
Near-Duplicate Detection in Web App Model Inference

Rahulkrishna Yandrapally
University of British Columbia

Vancouver, BC, Canada
rahulyk@ece.ubc.ca

Andrea Stocco∗

Università della Svizzera italiana
Lugano, Switzerland
andrea.stocco@usi.ch

Ali Mesbah
University of British Columbia

Vancouver, BC, Canada
amesbah@ece.ubc.ca

ABSTRACT

Automated web testing techniques infer models from a given web

app, which are used for test generation. From a testing viewpoint,

such an inferred model should contain the minimal set of states

that are distinct, yet, adequately cover the app’s main function-

alities. In practice, models inferred automatically are affected by

near-duplicates, i.e., replicas of the same functional webpage dif-

fering only by small insignificant changes. We present the first

study of near-duplicate detection algorithms used in within app

model inference. We first characterize functional near-duplicates

by classifying a random sample of state-pairs, from 493k pairs of

webpages obtained from over 6,000 websites, into three categories,

namely clone, near-duplicate, and distinct. We systematically com-

pute thresholds that define the boundaries of these categories for

each detection technique. We then use these thresholds to evalu-

ate 10 near-duplicate detection techniques from three different do-

mains, namely, information retrieval, web testing, and computer

vision on nine open-source web apps. Our study highlights the

challenges posed in automatically inferring a model for any given

web app. Our findings show that even with the best thresholds, no

algorithm is able to accurately detect all functional near-duplicates

within apps, without sacrificing coverage.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

near-duplicate detection, reverse engineering, model-based testing

ACM Reference Format:

Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah. 2020. Near-

Duplicate Detection in Web App Model Inference . In 42nd International

Conference on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Re-

public of Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3377811.3380416

1 INTRODUCTION

Automated techniques such as web app crawlers are widely used to

reverse-engineer state-based models as a viable vehicle for various

∗Work done when at the University of British Columbia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380416

analysis and testing tasks such as automated test generation. The

state in suchmodels represents the dynamic webpage of the app, as

represented by the Document Object Model (DOM) in the browser.

Crawlers are capable of efficiently exploring a large state space of

any given web app. However, an adequate model should contain

only the minimal set of distinct states that represent the web app

functionalities, while discarding insignificant states that do not

contribute to exposing new functionality to the end user. Instances

of such states are pages only differing by small cosmetic changes,

which are also referred to as near-duplicates in the literature [23,

24, 29, 34]. To discard such near-duplicate webpages, crawlers have

adopted state abstraction functions over the DOM [26, 36, 37, 45]

as a proxy for the similarity of webpages. The downside of these

abstractions is that minimal changes to the DOM can result in du-

plicate states in the model, even if such DOM changes are not re-

flected on the final UI visually, and therefore might not be rep-

resentative of a new webpage functionality. From an end-to-end

(E2E) testing perspective, clone and near-duplicate states in web

appmodels negatively impact their accuracy and completeness, un-

dermining the quality of the test suites generated from such mod-

els in terms of size, runtime, and coverage.

Clone and near-duplicate detection across different web apps

has been an active research topic in many fields [23, 24, 29, 34]. In

information retrieval, the content of a webpage has been the pri-

mary focus, because the purpose of web search engines is to index

and retrieve information from webpages through search queries.

Computer vision techniques have been employed to detect visu-

ally similar webpages, for instance in phishing detection [2, 21].

Other approaches leverage state abstractions based on the similar-

ity of URLs, textual content and the DOM [17, 44, 53]. Detecting

near-duplicate pages is a challenging problem as there is no gen-

erally accepted definition of near-duplicate states and there is no

unified standard against which a technique can be assessed [28, 29].

A second challenge pertains to the selection of similarity thresholds

that such techniques need as input to determine when two pages

are similar. These thresholds are usually educated guesses, as no

systematic means have been proposed so far to estimate them au-

tomatically.

In this work, we are interested in detecting distinct states in

web app models in the context of functional E2E web testing. Our

aim is to study the nature of duplicate states occurring within a

web app, and provide a systematic approach to selecting thresh-

olds for inferring an optimal model, i.e., having the lowest number

of (near-)duplicate states. To this end, we evaluate the capability of

10 near-duplicate detection algorithms in identifying clone, near-

duplicate, and distinct web app states. We adopt techniques from

three different domains—information retrieval, web testing, and

computer vision—where the textual content, theDOM tree, and the

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

visual screenshot of the page are used to measure the similarity be-

tween states. Our goal is to assess whether textual, structural, or

visual features are related with semantic properties of webpages

and provide meaningful means to understanding their degree of

functional relatedness from an E2E testing perspective.

To select the similarity thresholds for fine-tuning such

techniques, we first crawled 6k websites randomly selected from

Alexa’s top million URLs. We retrieved 493k pairs of states

belonging to the same application, and computed the similarity

distance between these pairs using each near-duplicate algorithm.

We then manually classified 1k random state-pairs into three

categories of clone, near-duplicate, or distinct. We used our

empirical data of distances to choose thresholds for each

algorithm through statistical and optimization search methods.

We evaluated their accuracy in automatically classifying clones

and near-duplicates in the remaining unlabelled portion of the

dataset. Further, we evaluated these configured algorithms on a

subject set of nine unseen web apps, for which manual ground

truth models were previously created.

Our work makes the following novel contributions:

• The first study of 10 different near-duplicate detection tech-

niques applied in the context of web app model inference.

• A classification of different categories of near-duplicates oc-

curring within a web app.

• Systematic ways of threshold selection for near-duplicate

detection as well as an empirical evaluation of their effec-

tiveness in test models.

• The toolset comprising the 10 near-duplicate detection algo-

rithms, which is available for download [5].

• A dataset of 99k manually classified pairs of webpages, of

which (1) 1,5k pairs are randomly sampled from 6kwebsites,

and (2) 97.5k from nine real-size web apps. Our dataset can

be used by others to conduct similar near-duplicate detec-

tion studies and is also available for download publicly [5].

Our results show that even with the best thresholds, no

algorithm is able to accurately detect all functional

near-duplicates within apps. In practice, existing near-duplicate

detection techniques are not designed to find functional similarity

in a way that human testers regularly assess while testing web

apps. For certain types of near-duplicates, we observed that the

model deteriorates over time as the crawl progresses. For

instance, although RTED was able to achieve a high accuracy F1
score of 0.95 initially, the final produced model had only an F1 of

0.45. This deterioration is due to the accumulation of numerous

near-duplicates to the model, which decreases precision. Our

results underline the need for further research in devising

techniques geared specifically toward web test models, i.e., that

can distinguish between different types of near-duplicates such as

those found in our study.

2 REDUNDANCIES IN WEB APP MODELS

In practice, web testing is often performed in an end-to-end (E2E)

fashion, by verifying the correctness of the web app state in re-

sponse to user events and interactions with the GUI (e.g., clicks,

and forms submissions). This task is performed either manually by

Figure 1: Example of near-duplicate web pages.

testers, or by writing test scripts with test automation tools such

as Selenium [46].

Automated techniques, on the other hand, generate web test

cases from models that are inferred through reverse-engineering

techniques. A popular method to model construction for modern

web apps is automated state exploration, also known as web app

crawling [35, 54]. Such techniques dynamically analyze the web

app under test by automatically firing events and checking the

webpage for changes. When new state changes are detected, the

model is updated to reflect the event causing the new state. Gen-

erated models can be represented in various formats such as UML

state diagrams, Finite State Machines (FSM), or State-Flow Graphs

(SFG) [35, 42, 54].

To avoid redundancies in the model, states that are identical

or highly similar to previously encountered states should be dis-

carded. For instance, let us consider Figure 1, a web app in which

the homepage shows a list of phones. When the user clicks on any

of the phones in that list, she is redirected to another web page

displaying the detailed characteristics of the selected phone. From

a functional testing viewpoint, however, a page containing a list

of 20 phones is conceptually the same as one listing the same 20

phones plus one extra phone.

The problem of detecting already visited states can be cast as an

equivalence problem: given two web page states p1 and p2 explored

by the crawler, a state abstraction function determines whether

p1 ≃ p2. More formally:

Definition 1 (State Abstraction Function). A state abstraction

function (SAF)A is a pair (dist , t), wheredist is a similarity function,

and t is a threshold defined over the values of dist . Given two web

pages, p1, p2, A determines whether the distance between p1 and p2
falls below t .

