information?

RQ3 How well does our technique perform in comparison
with state-of-the-art learning-based program repair ap-
proaches?

A. Role of bug delineation and abstraction (RQ1)

In this section, we discuss how the different components
of GLANCE affect the overall performance in accurately
generating patches. We represent source code as a flow-
augmented graph (FAG) having control and data flow edges.
Additionally, we incorporate bug delineation to differentiate
the buggy line from context within the graph, as well as
abstraction to limit the vocabulary size. In order to assess the
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TABLE II: Results - role of abstraction and bug delineation
Abstraction Bug delineation Accuracy (%) BLEU-1 BLEU-2 BLEU-3 BLEU-4 Duration(hh:mm:ss)

No No 2.69 0.1905 0.1072 0.0728 0.0542 10:01:21
No Yes 7.32 0.3175 0.2017 0.1442 0.1113 10:05:56
Yes No 25.69 0.3532 0.2727 0.2171 0.1780 7:32:05
Yes Yes 40.43 0.6114 0.5160 0.4364 0.3752 8:22:05

TABLE III: Results - role of control and data flow edges
Program Analysis Representation Accuracy (%) BLEU-1 BLEU-2 BLEU-3 BLEU-4 Duration (hh:mm:ss)

SEQGRAPH 37.40 0.5306 0.4335 0.3555 0.2968 41:07:00Unsliced FAG 39.73 0.5705 0.4783 0.4018 0.3428 38:32:55

SEQGRAPH 40.43 0.6114 0.5160 0.4364 0.3752 8:22:05Sliced FAG 43.02 0.6165 0.5253 0.4480 0.3876 8:21:54

importance of these two components individually, we conduct
a sensitivity analysis on the sequence graph (SEQGRAPH) by
excluding the control and data flow edges. Table II shows
the ablation study of how the two components contribute to
the accuracy of GLANCE. We used the metrics described
in Section IV-C for evaluation. The quantitative metrics in
each column is color coded, where the darker hue entails
better result for the specific metric. Without abstraction and
bug delineation, the accuracy of GLANCE is only 2.69%
which is very low. The n-gram BLEU scores are below 0.2
which denotes that the tokens in generated patches are very
different from the ground truth. Furthermore, the model takes
around 10 hours to train due to the absence of these two
components. By adding only bug delineation, we observe an
increase in accuracy to 7.32% and BLEU score ranging from
0.1 to 0.3. With the addition of abstraction only, the accuracy
significantly increases to 25.69%, however the BLEU score
increases slightly with more improvement in case of 3-grams.
We also observed a 3.5 hours decrease in training time with
the inclusion of only abstraction. Finally, with the addition of
both abstraction and bug delineation, the accuracy increases
to 40.43% and the training time increases by 50 minutes. The
BLEU score improves in all the 4-grams – with 0.6114 as the
highest in BLEU-1 and 0.3752 being the lowest in BLEU-4.

B. Encoding Semantic Information (RQ2)

In GLANCE, we encode the sliced buggy source code and
its context as a FAG that leverages control and data flow
information both implicitly (as sliced code) and explicitly (as
graph edges). The most basic representation of our code graph
is a SEQGRAPH that connects all tokens using the NextToken
edge. We consider this representation as the baseline. We
then add control and data flow edges on top of SEQGRAPH
to form the FAG. In order to understand how these factors
contribute to the accuracy of our framework, we conducted
an ablation study with the SEQGRAPH and FAG on both the
sliced and unsliced buggy code. Here, we refer to the dataset
before slicing code as unsliced. We represented the unsliced
code as a FAG and SEQGRAPH, but kept the bug delineation
and abstraction aspect on. Table III shows the results of our
ablation study. We used the same two metrics as the previous
section for evaluation. In the unsliced code, we observed that
the accuracy of bug fixes for SEQGRAPH was 37.40% with

highest BLEU score 0.5306 for 1-gram and lowest BLEU
score of 0.2968 for 4-gram. We then build on top of the
SEQGRAPH and perform program analysis to add control and
data flow edges. This increases the accuracy to 39.73% with
an increased BLEU score ranging from 0.3428 to 0.5705 for 1
to 4 grams. However, for the unsliced dataset, training time is
significantly high, with 41 hours for SEQGRAPH as compared
to 38 hours for FAG.

