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Abstract—Testing JavaScript web applications is challenging
due to its complex runtime interaction with the Document
Object Model (DOM). Writing unit-level assertions for Java-
Script applications is even more tedious as the tester needs to
precisely understand the interaction between the DOM and the
JavaScript code, which is responsible for updating the DOM.
In this work, we propose to leverage existing DOM-dependent
assertions in a human-written UI-based test cases as well as
useful execution information inferred from the UI-based test
suite to automatically generate assertions used for unit-level
testing of the JavaScript code of the application. Our approach is
implemented in a tool called ATRINA. We evaluate our approach
to assess its effectiveness. The results indicate that ATRINA

maps DOM-based assertions to the corresponding JavaScript
code with high accuracy (99% precision, 92% recall). In terms
of fault finding capability, the assertions generated by ATRINA

outperform human-written DOM-based assertions by 31% on
average. It also surpasses the state-of-the-art mutation-based
assertion generation technique by 26% on average in detecting
faults.

Index Terms—Test generation, oracles, JavaScript, DOM

I. INTRODUCTION

JavaScript has emerged as the lingua franca of modern,

interactive web applications. The interactivity is made possible

by the close relation between the Document Object Model

(DOM) and the underlying JavaScript code. However, testing

modern web applications is challenging. To check the ap-

plication’s behaviour from an end-user’s perspective, testers

often use popular frameworks such as Selenium. The main

advantage of using these frameworks to write GUI-based tests

and assertions is that they require little knowledge about the

internal operations performed by the code. Rather, the tester

needs only basic knowledge of common event sequences to

cover important DOM elements to assert.

On the other hand, it is more tedious to write unit test

assertions for web applications that have rich interaction with

the DOM through their JavaScript code. This is because

the tester needs to precisely understand the full range of

interaction between the code level operations of a unit and

the DOM level operations of a system, and thus may fail

to assert the correctness of a particular behaviour when the

unit is used as a part of a system. Our previous findings [1]

indicate that while DOM-based assertions tend to miss the

related portion of code-level failure, more fine grained unit-

level assertions can detect such faults. Furthermore, finding

the root cause of an error during DOM-based testing is

much more expensive than during unit testing. This suggest

that we need unit-level tests to complement existing DOM-

based test for more effective fault detection and localization.

Moreover, using existing DOM-based test cases as a baseline

for producing unit-level tests can guide assertion generation

towards more important characteristics of the application from

the tester points of view, and thus prevent creating test cases

with too many assertions.
Current test generation approaches either produce unit test

oracles based on mutation testing techniques [1], [2], or

rely on soft oracles [3]. Mutation-based approaches suffer

from high computational cost, and the problem of equivalent

mutants (which are syntactically different but semantically

the same as the original application). Soft oracles such as

HTML validation and runtime exceptions are also limited

in that they fail to capture logical and computational errors.

Recently, Milani Fard et al. [4] proposed using the DOM-

based test suite of a web application to regenerate assertions

for newly detected states through exploring alternative paths

of the application. However, the new assertions generated by

this technique remain at the DOM-level without considering

the relation between the JavaScript code and the DOM. In this

work, we propose to exploit an existing UI-based test suite to

generate unit-level assertions at the code-level for applications

that interact highly with the DOM through the underlying Java-

Script code. We utilize existing DOM-dependent assertions as

well as useful execution information inferred from a UI-based

test suite to automatically generate assertions used for testing

individual JavaScript functions. The approach is generic and

can be applied to any UI-based test suite. However, in this

paper, we implement our technique for DOM-based test suites,

which are written for JavaScript language. To the best of our

knowledge, this work is the first to propose an approach for

generating unit-level assertions by using existing UI-level test

cases.

The main contributions of our work include:

• A slicing-based technique to generate unit-level asser-

tions for testing JavaScript functions by utilizing existing

DOM-based test assertions;

• A technique for selectively choosing additional DOM

elements to assert on that are unchecked in the existing

GUI-based test suite;

• An empirical evaluation to assess the efficacy of the

approach on seven open-source web applications; The

results show that the assertions generated by ATRINA

surpass the fault finding capabilities of (1) the human-

written DOM-based assertions by 31% on average, and

(2) the state-of-the-art mutation-based assertion genera-

tion technique by 26% on average.

II. MOTIVATION

Unlike DOM-based testing, asserting the behaviour of a

JavaScript application through unit-level tests requires a tester

to check the correctness of several intermediate code-level



	1		$document.ready(function()	{		
	2			...		
	3		$(	".merchandise").click(addToCart);
	4		$(	"#shopCart").click(viewCart);
	5		});
	6
	7		function	addToCart()	{	
	8			var	coupElem=	$("#couponButt");
	9			selItem=	getItemInfo($(".merchandise"));
	10			for(var	i=0;	i<availItems.length;	i++){
	11				if(availItems[i].name	==	selItem.name)
	12					availItems[i].count-=	selItem.quantity;		
	13			}
	14			var	price=	selItem.price	*	selItem.quantity;
	15			if(!coupon.expired){
	16				coupElem.removeClass(customer.couponStatus);
	17				customer.couponStatus=	coupon.Id	+	'-'	+	'used';
	18				price	-=	coupElem.data('value');	
	19				coupElem.addClass(customer.couponStatus);
	20				coupon.expired=true;	
	21			}		
	22			customer.payable	+=	price;
	23		}	
	24
	25		function	viewCart(){
	26			...
	27			if($("#couponButt").attr("class")	==	'default'	&&	customer.payable==0)
	28				showMsg('Shopping	cart	is	empty');
	29			else
	30				$("div.shopContainer").append("<p>"	+	"Total	purchase	is:	$"	+	
							customer.payable	+"</p>");
	31		}

	1		@Test
	2		public	void	testCase1(){
	3			Select	quantity	=	new	Select(driver.findElement(By.
					id("quantityDropDown")));
	4			quantity.selectByIndex(1);
	5			WebElement	item	=	driver.findElements(By.css("merchandise"));
	6			item.click();
	7			WebElement	cart	=	driver.findElements(By.id("shopCart"));
	8			cart.click();		
	9			String	expectedMsg	=	"Total	purchase	is:	$70";	
	10		String	msg=driver.findElements(By.cssSelector
					("div.shopContainer")).getText();
	11		assertEquals(msg,	expectedMsg);
	12	}

(a)

(b)

Fig. 1. Running example (a) JavaScript code, and (b) DOM-based test case.
The line from (b) to (a) shows the point of contact between the DOM assertion
and the code. The arrow lines in (a) show the backward as well as forward
slices between JavaScript statements.

variables and object properties. The code-level operations

are mainly responsible for updating the DOM during the

application execution. Therefore, a tester needs to analyze the

relationship between the JavaScript code and the DOM’s evo-

lution. We believe that DOM-based assertions can be utilized

as a guideline to generate unit test assertions at JavaScript code

level. In this section, we discuss why through an example.