A(dist,p1,p2, t)





true : dist(p1,p2) < t

f alse : otherwise

In practice, A is defined based on the similarity of some ab-

stracted notion of the web pages such as their URLs, textual con-

tent, DOM structure, or screenshot image. However, the amount

and nature of changes occurring in a web page with respect to the

functionality of the app is not always directly proportional to the

amount of changes in the DOM tree, textual content, or visual as-

pects of the page.

Let us consider using a crawler equipped with a SAF based on

DOM content similarity on our sample web app of Figure 1. This

SAF is less tolerant to content (textual) changes occurring in web

pages. Therefore, each page displaying a new phone’s

Near-Duplicate Detection in Web App Model Inference ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Near-Duplicate detection algorithms included in our study.

Domain Algorithm Input Description Distance Output

Information Retrieval

Web Search simhash [20] DOM (content) 64 bit fingerprinting technique which uses features extracted from
the web page content

Hamming distance of two 64 bit digests

Malware detection TLSH [38] DOM (content) Locality-sensitive 256 bit hashing scheme that is robust to minor
variations of the input

Hamming distance of two 256 bit digests

Web Testing

RTED [37, 39] DOM (Tree) Minimum-cost sequence of node edit operations that transform one
DOM tree into another

Tree edit distance value normalized by the sum of
nodes in the two trees

Levenshtein [30, 36] DOM (String) Minimum number of single-character edits required to transform
one string into another

Edit distance value normalized by the sum of the
string lengths

String Equality (baseline) DOM (String) String equality comparison Boolean value

Computer Vision

Image Hashing PHash [59] Screenshot 128 bit perceptual hash that represent the lowest frequencies of
pixel brightness, to which discrete cosine transform (DCT) is ap-
plied to retrieve a brightness matrix

Hamming distance of two 128 bit digests

Block-mean [57] Screenshot 256 bit perceptual hash obtained by dividing the image into non-
overlapping blocks, which are encrypted with a secret key and nor-
malized median value is calculated

Hamming distance of two 256 bit digests

Whole Image Comparison Histogram [52] Screenshot Color distribution of a digital image χ
2 distance between two color histograms

PDiff [58] Screenshot Adopts a human-like concept of similarity that uses spatial, lumi-
nance, and color sensitivity

Number of different pixels normalized by the max-
imum number of pixels in the two images

Structural Similarity SSIM [4] Screenshot Simulates the high sensitivity of human visual system to structural
distortions while compensating for non-structural distortions

Normalized structural distortion value

Feature Detection SIFT [32] Screenshot Computes local feature vectors and image descriptors which are
invariant to geometric affine transformations like scaling/ rotation

Number of different key-points normalized by the
maximum number of key-points in both images

characteristics might be considered a different state and many

functionally similar occurrences of already modelled pages (i.e.,

near-duplicates) would be included in the model. If we use this

inflated model to generate test cases, the overall functional

coverage does not change when the generated tests exercise the

phone details page multiple times, thus potentially wasting

precious testing time and resources.

On the other hand, another “better” SAF, for instance based on

the DOM tree similarity with a proper threshold value, would con-

sider all such phone detail pages as the same, providing a more

concise model for the web application of our example. However,

a high threshold value might cause other relevant functionality to

be abstracted away as well, resulting in an incomplete model.

Near-duplicate detection techniques have been studied for re-

ducing the occurrence of redundant similar pages across web apps,

e.g., in web search engines [20] or phishing detection [38]. An un-

derstanding of whether such techniques apply also in detecting

functional near-duplicates within the same web app is missing in

the literature. Despite its prevalence and importance, this problem

is understudied, because it is hard to define a notion of equivalence

for two arbitrary webpages. Moreover, in the general case, decid-

ing a prioriwhich abstraction function and which threshold would

work best for a given web app is a challenging task, as it requires

substantial domain-specific knowledge of the web app under test.

3 NEAR-DUPLICATE ALGORITHMS

In this work, we study 10 near-duplicate detection algorithms from

three different domains, namely, information retrieval, web testing,

and computer vision. Table 1 presents the techniques, along with

the domain they belong to, the input types, a short description, and

their distance output.

3.1 Information Retrieval

Near-duplicate detection has been applied to index the massive

volume of web pages continuously retrieved by web crawlers for

search engines. The overall goal is to select only a relevant set of

pages based on the provided user search string. In this setting, per-

formance is the most important factor, therefore hashing mecha-

nisms have been adopted due to their design simplicity and speed

of comparison. As an input, the web page content is typically the

primary focus when designing algorithms used in this domain.

We chose two content hashing algorithms from this domain:

(1) simhash [20], a popular and effective web page fingerprinting

technique adopted by Google to index web pages [29], and

(2) Trend Locality Sensitive Hash (TLSH) [38], a hashing

technique for fingerprinting source code, employed for malware

detection [55].

3.2 Web Testing

In the web testing domain, researchers have studied DOM-based

abstractions to compare webpages during the crawling of the ap-

plication under test. The assumption is that two web pages sharing

similarities among their DOMs are likely to represent pages having

analogous functionalities, hence it is worthwhile to consider them

the same. The DOM can be treated either as a tree-like structure,

or as a simple string of characters.

We chose three different similarity algorithms over the DOM

that have been employed as state abstraction functions in prior

web testing research [36, 37, 49]: (1) tree edit distance with the

RTED algorithm [39], (2) Levenshtein distance [30] over the string

represented by theDOM, and (3) string equality between twoDOM

strings, which we use as baseline.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

3.3 Computer Vision

Image similarity is one of themain topics in computer vision. Many

techniques have been proposed and studied, at different levels of

granularity, ranging from low-level pixelmatching up to high-level

feature-based matching. These techniques are applied in indexing

and searching, summarization, object detection and tracking, fa-

cial recognition, and also copyright image detection. We consider

different classes of image-based algorithms.

Image hashing techniques map visually identical or

nearly-identical images to the same (or similar) digest called

image hash. We chose two image hashing algorithms:

(1) block-mean hash [57] and (2) perceptual hash (PHash) [59],

which have been used in multimedia security for image retrieval,

authentication, indexing and copy detection. Whole image

matching techniques focus instead on individual pixels

composing the image. Color-Histogram [43] and Perceptual Diff

(PDiff) [58] have been successfully applied in previous web

testing work for detecting cross-browser incompatibilities [33]. A

downside of those techniques is that they are affected by changes

in coordinates of web elements common in responsive web

layouts. Structural similarity techniques quantify image quality

degradation. For instance, Structural Similarity Index (SSIM) [4]

has been shown to be effective due to the highly structured nature

of web apps’ GUIs [21]. Lastly, feature detection techniques have

been widely employed for near-duplicate image detection. For

instance, Scale Invariant Feature Transform (SIFT) [32] has been

applied to aid web test repair [51] and phishing detection [2].

To the best of our knowledge, this work is the first to consider

and evaluate visual image similarity as a near-duplicate detection

technique for web application crawling.

4 EMPIRICAL STUDY DESIGN

The goal of our study is to determine how existing near-duplicate

detection techniques can be employed to obtain an optimal model

of a web application that can be used for E2E testing.

RQ1: What type of functional near-duplicates exist within apps?

RQ2: How well can functional near-duplicates be detected?

RQ3: What is the impact of near-duplicates and detection tech-

niques in inferring a web-app model?

First, in Section 5, we randomly sample 1,000 within-app

state-pairs from a dataset created by crawling 6k randomly

selected URLs. We characterize the changes occurring between

states within an app and identify how they lead to different

classes of functional near-duplicates (RQ1). We label these 1,000

pairs as either clones, near-duplicates or distinct states, and

compute the distance between them for all the ten near duplicate

techniques described in Section 3.

In Section 6, using these labelled pairs, we compute statistical

and optimal thresholds to fine-tune each near duplicate technique.

Through this, we aim to determine whether such randomly sam-

pled distances from a large dataset can be used to automatically

classify state-pairs in unseen web apps and detect near-duplicates

(RQ2).