Next, we train the model on sliced code and represent it
as a SEQGRAPH and FAG. To construct FAG, on average,
the program analysis step takes around 330 milliseconds for a
single data point, and this pre-processing step does not incur
significant overhead. As shown in Table III, the accuracy of
program repair slightly increases further after using the sliced
version of buggy code to 40.43%. The BLEU score increases
to 0.6114 in BLEU-1 and 0.3752 in BLEU-4. After adding
control and data flow edges using a FAG, the accuracy of bug
fixes increases to 43.02%. The BLEU score also increased
to 0.6165, 0.5253, 0.4480 and 0.3876 for 1 to 4 grams,
respectively. For the sliced dataset, the training time reduced
considerably, taking around 8 hours 22 minutes for both of
the graph representations.

C. Comparative study with neural-repair approaches (RQ3)

Baseline Selection Criteria. There is a wide array of neural
program repair techniques in the literature [3], [5], [7]–[9],
[11], [12], [14]–[16], [20], [63]–[65]. Our selection criteria
for our comparative evaluation included (1) the availability of
the technique’s source code, and (b) support for JavaScript or
the ability to retrain the tool’s model on a JavaScript dataset.
We considered a number of techniques that were excluded
based on these selection criteria. For instance, CURE [63]
and Recoder [14] are designed for Java and rely on language-
specific implementations. As a result, extending these tools to
a dynamic language such as JavaScript would not be trivial;
RewardRepair [16] relies on Java test cases during training,
which is not available in our dataset; CIRCLE [12] is a
multilingual repair technique, but the tool/model is currently
not available in their latest official repository [66].

We included SEQUENCER [3] and Tufano et al. [8] despite
being designed for Java. The reason is that neither of these
techniques relies on language-specific features, and they em-
ploy a sequence-based model that can be extended to other
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TABLE IV: Design comparison of GLANCE with other learning-based program repair techniques.
Approaches Tufano et al. [8] HOPPITY SEQUENCER PLUR COCONUT KATANA GLANCE

Model
Architecture

Encoder BiLSTM GIN BiLSTM GGNN FConv-Context GIN GCN
Decoder BiLSTM LSTM BiLSTM ToCoPo FConv LSTM RNN

Input Buggy Sequence Buggy AST Buggy Sequence Buggy AST Buggy Sequence Dual Sliced
Buggy AST FAG

Output Correct Sequence AST Edits Correct Sequence AST Edits Correct Sequence AST Edits Correct Sequence

Context
Extraction

Scope Enclosing method Enclosing file Enclosing file Enclosing class Enclosing method Enclosing file Enclosing file
Program Slicing ✗ ✗ ✗ ✗ ✗ ✓ ✓
Control & data-flow
delineation ✗ ✗ ✗ ✗ ✗ ✗ ✓

languages. We also included COCONUT [9], HOPPITY [7],
PLUR [67], and KATANA [24] as they all support JavaScript.
TFix [11] was excluded despite being a JavaScript repair
tool because it is specifically designed for fixing linter errors,
and it requires ESLint error messages. While we considered
including DLFix [5] and DEAR [15], both were unavailable at
the time of writing this paper. Our findings are consistent with
a recent comparative study [68] on learning-based program
repair tools, which observed that not all tools have their
artifacts available for comparison and many of these tools
cannot be trained on a new dataset from scratch.

Thus, the set of tools to compare against consists of two
learning-based repair tools built for Java (Tufano et al. [8],
SEQUENCER), and four repair tools (HOPPITY, PLUR, CO-
CONUT, KATANA) that already support JavaScript.
Design Comparison. We present the design choices based on
model architecture and context extraction of different repair
tools in Table IV.

• Encoder: Depending on the graph or token sequence
input to the model, variants of LSTM or GNN could be
employed to learn latent vector representation.

• Decoder: To produce the output sequence, variants of
RNN could be leveraged.

• Model Input: Code could be fed as text sequence, AST
or graph to the model.

• Model Output: Output from the model could be a correct
sequence pertaining to the buggy line or AST edit(s)
applied to the buggy AST.

• Context Scope: Input to the model could be derived
from a varied level of contextual information: enclosing
method, enclosing class, whole file.

• Program Slicing: Context pertaining to the buggy line
could be leveraged using program slicing.

• Context Delineation: A fine-grained context delineation
could be embedded using control and data-flow edges.

