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Abstract—Code reviews are often used as a means for devel-
opers to manually examine source code changes to ensure the
behavioural effects of a change are well understood. Unfortu-
nately, the behavioural impact of a change can include parts of
the system outside of the area syntactically affected by the change.
In the context of code reviews this can be problematic, as the
impact of a change can extend beyond the diff that is presented
to the reviewer. Change impact analysis is a promising technique
which could potentially assist developers by helping surface parts
of the code not present in the diff but that could be affected by the
change. In this work we investigate the utility of change impact
analysis as a tool for assisting developers understand the effects
of code changes. While we find that traditional techniques may
not benefit developers, more precise techniques may reduce time
and increase accuracy. Specifically, we propose and study a novel
technique which extracts semantic, rather than syntactic, change
impact relations from JavaScript commits. We (1) define four
novel semantic change impact relations and (2) implement an
analysis tool called SEMCIA that interprets structural changes
over partial JavaScript programs to extract these relations. In
a study of 2,000 commits from the version history of three
popular NodeJS applications, SEMCIA reduced false positives
by 9–37% and further reduced the size of change impact sets by
19–91% by splitting up unrelated semantic relations, compared
to change impact sets computed with Unix diff and control and
data dependencies. Additionally, through a user study in which
developers performed code review tasks with SEMCIA, we found
that reducing false positives and providing stronger semantics
had a meaningful impact on their ability to find defects within
code change diffs.

I. INTRODUCTION

Code reviews, a part of modern software engineering
practice, require developers to understand how atomic code
changes (commonly called commits) affect program be-
haviour [20]. Research has shown that developers desire
tool support for understanding the effects of code changes
during code review [7], [33]. Automatically tracing the effects
of code changes is the domain of change impact analysis.
Broadly defined as the practice of “identifying the potential
consequences of a change...” [6], change impact analysis is
a technique which provides additional context that can help
developers understand the effects of code changes. More
specifically, static change impact analysis is commonly used
to detect potential changes to program behaviour by using
program slicing to compute control and data dependencies for
statements touched by a change (e.g., Gethers et. al. [14]).

In this work, we investigate the efficacy of using static
change impact analysis to help developers understand
the effects of code changes. First, we investigate whether
traditional change impact analysis (i.e., techniques based on
data and control dependencies) can help developers understand
code changes. We conduct a user study where developers
perform simple code review tasks relating to code navigation
and bug finding. We found no evidence that traditional
change impact analysis increased code change understand-
ing performance.

Second, we theorize that traditional change impact
analysis did not increase performance because of various
sources of noise in our change impact analysis tool. Specifi-
cally, (1) change impact analysis suffered from high false pos-
itive rates due to imprecise syntactic change information and
(2) multiple semantic relations were grouped together inside
syntactic data-dependency and control-dependency relations,
which obscured relevant semantic information.

Third, we address the problem of noise in static change
impact analysis by presenting a novel change impact
analysis tool which computes semantic, rather than syntactic,
change impact relations. We introduce novel semantics for
four change impact analyses, which show relationships be-
tween structural changes and changes to program behaviour.
We implement our analyses in tool called SEMCIA, which
identifies these semantic relationships for JavaScript. SEMCIA
is optimized for ease-of-use by performing a partial (intra-file)
analysis which shows local results robustly without needing a
complete system, and which could be directly integrated into
existing code review tooling. SEMCIA is available online [3].
We found that using AST diff instead of Unix diff reduced
false positives by 29-53%, and that using semantic relations
reduced the size of the change impact sets by 20-90%.

Fourth, we investigate whether our semantics-based change
impact analysis implementation can help developers under-
stand code changes. Using the same user study setup as our
initial investigation, we provide empirical evidence that reduc-
ing false positives and providing stronger semantics can have
a meaningful impact on tasks which require understanding
the effects of code changes. We found that while traditional
static change impact analysis is likely unsuited for helping
developers understand code changes, semantic change impact



analysis reduced the completion time of targeted tasks by
30-90%.

Our main contributions in this work include the following:
1) A controlled user study which evaluates the utility of

traditional change impact analysis techniques on code
change understanding tasks.

2) Four novel semantic change impact relations, aimed at
supporting developers performing specific code change
understanding tasks.

3) A novel semantic change impact analysis tool for Java-
Script, which removes sources of noise (i.e., false pos-
itives and syntactic relations) from traditional change
impact analysis techniques.

4) A controlled user study which evaluates the utility of
semantic change impact analysis techniques on code
change understanding tasks.

II. BACKGROUND

When Bacchelli and Bird interviewed code review practi-
tioners at Microsoft, they found that code reviewers struggle to
understand the effects of changes. One developer summarized
the problem by stating “...big-picture impact analysis requires
contextual understanding. When reviewing a small, unfamiliar
change, it is often necessary to read through much more
code than that being reviewed” [7]. More specific information
needs related to change impact have also been identified
separately by Ko et al. (i.e. “How have resources I depend on
changed?”) [20] and Tao et al. (i.e. “How does this change
alter the program’s... behaviour?” and “Who references the
changed classes/methods/fields?”) [33].

These information needs often generalize to code tracing
problems, where a developer must trace through code to infer
semantic information. However, developers have difficulty
inferring semantic information from low levels of abstraction
because of failures and limitations of human memory [30],
and require tool support to do so accurately and efficiently.

The most common tool for viewing source code changes,
the Unix diff utility, displays line-level edit operations [28]
that transform one version of source code to another. Because
Unix diff only displays information about syntactic changes,
using Unix diff to infer the effects of code changes requires
developers to manually trace control or data flow beginning
with lines that contain syntactic changes. This lack of tool
support makes it difficult to understand the effects of code
changes during tasks such as code review.