In Section 7, we determine the best near-duplicate detection

techniques and application-specific thresholds to infer web app

models for nine open-source web apps covering the different

near-duplicate categories. Finally, we analyze these models to

determine how different kinds of near-duplicates impact model

inference (RQ3).

5 RQ1: NEAR-DUPLICATES IN WEB APPS

In order to determine what kinds of functional near-duplicates oc-

cur within apps, we first create a dataset of within app state-pairs

and their calculated distances for each near-duplicate detection al-

gorithm. Then, we manually characterize the nature of differences

between pairs of pages and classify them in a random sample.

5.1 Dataset Creation

First, we crawl randomly selected website URLs from the top one

million as provided by Alexa,1 a popular website that ranks sites

based on their global popularity for a week using Crawljax [36],

an event-driven crawler for exploring highly dynamic web apps.

We configured Crawljax to run using the Chrome browser, with

its default simple state abstraction function, namely string equality

(see Table 1), and a runtime limit of five minutes for each crawl.

To account for network communication errors and the tool’s

exploration limitations, e.g., on sites that require login credentials,

we filtered out sites for which the crawlmodels obtained contained

less than 10 states. After this filtering stage, we retained 1,064 dif-

ferent sites accounting for 30,202 states from the original 6,359

web crawls. We then created all possible 677,415 pair-wise com-

binations of states within each crawl, which we call state-pairs.

5.1.1 Computing Distances. We computed the distance for each

state-pair using each of the 10 algorithms presented in Table 1. We

discarded the state-pairs for which the distance could not be com-

puted correctly, such as the case of DOM-based tree edit distance

of malformed HTML trees. The final dataset, calledDS , contained
1,031 sites and 29,704 states, from which 493,088 state-pairs with

properly computed distances were obtained.

5.1.2 Distance Normalization. The raw distances which quantify

the difference between two given pages have different output

spaces based on the page characteristic used by the technique. As

an example, given a state-pair of web pages, PDiff outputs the

number of perceptually different pixels between their

screenshots, whereas BlockHash returns the hamming distance

between image hashes. For the sake of comprehensibility, we

normalized all distances computed by each algorithm, as

described in the Distance Output column of Table 1, but we never

compare outputs of different techniques.

5.2 Classification of Changes

To gain a better understanding of what changes within web pages

characterize near-duplicates, we classify the differences of the

state-pairs in our dataset from the point of view of a human

tester who is interested in functionality coverage.

5.2.1 Procedure. Manually examining state-pairs is a time

consuming task requiring familiarity with the functionality of the

application. Therefore, we randomly sampled a set, called RS, of
1,000 state-pairs from our final dataset of 493,088 state-pairs,

1http://www.alexa.com

Near-Duplicate Detection in Web App Model Inference ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

which allows us to have a confidence level of 99% with a 4%

margin of error in deriving a representative statistic. For each

state-pair (pi ,pj) ∈ S, the authors of the paper visually analyzed,

in isolation, the screenshot images (and the original web pages

where necessary) of the two web app states from a functional

testing perspective, to obtain a set D of differences. Each

difference in D is defined as ∆(pi ,pj) = {δ (ei , ej)} where δ (ei , ej)
is a pair of non-identical web elements in which ei ∈ pi and

ej ∈ pj . Finally, each author assigned a descriptive label to each

detected difference.

5.2.2 Difference Categorization. After enumerating all differences

across the 1,000 state-pairs in RS, the authors reviewed them to-

gether to resolve conflicts and reached consensus on equivalence

classes of differences. Our study revealed the following categories.

Definition 2 (Unrelated (U)). Given a difference δ (ei , ej), neither
of ei or ej are related to any functionality offered by the web app.

Examples of these differences include changes in background

images, or GUI widgets related to advertisement (see red ovals

in Figure 2a).

Definition 3 (Duplicated (D)). Given a difference δ (ei , ej), ei and
ej replace each other in the original pagespi andpj without adding

any new functionality to either page.

Two distinct subcategories of duplicated differences emerged:

• Replacement (D1): D1 : ei ≡ ej meaning the difference rep-

resents a functionality or content that is equivalent. For in-

stance, in Figure 2b, the red ovals highlight equivalent con-

tent.

• Addition (D2): D2 : ei = ∅ ∧ ∃e ′i ∈ pi : e
′
i = ej ∨ δ (e ′i , ej) |=

D1 meaning the non-empty ex in δ has a duplicate ey in

the same page, and therefore its addition does not affect the

overall functionality of the page. For example, in Figure 2c,

the oval identifies a duplication of an existing functionality.

Definition 4 (New (N)). Given a difference δ (ei , ej), δ represents

a new functionality or a semantically different content, i.e.:

δ (ei , ej) |= N : (ei = ∅) ∧ (�e ′i ∈ p1s .te
′
i = ej ∨ δ (e ′i , ej) |= D).

For example, the search box in Figure 1 is absent in phone de-

scription pages and is an example of new functionality.

5.2.3 State-Pair Classification. Following the classification of

differences described above, we classified state-pairs from a

functional point of view, in three distinct categories defined as

follows.

Definition 5 (Functional Clone (Cl)). Given two web pages p1
and p2, the state-pair (p1,p2) is a functional clone (Cl) if there are

no semantic, functional or perceptible differences between them,

defined as Cl : ∆(p1,p2) = ∅.

Definition 6 (FunctionalDistinct (Di)). Given twoweb pagesp1
and p2,p1 is functionally distinct fromp2 if there is any semantic or

functional difference between the two pages, Di : ∃δ (ei , e2) |= N .

Definition 7 (Functional Near-Duplicate (Nd)). Given two

web pages p1 and p2, p1 is a functional near-duplicate of p2 if the

changes between the states do not change the overall

functionality being exposed: Nd : ∆ 6 |= Cl ∧ �(δ (e1, e2) |= N) ∈ ∆.

(a) Near-Duplicate (Nd1): Background Image Changes

(b) Near-Duplicate (Nd2): Dynamic Data

(c) Near-Duplicate (Nd3): Duplicated Functionality

Figure 2: Different subclasses of near-duplicate state-pairs.

We further observed three fine-grained subclasses of

near-duplicates in our dataset.

Cosmetic (Nd1) when changes related to the aesthetics of the

webpage such as advertisements or background images

occur, which leave the functionalities unaltered (see

Figure 2a): Nd1 : ∆(p1,p2) ∋ δ (e1, e2) |= U
Dynamic data (Nd2) when both states of the pair are generated

from the same template and populated with dynamic data,

according to a user query or app business logic (see Fig-

ure 2b): Nd2 : ∆(p1,p2) ∋ δ (e1, e2) |= D1 ∨U

Duplication (Nd3) when there are additional web elements in a

page the functionality and semantics of content of which is

entirely represented within the other page (see Figure 2c):

Nd3 : ∃δ (e1, e2) |= D2 ∈ ∆(p1,p2)

Following these definitions, we manually labelled the 1,000

state-pairs in RS, and found 441 clones, 275 near-duplicates (45

Nd1, 219 Nd2, 11 Nd3), and 284 distinct pairs.

6 RQ2: CLASSIFICATION OF STATE-PAIRS

6.1 Subject Systems

To address RQ2 (and later RQ3), we need to infer models with dif-

ferent algorithms and thresholds numerous times, which requires

web apps with deterministic behaviours.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

Table 2: Subject Set with Manual Classification

B
in
s

S
ta
te
s

P
a
ir
s

C
lo
n
e
s Near-Duplicates

D
is
ti
n
ct

Nd2 Nd3 Total

Addressbook 25 131 8,515 26 52 2,295 2,347 6,142
PetClinic 14 149 11,175 2 1,433 180 1,613 9,411
Claroline 36 189 17,766 2,707 71 0 71 14,988
Dimeshift 21 153 11,628 375 570 0 570 10,683
PageKit 20 140 9,730 0 904 3,044 3,948 5,782
Phoenix 10 150 11,175 1 25 4,580 4,605 6,569
PPMA 23 99 4851 64 467 0 467 4,320
MRBS 14 151 11,325 27 4,044 0 4,044 7,254
MantisBT 53 151 11,325 2 1,117 0 1,17 10,206

Total 216 1,313 97,490 3,204 8,683 10,099 18,782 75,355

To this aim, we selected nine open-source web apps (Table 2)

used in previous research of web testing [15, 16, 49, 50], as

subjects: Claroline (v. 1.11.5) [7], Addressbook (v. 8.2.5) [40],

PPMA (v. 0.6.0) [11], MRBS (v. 1.4.9) [12] and MantisBT (v.