Figure 1 presents (a) snippet of a JavaScript-based shopping

cart application, and (b) sample DOM-based SELENIUM test

case. We will use this as a running example throughout the

paper. The application’s code (a) consists of two functions:

1) addToCart is bound to the event handler of DOM

element with class attribute merchandise. When any

of these element are clicked, addToCart gets the

information of the selected merchandise, and sets the

quantity of the current available items by updating the

availItems object. If a valid discount coupon exists,

addToCart calculates the discount value, and disables

the selected coupon button with ID couponButt by

removing the corresponding class. Finally, addToCart

updates the payable amount by setting the payable

property of the customer object.
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Fig. 2. Overview of our assertion generation approach.

2) viewCart is invoked by clicking on a DOM element

with ID shopCart. The function appends a message to

a div element with class shopContainer including

the final payable amount of the customer. If the coupon

button with ID couponButt is not selected and the

payable amount is equal to zero, then the empty cart

message is shown.

Let’s assume that in line 14 of Figure 1(a) selItem.price,

which represents the original price of the merchandise, is

100, and selItem.quantity is 1. In line 18, the dis-

count, which is calculated based on the data value of the

couponButt element is 30. The DOM-based assertion in

Figure 1(b) (line 11) checks the correctness of a text appended

to a div element with class shopContainer containing the

final amount payable by the customer, which is equal to 70 in

this example. Analyzing the assertion in line 11 of Figure 1(b)

indicates that the expected value of the assertion is directly

influenced by the payable property of customer object as

well as the object’s property coupon.expired in function

addToCart. We also infer that the selitem variable in

line 9 of Figure 1(a), which directly influences the value of

customer.payable, is also used in updating the value of

availItems.count in line 12.
Further, by leveraging the execution information obtained

from running the DOM-based test case, we can infer the

DOM’s evolution, which can influence the fault finding

capability of the test suite. However, this is not checked

by the DOM-based test suite. For instance, DOM element

with ID couponButt is accessed several times in function

addToCart as well as viewCart as the test case in

Figure 1(b) runs, however it remains unchecked. Since the

evolution of the couponButt DOM element pertains to the

underlying JavaScript code, it is important to assert on code

statements responsible for changing the aforementioned DOM

elements. S

III. APPROACH

Figure 2 shows an overview of our unit-level assertion

generation technique. At a high level, our approach generates

code-level assertions based on human written DOM-based

tests and assertions. Our code level assertions fall in the

following three categories: (1) explicit assertions, which are

directly inferred from analyzing the manually written DOM-

based assertions, (2) implicit assertions, which are indirectly

inferred from the human written DOM-based assertions, and

(3) candidate assertions, which are not considered in the

written DOM-based assertions, yet are potentially useful for

fault detection. We describe how our approach below finds



Algorithm 1: Oracle Generation

input : Test suite T ; The set of test cases tci ∈ T
output: The ordered set of oracles oracles

begin

1 trace← EXEC(T )
2 domAccss← GETDOMACC(trace)
3 freqAccdDOM ← ∅
4 α = 1

READPROPERTIES(T )

5 for dom ∈ domAccss do

6 if ACC(propdom) ≥ α then

7 freqAccdDOM ← dom ∪ freqAccdDOM

8 for tci ∈ T do

9 trace← EXEC(tci)
10 domAccss← GETDOMACC(trace)
11 for asstn ∈ assertionstci do

12 asserDOMAcc← GETDOMACC(asstn)
13 asserDOMMuts← GETDOMMUTS(asserDOMAcc)
14 for domMut ∈ asserDOMMuts do

15 bwSts← GETBWSLICE(domMut, trace)
16 expAsstnRel← GETWRVARS(bwSts)
17 fwSts← GETFWSLICE(bwSts, trace)
18 impAsstnRel← GETWRVARS(fwSts)

19 cndDOMMuts← GETDOMMUTS(freqAccdDOM)
20 for domMut ∈ cndDOMMuts do

21 bwSts← GETBWSLICE(domMut, trace)
22 cndAsstn← GETWRVARS(bwSts)

23 explicitAsstn[func]nf=1 ←
ACCESSIBLES([func]nf=1, [expAsstnRel])

24 implicitAsstn[func]nf=1 ←
ACCESSIBLES([func]nf=1, [impAsstnRel])

25 candidateAsstn[func]nf=1 ←
ACCESSIBLES([func]nf=1, [cndAsstn])

26 oracles[func]nf=1 ←
{explicitAsstn ∪ implicitAsstn ∪ candidiateAsstn}

27 return (oracles[func]nf=1)

the three categories of assertions. The numbers below in

parentheses correspond to those in the boxes of Figure 2.

In our approach we (1) execute the instrumented application

by running the existing DOM-based test suite, and gather the

execution trace of the application. We then extract (2) DOM-

based assertions, which are executed as the test suite runs,

and (3) candidate DOM element properties, which are useful

DOM properties that can be used to generate assertions. We

also (4) identify the initial point of connection between the

application’s source code and checked DOM element. We

use the information gathered during the test suite execution

to obtain the assertions. We (5) calculate the backward slice

of the DOM mutating statements to find the entire code

blocks that update the checked DOM element, (6) extract

accessible entities from the obtained statements, and (7) form

explicit assertions using the accessible entries. We further (8)

perform a forward slice on the extracted entities to identify

statements that are implicitly affected by such entities, and (9)

form implicit assertions using the collected entities, and (10)

generate candidate assertions by performing steps (4), (5), and

(6) on the inferred candidate DOM element properties (3).