Change impact analysis provides one potential solution
to providing support for understanding the effects of code
changes. Roughly speaking, change impact analysis is the
process of determining what regions of code are impacted by a
change. Because of the wide variety of applications for which
change impact analysis is used, many different change impact
analysis techniques have been developed [14]. A task like
code review requires precisely tracking behavioural changes
in source code as it is evolved, and we therefore focus on the
change impact analysis technique that uses static analysis, or
static change impact analysis. Other change impact analysis

techniques are only loosely related to source code (e.g., by
mining bug reports or by tracking meta information about file
changes) and do not provide information about changes to
runtime behaviour.

Prior approaches to static change impact analysis (e.g., [14],
[8], [34], [4], [11]) have almost exclusively used a technique
where Unix diff is used to identify a slicing criterion (i.e.,
variables in modified lines), and data and control dependencies
are computed for all variables in the criterion. We begin by
conducting a preliminary study to determine whether or not
this form of change impact analysis can improve the perfor-
mance of developers performing code change understanding
tasks.

III. PRELIMINARY STUDY

It is unclear whether or not traditional static change impact
analysis can aid developers performing code change under-
standing tasks, such as code review. To gain insight into
this, we performe a user study in which we evaluate change
impact analysis as a tool for assisting with code review tasks.
Specifically, our goal is to answer the following research
question:
RQ1: Are there code review tasks for which traditional

change impact analysis (i.e., one that computes control and
data dependencies) can improve speed or accuracy over a
typical (i.e., Unix diff) diff utility?
For our study, we ask software developers to perform code

review tasks with two different tools, which replicate (1) the
common functionality available in diff utilities, and (2) a
diff utility augmented with traditional change impact analysis
information.

A. Tools Under Evaluation

We implemented the following two (web-based) change
impact analysis tools for the study:
UNIXDIFF is modelled after the functionality of the diff utility
used by the popular version control host GitHub1. This tool
shows a Unix diff in split view, where the original file and
the new file are shown side by side and aligned according to
the Unix diff. Deleted lines are highlighted in red and inserted
lines are highlighted in green. Two unchanged lines adjacent to
inserted or deleted lines are shown for context, while all other
unchanged lines are hidden but can be expanded through a
context menu.
SYNCIA is implemented on top of UNIXDIFF, and provides
the results of a traditional change impact analysis. This change
impact analysis displays program slices containing data and
control dependencies, where the slicing criterion is everything
inside Unix diff. The slices are shown when selected from
a context menu. For every line containing a criterion and
dependency that is part of the slice, two lines surrounding
that line are shown for context while all other lines are hidden.
SYNCIA also provides basic code navigation by highlighting
definitions and uses of selected values.

1https://github.com/
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Fig. 1: Experience of user study participants in years.
TABLE I: Subject commits

Subject GitHub Project Commit Lines Time (s)

Karma karma-runner/karma 82f1c1 162 <1
PM2 Unitech/pm2 d0cc50 2,389 39
Popcorn popcorn-official/popcorn-desktop db90cb 392 <1

B. Subjects

Participants. We recruited 11 participants (eight graduate
students and three industrial developers) to participate in our
study. Figure 1 shows our participants’ experience as devel-
opers and with JavaScript. All our participants had experience
using at least one diff tool.
Commits. Our study participants were not familiar with the
the source code for any of the projects used in the study. To
find non-trivial, but not overwhelming, commits we mined 134
Node.js projects and randomly selected 10 commits that met
two requirements: (1) exactly one file was modified, and (2)
between 10 and 30 lines were labelled as inserted by Unix diff.
Among these 10 commits, we then randomly selected three
for use in the study, that contained four types of behavioural
changes: changes to variables, (function) values, conditions
and callsites. Table I shows the details of these three commits.

C. Tasks

We created code review tasks that captured common bug
patterns identified by Hanam et. al. [16] or code navigation
tasks identified by Murphy et. al. [27]. The goal of the code
review tasks was to force the participants to understand the
code changes with respect to different semantic domains. The
four bugs involved in the code review tasks were:
Scope Conflict Bug. We introduced one scope conflict,

where a new variable hid another variable declared at
a higher scope, in each of the subject diffs and asked
participants to locate it.

Incorrect Condition Bug. We injected one bug into a branch
condition in each of the subject diffs and asked the partici-
pants to locate it. The expected behaviour of the conditions
were either obvious (threw a null dereference exception), or
explained by code comments inserted into the diff.

Incorrect Arguments Bug. We introduced one bug into the
arguments of one callsite in each of the subject diffs and
asked participants to locate it. The bug was either a missing
argument or an incorrect argument order, which was obvious
from comparing argument values at the callsite to parameter
names.

Callsites of Modified Functions. We asked participants to
identify all callsites (within the file only) of functions whose
behaviour was modified by the change. Participants were not

TABLE II: User study results. Search times are expressed
relative to UNIXDIFF. Negative times mean participants
were faster than with UNIXDIFF. Success rates are ex-
pressed as the percent of available bugs or callsites found.
The best result(s) for a measure is highlighted.

Task Subject Mean Search Time (s) Success Rate (%)
UNIXDIFF SYNCIA UNIXDIFF SYNCIA

Scope
Karma 420 -122 0 50
PM2 360 +60 60 0
Popcorn 136 +77 100 100

Condition
Karma 147 -39 75 100
PM2 136 +77 100 100
Popcorn 90 +111 100 100

Arguments
Karma 290 -24 67 100
PM2 284 -33 50 67
Popcorn 146 -48 100 100

Callsites
Karma 272 -54 100 100
PM2 349 +14 29 42
Popcorn 296 -141 100 100

told what functions changed or how many callsites there
were. In the Karma and Popcorn diffs, only one callsite
called a modified function. In the PM2 diff, six callsites
called a modified function, with four of them being callback
functions.