1.1.8) [13] are open-source PHP-based applications while

Dimeshift (commit 261166d) [8], Pagekit (v. 1.0.16) [9], Phoenix (v.

1.1.0) [10] and PetClinic (commit 6010d5) [6] are web apps that

cover popular JavaScript frameworks Backbone.js, Vue.js,

Phoenix/React and AngularJS, respectively.

Note that these nine subject apps are not part of the datasetDS.

6.2 Manual Classification (Ground Truth)

We set out to create manually labelled models for each subject,

which we can use as ground truths for comparison of techniques.

First, we use Crawljax to create a master crawl model with

default depth-first exploration strategy, default state abstraction

function based on DOM string equality, and a maximum time bud-

get of one hour, which allow us to capture a large portion of each

app’s state space.

Next, we created state-pairs from the states in each model, as

follows. The authors of this paper manually classified each state-

pair into a clone, near-duplicate (with subcategories) or distinct

category, following the same procedure described in Section 5.2.

In addition, we also assigned each state to a bin that represents a

part of the application’s state space devoted to a certain function-

ality. As such, each bin is a logical container for all dynamically

generated concrete webpages upon crawling (e.g., all webpages re-

lated to login). We consider the first concrete instance of a bin B

to be a coverage of B by that crawl model. Additional concrete in-

stances of a bin are considered clones or near-duplicates of the bin

B.

Table 2 shows the master crawl characteristics for each web app

as well as our classification outcome. In the rest of the paper, we

refer to the nine master crawlswithmanually classified 97.5k state-

pairs of the nine apps as subject set (SS), and to our manual clas-

sification and identified bins as ground truth. Our classification of

the subject-set did not find any near-duplicates of category Nd1 in

SS as the subjects did not feature unrelated changes (U) such as

advertisements, commonly found in other kind of websites. Man-

tisBT has the most bins (53), representing a state-space five times

bigger than that of Phoenix, which has the smallest number of

bins (10). Addressbook, PageKit and Phoenix have a high number

Table 3: Average webpage characteristics

state (DOM and Screenshot) across the two datasets

DOM Image

Tree Source Content Pixels
(# nodes) (length) (length) (#)

Dataset (DS) 810 105,445 45,575 3,575,837
Subjects (SS) 290 17,655 6,216 1,190,230

of near-duplicates of category Nd3, differently from the other six.

To study how different near-duplicate categories impact web-app

model inference, we group these three subjects referring to them

as Nd3-Apps and the other six as Nd2-Apps.

Table 3 compares the subjects webpage characteristics in terms

of DOM size, complexity, and image size to DS . For example, the

content of a web page in DS on an average is almost eight times

that of the web pages in SS.

6.3 Threshold-Based Classification

We aim to evaluate the effectiveness of the near-duplicate detec-

tion algorithms in classifying a given pair as either clone, near-

duplicate, or distinct. Essentially, this is a multi-class classification

problem, which we propose to solve using a classification func-

tion Γ. Function Γ takes as inputs a near-duplicate detection algo-

rithm f and computes the distance between two given states in a

state-pair (p1,p2), classifying the pair to a category according to a

threshold-pair (tc , tn), as follows:

Γ(p1,p2, f , tc , tn)




Cl : f (p1,p2) < tc

D : f (p1,p2) > tn

Nd : otherwise

To evaluate Γ, we need to find appropriate threshold values for

each algorithm that maximize the classification scores.

6.3.1 Threshold Determination. We employ two different

approaches, namely, statistical and optimization, to find a suitable

threshold-pair (tc , tn) for each algorithm. In the statistical

approach, we follow a data-based approach in which we use the

distance distributions of different classes (Figure 3). In the

optimization approach, instead, we determine the thresholds that

maximize the classification score on a given labelled set, a

commonly adopted strategy in machine learning for

hyper-parameters selection of predictive models [47].

Definition 8 (Statistical Threshold Pair (Stc , Stn)). Threshold

Stc is the 3rd quartile (Q3) of the distances calculated by a tech-

nique on a given set of clone state-pairs, whereas, threshold Stn is

the median distance on a given set of near-duplicate state-pairs.

Definition 9 (Optimal Threshold Pair (Oc ,On)). Given a la-

belled set of clones, near-duplicates and distinct state-pairs, the

optimal thresholds Oc and On are retrieved by a Bayesian opti-

mization search that maximizes the average F1 classification score

for Γ over all three classes.

Figure 3 shows the distribution of distance values among the

three classes, for each considered algorithm. As the box-plots show,

Near-Duplicate Detection in Web App Model Inference ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 3: Normalized Distance distribution of labelled pairs in the datasetDS. Within each box-plot, from left to right: clone,

near-duplicate and distinct pairs.

Table 4: Estimated statistical (St) and optimal (O) thresholds

for clone (c) and near-duplicate (n) bounds, in datasetDS

Stc_DS Stn_DS Oc_DS On_DS

TLSH 0.00794 0.00794 0.01742 0.07052
Levenshtein 0.00638 0.01089 0.00704 0.07029
RTED 0.00000 0.00000 0.00007 0.04099
SimHash 0.00000 0.00000 0.00044 0.00108
BlockHash 0.00000 0.04082 0.00301 0.13371
HYST 6.52E-11 1.29E-09 1.15E-09 1.49E-08
PDIFF 0.00160 0.03800 0.00120 0.20080
PHASH 0.01754 0.17544 0.04018 0.32232
SIFT 0.16691 0.27993 0.10192 0.61876
SSIM 0.01000 0.08000 0.02020 0.15560

a clear separation between distance values among classes emerged

upon statistical analysis (despite some overlaps caused by outliers),

which motivates using this data to determine statistical thresholds

on RS. For instance, clones (left-most plot for all techniques) have

low distances, whereas distinct pairs have high distance scores.

Near-duplicates, as expected, lie in between those two categories

for all 10 techniques considered in our study. We use quartile data

for choosing thresholds since prior work [31] has shown that the

median value is a better estimator of the central tendency than

mean in such cases.

We refer to the four thresholds {Stc_DS , Stn_DS ,Oc_DS ,On_DS }

as universal thresholds, as the state-pairs in DS represent a large

set of randomly selected real-world webpages (see Section 5.1).

6.3.2 Classification Accuracy. To address RQ2, we evaluate the al-

gorithms by comparing the effectiveness of Γ (Section 6.3.1) with

corresponding state-pair inputs. We evaluate the effectiveness of

Γ using the F1 measure, which is the harmonic mean of precision

Pr (ratio of correctly classified pairs to total number of classified

pairs in each class), and recall Re (ratio of correctly classified pairs

to the actual number of pairs that belong to the class).

Since we have more than two classes, we treat it as a multi-class

classification problem, and obtain the average F1 over the scores of

all three classes (Cl,Nd,D). However, the datasets are unbalanced,

i.e., the ratio of state-pairs of the classes are not equal; hence, we

employ macro-averaging, to avoid favouring classes with higher

representation [48]. We calculate the F1 score of each algorithm

using Γ with the universal thresholds (see Table 4) on two disjoint

inputs: 1) a manually labelled random sample of 500 state-pairs,

TS, from the datasetDS, and 2) the 97.5k labelled pairs from SS.

Table 5: F1Measure for Statistical andOptimal threshold sets

Algorithm

statistical optimal All

(Stc_DS ,Stn_DS) (Oc_DS ,On_DS)

TS SS Avg TS SS Avg TS SS Avg

TLSH 0.50 0.40 0.45 0.56 0.44 0.50 0.53 0.42 0.48

Levenshtein 0.54 0.46 0.50 0.59 0.48 0.54 0.57 0.47 0.52

RTED 0.50 0.45 0.47 0.57 0.50 0.54 0.53 0.48 0.50

SIMHash 0.48 0.17 0.33 0.48 0.17 0.33 0.48 0.17 0.33

BlockHash 0.62 0.54 0.58 0.66 0.50 0.58 0.64 0.52 0.58

HYST 0.52 0.37 0.44 0.57 0.31 0.44 0.55 0.34 0.44

PDIFF 0.63 0.57 0.60 0.67 0.53 0.60 0.65 0.55 0.60

PHASH 0.59 0.43 0.51 0.63 0.40 0.52 0.61 0.41 0.51

SIFT 0.59 0.44 0.52 0.61 0.47 0.54 0.60 0.45 0.53

SSIM 0.62 0.53 0.57 0.65 0.48 0.56 0.64 0.50 0.57

Average 0.56 0.44 0.50 0.60 0.43 0.51 0.58 0.43 0.51

Random 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

While the scores on TS can validate these thresholds, scores

on SS assess the viability of discovering universal thresholds for

a near-duplicate detection algorithm for unseen web apps.