Our overall unit-level assertion generation is presented

in Algorithm 1. In the following sections we describe our

technique for extracting DOM related information from the

execution (Section III-A), relating DOM mutations to the Java-

Script code (Section III-B), and generating unit test assertions

(Section III-C).

1		@Test	
2		public	void	testCase1(){		
			...
8		cart.click();	
9		String	expectedMsg	=	"Total	purchase	is:	$70";
10	String	msg=driver.findElements
			(By.cssSelector("div.shopContainer")).getText();
11	assertEquals(msg,expectedMsg);
12	}

22	customer.payable	+=	price;
...
30	$("div.shopContainer").append("<p>"	+	
			"Total	purchase	is:	$"+	customer.payable	+"</p>");

1

2(a)

(b)

3

Fig. 3. Finding (1) intra DOM assertion dependency within the test case
(b), (2) inter DOM assertion dependency between (b) DOM-based assertion
and (a) the JavaScript code, and (3) the initial point of contact between (b)
DOM-based assertion and (a) the JavaScript code.

A. Extracting DOM-Related Characteristics

The DOM connects a test case to the web application’s

code. Therefore, we first need to analyze the DOM-based

test suite and extract the following pieces of information: (1)

DOM-related operations of the existing test suite that may

have be linked with the JavaScript code, and (2) frequently

accessed DOM properties, which are potentially influential in

improving the fault finding capability of the test suite, but are

left unchecked in the manually-written test suite.

DOM-Related Operations. Any written test case needs to

check the correctness of the application’s behaviour. In a

DOM-based test case, the expected behaviour is checked

through DOM-based assertions. A DOM-based assertion is

defined as < domProps, expV al >, where domProps con-

sists of one or more DOM element features (e.g. attribute,

and/or textual value), and expV al is the correct value expected

by the assertion. In the rest of the paper, we call the DOM

element feature as a DOM property. DOM-based assertions

play a significant role in our approach as they guide us towards

important portions of the underlying JavaScript code that need

to be checked in unit-level assertions.

For each DOM-based assertion we find intra DOM assertion

dependency within the test case.

Definition 1 (Intra DOM Assertion Dependency):

An intra DOM assertion dependency is defined as a three

tuple of < assert, domElems, domProps >, where assert
is the intended DOM-based assertion, domElems is the

accessed DOM elements in the test case pertaining to the

assertion, and domProps is the accessed DOM properties

within the assertion. �

GETDOMACC in line 10 of Algorithm 1 retrieves DOM

dependencies of the assertion in the test case. Going back

to our example in Figure 3(b), tracking the assertion in line

11 shows that it has a DOM dependency to a div element

with class shopContainer, which is accessed in line 10.

The intra DOM assertion dependency of the example further

shows that the text value of the DOM element is compared

with the expectedMsg in line 11.

We further need to correlate the inferred intra DOM as-

sertion dependency with the application’s code. We call the

correlation between the DOM-based assertion and the appli-

cation’s code as inter DOM assertion dependency.



Definition 2 (Inter DOM Assertion Dependency):

An inter DOM assertion dependency is defined as

< assert, initPoint >, where assert is the intended

DOM-based assertion, and initPoint is the initial line of

code in the application that is responsible for mutating the

property of a DOM element extracted from the intra DOM

assertion dependency. �

In order to find the initial point of contact between the

application’s code and a mutated DOM property in the DOM-

based test case, we track evolution of the accessed DOM

elements (GETDOMMUTS in line 13 of the algorithm) as

well as invoked event handlers as the test case runs. We

consider DOM mutation as a DOM-tree structural change

(e.g.; additions and removals of child nodes), as well as DOM

write operations such as changes to attributes and/or updates

to child text nodes. For instance, running the sample test case

in Figure 1(b) results in mutating (1) the textual value of div

element with class shopContainer, and (2) the class

attribute of DOM element with ID couponButt.

In Section III-B, we explain inferring the initial point of

contact between the source code and a mutated DOM element

in a DOM-based test suite in details.

Frequently Accessed DOM Properties. In addition to DOM-

based assertions, we further consider DOM element properties

that are frequently accessed within the application as the test

case runs (lines 1 to 7 of Algorithm 1). ACC in line 6 of the

algorithm computes the access frequency of a DOM property,

freqAccdDOM in line 7 contains the inferred candidate

DOM properties, and GETDOMMUTS in line 19 records DOM

mutations occur on candidate DOM properties.

The intuition is that frequent use of a given DOM property

can point to the extent of application’s behaviour dependency

on the DOM property. Thus, if changes happen to a property

through the JavaScript code, it is important to assert the

correctness of mutations on the property. We define the access

frequency of a DOM element property as the number of times

that the element’s property has been read during the execution

of a test case. DOM properties include attributes as well as

textual value of the elements. In order to record DOM property

accesses within the application, we rewrite native function

calls used by programmers to access DOM element such as

getElementById, getElementsByClassName, and/or

getElementsByTagName. The returned object from these

functions is later used to access attributes or textual values of

the element. Thus, we apply a forward slice on the returned ob-

ject to find instances of element’s property access in the code.

For example in function addToCart of Figure 1(a), DOM

element with ID couponButt is assigned to coupElem

variable. The assigned variable is later used to access the

class attribute as well as the value of the DOM element

in lines 16, 18, and 19.

Let Acc(propel) be the access frequency computed for

property prop of DOM element el, then:

Acc(propel) = Read(propel)∑
n
e=1 Read(domEleme)

, where

Read(domEleme) is the number of times that DOM

element domElem is read, given that the total number of

DOM elements during the execution of a test case is n. Note

that reading a DOM element refers to accessing the element

7 function addToCart() {
8 var coupElem= $("#couponButt");
9 selItem= getItemInfo($(".merchandise"));

14 var price= selItem.price * selItem.quantity;
15 if(!coupon.expired){

...
18 price -= coupElem.data('value');
19 coupElem.addClass(customer.couponStatus);
20 coupon.expired=true;
21 }
22 customer.payable += price;
23 }

...

Fig. 4. Intra (data and control) code dependency through backward slicing.

to read the corresponding property. In Figure 1(a), the class

attribute of DOM element couponButt is read in lines

16 and 27, and thus the access frequency computed for the

class attribute of the element is equal to 2
3 .