Each participant performed six reviews: three tasks on each
of the two subject diffs. The diffs were presented in the
same order for each task (Karma, PM2, Popcorn). Task order
and the diff tool used for each task was randomly selected.
Before each of the nine reviews, participants completed a short
tutorial. During this tutorial, the participant learned how to
use the selected diff tool and performed the task on a small
training commit. The tutorial ensured that participants were
familiar with both the code pattern they were looking for
and how to use the diff tool. For bug identification tasks,
participants were instructed to first identify and explain the bug
to the researcher conducting the session. If correct, participants
indicated the location of the bug on the web page and triggered
a timer which logged the time taken to identify the bug. If the
participant had not completed a review after seven minutes,
they were stopped and the search time was recorded as seven
minutes.

A total of 64 reviews were performed by the participants;
one participant performed four reviews instead of six. At least
two reviews and at most five reviews were performed for each
{diff, tool} pair. II shows the results of the study. Columns
3–4 show the mean time participants spent searching for bugs
or callsites. The mean search times for SYNCIA (column 4)
are shown relative to the mean search time of UNIXDIFF.
A negative value means that the mean search time was less
than for UNIXDIFF. Columns 5–6 show the percent of bugs
or callsites that were successfully found during the reviews.

D. Summary of Findings (RQ1)

The use of SYNCIA did not show a statistically significant
benefit over Unix diff. This preliminary study suggest that



Listing 1: Old version of
the running example.

1 function pythagorean(a, b) {
2 var c;
3 if(a == null || b == null)
4 return undefined;
5 a = Math.pow(a, 2);
6 b = Math.pow(b, 2);
7 c = Math.sqrt(a + b);
8 return c;
9 }

10 pythagorean(3, 4);
11 ;

Listing 2: New version of
the running example.

1 function hypLength(a, b) {
2 var c;
3 if(!a || !b)
4 return undefined;
5 a = Math.pow(a, 2);
6 b = Math.pow(b, 2);
7 c = Math.sqrt(a + b);
8 return c;
9 }

10 hypLength(3, 4);
11 hypLength(6, 8);

1 - function pythag(a, b) {
1 + function pythag(a, b) 
2 + {
      ...
10  }
11  x = pythag(3, 4);

Criterion

Dependency

funct
pythag

param
a

param
b

assign

name
x

call
pythag(3, 4);

script

Fig. 2: Left – an example of a false dependency caused by
a whitespace change and an imprecise diff utility. A change
impact analysis might incorrectly infer that the value of x
has changed based on the information provided by Unix
diff that the definition of pythag has changed. Right –
the AST diff for the same code (no change).

traditional change impact analysis may be unsuited to helping
developers understand the effects of code changes.

Next, we investigate reasons why traditional change impact
analysis may be unsuited to code comprehension tasks. Specif-
ically, we theorize that the imprecision of these techniques
causes noise in analysis results that obscures relevant infor-
mation and negates any potential benefit.

IV. NOISE IN CIA

As discussed in Section II, traditional static change impact
analysis uses a technique where Unix diff is used to iden-
tify a slicing criterion (i.e., variables referenced in modified
lines), and data and control dependencies are computed for
all variables in the criterion. This approach to static change
impact analysis has two major limitations: (1) it suffers from
high false positive rates, and (2) it does not provide semantic
relationships between code changes and changes to program
behaviour. We characterize these limitations as adding noise to
sets of semantic change impact relations. The following two
sections describe these two sources of noise in greater detail.

1) False Positives in Change Impact Analysis: False pos-
itives in change impact analysis are reported differences in
behaviour where no differences exist. False positives are
pernicious in a code review context as they represent additional
information added to a diff that has no value to the developer.

Existing static change impact analysis tools use character-
based changes provided by Unix diff to determine the slicing
criterion. Such changes select each statement with one or
more character changes as a slicing criterion. These include
changes which do not modify the Abstract Syntax Tree (AST),

1 - function pythag(a, b){
1 + function hypLen(a, b){
     ...
9   }
    ...
11+ hypLen(6,8);

1 + function hypLen(a, b){
     ...
3 -   if(a==null||b==null){
3 +   if(!a || !b){
4       return undefined;
    ...
11+ hypLen(6,8);

Fig. 3: Syntactic dependencies which contain multiple
semantic relationships. Left – data dependencies, which
include a variable rename and a new argument value.
Right – control dependencies, which include a new callsite
and a modified branch condition.

such as whitespace changes. It is trivial to prove the semantic
equivalence of unchanged parts of the code by parsing each
version of the source code into an AST and checking subtree
equivalence.

Consider Listings 1 and 2, which show the old (Pold) and
new (Pnew) versions of a program which computes the length
of the hypotenuse of right angle triangles. We will use this
change as a running example.

Figure 2, shows a method rename refactoring, which is
part of the change made in our running example. A newline
character has been added before the left brace at line 1. If
we use a Unix diff tool, the function definition for pythag
is selected as the criterion. Not knowing which elements
of the function declaration was changed, the analysis must
assume that pythag returns a new value. It therefore records
a dependency relation between the value of x and the change
to pythag.

We can eliminate these types of false positives simply by
parsing each version of the source code into an AST and
computing a set of transformations to the AST rather than
the text file. Furthermore, because AST diff is more precise
than Unix diff, fewer AST nodes will be included in the list of
structural changes, which allows the change impact analysis
to ignore larger portions of the program.

2) Syntactic vs. Semantic Relations: Existing static change
impact analysis tools use data and control dependencies to
compute an over-approximation of locations in code that con-
tain modified states. Because control and data dependencies
represent syntactic rather than semantic relations [26], multiple
semantic relations end up grouped together. This has a similar
effect to that of false positives, in that it makes it more difficult
for developers to find the semantic relations they are interested
in.