6.3.3 Findings (RQ2). Table 5 shows the F1 classification scores for

all techniques on the two labelled sets, TS and SS. As a baseline
to compare the techniques, we use a stratified-random-classifier [1]

that classifies each state-pair randomly based on proportions of

classes in the labelled set.

All evaluated techniques perform better on TS than SS when

universal thresholds are used (+15% on average). This result is not

surprising as TS is sampled from DS , as well as RS from which

we derived these thresholds. SS, on the other hand, is completely

disjoint and different from DS (Table 3).

Although statistical and optimal thresholds have similar overall

average F1 scores (0.50, 0.51), it is important to notice that optimal

thresholds perform worse than statistical thresholds on SS, con-
trary to expectation.

These two findings essentially indicate that, the distance thresh-

olds for optimal classification of state-pairs can vary based on the

characteristics of the particular web app. The thresholds obtained

from a labelled data such as RS are therefore, not necessarily ap-

plicable for a random unseen web app. Hence, universal thresholds

that can classify any given state-pair may not be feasible.

Amongst the techniques, SimHash has the lowest average F1
score (0.17) on SS, almost 90% worse than the random baseline.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

The results concur with findings of a previous study [29], which

points to the fact that the algorithm is poor at distinguishing states

that belong to the same app.

On average, five out of top six techniques belong to the com-

puter vision domain. PDIFF is the best with a classification F1 score

of 0.60, >85% better than the baseline and >13%, >20% better than

Levenshtein and TLSH, the best techniques in DOM and IR cat-

egories, respectively. On average, most visual techniques outper-

form DOM and IR techniques (with the exception of PHash and

color-histogram). On SS, PDIFF again outperforms all techniques

while BlockHash and SSIM, both visual, are the only other tech-

niques that have an F1 score of more than 0.50.

7 RQ3: IMPACT ON INFERRED MODELS

With RQ3, we evaluate the impact of the near-duplicate detection

algorithms in automated web app model inference.

RQ3.1:How can classification thresholds be applied to state abstrac-

tion functions (SAFs)?

RQ3.2:Can domain knowledge be employed to improve the obtained

models?

RQ3.3: How does efficiency of SAFs impact the obtained models?

Specifically, we evaluate the quality of crawl models inferred us-

ing each of the near-duplicate detection algorithms as state abstract

function (SAF) (see Definition 1) along with the determined thresh-

olds. Crawljax already includes all DOM-based algorithms de-

scribed in Section 3.2; we added the computer vision and informa-

tion retrieval near-duplicate algorithms within Crawljax as SAFs.

More specifically,we integrated the implementations of PDiff, SIFT,

and SSIM from the open-source computer-vision library OpenCV,

and the publicly available versions of TLSH2 and simhash.3

Since we need to run and analyze many crawl sessions (i.e., nine

apps, 10 algorithms, different threshold sets), we limit the crawl

session with a maximum runtime of five minutes.

Model Quality. We measure the quality of a generated model

through its F1 score, the harmonic mean of Pr and Re . Lower pre-

cision (Pr) denotes a greater redundancy in the model and is com-

puted as the ratio of unique states (bins) covered by the model to

the total number of states in the model. Recall (Re) quantifies the

application state coverage achieved in the model and is computed

as the number of bins covered by the model to the total number of

bins identified by humans, for the corresponding app, in the ground

truth (see Section 6.2).

The recall Re of a crawl model is highly dependent on the abil-

ity of the SAF to reliably distinguish the distinct state-pairs and

its precision Pr on its ability to exclude near-duplicates and clones

of states already present from the model. Crawlers, however, typ-

ically expect one single similarity threshold for deciding if a state

is new to be added to the model; i.e., they do not distinguish be-

tween clone/near-duplicate. Therefore, we frame the problem of

finding optimal thresholds for a SAF as maximizing the F1 score of

its distinct-pair detection.

2https://github.com/idealista/tlsh
3https://github.com/albertjuhe/charikars_algorithm

Table 6: Distinct pair (Pr , Re , F1) on existing datasets

TS SS Average

Pr Re F1 Pr Re F1 Pr Re F1

On_DS 0.81 0.81 0.80 0.89 0.53 0.64 0.85 0.67 0.72

Stn_DS 0.63 0.90 0.73 0.87 0.76 0.78 0.75 0.83 0.76

7.1 Thresholds for SAFs (RQ3.1)

Before we employ the near-duplicate techniques as SAFs in crawl-

ing and evaluate the generated models, which is a manual and

time consuming process, we assess the techniques and the univer-

sal thresholds based on the F1 score of the distinct-pair detection,

which indicates the applicability of the techniques as SAFs.

Findings (RQ3.1). In the distinct state-pair detection scores from

RQ2 shown in Table 6, scores on TS allow us to assess the ability

of a technique to distinguish distinct state-pairs in the wild, while

SS lets us simulate each technique as a SAF on generated models

captured in our subject-set. In contrast to the RQ2 results, where

both the threshold sets had better average classification F1 on TS
compared to SS, Table 6 shows that statistical threshold had bet-

ter distinct state-pair detection F1 of 0.78 on SS than 0.73 in TS.
Optimal thresholdOn_DS , which is higher/stricter than Stn_DS , in

terms of actual threshold value, as shown in Table 4, has a poor

recall on SS (53%) compared to TS (81%). Also in TS statistical

threshold has the highest recall, but by sacrificing precision; the

optimal threshold emerges with a better overall F1 score through

a 25% better precision on TS. The same threshold, however, could

not improve precision in SS but has 50% lower recall.

As we optimized our threshold to be stricter to fit the distribu-

tion in DS, we ended up misclassifying distinct pairs to be near-

duplicates in SS because of the differences in the distributions

between the two data-sets. As we pointed out in RQ2, these results

show the infeasibility of finding universal thresholds as the distances

for state-pairs are highly influenced by the intrinsic characteristics

of the web app they belong to.

7.2 Using Application Knowledge (RQ3.2)

These results for universal thresholds prompted us to investigate

whether having knowledge of the web app characteristics helps in

selecting better thresholds to improve the detection rates of the

techniques.

We use the manually labelled models (see Section 6.2) in the

subject-set (SS) for each app to represent application knowledge.

In order to use this application knowledge, we apply the

near-duplicate threshold definitions in Definition 8 and

Definition 9 to each subject in SS to derive Stn_SS and On_SS

respectively. In addition to these two thresholds, through initial

experiments, we have observed that category Nd3
near-duplicates overlap with distinct (Di) pairs and it is not

possible to design a threshold that can distinguish them. We

therefore created a new threshold definition that sacrifices the

precision of distinct pair detection by allowing misclassification

of Nd3 near-duplicates as Di for better recall (Re).