Evaluation Setup. Now we describe the steps we used to
train models from the selected learning-based program repair
techniques with our JavaScript dataset using their artifact.

Tufano et al. [8] investigate the potential of NMT to
generate candidate patches by using a recurrent neural network
(RNN) encoder-decoder architecture, as shown in Table IV.
It uses a sequence-to-sequence approach to represent buggy
methods as input and fixed methods as output. They limit the
overall number of tokens of each methods to 100 tokens as
a means to reduce the scope of context and apply abstraction
to limit the vocabulary size. Since the bugs in our dataset
are not always scoped within a function, we captured the

surrounding tokens of a buggy line as context such that the
total number of tokens is within the 100 token limit. After
tokenizing the buggy and fixed JavaScript files, we generate a
dictionary of frequent tokens and replaced the infrequent iden-
tifiers, methods and variables with sequential abstracted tokens
(e.g. METHOD_1, VARIABLE_1). The final vocabulary size was
815, containing abstracted tokens, JavaScript keywords and
frequent tokens.

HOPPITY [7] uses a graph neural network for learning
graphs to code edits, using a pre-defined node limit. HOPPITY
is a graph-based program repair technique which represents
the source code as AST to feed as input to the model and the
output is AST edits applied to the buggy graph. The context
scope is limited to 500 nodes within the enclosing file of the
buggy line. The final vocabulary size from our dataset for this
framework was 5,003 tokens.

SEQUENCER [3] employs a sequence-to-sequence net-
work along with a copy mechanism for repair learning. In
SEQUENCER, we represented the buggy JavaScript file as
a sequence of tokens and the output is a fixed line (see
Table IV). We start by encapsulating the buggy line within the
tokens <START_BUG> and <END_BUG> and capture context by
extracting 2/3rd more tokens from the preceding statements
of the buggy line following their approach. SEQUENCER
limits the context by keeping the max token size to 1,000
tokens, which we incorporated in our dataset as well. The
final vocabulary size for this framework was limited to 1,000
tokens.

PLUR [67] introduced a graph learning framework for
different source code processing tasks such as program re-
pair. In their work, PLUR demonstrated superior accuracy in
comparison to HOPPITY using a GGNN to encode the graph
structure and a ToCoPo decoder to output edit operation in the
AST. We employ the same model architecture using reported
hyperparameters from their artifact.

COCONUT [9] also employs a sequence-to-sequence learn-
ing using CNN and ensemble learning for learning repair. It
uses the surrounding tokens of a buggy line as context by lim-
iting the scope to 1,022 tokens. Their framework incorporates
abstraction for tokens that are strings and literals. The final
vocabulary size generated from our dataset for this framework
was 63,499 tokens.

KATANA [24] employs the code representation and learning
model from HOPPITY. However, during training, KATANA
uses program slicing to derive context from both the buggy and
fixed files, namely dual-slicing, instead of ad-hoc quantitative
limitation through nodes or tokens. For inference, KATANA
extracts backward sliced context from buggy line as input. This
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is unlike other deep learning approaches as input to the model
is not the same during training and inference. The vocabulary
size for KATANA was the same as HOPPITY.
Fig. 3: Accuracy comparison of GLANCE with other tools.
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Results. In Figure 3, we show accuracy for all the six deep
learning based program repair techniques. The lowest accuracy
was obtained by Tufano et al. [8] with only 4.9% accuracy
in fixing bugs. Even though the context scope is limited to
100 tokens with abstracted literals and identifiers, the model
was not able to infer enough information to generate patches.
HOPPITY was able to fix bugs with only 5.05% despite
being a sophisticated graph-based technique that generates
patches using a series of AST edits. SEQUENCER performed
slightly better than HOPPITY with 7.99% accuracy. PLUR
outperformed SEQUENCER with an accuracy of 21.18%. CO-
CONUT demonstrated slightly better results than the previous
techniques with 24.67% in fixing bugs, followed by KATANA
which showed a more improved accuracy of 28.31% due to its
dual slicing technique. GLANCE outperformed all six tech-
niques with a 43.02% accuracy in fixing bugs. Using a novel
representation of source code, bug delineation and abstraction
implemented in a graph-to-sequence model, GLANCE is
able to surpass the existing techniques by 777.8% (Tufano
et al.), 751.7% (HOPPITY), 438.3% (SEQUENCER), 103.12%
(PLUR), 74.3% (COCONUT), and 52% (KATANA) percent-
age increases in accuracy.