Consider the left hand side of Figure 3, which shows two
data dependencies on expressions that were modified in our
running example (since JavaScript has first order functions,
hypLen is a variable that points to a function object). These
two data dependencies have different semantics (i.e., they
changes the program’s state in different ways). One depen-
dency is caused by a variable renaming and does not affect
program behaviour, while the other dependency is caused by a
new value being passed to the function, which causes a number



1 + function hypLen() {
2     var c;
      ...
8    return c;
9 }
    ...
11+ hypLen();

criterion

dependency

(A) Modified Callsite (B) Modified Branch Condition (C) New Value Propagation (D) Modified Variables

1 + function hypLen() {
2     var c;
3 -   if(a==null||b==null){
3 +   if(!a || !b){
4     return undefined;

  ...
8    return c;
9   }

1 + function hypLen(a, b){
...

6     b = Math.pow(b, 2);
7     c = Math.sqrt(a, b);
8   return c;
9 }
    ...
11+ hypLen(6, 8);

1 - function pythag() {
1 + function hypLen() {
      ...
9   }
10- pythag(3, 4);
10+ hypLen(3, 4);

Fig. 4: (A) The execution of hypLen and consequently the statement at lines 2-8, are affected by the new callsite at
line 11. (B) The execution of the statements at lines 4-8 may be affected by the change to the condition at line 3. (C)
The value of b inside function hypLen is affected by the new integer literal at line 11. (D) The renamed variable
hypLen at line 1, is used at line 10.

of variables to point to new values in memory.
Similarly, consider the right hand side of Figure 3, which

shows two control dependencies on expressions that were
modified by a change (not shown) to the program in our
running example. These two control dependencies also have
different semantics. One change is caused by a call stack being
added, which causes new statement executions, while the other
is caused by a change to the branch condition, which causes
statements to be executed under different conditions.

V. SEMANTIC CHANGE IMPACT ANALYSIS

Our solution to noise in change impact analysis involves
two components. First, using AST diff rather than Unix diff
to select the criterion (ie. the syntactic changes that impact
behaviour) is a simple change that uses existing technology.
Second, developing a semantics-based change impact analysis
is a novel solution that requires us to define our desired
semantics. In this section, we provide a sketch of these
semantics. A more detailed and formal presentation can be
found in our tech report [1].

The first step in comparing the behaviour of two programs
is to decide which points in the programs should be compared.
To make clear what we want to compare, we define a program
point as one or more executions of a single statement which
occur in an equivalent context. Consider again our running
example (Listings 1 and 2). The statement at line 8 is executed
once for each callsite of the function declared at line 1; once in
Pold and twice in Pnew. This yields the following two program
points and their states:

Program
Point

Statement
in Pold

Value of c
in Pold

Statement
in Pnew

Value of c
in Pnew

81 return c; 5 return c; 5
82 - - return c; 10

Because programs can have large state spaces, it is im-
practical to keep track of the state after each possible exe-
cution. Static analysis tools solve this problem by merging
program points that are executed within equivalent contexts.
For simplicity, in this work we merge all program points with
the same statement. In static analysis terms, this is known as
a flow sensitive, context insensitive analysis. In our running
example, this strategy yields the following program points and
their states at lines 5-8:

TABLE III: Interleaved program points of Pold and Pnew.

PP Statement
in Pold

Values
in Pold

Statement
in Pnew

Values
in Pnew

5 a = pow(a, 2) a : {9} a = pow(a, 2) a : {9, 36}
6 b = pow(b, 2) b : {16} b = pow(b, 2) b : {16, 64}

7 c = sqrt(a+b)

a : {9}
b : {16}
c : {5}

c = sqrt(a+b)

a : {9, 36}
b : {16, 64}
c : {5, 10}

8 return c c : {5} return c c : {5, 10}

While merging program points makes program analysis
tractable, the cost is a loss of precision. For example, while
we know that at line 8, the value of c is either 5 or 10, we no
longer know for which callsite (i.e. line 10 or 11) each value
holds.

To compare the behaviour of two programs, we must first
decide which program points should be compared. We refer to
the process of aligning the program points of two programs as
interleaving, where two program points are interleaved iff they
are judged to occur at the same point in time in an execution.

Table III gives a basic example of an interleaving, where
program points are interleaved with each other if they occur
at the same line number. Computing a good interleaving is
an active research area. The chosen interleaving can affect the
precision and soundness of the change impact analysis. Prior
approaches for computing an execution interleaving range
from doing it manually (e.g., [21]) to the method proposed by
Partush and Yahav [31] which uses speculative correlation to
approximately minimize the differences between the abstract
states in both versions. A third approach, is to interleave
statements which are matched by the structural diff utility. This
approach is unsound (it does not maintain temporal order) but
is automated and fast.

A. Semantic Relations for Static Change Impact Analysis

We propose and implement four semantic relations for static
change impact analysis that can provide additional information
about the impact of a code change while addressing the
problems with false positives identified previously. The four
relations we identify are by no means exhaustive, and represent
a first step towards identifying meaningful semantic elements
that may be relevant to a code evolution task.