We choose element’s property with access frequencies

above a threshold α as potential candidates, which are later

used for the purpose of unit-level assertion generation. We

automatically compute this threshold for each test case as:

α = 1
ReadProperties(T ) , where ReadProperties(T ) is the

total number of properties which have been read during the

execution of test suite T .

Going back to our running example and the sample

DOM-based test case in Figure 1, class attribute of the

couponButt is selected as a potential candidate since its

access frequency ( 23 ) is greater than the computed threshold,

which is equal to 1
2 in this example.

B. Relating DOM Changes to the Code

To determine the initial point of contact between DOM and

the underlying application’s code, we first cross reference the

DOM element as well as the property we are interested in with

a set of DOM mutations obtained from the execution trace. The

desired DOM element and its property are inferred from either

the intra DOM assertion dependency or the candidate DOM

properties as described in Section III-A. Recall that our exe-

cution trace contains information about triggered events, event

handlers, and DOM mutations caused by the events. Therefore,

we can identify relevant events and invoked functions corre-

sponding to a given DOM mutation. For example, the collected

execution trace in Figure 3 contains information about the

mutations of a div element with class shopContainer,

which pertains to the DOM-based assertion.

To figure out where the mutation originated in our execution

trace, we keep record of DOM accesses within the invoked

functions. For each DOM access, we track JavaScript lines

of code that are responsible for updating the corresponding

DOM element. Going back to our example in Figure 3, given

that the textual property of the div element is extracted from

the intra DOM assertion dependency, we identify line 30 in

function viewCart as the initial point of contact responsible

for changing the text of DOM element.

After inferring DOM mutant statements, we identify the

control and data intra code dependency within the applica-

tion’s code.

Definition 3 (Intra Code Dependency): An intra code depen-

dency is defined as < criterion, codeSts >, where criterion
is a variable at the initial point of contact, and codeSts is



the set of control and data dependent statements that are

either affected by the criterion or have some effect on the

criterion. �

To find the intra code dependency, we perform backward

as well as forward slicing by using criterion as the slicing

criterion. GETBWSLICE in lines 15 and 21 of Algorithm 1

computes a backward slice with respect to assertion related

DOM mutations, and candidate DOM property mutations

respectively. We use dynamic slicing to capture run-time

dependencies. Note that instrumenting the entire application’s

code to perform dynamic slicing incurs high performance

overheads. To avoid high overheads, we first intercept the code

sent from the server to the client, and then statically instrument

only those statements that may affect a given DOM element.

To extract the subset of the code statements, we first find the

JavaScript closure scope which contains the definition of the

variable in the initial slicing criteria. Then all references to the

variable within the closure scope are found. Therefore, we can

identify all locations in the code where the variable is updated,

read, or a new alias is created. For each variable update/read

related to the variable of the slicing criteria, we track the

data dependencies for such an operation. The aforementioned

steps are performed iteratively for each dependencies to collect

the subset of code statements, which are instrumented for

a given initial slicing criteria. The instrumented code keeps

track of all updates and accesses to all relevant data and

control dependencies. Once the test case runs, we collect traces

from the instrumented code. This trace is used to dynamically

extract backward slicing as well as forward slicing statements.

Note that in addition to backwards slicing which is later used

to generate explicit assertions, we also use forward slicing to

generate our implicit assertions (Section III-C2).

The backward slicing technique starts by extracting in-

stances of the initial slicing criteria from the trace. For each

read operations, the trace is traversed backwards to find

the nearest related write operation. Once found, the write

operation is added to the slice under construction. This process

is repeated for all the data dependencies related to that write

operation. A similar approach is taken for including control

dependencies in the slice. Our slicing technique supports inter-

procedural slicing. For example, if a variable is assigned by the

return value of a called function, the slicer recursively tracks

the function and performs a backward slice on the statement

returned by the called function.

To address aliasing when computing the slice of a variable

that has been set by a non-primitive value, we need to

consider possible aliases that may refer to the same object.

Specifically in JavaScript dot notation and bracket notation

are frequently used to modify objects at run time. Since

static analysis techniques for JavaScript often ignore this issue

[5], we use dynamic slicing. If a reference to an object of

interest is saved to a second object’s property, e.g. through

the use of the dot notation, the object of interest may also

be altered via aliases of the second object. For example, after

executing statement a.b.c = objOfInterest;, updates

to objOfInterest may be possible through a, a.b, or

a.b.c. To deal with such scenarios, our slicing technique

searches through the collected trace and adds the forward slice

for each detected alias to the current slice for our variable of

interest (e.g. objOfInterest).

Given customer.payable as the initial slicing cri-

teria in our example, Figure 4 shows the relevant back-

ward slice statements (lines 22, 18, 15, 14, and 9), where

customer.payable, variable price, as well as proper-

ties of the object selItem are assigned, and the value of

coupon.expired is checked in the conditional statement.

By the end of backward slicing step, we have all the relevant

statements corresponding to a given DOM element. These are

later used to derive test assertions.

C. Generating Unit-Level Assertions

Our approach targets postcondition assertions which are

used to examine the expected behaviour of a given function

after it is executed in a unit test case. By analyzing a given

DOM-based test case, we generate unit-level assertions in the

following three categories: (1) explicit assertions, (2) implicit

assertions, and (3) candidate assertions.

1) Explicit Assertions: After collecting all the statements,

that are relevant to a given DOM-based assertion, we extract

accessible entities from these statements (ACCESSIBLES in

line 23 of the algorithm). Types of accessible entities include

(1) the function’s returned value, (2) the used global variables

in that function, (3) the object’s property where the object is

accessible in the outer scope of the function, and/or (4) the

accessed DOM element in that function. Dynamic backward

slice of a DOM-based assertion helps to (1) track all statements

that contribute to the checked result and as such identify those

entities that might have influenced the checked property value

of the DOM element, and (2) eliminate unrelated entities that

are not involved in the computation that leads to the update

performed on the checked DOM element.