Near-Duplicate Detection in Web App Model Inference ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 7: Inferred model F1 score

Universal App-Specific

S
t n

_
D
S

O
n
_
D
S

A
v
g

S
t n

_
S
S

S
t n

3_
S
S

O
n
_
S
S

A
v
g

AddressBook 0.33 0.27 0.30 0.17 0.46 0.41 0.34

PetClinic 0.36 0.25 0.31 0.50 0.50 0.52 0.51

Claroline 0.30 0.18 0.24 0.42 0.42 0.44 0.43

DimeShift 0.31 0.22 0.26 0.33 0.33 0.38 0.34

PageKit 0.30 0.27 0.29 0.27 0.39 0.37 0.34

Phoenix 0.44 0.29 0.37 0.24 0.47 0.42 0.38

PPMA 0.31 0.19 0.25 0.49 0.49 0.51 0.49

MRBS 0.37 0.35 0.36 0.43 0.43 0.46 0.44

MantisBT 0.24 0.18 0.21 0.26 0.26 0.27 0.26

Average 0.33 0.24 0.29 0.34 0.41 0.42 0.39

Nd2-Apps 0.32 0.23 0.27 0.40 0.40 0.43 0.41

Nd3-Apps 0.36 0.28 0.32 0.23 0.44 0.40 0.35

Table 8: Inferred model F1 for each algorithm

for selected thresholds

T
h
re
sh

o
ld
s

A
p
p
s

T
L
S
H

S
IM

H
a
sh

L
e
v
e
n
sh

te
in

R
T
E
D

B
lo
ck

H
a
sh

P
H
A
S
H

H
Y
S
T

P
D
IF
F

S
IF
T

S
S
IM

A
v
e
ra
g
e

A
ll
F
iv
e All 0.10 0.05 0.47 0.62 0.46 0.39 0.41 0.34 0.34 0.35 0.35

Nd2 0.10 0.04 0.48 0.62 0.47 0.39 0.41 0.36 0.31 0.39 0.36
Nd3 0.10 0.06 0.43 0.62 0.43 0.40 0.41 0.29 0.39 0.28 0.34

O
n
_
S
S All 0.15 0.08 0.48 0.55 0.54 0.49 0.54 0.45 0.42 0.51 0.42

Nd2 0.17 0.08 0.53 0.61 0.52 0.49 0.58 0.46 0.37 0.52 0.43
Nd3 0.10 0.10 0.37 0.43 0.58 0.49 0.45 0.42 0.52 0.51 0.40

S
t n

3_
S
S All 0.09 0.03 0.46 0.67 0.57 0.50 0.55 0.43 0.36 0.48 0.41

Nd2 0.08 0.02 0.47 0.62 0.55 0.50 0.53 0.44 0.35 0.46 0.40
Nd3 0.10 0.07 0.44 0.76 0.60 0.51 0.60 0.42 0.37 0.51 0.44

Definition 10. Stn3 is defined as the median of the data distri-

bution of manually labelled near-duplicates {Nd1 ∨ Nd2}. In other

words, Stn3 is Stn computed after excluding Nd3 near-duplicates.

We refer to these thresholds obtained by applying application

knowledge in SS for each algorithm as app-specific thresholds. We

crawled each of our subjects with two universal and three app-

specific thresholds with each technique as a SAF, separately, and

assess the quality of the generated models.

Findings (RQ3.2). Table 7 shows the average F1 of crawls for all

algorithms for each threshold. Overall, as expected, the univer-

sal optimal near-duplicate threshold On_DS has the worst score

of 0.24; only half of the 0.42 scored by the best threshold On_SS ,

the optimal threshold derived with application knowledge. On av-

erage, app-specific thresholds improve the model quality by 34%

compared to universal thresholds underlining the need to consider

app characteristics to choose thresholds. ForNd3-Apps, it can be seen

that Stn3_SS derived using the statistical Definition 10 significantly

(90%) improves the F1 score over the Stn_SS , showing that thresh-

old design needs to consider fine-grained near-duplicate categories

prevalent in the app under test.

Application knowledge improves generated models.

Table 8 shows the average F1 scores for each algorithm for five

minute crawls on our subjects. RTED consistently outperforms

other techniques with an F1 score of 0.62 averaged over all five

thresholds. it is 29% better than Levenshtein, the next best

algorithm.

The results for visual techniques in Table 8 are contrary to our

expectation, given that, in RQ2, they convincingly outperformed

the DOM and IR techniques in state-pair classification using Γ.

Apart from being slow compared to DOM based algorithms as

shown in Table 9, visual techniques, rely on characteristics that

cannot directly capture differences corresponding to web

elements (e.g., SIFT keypoints). Techniques such as RTED, which

use a DOM characteristic on the other hand, can reliably capture

differences in individual web elements between given two web

pages, essential to be able to classify states similar to a human

tester.

In IR techniques, SimHash is not able to distinguish even two

completely different states in our subject-set as already seen in

RQ2. TLSH on the other hand, fails to calculate digests for app

states of our subjects due to lack of enough complexity as shown

in Table 3 — the content in our subjects is 1/9th of the content size

in the wild. Therefore, we exclude SimHash and TLSH from further

analysis.

7.3 Impact of Efficiency (RQ3.3)

An analysis of visited states per minute or speed of the algorithms,

shown in Table 9, seems to suggest that faster algorithms such as

RTED (25 states per minute) could explore more states in a given

crawl time and improve its Re wheras, slower algorithms such as

PDiff, which could only explore four states per minute on an aver-

age are at a clear disadvantage.

Table 8 shows that for all remaining eight techniques with the

exception of SIFT, On_SS for Nd2-Apps and Stn3_SS for Nd3-Apps

is the best threshold configuration.

Table 9 shows the statistics of the 5-min crawls for each tech-

nique with their best threshold configuration. Coverage (Re) data

suggests that 5minuteswas not enough to cover all of the app state-

space. Therefore, we experiment with a longer crawl time, i.e., 30

minutes. Given the exponential nature of increase in manual effort

to analyze larger crawl models, we limit this experiment to the

best performing techniques tuned with thresholds from the best

5-minute crawls presented in Table 9. We select the top four tech-

niques based on F1 scores, however, as discussed before, since the

slower algorithms were placed at a disadvantage in the 5-minute

crawls, we also include PDiff and SSIM that produced models with

the best precision (Pr) scores of 0.91 and 0.85 (respectively 12% and

6% better than RTED which has the best F1 score of 0.66).

Findings (RQ3.3). Average F1 scores shown in Table 10 for 30

minute crawls indicate that, when tuned correctly and given

enough time, Histogram, BlockHash, RTED and Levenshtein can

all perform well on Nd2-Apps meaning that they managed to

discard near-duplicates of type Nd2 reasonably well. However, it

is surprising to see that PDiff and SSIM score higher than all of

them on Nd3-Apps. Thus, we decided to analyze how F1 has

changed over the 30 minutes for Nd3-Apps as opposed to the

Nd2-Apps.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

Table 9: Techniques Speed and Inferred model (Re , Pr , F1)
for best 5-minute crawls

L
e
v
e
n
sh

te
in

R
T
E
D

B
lo
ck

H
a
sh

P
H
A
S
H

H
Y
S
T

P
D
IF
F

S
IF
T

S
S
IM

Speed 11 25 17 16 16 4 5 8
Recall 0.42 0.61 0.49 0.49 0.55 0.30 0.28 0.39
Precision 0.84 0.79 0.75 0.79 0.72 0.91 0.71 0.85
F1 0.54 0.66 0.54 0.52 0.58 0.44 0.39 0.51

Table 10: Inferred model F1 for 30-Minute crawls

Apps B
lo
ck

H
a
sh

H
y
st

L
e
v
e
n
sh

te
in

P
D
iff

R
T
E
D

S
S
IM

All 0.51 0.57 0.53 0.52 0.62 0.56
Nd2 0.57 0.62 0.59 0.51 0.66 0.52
Nd3 0.39 0.47 0.42 0.56 0.52 0.64

A plot of F1 of the model over its states percentage for RTED

crawls is shown in Figure 4. The figure highlights that for

Nd3-Apps, the model deteriorates as states being added are

near-duplicates, mostly of type Nd3, while, the models of

Nd2-Apps seem to stabilize as Nd2 near-duplicates are being

detected and discarded. During the manual analyses of models,

we observed that the Nd3 near-duplicates are dynamically

created, typically through user-interactions that result in

addition/removal of web elements whose functionality already

exists in the state (e.g., addition/deletion of new rows in a table).

Not only is this newly created state a near-duplicate that will eat

into precious testing time, but each time the crawler revisits this

state, it may invoke the same creation path adding even more

duplicates resulting in a never-ending loop.

Efficiency may negatively impact the generated model in time-

limited crawls for Nd3 apps.