The semantic relations we define should provide developers
support for navigating the impact of code changes. To identify



potential semantic relations, we take inspiration from popular
IDE navigation features in Eclipse, such as those identified
by Murphy et. al. [27]. These include search for reference,
open declaration, highlight variables and expand block. Such
features may help developers answer questions about changes.
While a full specification of each relation is available in our
tech report [1], we give brief examples of each relation here.
Modified Callsites The open declaration navigation feature
suggests the need to view new or modified function calls and
the definitions/bodies of those function calls. An example of
such an analysis is shown in Figure 4.A. The execution of
hypLen and consequently the statements at lines 2–8, are
affected by the new callsite at line 11.
Modified Branch Conditions The expand block navigation
feature suggests the need to identify what branch conditions
have changed and what statements are affected by these
changes. An example of such an analysis is shown in Fig-
ure 4.B. The execution of the statements at lines 4–8 may be
affected by the change to the condition at line 3.
New Value Propagation The search for reference navigation
feature suggest the need to track how new values (including
modified functions) are propagated or used throughout the pro-
gram. An example of such an analysis is shown in Figure 4.C.
The value of b inside function hypLen is affected by the new
integer literal at line 11.
Modified Variables The highlight variables navigation feature
suggests the need to track where new variables are used in
the program. An example of such an analysis is shown in
Figure 4.D. The variable hypLen is renamed at line 1 and
used at line 11 is defined at line 1. Even though this relation
is unrelated to program behaviour (it is a refactoring), from a
slicing perspective it can be specified as a criterion/dependency
relationship in the same way as the other relations.

B. Semantic Change Impact Analysis by Interpreting Struc-
tural Changes

The approach we selected for our analysis uses abstract
interpretation to interpret and track the effects of structural
changes. While more complete specification of our analysis
is available in our tech report [1], for clarity we provide an
example-oriented description here.
Modified Callsites Consider the two versions (Pold and Pnew)
of a program in Table IV. There is a structural change at line
8, where a new callsite to bar has been added. When the
analysis reaches line 8, the AST diff tells it that the call site
has been added. When the analysis proceeds to line 5, it pushes
a new stack frame, and its modification state (changed) onto
the abstract call stack. The stack frame is popped when control
flows out of bar.
Modified Branch Conditions Consider the two versions (Pold
and Pnew) of the program in Table V. There is a structural
change at line 3, where the branch condition of the if
statement has changed. When the analysis reaches line 3,
the AST diff tells the interpreter that the branch condition
has changed. When the analysis proceeds to line 4, it pushes
the condition, and its modification state (changed) onto the

TABLE IV: Example of a our modified callsite analysis.

Interleaved
Statement
from Pold

Interleaved
Statement
from Pnew

Concrete
Call Stack
Pold,Pnew

Abstract
Call Stack

in P

1 funct foo(){ funct foo() {
2 return; return; [7],[7] [7:unchanged]
3 } }
4 funct bar(){ funct bar() {
5 return; return; [],[8] [8:changed]
6 } }
7 foo(); foo(); [],[] []
8 ; bar(); [],[] []

TABLE V: Example of modified branch condition analysis.

Interleaved
Statement
from Pold

Interleaved
Statement
from Pnew

Concrete
Condition
Pold,Pnew

Abstract
Condition

in P

1 if(x) { if(x) {
2 log(‘a’); log(‘a’; [x],[x] [x:unchanged]
3 } else if(y){ } else if(z){

4 log(‘b’); log(‘b’);
[!x, y],
[!x, z]

[!x:unchanged,
y:changed]

5 } }
5 return; return; [], [] []

branch condition stack. The condition is popped from the stack
when control flows out of the condition’s block.
New Value Propagation Consider the two versions (Poldand
Pnew) of the program in Table VI. There is a structural change
at line 2, where the integer literal is changed from 0 to 1. When
the analysis reaches line 2, the AST diff tells the interpreter
that the integer literal has changed and the analysis updates
the value of y to changed in the abstract store. When the
analysis reaches line 4, the analysis interprets the result of x
* y as changed, and updates the value of z to changed in
the abstract store.
Modified Variables Consider the two versions (Poldand Pnew)
of the program in Table VII. There is a structural change at
line 2, where the variable is renamed from y to z. During
variable hoisting, the AST diff tells the interpreter that the
variable name has changed. The analysis places z, and its
modification state (changed) into the abstract environment.

TABLE VI: Example of new value propagation analysis.

Interleaved
Statement
from Pold

Interleaved
Statement
from Pnew

Concrete
Store

Pold,Pnew

Abstract
Store
in P

1 x = 1; x = 1; x : 1, x : 1 {x : unchanged}
2 y = 0; y = 1; y : 0, y : 1 {y : changed}

3 w = x; w = x;
{w : 1,x : 1},
{w : 1,x : 1}

{w : unchanged,
x : unchanged}

4 z = x * y; z = x * y;

{x : 1,y : 0,
z : 0}{x : 1,
y : 1,z : 1}

{x : unchanged,
y : changed,
z : changed}



TABLE VII: Example of modified variable analysis.

Interleaved
Statement
from Pold

Interleaved
Statement
from Pnew

Concrete
Environment
Pold,Pnew

Abstract
Environment

in P

1 var x; var x; x, x {x, unchanged}
2 var y; var z; y, z {z, changed}
3 log(x); log(x); x, x {x, unchanged}
4 log(y); log(z); y, z {z, changed}

C. Implementation

We implemented our semantic change impact analysis as
a tool named SEMCIA, which is implemented on top of the
CommitMiner [3] static analysis framework. CommitMiner is
an abstract interpreter for JavaScript, similar to the formally
specified JSAI [18], but which (1) enables change impact
analysis by providing user-specified analyses with information
from diff utilities (ie. Unix diff or AST diff), and (2) enables
partial program analysis by discovering entry points and recov-
ering type and control flow information (in a similar fashion to
Dagenais and Henderson [10]). We configured CommitMiner
to perform a flow sensitive, context insensitive analysis.