Since our dynamic slice is extracted from the program run,

we can track all concrete values associated with accessible

entities. During the run of a test case, there might be differ-

ent instances where a given statement is executed. Different

execution instances can lead to different behaviour. Since

we are using dynamic slicing, an instance that leads to the

required behaviour, which is checked through the DOM-based

assertion, is on the backward slice. Given that the manually-

written expected value, that is checked against the DOM’s

property is valid, the concrete values of related entities in

the backward slice are potentially correct. Therefore, concrete

value of an entity in the backward slice can be used as the

expected value of the entity in unit-level assertions to test the

current version of the application (discussed in Section IV-D).

explicitAsstn in line 23 of Algorithm 1 contains the inferred

explicit assertions.

In our running example (Figure 4), explicit asser-

tions check the correctness of customer.payable,

coupon.expired, as well as price and quantity prop-

erties which belong to selItem object. Assuming that the

original price of the item is 100, the number of selected item

is 1, and the calculated discount according to the value

attribute of a DOM element with ID couponButt is 30, then

the expected values included in the assertions for each of the

entities are 70, boolean value true, 100, and 1, respectively.

Figure 5 shows a unit test case for addToCart function with



1 test("addToCart", 5, function(){
...

2 var customer= {Id:"10", couponStatus:"default", payable:0};
3 var coupon= {Id:"1", expired:false}
4 var availItems= {{name:"jacket", price:100, count:2}}
5 var selItem= {name:"", price:0, quantity:0};
6 addToCart();
7 equal(customer.payable, 70);
8 ok(coupon.expired);
9 deepEqual(selItem, {price:100, quantity:1});
10 equal(availItems[0].count, 1);
11 equal(customer.couponStatus, '1-used');
12});

Fig. 5. Generated QUNIT test case and assertions.

the generated assertions in QUNIT framework. Lines 7 to 9 in

the figure corresponds to the explicit assertions.

2) Implicit Assertions: We gather all the statements that ex-

plicitly affect the computations relevant to a given DOM-based

assertion. While assertions inferred from such statements are

inherently important, we further need to consider entities that

are implicitly influenced by the checked DOM element in

the manually-written test suite. For this purpose we apply

a dynamic forward slice on the statements collected from a

backward slice of a DOM-based assertion. A forward slice

with respect to a statement st, indicates how subsequently an

operand at st is being used. This can help the tester to ensure

that st establishes the expected outcome of the computations

assumed by later statements.

GETFWSLICE in line 17 of the algorithm computes forward

slice on the variable operands of a statement in the backward

slice. The process of forward slicing is similar to the backward

slicing technique discussed earlier (Section III-B). The slicing

criterion of the forward slice module is either a variable,

object’s property, or an accessed DOM property extracted from

the statements in a backward slice segments of the code. The

accessible entities (ACCESSIBLES in line 24), which have been

set within the collected forward slice statements establish the

implicit assertions. implicitAsstn in line 24 of Algorithm 1

contains the inferred implicit assertions. Figure 6 shows the

intra code dependency obtained by performing forward slicing

on the running example. As shown in the figure, the properties

of object selItem are set in line 9, that is recorded during

the backward slice process. Given line 9 as the forward

slice criteria, we mark availItems.count (line 12) as

an implicit assertion. Line 10 in Figure 5 shows the generated

implicit assertion for addToCart function according to this

criteria.

3) Candidate Assertions: In addition to explicit and im-

plicit assertions, we also verify the correctness of code-level

entities pertaining to DOM updates, which are essentially

important but not checked in the existing DOM-based test

cases. We derive such unit-level assertions, which we call

candidate assertions, from the candidate DOM element prop-

erties previously obtained from the test case execution (box

3 in Figure 2). As the test case runs, we monitor the DOM’s

evolution and match the list of mutated DOM elements and

their properties with property updates of the candidate DOM

elements. Once a match is found, we infer backwards slice

statements pertaining to the mutation of DOM element’s prop-

erty (GETBWSLICE in line 21 of the algorithm). Therefore,

in this case the slicing criteria which is given as input to the

backwards slicing module is an update to the property of the

candidate DOM element. After gathering the related JavaScript

7 function addToCart() {
8 var coupElem= $("#couponButt");
9 selItem = getItemInfo($(".merchandise"));
10 for(var i=0; i<availItems.length; i++){
11 if(availItems[i].name == selItem.name)
12 availItems[i].count -= selItem.quantity;
13 }

...
}

Fig. 6. Intra code dependency through forward slicing.

7 function addToCart() {

15 if(!coupon.expired){
16 coupElem.removeClass(customer.couponStatus);
17 customer.couponStatus= coupon.Id + '-' + 'used';
18 price -= coupElem.data('value');
19 coupElem.addClass(customer.couponStatus);

}
}

...

...

Fig. 7. Relating candidate DOM element to JavaScript code.

statements within the application, we extract accessible entities

of these statements (ACCESSIBLES in line 25), which form our

candidate assertions. candidateAsstn in line 25 contains our

candidate assertions.

Recall from the running example, one such potential

DOM property which we record as part of Section III-A,

is class attribute associated with DOM element with ID

couponButt. As shown in Figure 7 monitoring DOM

changes reveal that line 19, where the class attribute of the

element is set, is the initial point of contact between DOM

mutation and the JavaScript code. Given line 19 as the slicing

criteria, customer.couponStatus (line 17) is marked

as the candidate assertion. Line 11 in Figure 5 shows the

candidate assertion generated for addToCart function.

D. Tool Implementation: Atrina

We have implemented our JavaScript unit test assertion

generation in an automated tool called ATRINA. The tool is

written in Java, and is publicly available for download [6].

We use a proxy server to intercept HTTP responses which

contain JavaScript code. The JavaScript Mutation Summary

library [7] is used to track DOM changes during the execution

of the test suite. Trace information is collected by the proxy

once received from the browser. To instrument Selenium test

cases, we convert them into an abstract syntax tree (AST) by

employing Eclipse Java development tools (JDT). Once the

transformation is done, we run the Java code of the changed

AST on the application under test.

IV. EMPIRICAL EVALUATION

To quantitatively assess the efficacy of our test generation

approach, we have conducted a case study, in which we

address the following research questions:

RQ1 How accurate is ATRINA in mapping DOM-based as-

sertions to the corresponding JavaScript code?

RQ2 How effective is ATRINA in generating unit test asser-

tions that detect faults?