Given that RTED is the best algorithm and was fine-tuned to

produce best model for each application, this surprising revelation

points to the limitation of existing crawlers and threshold based

SAFs and shows that threshold based crawling may never produce

an accurate and complete model of modern web apps with dynamic

Nd3 near-duplicates.We therefore think that future SAFs should in-

corporate characteristics that represent functionality and crawlers

should be designed to utilize near-duplicate detection to establish

the nature of duplication instead of quantifying the computed dif-

ferences to actively guide the exploration to discover newer func-

tionality.

8 THREATS TO VALIDITY

External validity threats concern the generalization of our findings.

We considered only nine web apps and experiments with other

subject systems are necessary to fully confirm the generalizability

of our results, and corroborate our findings. We tried to mitigate

Figure 4: Normalized F1 over %(states in model)

during 30-minute crawls of RTED

this threat selecting real-world web apps with different sizes, per-

taining to different domains, and adopted in previous web testing

work [15, 16, 49]. Another threat concerns the selection of thresh-

olds for near-duplicate detection techniques, whose results may

not generalize to other algorithms. We mitigated this threat by se-

lecting 10 techniques from three different domains: web testing,

computer vision and information retrieval. Internal validity threats

concern uncontrolled factors that may have affected our results.

A possible threat is represented by the manually created ground

truth, which was unavoidable because no automatedmethod could

provide us with the ideal classification of web pages. To minimize

this threat, the authors of this paper created, in isolation, a ground

truth. Then, the two established a discussion to produce a single

ground truth for each web app.

For reproducibility of the results, we made our tool, datasets

and used subject systems available [5], alongwith required instruc-

tions.

9 RELATED WORK

A large body of research has addressed the analysis of web sites

structure via clustering for clone detection and duplicate removal

of web pages [18, 19, 22–25, 29, 34, 41, 56].

Henzinger [29] performed an evaluation of two near-duplicate

detection algorithms based on shingling on a large dataset of 1.6B

web pages. Manku et al. [34] followed up on the work using

simhash to detect near-duplicates for web information retrieval,

data extraction, plagiarism and spam detection with promising

results. Fetterly et al. [23] study the evolution of near-duplicate

web pages over time and conclude that near-duplicates have little

variability over time, and two pages that have been found to be

near-duplicates of one another will continue to be so for the

foreseeable future.

Our study is different from the above work as we aim to de-

tect near-duplicates within web apps and not across different web

apps. Regarding detection of within app near-duplicates, Calefato

et al. [19] propose a method to identify near-duplicates as well as

functional clone web pages based on a manual visual inspection

of the GUI. Crescenzi et al. [22] propose a structural abstraction

for web pages as well as a clustering algorithm that groups web

pages based on this abstraction. Di Lucca et al. [24, 25] evaluate the

Levenshtein distance and the tag frequency methods for detecting

near-duplicate web pages. Eyk et al. apply simhash and broders

near-duplicate detection within Crawljax [27].

Near-Duplicate Detection in Web App Model Inference ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

In mobile testing research, researchers [3, 14] used mobile GUI

widget hierarchies in order to design optimal state abstractions.

Our study did not consider such techniques as they are not directly

applicable for web applications.

To the best of our knowledge, our work is the first one to study

different near-duplication detection algorithms (from different

fields) as SAFs in a web crawler. This paper is the first to propose

a systematic categorization of near-duplicates in web apps, from

a functional E2E testing perspective and to study the impact of

near-duplicate detection on generated web application models

and web testing. Moreover, our paper is the first to discuss

selection of thresholds for near-duplicate detection, an important

first step.

10 CONCLUSIONS AND FUTUREWORK

Automatically asserting the equality of two complexweb pages is a

difficult problem, which the state abstraction function of a crawler

needs to solve at runtime during the exploration. The problem is

further complicated by the presence of near-duplicates that need

to be detected and mapped to the logical pages in order to produce

meaningful crawl models.

We study ten existing near-duplicate detection techniques

from three different domains and compare their effectiveness as

state abstraction functions in a crawler. Our results show that

near-duplicates characterized by dynamic data, as categorized in

the study, are detectable when application knowledge is

employed. However, near-duplicates characterized by duplication

of web elements, that are often a by-product of state exploration,

cannot be handled by threshold-based model inference.

Future work includes devising novel types of abstraction func-

tions, incorporating both page structural and visual characteris-

tics in a single hybrid solution to detect different kinds of near-

duplicates.

REFERENCES
[1] [n.d.]. Stratified Random Classifier. https://scikit-learn.org/stable/modules/

generated/sklearn.dummy.DummyClassifier.html. Package: scikit-learn.
[2] S. Afroz and R. Greenstadt. 2011. PhishZoo: Detecting Phishing Websites by

Looking at Them. In 2011 IEEE Fifth International Conference on Semantic Com-
puting. 368–375. https://doi.org/10.1109/ICSC.2011.52

[3] D. Amalfitano, A. R. Fasolino, and P. Tramontana. 2011. A GUI Crawling-Based
Technique for Android Mobile Application Testing. In 2011 IEEE Fourth Inter-
national Conference on Software Testing, Verification and Validation Workshops.
252–261. https://doi.org/10.1109/ICSTW.2011.77

[4] and A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on Image
Processing 13, 4 (April 2004), 600–612. https://doi.org/10.1109/TIP.2003.819861

[5] anon. 2019. Near-Duplicate Study Tools and DataSet For Replication. https:
//github.com/NDStudyICSE2019/NDStudy. GitHub Repository.

[6] app1 2018. Angular version of the Spring PetClinic web application. https://
github.com/spring-petclinic/spring-petclinic-angular.

[7] app3 2015. Claroline. Open Source Learning Management System. https:
//sourceforge.net/projects/claroline/.

[8] app4 2018. DimeShift: easiest way to track your expenses. https://github.com/
jeka-kiselyov/dimeshift.

[9] app5 2018. Pagekit: modular and lightweight CMS. . https://github.com/pagekit/
pagekit.

[10] app6 2018. Phoenix: Trello tribute done in Elixir, Phoenix Framework, React
and Redux. https://github.com/bigardone/phoenix-trello.

[11] app7 2018. PHP Password Manager. https://github.com/pklink/ppma.
[12] app8 2018. Meeting Room Booking System. https://mrbs.sourceforge.io/.
[13] app9 2018. Mantis Bug Tracker. https://github.com/mantisbt/mantisbt.
[14] Young-Min Baek and Doo-Hwan Bae. 2016. Automated Model-Based Android

GUI Testing Using Multi-Level GUI Comparison Criteria. In Proceedings of the

31st IEEE/ACM International Conference on Automated Software Engineering (Sin-
gapore, Singapore) (ASE 2016). Association for ComputingMachinery, NewYork,
NY, USA, 238?249. https://doi.org/10.1145/2970276.2970313

[15] Matteo Biagiola, Andrea Stocco, Ali Mesbah, Filippo Ricca, and Paolo Tonella.
2019. Web Test Dependency Detection. In Proceedings of 27th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2019). ACM, 12 pages.

[16] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2019.
Diversity-basedWeb Test Generation. In Proceedings of 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). ACM, 12 pages.

[17] Lorenzo Blanco, Nilesh Dalvi, and Ashwin Machanavajjhala. 2011. Highly Effi-
cient Algorithms for Structural Clustering of Large Websites. In Proceedings of
the 20th International Conference on World Wide Web (WWW ’11). ACM, 437–
446.

[18] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.
1997. Syntactic Clustering of the Web. Comput. Netw. ISDN Syst. 29, 8-13 (Sept.
1997), 1157–1166.

[19] Fabio Calefato, Filippo Lanubile, and Teresa Mallardo. 2004. Function Clone
Detection in Web Applications: A Semiautomated Approach. J. Web Eng. 3, 1
(May 2004), 3–21.

[20] Moses S. Charikar. 2002. Similarity Estimation Techniques from Rounding Algo-
rithms. In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of
Computing (Montreal, Quebec, Canada) (STOC ’02). ACM, New York, NY, USA,
380–388. https://doi.org/10.1145/509907.509965

[21] Teh-Chung Chen, Scott Dick, and James Miller. 2010. Detecting Visually Similar
Web Pages: Application to Phishing Detection. ACM Trans. Internet Technol. 10,
2, Article 5 (June 2010), 38 pages. https://doi.org/10.1145/1754393.1754394

[22] Valter Crescenzi, Paolo Merialdo, and Paolo Missier. 2005. ClusteringWeb Pages
Based on Their Structure. Data Knowledge Engineering 54, 3 (Sept. 2005), 279–
299.