VI. FALSE POSITIVE STUDY

Section IV described two sources of noise present in change
impact analysis. These sources of noise can be measured by
the number of false or semantically unrelated dependencies
created by a change impact analysis. Recall that in semantic
change impact analysis, a criterion is an AST node that has
some syntactic change (ie. inserted, removed or updated)
applied to it, and a dependency is a program element (e.g.,
a variable or statement) whose accessible state has changed
because of the criterion. By answering the following research
questions, we evaluate our technique’s ability to reduce noise
in change impact analysis:
RQ2: How many false dependencies are eliminated by com-

puting the criterion with AST diff rather than Unix diff?
RQ3: How are control and data dependencies partitioned into

our four semantic dependencies?
To answer these, we analyzed the commit histories of

three open source Node.js projects: MediacenterJS2, PM23

and Karma4. These applications are medium size JavaScript
projects selected for their diversity and relatively long commit
histories.

SEMCIA successfully analyzed 444 file changes from 299
MediacenterJS commits, 958 file changes from 594 PM2
commits and 1,572 file changes from 1,127 Karma commits.
Files were ignored if they were minimized (i.e. library code),
or did not have a .js extension. Merge commits were ignored,
because their changes are already included in the commit
history. SEMCIA was not able to parse some files, either
because they used non-JavaScript 1.6 syntax or because they
had syntax errors. In terms of execution durations, nearly all

2https://github.com/jansmolders86/mediacenterjs
3https://github.com/Unitech/pm2
4https://github.com/karma-runner/karma

analyses completed in under one second, with only outliers
running for more than one second and no analysis took longer
than one minute.

A. RQ2: Unix diff vs AST diff.

We first investigate the affect of using AST diff instead
of Unix diff to compute structural changes (i.e. the criterion),
since Unix diff has traditionally been used inside static change
impact analysis tools. As demonstrated by Falleri et. al. [12],
AST diff is substantially more precise than Unix diff when
used to compute an AST transformation. We can therefore
safely use AST diff as ground truth, since the criterion it
creates is almost always a subset of the criterion created by
Unix diff.

For this experiment, the structural diff utility (i.e. Unix
diff or AST diff) is the independent variable. The number
of dependencies created are independent variables. The flow
analysis (SEMCIA) is a control variable and behaves the same
for both diff utilities.

The first column of Table VIII shows the number of AST
nodes in the criterion computed by AST diff. The second
column shows the number of dependencies computed by
SEMCIA using AST diff. The third column shows the number
of AST nodes in the criterion computed by Unix diff. The
fourth column shows by what % the size of the criterion set
increased. The fourth column shows the number of dependen-
cies computed by SEMCIA using Unix diff. The fifth column
shows by what % the number of dependencies increased.

These results show that a large number of false positive
dependencies (23–49% of the total annotations) were created
when Unix diff was used instead of AST diff. This suggests
that change impact analysis utilities can improve their pre-
cision significantly by basing their analysis on a criterion
computed by AST diff rather than Unix diff.

B. RQ3: Syntactic vs Semantic Relations

We now investigate how SEMCIA partitions the syntactic
dependencies created by control and data dependency analysis
into separate semantic dependencies. To compute data and
control dependencies, we implemented a tool called SYNCIA,
which is the same as SEMCIA but computes syntactic (data
and control) dependencies.

For our experiment, the flow analysis (i.e., SEMCIA or
SYNCIA) is the independent variable. The number of depen-
dencies added (to the criterion and dependency sets) is the
dependant variable. The structural diff utility (AST diff) is a
control variable and behaves the same for both change impact
analyses.

We compare the number of dependencies computed by
SEMCIA to the number of dependencies computed by SYN-
CIA. Variable and value dependencies are compared to data
dependencies, while call and condition dependencies are com-
pared to control dependencies. Note that while variable depen-
dencies are a subset of data dependencies, value dependencies
are not a subset of data dependencies. Data dependency
analysis uses all variables and values which are labelled



TABLE VIII: Noise eliminated in the commit histories of MediacenterJS, Karma and PM2. The second column group
shows noise caused by using Unix diff as the source of structural change information. The third column group shows
noise caused by using syntactic (control and data dependency) relations as a proxy for semantic relations.

Task SEMCIA + AST diff SEMCIA + Unix diff Data & Control Dependencies
Criterion Deps Criterion Increase Deps Increase Criterion Increase Deps Increase

Variable 2,627 5,234 4,699 44% 10,190 49% Data 29,968 1,041% 16,211 210%
Value 14,414 17,910 26,409 29% 24,863 28% 108% -9%
Call 6,794 509 9,295 27% 696 27% Control 8,398 24% 4,318 748%
Condition 1,604 3,809 2,194 27% 4,932 23% 424% 13%

as changed as the slicing criterion, while value dependency
analysis uses only values which are labelled as changed as the
slicing criterion (semantically, this means there is a new value
in memory). The condition dependencies and call dependencies
are both subsets of control dependencies.

The fourth column group of Table VIII shows the results of
this experiment. The largest increase in dependencies occurs
for modified call site dependencies, where the number of
dependencies is increased by 748% respectively.

This occurs because the number of modified call site de-
pendencies is high relative to the number of branch condition
dependencies. For example, if we wanted to look at functions
were called because of a change, if we used SYNCIA rather
than SEMCIA, we might expect most of the dependencies we
are shown to be caused by changes to branch conditions, rather
than changes to call sites.

Regarding the modified value dependencies, the number of
dependencies actually decreases by 9% when using SYNCIA.
This occurs because many of the dependencies that SYNCIA
considers to be part of the criterion, SEMCIA considers to
be dependencies. This is caused by the fact that in data de-
pendency analysis, variables and values are considered part of
the criterion, whereas in modified value dependency analysis,
only values are considered part of the criterion.