RQ3 Are the assertions generated by ATRINA more effective

than DOM-based assertions written manually by the tester

in terms of fault finding capability?

RQ4 How does ATRINA compare to existing mutation-based

techniques for generating unit test assertions?



TABLE I
CHARACTERISTICS OF THE EXPERIMENTAL OBJECTS.

ID Name LOC (JS)
# Test

Cases
# Assertions

1 Phormer 1.5K 7 18

2 EnterpriseStore 57K 19 21

3 WolfCMS 1.3K 12 42

4 Claroline 36K 23 35

5 StudyRoom 10.6K 12 23

6 AddressBook 1.1K 13 14

7 Brotherhood 0.8K 10 10

ATRINA and the experimental data are available for down-

load [6].

A. Objects

Our study includes seven open source JavaScript web ap-

plications that have SELENIUM test cases. Table I presents

the experimental objects and their properties. Phormer [8]

is a photo gallery web application. EnterpriseStore [9] is an

asset management web application. WolfCMS [10] is a content

management system. Claroline [11] is a collaborative online

learning and course management system. AddressBook [12]

is an address/phone book. StudyRoom [13] is a web-based

outdoor study environment simulator, and Brotherhood [14] is

an online social networking platform.

B. Setup

To address our research questions, we provide the URL as

well as the available manually written DOM-based test suite of

each experimental object to ATRINA. Unit level test assertions

are then automatically generated by the tool.

Accuracy (RQ1). To evaluate the accuracy of ATRINA, we

measure precision and recall. We manually compare the slices

generated by ATRINA with the JavaScript code that is relevant

to each assertion. Precision and recall are defined as follows:
Precision is the fraction of lines in a slice produced by

ATRINA, that are actually related to the human-written

DOM-based assertion: TP
TP+FP

Recall is the fraction of the correct set of related lines of code

to each assertion, which is actually present in the slice

produced by ATRINA: TP
TP+FN

where TP (true positives), FP (false positives), and FN
(false negatives) respectively represent the number of lines of

code that are correctly reported, falsely reported, and missed

to report as related to the DOM-based assertion.

Effectiveness (RQ2). To assess the effectiveness of ATRINA,

we measure the fault finding capability of the assertions

generated by the tool. Moreover, to understand the effect of

each type of assertion produced by ATRINA in detecting faults,

we compare the fault detection rate of using (1) exclusively ex-

plicit assertions, (2) explicit assertions and implicit assertions,

and (3) explicit assertions and candidate assertions. Since

explicit assertions compose the core body of our assertions,

we consider implicit and candidate assertions in conjunction

with explicit ones rather than separate them.
The experimental objects do not come with a rich version

history to apply ATRINA on real regression changes. There-

fore we mimic regression faults by automatically injecting

mutations to the application, and evaluate the tool’s ability

in detecting the seeded faults. Using our recently developed

mutation testing tool, MUTANDIS [15], we automatically inject

50 random first-order mutations into the JavaScript code of

the applications. The mutation operators are chosen from a

list of common operators such as changing the value of a

variable, modifying a conditional statement, altering unary

operations, as well as common mistakes made by developers

when developing a given web application [16], e.g., changing

the ID/tag name passed into DOM access functions such

as getElementById or getElementsByTagName, and

modifying the attribute name/value in setAttribute. The

fault is considered detected if an assertion generated by

ATRINA fails when run on the mutated code, and our manual

examination confirms that the failed assertion is detecting the

seeded fault.

Comparison with human-written DOM-based Assertions

(RQ3). To assess the usefulness of ATRINA, we compare the

human written DOM-based assertions with the unit-level test

assertions generated by our approach in terms of fault finding

capability. Similar to RQ2, we perform fault injection on both.

The faults injected into our experimental objects in response

to RQ3 are the same as the ones that we seed in applications

to answer RQ2.

Comparison with Mutation-based Assertion Generation

(RQ4). To assess how ATRINA performs with respect to

the current state-of-the-art oracle generation technique, we

compare our tool’s fault finding capability with the mutation-

based assertion generation approach [1], [2]. To generate

mutation-based assertions for the JavaScript code, we use

human-written DOM-based test suite as a means to execute

the application and infer the execution traces required for the

purpose of mutation analysis. We perform the following steps

to generate test assertions using mutation analysis.

1) Remove assertions from the human-written DOM-based

test suite.

2) Execute the test suite on the original version of the

application to obtain execution traces.

3) Inject mutations for the purpose of oracle generation.

4) Execute the human-written test suite on the generated

mutants, and produce test oracles by comparing execution

traces obtained from the mutants and the original version

of the application.

We generate 50 mutants to produce test assertions for each

application - we choose 50 to balance coverage of differ-

ent faults and execution time. Note that the implementation

and evaluation of the mutation analysis technique both use

mutation operators from our prior work [16]. Therefore, our

evaluation is biased in favour of mutation-based assertion

generation approach over ATRINA.

C. Results

Accuracy (RQ1). Table II shows the number of correctly

reported (true positive), the number of incorrect reported (false

positive), and the number of missed (false negative) JavaScript

lines of code, as well as precision and recall achieved by

ATRINA, which are related to human-written DOM-based

assertions. The table also shows the number of explicit, im-

plicit, candidate, and the total number of assertions generated

by ATRINA. Note that inaccurate computation of slices can
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2 861 18 162 98 84 51 19 26 96

3 193 0 0 100 100 83 23 16 122

4 1446 29 385 98 79 72 29 31 132

5 1017 0 224 100 82 78 18 11 107

6 533 0 0 100 100 24 3 14 41

7 430 0 0 100 100 14 5 16 35

AVG - - - 99.4 92.1 - - - -

result in either generating unrelated assertions or failing to

produce potentially useful assertions. The recall achieved for

Phormer (ID 1), WolfCMS (ID 3), AddressBook (ID 6), and

Brotherhood (ID 7) is 100%. For EnterpriseStore (ID 2),

Claroline (ID 4), and StudyRoom (ID 5) the recall achieved is

84%, 79%, and 82% respectively. Except for EnterpriseStore

and Claroline applications, for which the precision rate is 98%,

the computed precision rate for the rest of applications is

100%.