VI. DISCUSSION

Bug delineation plays a role. For a learning-based model,
it is essential to understand what encompasses the buggy line
and where it appears in the context to learn from a source
code. Without this explicit delineation of the buggy line, it is
(a) harder for the model to extract the relationship between the
buggy statement and its context and (b) difficult to learn the
alignment between the buggy statement and correct statement.
As a result, highlighting the buggy code statement in the
graph representation helps the model to learn. As shown in
Table II, bug delineation has a significant impact on the overall
accuracy.

While we delineate the buggy statement in this work, we
do not highlight what part from within the buggy statement is
changed to go to the correct statement. For example, we could
embed the addition and deletion that needs to happen to go
from the buggy statement to the fixed statement. As a future
work, this fine-grained edit representation is promising as it

could further assist the model in understanding the alignment
between the buggy statement and the correct statement.

Program analysis for learning repairs. Current learning-
based repair approaches overlook the need to apply program
analysis for extracting contextual information. However, pro-
gram analysis, such as slicing isolates the repair ingredients
pertaining to the buggy line. Additionally, the control and
data dependencies that exist in source code entities, e.g., vari-
ables, statements, functions, could be derived using program
analysis techniques that infer control and data dependencies.
As reported in Figure 3 our technique GLANCE with
FAG outperforms existing approaches. Unsliced code contains
redundant context that may not always be relevant to the bug
or fix. This type of context adds noise to the learning process
and thus, the model requires significant effort in reaching
convergence due to larger graphs. We observe this in the
training duration where sliced graphs require five times less
training time than unsliced. Furthermore, sliced FAGs are
3.3% more accurate than unsliced FAGs. In previous graph-
based approaches [7], [24], the buggy source code had been
represented as AST with additional edges (e.g. V alueLink,
SuccLink). SuccLink is similar to our NextToken edge
which is used for encoding the sequence order by connecting
leaf nodes, whereas V alueLink edges connect the value
nodes containing actual content of the source code to internal
nodes of an AST. However, the resulting augmented AST
representation neither contains the control flow nor the data
flow semantics in their graphs. We also observe the efficacy
of control and data flow edges and, slicing as GLANCE
outperformed a superior graph based model – PLUR. As
shown in Table II, a SEQGRAPH representation for learning
to fix bugs still outperforms the baseline techniques, with
32.1% increase in accuracy from the best performing base-
line, KATANA. We hypothesized that, the extra nodes in an
AST-based graph representation (e.g. FunctionDeclaration,
V ariableDeclaration etc.) could potentially add noise to the
learning process. A similar observation was noted in a recent
work [69], where they demonstrated that AST could be noisy
and there is a need to simplify AST structure by removing
unnecessary tree nodes before feeding it to the learning model.
Our results confirm this hypothesis with the introduction of a
SEQGRAPH representation in Table II, which improves the
accuracy in both unsliced and sliced code by 37.4% and
40.43%, respectively. Furthermore, we observe from our study
that embedding the control and data flow dependencies via a
FAG, assuming that the buggy code contains these aspects,
can improve the accuracy even further.

GLANCE is effective for learning code-change patterns.
Table V shows a qualitative analysis of the bug patterns
found among the correct inferences in GLANCE. As shown,
GLANCE is able to fix a wide variety of bug patterns. The
authors manually assessed all the correct patches generated
by GLANCE, categorized the bug patterns individually and
came to a consensus if they agreed on the classification. The
assessment and categorization of the patches took approxi-
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TABLE V: Qualitative analysis of bugs fixed by GLANCE.
Bug Pattern Description Buggy Code Fixed Code

Wrong Function Name Wrong function with similar
name and signature is called

let node = document.getElementsById
(’grand-node’))

let node = document.getElementById(
’grand-node’)

assert.deepEqual(x, expected.shift
())

assert.deepStrictEqual(x, expected.
shift())

Change Unary Operator Unary expression with wrong
unary operator used

n--; n++;

this.count --; this.count ++;

Change Binary Opera-
tor

Binary expression with wrong
binary operator used

while (num <= i); while (num < i);

for (i = 0; i <= cart.length; i++){ for (i = 0; i < cart.length; i++){

Same Function More
Args

Function with missing argument
in the buggy line

table.increments(); table.increments(’id’);

currentUser: service(); currentUser: service(user);