C. Summary of Findings (RQ2 and RQ3)

Regarding RQ2, our results show that interpreting Unix diff
introduces a significant number of false positives over AST
diff. Regarding RQ3, our results show that using data de-
pendencies and control dependencies as a proxy for semantic
dependencies introduces a significant amount of noise.

VII. USER STUDY

Ultimately, we believe the information generated by SEM-
CIA about code changes can help developers better understand
the implications of a change during code review. While the
previous section demonstrated that SEMCIA can reduce noise
in static change impact analysis, we next need to see if
developers could benefit from using SEMCIA during code
review tasks. Specifically, our goal is to answer the following
research question:
RQ4: Are there code review tasks for which SEMCIA can

improve speed or accuracy over (1) a typical diff utility or
(2) control and data dependencies?

TABLE IX: User study results. Search times are expressed
relative to UNIXDIFF. Negative times mean participants
were faster than with UNIXDIFF. Success rates are ex-
pressed as the percent of available bugs or callsites found.
The best result(s) for a measure is highlighted.

Task Subject Mean Search Time (s) Success Rate (%)
UNIXDIFF SYNCIA SEMCIA UNIXDIFF SYNCIA SEMCIA

Scope
Karma 420 -122 -192 0 50 80
PM2 360 +60 -269 60 0 100
Popcorn 136 +77 -80 100 100 100

Condition
Karma 147 -39 +1 75 100 100
PM2 136 +77 -80 100 100 100
Popcorn 90 +111 +10 100 100 100

Arguments
Karma 290 -24 -221 67 100 100
PM2 284 -33 -239 50 67 100
Popcorn 146 -48 -111 100 100 100

Callsites
Karma 272 -54 -80 100 100 100
PM2 349 +14 -180 29 42 100
Popcorn 296 -141 -174 100 100 100

To answer this, we extend our user study from Section III
to include SEMCIA, where each participant was given three
additional reviews to complete using SEMCIA.

We implemented an additional (web-based) change impact
analysis tool: SEMCIA is implemented on top of UNIXDIFF,
and provides the results of SEMCIA change impact analysis.
This change impact provides variable, value, call and condition
slices as defined in Section V. The slices are shown when
selected from a context menu. For every line containing a
criterion and dependency that is part of the slice, two lines
surrounding that line are shown for context while all other
lines are hidden. SEMCIA also provides basic code navigation
by highlighting definitions and uses of selected values.

Figure 5 shows a screenshot of this tool displaying a slice
of modified callsites. The slicing criterion is annotated in
red, while dependencies are annotated in blue. Criterion and
dependency annotations are highlighted differently depending
on the slice and the AST node being annotated. For example,
the ‘function’ keyword of a function declaration is highlighted
in the value slice, while the entire function (usually spanning
multiple lines) is highlighted in the call slice.

Each participant performed three additional reviews: three
tasks using SEMCIA. The conditions of the study are the same
as in the preliminary study (and were, in fact, completed at
the same time).

A. Results

A total of 32 additional reviews were performed by the
participants; one participant performed two additional reviews



Fig. 5: A screen capture of the SEMCIA tool used in the user study. The file is sliced to show modified callsites.
The slicing criterion (modified callsites) is annotated in red; dependencies (functions called by modified callsites) are
annotated in blue.

instead of three. IX shows the results of the study. Columns 3–
5 show the mean time participants spent searching for bugs or
callsites. The mean search times for SYNCIA (column 4) and
SEMCIA (column 5) are shown relative to the mean search
time of UNIXDIFF. A negative value means that the mean
search time was less than for UNIXDIFF. Columns 6–8 show
the percent of bugs or callsites that were successfully found
during the reviews.

We test statistical significance with a two-tailed, ho-
moscedastic variance t-test. Our null hypothesis is that there
was no difference in task completion time between those
who used SEMCIA and those who used either SYNCIA or
UNIXDIFF.

Scope Conflict Bug. Participants using SEMCIA outper-
formed UNIXDIFF and SYNCIA in both search time and
success rate. Participants using SEMCIA spent 46%–75% less
time (statistically significant; with null hypothesis p = 0.013)
on average searching for scope conflicts. Participants using
SEMCIA successfully found the scope conflicts more often for
two out of the three files. Using the variable slice provided by
SEMCIA, participants immediately identified which variables
could be problematic and were able to see all uses of those
variables inside the slice without scrolling. This allowed par-
ticipants to focus on solving the problem rather than navigating
the code.

Incorrect Condition Bug. For this bug, there is no clear
evidence that participants using either SYNCIA or SEMCIA
outperformed UNIXDIFF for search time (null hypothesis
p = 0.378) or success rate. This may be because there was
little code navigation required to find the modified conditions
or diagnose the problem unlike the other three tasks. The
modified branch conditions and the statements which they
controlled were also relatively easy to find by inspecting
the line changes provided by UNIXDIFF. Some participants
mentioned that the control slice provided by SEMCIA made
the task more difficult because it reduced the amount context
surrounding each modified condition.

Incorrect Arguments Bug. Participants using SEMCIA out-
performed UNIXDIFF and SYNCIA in both search time and
success rate. Participants using SEMCIA spent 76%–84% less

time (statistically significant; with null hypothesis p = 0.01)
on average searching for incorrect arguments. Participants
using SEMCIA successfully found the incorrect arguments
more often for two out of the three files. Using the call slice
provided by SEMCIA, participants immediately identified
which callsites could be problematic and were able to see
the function declarations of the callees inside the slice. This
seems to have allowed the participants to focus on solving the
problem rather than navigating the code.
Callsites of Modified Functions. Participants using SEMCIA
outperformed UNIXDIFF and SYNCIA in both search time
and success rate. Participants using SEMCIA spent 29%–59%
less time (statistically significant; with null hypothesis p =
0.015) on average searching for callsites of modified functions.
Participants using SEMCIA found more callsites for one of
the three files. Using the value slice provided by SEMCIA,
participants immediately identified the functions that modified
behaviour and were able to see all callsites of those functions
within the slice. The file where success rate was improved
over UNIXDIFF was PM2, the longest file with the most (six)
callsites to find. Four callsites called functions as callbacks.
In these cases the declarations of these modified functions
were nested inside callsites, and the variables pointing to these
functions at their callsites were aliases of the function. This
made it especially difficult for participants to figure out what
functions had changed without the aid of the code navigation
feature included with SEMCIA and SYNCIA.