We noticed that the lower recall rate obtained by ATRINA

is mainly due to the use of third party libraries. Currently, we

only analyze the application source code and do not consider

libraries in our slicing technique. The underlying assumption

is that faults mainly originate from the application’s code. The

small drop observed in precision is due to functions that are

called but not instrumented due to limitations in our current

implementation. If the definition of a called function is not

instrumented, we assume that the function call is related to

our slice, while it may not be so. We also observed that in

rare cases a variable is seemingly assigned by a return value

of a function, though the return statement is not found in

the body of the called function. Our current implementation

includes such variable assignments in the pertaining slices.

Note that both recall and precision can be improved to 100%

with a more robust implementation of our technique.

We found out that on average 6% of the human-written

DOM-based assertions in our experimental objects are not

connected to the JavaScript code in the following scenarios:

(1) HTML is used to transfer the data, which is required by the

client from the server (e.g;, the required information is stored

as meta-data in attributes within the HTML), (2) web server is

utilized to perform computations, (3) instead of dynamically

generating the DOM structure through the JavaScript code,

HTML fragments are retrieved from the server and injected

into the page, and (4) CSS and HTML are used to perform

required changes to the user interface (e.g.; the CSS transition

property with hover is used to bypass JavaScript).

Effectiveness (RQ2). Figure 8 depicts the fault detection rate

(percentages) achieved by (1) ATRINA, (2) explicit assertions

when included individually, and (3) explicit assertions in

conjunction with either implicit assertions or (4) candidate

assertions. The number on each bar represent the number of

faults detected by the corresponding assertion types. As shown

in Figure 8, ATRINA detects on average 63% of the total

faults (ranges from 42-84%). The percentage of faults detected
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Fig. 8. Fault detection rate using different types of generated assertions.

by explicit assertions alone is less than that detected through

the combination of explicit with either implicit assertions or

candidate assertions. This indicates that implicit as well as

candidate assertions are essential entities in improving the

fault finding capability of ATRINA. By eliminating implicit

and candidate assertions, fault detection rate drops 23% on

average, with a maximum drop of 31% for the EnterpriseStore

application (ID 2).

Figure 8 shows that the improvement contributed by implicit

assertions is 6% on average, while the improvement due to

candidate assertions is 19% on average. This indicates that

candidate assertions play a more prominent role in increasing

the number of faults detected by ATRINA than implicit asser-

tions. Not surprisingly, explicit assertions contribute the most

among the three assertion types generated by ATRINA. Explicit

assertions detect 76% of the total detected faults on average

(ranges from 69-94%). These assertions are derived directly

from the DOM-based oracles written by the developer of the

application who has a deep knowledge of the application’s

behaviour. Therefore, it is not surprising that explicit assertions

derived directly from such oracles have the highest impact on

fault finding capability of our tool.

Comparison with human-written DOM-based Assertions

(RQ3). Figure 9 compares the fault detection rate achieved

by the code-level assertions generated by ATRINA with the

human-written DOM-based assertions. The numbers shown on

each bar represent the actual number of faults detected by the

corresponding assertion generation technique. As shown in the

figure, the percentage of faults found by ATRINA is higher than

manually written DOM-based assertions for all applications.

Overall, ATRINA outperforms manual assertions in terms of

fault finding capability by 31% on average (ranges from 6-

45%). We observed that on average, 52% of the candidate

DOM properties that we select to construct our candidate

assertions were ignored in human-written DOM assertions,

although their values are updated through the JavaScript code.

We further noticed that for each failed manual DOM assertion

as a result of an injected fault, at least one explicit assertion

fails in ATRINA (three failed explicit assertions on average).

We observed that most often DOM assertions written by the
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Fig. 9. Fault finding capability.

tester are too generic in nature. Therefore even when a DOM

assertion detects a JavaScript fault, pinpointing the root cause

of the error can be quite challenging. However, code-level

assertions make it easier for the tester to localize the fault,

as their locations directly correlate with the code.

We observed in several cases that the value of a DOM

element property that is checked in the human-written test

suite is later used in JavaScript code that involves internal

computations only. If the seeded fault falls in the correspond-

ing computational statements, the resulting error is not cap-

tured through the manually written DOM assertions. In such

cases, implicit assertions are capable of detecting the error,

which points to the importance of incorporating these types

of assertions in our approach. We also noticed that around

66% of the faults found by implicit assertions are neither

detected by explicit/candidate assertions nor by the human-

written ones. This is because they require executing a more

complex sequence of events to propagate to the observable

DOM (e.g., when an object’s property is assigned in a function

to be later used in updating a value of a DOM element after

a specific event is triggered).

Comparison with Mutation-based Assertion Generation

(RQ4). Figure 9 presents the results of comparing fault finding

capability of ATRINA with mutation-based assertion gener-

ation technique. As shown in the figure, ATRINA produces

unit assertions that are more effective than those produced by

mutation-based technique in terms of fault-finding capability.

The assertions generated by ATRINA surpasses those generated

by the mutation-based approach by 26% on average (ranges

from 10-40%), although both implementation and evaluation

of the mutation-based technique use a common set of mutation

operators (and thus our evaluation is biased towards mutation-

based techniques). This points to the importance of incorporat-

ing the information that exists in human-written DOM-based

test cases.

While the results demonstrate that ATRINA is more effective

than mutation-based approach in terms of fault detection, we

further investigate efficiency of our approach in terms of

time overhead. For each application, we compute overhead

of ATRINA as the summation of time required for (1) instru-
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menting the application, and (2) analyzing the collected trace

to compute JavaScript slices for all the test cases. To calculate

time overhead of the mutation-based approach, we consider

the total time required for running the test suite multiple times

(once per mutation), generating mutants, as well as the time

needed to compare the original and the mutated version of

the application to generate assertions. Figure 10 shows the

results of time overhead computed for each approach. Our

results show that the time overhead for ATRINA is 47 seconds

on average, while the overhead computed for mutation-based

technique is 98 seconds on average. As shown in the figure,

for the EnterpriseStore application (ID 2), which is the largest

application we considered (57K LOC), time efficiency is

increased by 58% using ATRINA. This indicates that our

approach significantly outperforms mutation-based assertion

generation as far as time efficiency is concerned.