Missing Return State-
ment

Expression with missing
return keyword

React.createElement("div", { return React.createElement("div", {

changeAnimal(); return changeAnimal();

Incorrect Comparison Expression with incorrect equal-
ity comparison

if (method != ’get’){ if (method !== ’get’){

if (Object.keys(req.files).length
== 0){

if (Object.keys(req.files).length
=== 0){

Change Boolean Literal Expression with incorrect
boolean literal used

db.sequelize.sync({ force: false })
.then(()=> {;

db.sequelize.sync({ force: true }).
then(()=> {;

required: true, required: false,

Change Identifier Used Expression with incorrect iden-
tifier used

mongoose.connect(process.env.
MONGOLAB_TEAL_URI, {useNewUrlParser
: true })

mongoose.connect(process.env.
MONGODB_URI, {useNewUrlParser:
true })

loaders: [ rules: [

mately 10 person-hours in total. For labelling the bug types,
we used the bug categories from ManySStuBs4J [70], and
Hanam et al. [27] to identify the category of the bug fixes. We
present eight bug patterns, with two examples each from the
correct inferences by GLANCE in Table V. Among the eight
bug patterns, six of them are common one-off bugs pervasive
across all languages, and the remaining two patterns are
specific to JavaScript [27], namely Missing Return Statement
and Incorrect Comparison. The remaining six bug patterns
are examples of simple stupid bugs that commonly occur in
almost all programming languages [70], [71]. These bugs are
usually caused after refactorings or while copy-pasting lines
of code. The bug pattern Missing Return Statement occurs in
JavaScript because of its dynamic typing, which allows errors
of this variant to propagate silently. Incorrect Comparison is
another JavaScript specific bug type which occurs when strict
equality === is not used. The strict equality operator compares
both the value and type of the operands whereas non-strict
equality == operator tries to coerce the data type of operands
during comparison, which may lead to bugs.

Role of control and data flow edges. In GLANCE, we
represent the flow-augmented graph as a homogeneous graph
and encode it using a Graph Convolutional Network (GCN)
for learning to generate bug fixes as described in Section III.
Homogeneous graphs contain the same type of nodes, and all
edges represent relationships of the same kind. As a result,
we learned connectivity information from the control and data
flow edges during training. Table III demonstrates that as we
embed the program analysis edges over the SEQGRAPH for
the unsliced code, training time is reduced from 41 hours

07 minutes to 38 hours 32 minutes. We conjecture that the
connectivity information from the control and data flow edges
helps the model to converge faster.

Heterogeneous graphs could also be potentially adopted as
they are capable of representing relational information with
additional type information for the nodes and edges in the
graph. In a recent work [72], heterogeneous graphs have
proven to improve the performance of tasks such as method
name prediction and code classification. As the underlying
deep-learning library [50] for developing our GNN model does
not support heterogeneous graphs, we have not implemented
it in our framework to verify its effectiveness in fixing bugs.
However, besides establishing a neighbourhood relationship
between code statements and variables with control and data-
flow edges, our program analysis edge types can capture
information flow, e.g., where a variable is defined, and then the
variable is used in a statement with a UseBy edge relationship.
It is important to learn edge embedding from control and data
flow edge types to use FAG to the fullest extent. In the future,
we plan to learn edge embeddings from the types of edges
using Relational Graph Convolutional Network (R-GCN) [73],
[74].

Limitations. Modern front-end frameworks, such as, Reac-
tJS [75] and VueJS [76] use templated code (e.g. JSX, HTML)
to combine markup and UI logic. Our analysis tool does not
always extract accurate slices for bugs within front-end tem-
plated code. Our tool is currently limited to file-level interpro-
cedural analysis. In the future, we plan to expand GLANCE
to handle inter-procedural analysis across the project.
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VII. THREATS TO VALIDITY

Choice of programming languages. We chose JavaScript
since it is a popular programming language that has been
investigated in previous learning-based program repair pa-
pers [7], [11]. The key components of our approach are generic
across programming languages: control flow analysis, data
flow analysis, and graph neural network. Since we do not
rely on language-specific features, our findings should apply
to other programming languages, although more experiments
are needed in other languages to empirically validate the
hypothesis. We chose to evaluate our framework against the
state-of-the-art techniques by using a single programming
language, as building a slicing tool for each language requires
substantial development effort.