B. Summary of Findings (RQ4)

This study suggest that SEMCIA can help developers better
understand how code has evolved during code review tasks.
Specifically, for code reviewing tasks that require code naviga-
tion, reduced noise in change impact slices can help reviewers
identify and quickly navigate to relevant parts of the program.
Furthermore, the study provides evidence that the reduction in
noise that SEMCIA provides makes it easier to understand the
effects of code changes.



VIII. DISCUSSION

Threats to validity. Our analysis framework currently han-
dles JavaScript 1.6 syntax. Like most flow analysis frame-
works [24], ours has sources of unsoundness. It does not
support dynamic code evaluation (eval), reflection, or the
JavaScript event loop, and does not model the behaviour of
many JavaScript API functions. These limitations typically
manifest as dependencies which are missing from the change
impact set. Since all of the change impact tools we study
use the same analysis framework, the results are internally
consistent.

In terms of generalizability, other JavaScript projects may
have different commit sizes, file sizes, design patterns and
control flows that may affect the accuracy reported in Sec-
tion VI. Additionally, our approach may work differently for
non-JavaScript languages. While the analysis will likely have
better soundness and precision on less dynamic languages,
other languages may have different commit sizes, file sizes,
design patterns and control flows that may change the results
for those languages.

Our user study was limited in that we only had 11 partici-
pants, eight of which were graduate students. The code review
tasks they were performing were also on codebases they were
not familiar with, which is not the usual case when one is
performing code reviews. That said, the level of familiarity
was equivalent with all treatments evaluated in the user study.

Applications. While the primary motivation for this work was
to help developers understand the evolution of their systems,
our approach can also be used to analyze code changes
automatically without requiring fully-buildable systems. Given
the improvements our tool as in terms of false positives, and
the design decisions we made in favour of performance, we
believe the approach could be used to automatically generate
large-scale datasets for automated analyses that require broad
collections of semantic change information.

Artifacts. We have made the artifacts created during this
work openly accessible. The following are available in our
downloadable companion [2]: (1) our formal specification of
semantic change impact analysis, (2) the datasets from our
mining study, and (3) the diff utility used in our user study.
The code for SEMCIA is publicly available on GitHub [3].

IX. RELATED WORK

Change Impact Analysis. Prior work that uses program
slicing for change impact analysis has almost exclusively used
syntactic relationships and data and control dependencies [14].
As our empirical study has shown, this type of change impact
analysis can yield imprecise results with unclear semantics.
While some applications of change impact analysis (e.g., test
selection) may tolerate imprecision and noise, human code
comprehension [17], [23] tasks are less tolerant of imprecision
and noise.

One notable exception is the work by Gyori et. al. [15],
which uses symbolic execution to reduce false positives in

C/C++ change impact analysis. They use their symbolic equiv-
alence checking tool, SymDiff, to check small sections of
modified code for semantic equivalence during dataflow anal-
ysis. When two sections are proved semantically equivalent
(e.g., x = y and x = y + 0), the dataflow analysis ignores the
change. While equivalence checking with symbolic execution
subsumes abstract interpretation as a technique for eliminating
false positive impacts, relative to abstract interpretation sym-
bolic execution is time consuming. Symbolic execution also
requires a symbolic execution engine with adequate language
support, which does not yet exist for JavaScript. Finally,
Gyori et. al. do not address the problem of specifying or
separating different semantic domains, which we do using
program slicing.

Data and Control Dependencies. JDiff [5] uses the structure
of object oriented programs to compute changes to control
flow graphs, which can be used to detect changes to control
and data dependencies. Techniques for decomposing unrelated
code changes leverage change impact analysis based on data
and control dependencies, such as the work by Barnett et al. [8]
and the work by Tao and Kim [34]. These techniques may
achieve more precise results with the improvements proposed
in this work.

Behavioural Equivalence. Equivalence checking is the pro-
cess of determining whether the output of two pieces of code
are always the same given the same input. In the context
of the semantics of changes, equivalence checking can either
verify that the behaviour of a function does not differ between
versions or label the points in the program where values
can differ between versions. The SymDiff [21], [22] tool
checks for behavioural equivalence between program versions
by using a constraint solver to symbolically compute output
values and check where output values differ. Because runtimes
for single methods range from a few seconds to over one
hour, equivalence checking is generally limited to critical code
where formal verification is needed.

Higher Level Semantics. Higher level semantics than changes
to data and control dependencies, and changes to symbolic val-
ues have also been proposed for generating useful information
about code changes. Various approaches have been proposed
that summarize structural or behavioural code changes as
higher level semantics [19], [32], [13], [29], [25], [9].

X. CONCLUSION

In this paper, we defined four new semantic relations for
change impact analysis and implemented a tool called SEM-
CIA that extracts these semantic relations from code changes.
SEMCIA reduced false positive annotations by 23–49%, and
reduced annotations with unrelated semantics by 19–91%. The
reductions in noise provided by SEMCIA helped develop-
ers perform code review tasks more quickly and accurately.
Ultimately, we believe that semantic change impact analysis
could help developers better understand how their systems are
evolving.
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