D. Discussion

Fault Masking. As we mentioned in Section III-C1, the

concrete value of an entity in the computed backward slice

can potentially be used as the expected value of the entity in

explicit assertions to test the current version of the application.

The actual values of the related entities in the backward

slice are correct unless there exists a masked fault which is

concealed in the chain of computations and thus does not

propagate to the checked state of the DOM element. However,

we conjecture that fault masking rarely happens in JavaScript

web applications as it is more prevalent in programs with

many small expressions whose results are stored in several

intermediate values. We also observed no fault masking oc-

currence during the evaluation of ATRINA on seven JavaScript

applications used in this study.

Limitations. The effectiveness of the generated assertions

by ATRINA in terms of fault finding capability depends on

the quality of human-written DOM-based test cases. If the

DOM assertions contained in the DOM-based test suite check

irrelevant information, the explicit assertions obtained by our

tool will point to entities that may not be important from the

tester’s point of view. This can also negatively affect the fault

finding capability of implicit assertions as they are indirectly

inferred from the DOM-based assertions. Moreover, if the

human-written test suite does not execute application’s state



with effective DOM elements, our tool is not able to infer

effective candidate assertions.

E. Threats to Validity

An external threat to the validity of our evaluation is the

limited number of JavaScript applications used to measure

the effectiveness of our approach. We mitigated this threat

by using web applications from various domains, code size,

and functionality. Another threat concerns validating failed

assertions through manual inspection that can be error-prone.

To mitigate this threat, we carefully examine the code in which

the assertion failed to make sure that the injected fault was

indeed responsible for the assertion failure. Moreover, manual

computation of the JavaScript slices to measure precision and

recall is a time intensive task done by the authors of the

paper, and thus could be error-prone. However, we made

every effort to mitigate this threat by precisely examining

the application’s code. The regression faults we inject to

evaluate the effectiveness of ATRINA may not be realistic.

We mitigate this threat by injecting mutations that represent

common JavaScript applications faults, as well as using real-

world web applications, and SELENIUM test cases written by

developers.

V. RELATED WORK

While automated test generation has significantly addressed

in the literature, there has been limited work on supporting

the construction of test oracles. Recently, Harman et al. [17]

have conducted a comprehensive survey of current techniques

used to address the oracle problem. Mesbah et al. [18]

automatically produce generic invariants in a form of soft

oracles to test AJAX applications. JSART [19] automatically

infers JavaScript invariants from the execution traces for the

purpose of regression testing. Jalangi [20] is a framework

to support writing of heavy-weight dynamic analyses. The

framework detects generic JavaScript faults such as null,

undefined values, and type inconsistencies. Jensen et al. [21]

incorporate server interface descriptions to test the correctness

of communication patterns between client and server through

learning the communication patterns from sample data in

AJAX applications. Xie et al. explore test oracle generation

for GUI systems [22]. Eclat [23], and DiffGen [24] are used

for automatically generating invariant-based oracles. Our work

is different from these approaches in that we use the available

DOM-related information in a human written test suite to infer

unit-level assertions at the JavaScript code-level. Moreover, we

generate assertions that capture application’s behaviour, rather

than generic and soft oracles.

Fraser et al. [2] propose a mutation-based oracle generation

system called µTEST. µTEST automatically generates unit

tests for Java object-oriented classes by employing a genetic

algorithm which target mutations with high impact on the

application’s behaviour. They further enhance the system [25]

to improve human comprehension through identifying relevant

pre-conditions on the test inputs and post-conditions on the

outputs. The authors assume that the tester will manually

correct the generated oracles. However, the results on the

effectiveness of such approaches which rely on the ”generate-

and-fix” assumption to construct test oracles are not conclusive

[26]. Staats et al. [27] propose an oracle data selection

technique, which is based on mutation testing to produce

oracles and rank the inferred oracles in terms of their fault

finding capability. This work suffers from the scalability

issues of mutant-generation based techniques as well as the

problem of estimating the proper number of mutants required

for generating effective oracle data set. Similar to mutation-

based techniques, differential test case generation approaches

[24], [28] also target generating test cases that show the

difference between two versions of a program. Pastore et

al. [29] exploit crowd sourcing approach to check assertions.

In this approach the developer produces tests and provides

sufficient API documentation for the crowd such that crowd

workers can determine the correctness of assertions. However,

recruiting qualified crowd to generate test oracles can be quite

challenging.

In the context of leveraging the existing test cases to

generate more complex tests, Pezzè et al. [30] propose a

technique to construct integration tests which focus on class

interactions by utilizing the unit test cases. The integration

tests are formed by combining initialization and execution

sequences of simple unit tests to form new ones. However, the

proposed technique does not deal with assertions. eToc [31]

and EvoSuite [32] use search based techniques to evolve the

initial population of test cases. Their main goal is to increase

the code coverage achieved by the test suite. However, in this

work our aim is to increase the fault finding capability by

focusing on test assertions rather than increasing the code

coverage. Milani Fard et al. [4] propose Testilizer which

utilizes DOM-based test suite of the web application to explore

alternative paths and consequently regenerate assertions for

new detected states. Our work is different from this approach

in that we exploit GUI-related information in a human written

test suite to capture the behaviour of the application at the

unit-level JavaScript. Furthermore, they do not generate code-

based assertions which we do.

VI. CONCLUSIONS

In this paper, we presented an automated technique to gener-

ate JavaScript unit test assertions; given a web application and

a UI-level test suite, we generate assertions that can capture

regression faults in the JavaScript code. We implemented

our approach in an open-source tool called ATRINA. We

empirically evaluated ATRINA on seven web applications. The

results show that our approach (1) is accurate in mapping

the existing UI-level assertions to the JavaScript code, (2) is

effective in detecting regression faults (63% on average), (3)

outperforms human-written DOM-based assertions in terms of

fault finding capability (by 31% on average), and (4) generates

unit assertions that are more effective (26% on average) than

those produced by a mutation-based technique. The results in-

dicate that existing higher level test assertions can be leveraged

to generate unit-level assertions. In our current approach we

rely on parts of the code that are covered by the human-written

test cases. Our future work will include using learning-based

techniques to generate unit-level assertions for parts of the

code that are not examined through existing human-written

tests.
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