Dataset selection. The main external validity threat relates to
the quality and generalizability of our dataset. Our model is
trained and evaluated on a corpus of the open source GitHub
repositories of JavaScript projects. An external validity is that
not all datapoints are actual bug fixes, as commits can contain
different types of code changes, such as feature additions,
refactorings and bug fixes. We used search heuristics to filter
buggy commits following prior work [70] to mitigate this
threat.

We employ a dataset consisting of a single AST node
difference, as in previous work [7]. As a result, we cannot
apply benchmarks such as BugsJS [77] for evaluation, as it
is not limited to a single AST node difference. However, our
dataset selection is consistent with prior work [7], [24]. In
the future, we plan to collect even more commits from open
source repositories and extend our evaluation.

Evaluation metrics. In this study, we employed top-1 ac-
curacy and BLEU score. However, a program repair tool
may generate fix suggestions that do not exactly match the
developer-written code but could be functionally equivalent,
which these metrics cannot capture. Nevertheless, top-1 ac-
curacy has been used in previous studies [10], [11], [51],
[52]. Similarly, BLEU score has also been employed as an
evaluation metric in prior studies [4], [56], [57].

Hyperparameter tuning. One approach for hyperparameter
optimization could be to tune each code representation. How-
ever, due to the large search space of all available hyper-
parameters, finding an optimal setting can be computationally
expensive. The goal of this work is not to find the best
setting but rather to compare performance on identical set-
tings. Hence, we opted for tuning the sequence graph context
representation that is closest to the actual code and kept the
same hyperparameter for other contextual representations.

Reproducibility. We have made available our model and
framework [25] in order for the findings to be reproducible.

VIII. RELATED WORK

A wide array of techniques have been proposed for
automated program repair, including search-based [78]–
[81], constraint-based [82], [83], heuristics-based [84], and

template-based [85]–[89]. These techniques have limitations
as they require domain-specific knowledge about bug patterns
and fixes in a given programming language. Our work pertains
to neural program repair and the role of context in source code.

Neural program repair. Learning-based repair techniques
that use sequence-based models cannot embed the semantic
relationship between program elements as they present source
code as a series of tokens [3], [8], [9], [20], [65], [90]. There
are attempts [5], [7], [22], [64], [67] to incorporate code struc-
ture using AST. For example, HOPPITY [7] uses buggy code
as AST where context is limited by a pre-defined node limit.
KATANA [24] applied program slicing and adopted the GNN
model from HOPPITY. However, recent work [69] has shown
that using AST without pre-processing would yield a large
input to the model. In contrast, we employ program analysis
techniques to explicitly encode the relationship between code
elements using control and data-flow information for program
repair using a novel FAG representation.

Context in neural source code processing tasks. Different
neural code-related tasks attempted to leverage context in var-
ied ways, from ignoring context [19], [20] to using enclosing
file [21], class [3], enclosing function [9], [90], [91], sur-
rounding statements [9], or encapsulating AST subtrees [92],
[93]. Researchers attempted to learn code embedding from
syntactical information (AST) [94]–[96]. Recently, efforts have
been made [97] to learn code embedding using data and
control flow information for predictive tasks such as method
name prediction. There are attempts to encode syntactic and
semantic information with an augmented AST [98] for variable
naming and misuse. Compared to these works, we investi-
gate how including context using program analysis can aid
learning-based repair task.

IX. CONCLUSION

Contextual information and the relationship that exists in
the code play a vital role in the process of understanding and
fixing bugs. Existing neural program repair techniques do not
consider semantic information pertaining to the buggy line,
which can include the relevant statements and the control and
data dependencies. In this work, we proposed GLANCE, a
framework that leverages contextual information via program
analysis and uses a graph-to-sequence learning to generate
correct patches. Along with the incorporation of components
such as abstraction and bug delineation, and slicing, our
technique is able to outperform six existing state-of-the-art
program repair techniques with an accuracy of 43.02%. In
future work, we plan to apply heterogeneous graphs for the
representation learning from our flow-augmented graph. We
also plan to expand our framework to support program-wide
inter-procedural analysis and other programming languages
such as Java. We hope this work inspires the community
to apply program analysis techniques to neural models for
program repair and other source code processing tasks.
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