[23] Marc Najork Dennis Fetterly, MarkManasse. 2004. On the Evolution of Clusters
of Near-Duplicate Web Pages, In Journal of Web Engineering. Journal of Web
Engineering 2, 228–246.

[24] Giuseppe A. Di Lucca, Massimiliano Di Penta, Anna Rita Fasolino, and Pasquale
Granato. 2001. Clone Analysis in the Web Era: an Approach to Identify Cloned
Web Pages. In Proceedings of the International Workshop of Empirical Studies on
Software Maintenance - November 2001 - Florence - Italy. 107–113.

[25] Giuseppe Antonio Di Lucca, Massimiliano Di Penta, and Anna Rita Fasolino.
2002. An Approach to Identify Duplicated Web Pages. 2013 IEEE 37th Annual
Computer Software and Applications Conference 00, undefined (2002), 481.

[26] Cristian Duda, Gianni Frey, Donald Kossmann, Reto Matter, and Chong Zhou.
2009. AJAX Crawl: Making AJAX Applications Searchable. In Proceedings of the
2009 IEEE International Conference on Data Engineering (ICDE ’09). IEEE, 78–89.

[27] E.D.C. Van Eyk and W. J. Van Leeuwen. 2014. Performance of near-duplicate
detection algorithms for Crawljax. B.S. Thesis.

[28] Taher H. Haveliwala, Aristides Gionis, Dan Klein, and Piotr Indyk. 2002. Eval-
uating Strategies for Similarity Search on the Web. In Proceedings of the 11th
International Conference on World Wide Web (Honolulu, Hawaii, USA) (WWW
’02). ACM, New York, NY, USA, 432–442. https://doi.org/10.1145/511446.511502

[29] Monika Henzinger. 2006. Finding Near-duplicateWeb Pages: A Large-scale Eval-
uation of Algorithms. In Proceedings of the 29th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval (SIGIR ’06).
ACM, 284–291.

[30] VI Levenshtein. 1966. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady 10 (1966), 707.

[31] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent
Licata. 2013. Detecting outliers: Do not use standard deviation around the mean,
use absolute deviation around the median. Journal of Experimental Social Psy-
chology 49, 4 (2013), 764 – 766. https://doi.org/10.1016/j.jesp.2013.03.013

[32] D. G. Lowe. 1999. Object recognition from local scale-invariant features. In
Proceedings of Seventh IEEE International Conference on Computer Vision, Vol. 2.
1150–1157.

[33] Sonal Mahajan and William G.J. Halfond. 2014. Finding HTML Presentation
Failures Using Image Comparison Techniques. In Proc. of the 29th ACM/IEEE
International Conference on Automated Software Engineering (ASE ’14). ACM, 91–
96.

[34] Gurmeet SinghManku,Arvind Jain, and Anish Das Sarma. 2007. Detecting Near-
duplicates for Web Crawling. In Proceedings of the 16th International Conference
on World Wide Web (WWW ’07). ACM, 141–150.

[35] Ali Mesbah. 2015. Advances in Testing JavaScript-based Web Applications. Ad-
vances in Computers, Vol. 97. Elsevier, Chapter 5, 201–235.

[36] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. 2012. Crawling Ajax-based
Web Applications through Dynamic Analysis of User Interface State Changes.
ACM Transactions on the Web 6, 1 (2012), 3:1–3:30.

[37] Amin Milani Fard and Ali Mesbah. 2013. Feedback-directed Exploration of Web
Applications to Derive Test Models. In Proceedings of the International Sympo-
sium on Software Reliability Engineering (ISSRE). IEEE, 278–287.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

[38] J. Oliver, C. Cheng, and Y. Chen. 2013. TLSH – A Locality Sensitive Hash. In
2013 Fourth Cybercrime and Trustworthy Computing Workshop. 7–13.

[39] Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient Computation of the Tree
Edit Distance. ACM Trans. Database Syst. 40, 1, Article 3 (March 2015), 40 pages.

[40] PHP AddressBook. 2015. Simple, web-based address & phone book. http:
//sourceforge.net/projects/php-addressbook. Accessed: 2018-10-01.

[41] Lakshmish Ramaswamy, Arun Iyengar, Ling Liu, and Fred Douglis. 2004. Auto-
matic Detection of Fragments in Dynamically Generated Web Pages. In Proceed-
ings of the 13th International Conference on World Wide Web (WWW ’04). ACM,
443–454.

[42] Filippo Ricca and Paolo Tonella. 2001. Analysis and testing of Web applications.
In Proceedings of the 23rd International Conference on Software Engineering (ICSE
’01). IEEE, 25–34.

[43] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. 2013. X-PERT:
Accurate Identification of Cross-browser Issues in Web Applications. In Proc. of
the 2013 International Conference on Software Engineering (ICSE ’13). IEEE Press,
702–711.

[44] Sreedevi Sampath. 2012. Advances in User-Session-Based Testing of Web Appli-
cations. Advances in Computers 86 (2012), 87–108.

[45] M. Schur, A. Roth, and A. Zeller. 2015. Mining Workflow Models from Web
Applications. IEEE Transactions on Software Engineering 41, 12 (Dec 2015), 1184–
1201. https://doi.org/10.1109/TSE.2015.2461542

[46] Selenium 2018. SeleniumHQ Web Browser Automation. http://www.
seleniumhq.org/. Accessed: 2017-08-01.

[47] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical Bayesian Op-
timization of Machine Learning Algorithms. In Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger
(Eds.). Curran Associates, Inc., 2951–2959. http://papers.nips.cc/paper/4522-
practical-bayesian-optimization-of-machine-learning-algorithms.pdf

[48] Marina Sokolova and Guy Lapalme. 2009. A systematic analysis of perfor-
mance measures for classification tasks. Information Processing Management
45, 4 (2009), 427 – 437. https://doi.org/10.1016/j.ipm.2009.03.002

[49] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2016.
Clustering-Aided Page Object Generation forWeb Testing. In Proceedings of 16th
International Conference on Web Engineering (ICWE 2016). Springer, 132–151.

[50] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2017.
APOGEN: Automatic Page Object Generator for Web Testing. Software Qual-
ity Journal 25, 3 (Sept. 2017), 1007–1039.

[51] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual Web
Test Repair. In Proceedings of the 2018 26th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software En-
gineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, New York, NY,
USA, 503–514. https://doi.org/10.1145/3236024.3236063

[52] Michael J. Swain and Dana H. Ballard. 1992. Indexing via Color Histograms.
In Active Perception and Robot Vision, Arun K. Sood and Harry Wechsler (Eds.).
Springer Berlin Heidelberg, 261–273.

[53] Anastasios Tombros and Zeeshan Ali. 2005. Factors Affecting Web Page Simi-
larity. In Proceedings of the 27th European Conference on Advances in Information
Retrieval Research (ECIR 2005). Springer-Verlag, 487–501.

[54] Paolo Tonella, Filippo Ricca, and Alessandro Marchetto. 2014. Recent Advances
in Web Testing. Advances in Computers 93 (2014), 1–51.

[55] J. Upchurch and X. Zhou. 2016. Malware provenance: code reuse detection in
malicious software at scale. In 2016 11th International Conference on Malicious
and Unwanted Software (MALWARE). 1–9. https://doi.org/10.1109/MALWARE.
2016.7888735

[56] YitongWang andMasaruKitsuregawa. 2001. Link Based Clustering ofWeb Search
Results. Springer Berlin Heidelberg, 225–236.

[57] B. Yang, F. Gu, and X. Niu. 2006. Block Mean Value Based Image Perceptual
Hashing. In 2006 International Conference on Intelligent Information Hiding and
Multimedia. 167–172.

[58] Hector Yee, Sumanita Pattanaik, and Donald P. Greenberg. 2001. Spatiotempo-
ral Sensitivity and Visual Attention for Efficient Rendering of Dynamic Environ-
ments. ACM Trans. Graph. 20, 1 (Jan. 2001), 39–65.

[59] Christoph Zauner. 2010. Implementation and benchmarking of perceptual image
hash functions. Ph.D. Dissertation.

