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ABSTRACT
JavaScript has become one of the most popular languages
in practice. Developers now use JavaScript not only for
the client-side but also for server-side programming, leading
to “full-stack” applications written entirely in JavaScript.
Understanding such applications is challenging for developers,
due to the temporal and implicit relations of asynchronous
and event-driven entities spread over the client and server
side. We propose a technique for capturing a behavioural
model of full-stack JavaScript applications’ execution. The
model is temporal and context-sensitive to accommodate
asynchronous events, as well as the scheduling and execution
of lifelines of callbacks. We present a visualization of the
model to facilitate program understanding for developers.
We implement our approach in a tool, called Sahand, and
evaluate it through a controlled experiment. The results show
that Sahand improves developers’ performance in completing
program comprehension tasks by increasing their accuracy
by a factor of three.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging-
Tracing; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement

Keywords
Program comprehension, asynchronicity, full-stack JavaScript

1. INTRODUCTION
JavaScript has been selected as the most popular program-

ming language for three consecutive years [42] and it is the
most used language on GitHub [23]. JavaScript has been
the lingua franca of client-side web development for some
years. But platforms such as Node.js [34] have made it pos-
sible to use JavaScript for writing code that runs outside
of the browser. As such, “full-stack” applications written
entirely in JavaScript from client-side to the server-side have
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also seen an exponential growth recently. Node.js provides
a light-weight, non-blocking, fast, and scalable platform for
writing network-based applications. It is also more conve-
nient for web developers to use the same language for both
front- and back-end development. Despite all the advantages,
this approach imposes many challenges on the developers’
comprehension of the dynamic execution of a web application.
Understanding an application is the necessary first step of
almost every software engineering task.

There are three groups of challenges involved in under-
standing the execution on the client side, the server side,
and their interactions. First, JavaScript is a single-threaded
language and thus callbacks are often exercised to simulate
concurrency. Nested and asynchronous callbacks are used
regularly [16] to provide capabilities such as non-blocking
I/O and concurrent request handling. This use of callbacks,
however, can gravely complicate program comprehension and
maintenance — a problem coined as “callback hell” on the
web by developers. Second, the Document Object Model
(DOM) and custom events, timers and XMLHttpRequest
(XHR) objects interact with JavaScript code on the client and
server to provide real-time interaction, all of which complicate
understanding. Moreover, Node.js deploys the event-loop
model for handling and scheduling asynchronous events and
callbacks, the improper use of which can lead to unexpected
behaviour of the application. Finally, client and server code
communicate through XHR messages, and multiple messages
(and their responses) can be in transit at a given time. As in
any distributed system, there is no guarantee on the order
or time of the arrival of requests at the server, and responses
at the client. The uncertainty involved in the asynchronous
communication makes the execution more intricate and thus
more difficult to understand for developers.

Despite the popularity of JavaScript and severity of these
challenges, there is currently no technique available that
provides a holistic overview of the execution of JavaScript
code in full-stack web applications. The existing techniques
do not support full-stack JavaScript comprehension [4, 18,
27, 35, 47]. In our earlier work, we proposed a technique,
called Clematis [3], for understanding client-side JavaScript.
Clematis is, however, only designed for client-side Java-
Script, and is agnostic of the server, where most of the
program logic is located in full-stack applications.

In this paper, we present a technique called Sahand, to
help developers gain a holistic view of the dynamic behaviour
of full-stack JavaScript applications. Our work makes the
following contributions.

• We propose a novel temporal and behavioural model of
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full-stack JavaScript applications. The model is context-
sensitive and creates lifelines of JavaScript execution on
both the client and server sides. The model connects
both sides through their asynchronous communications,
to provide a holistic view of the application behaviour.
• We create a visual interface for displaying the model to

the developers, to help them understand the underlying
mechanisms of execution. We treat the model as a
multi-variate time series, based on which, we create
a temporal visualization of the lifelines of JavaScript
execution.
• We implement our approach in a tool called Sahand

[39]. The tool is browser-independent and non-intrusive.
Sahand can handle the simulated concurrency of Java-
Script through asynchronous execution of callbacks,
XHR objects, timers, and events.
• We evaluate our approach through a controlled experi-

ment conducted with 12 participants. Our results show
that using Sahand helps developers perform program
comprehension tasks three times more accurately.

2. CHALLENGES AND MOTIVATION
To comprehend the behaviour of a full-stack web applica-

tion, one must understand the full lifecycle of a feature on
both the client and server sides. We elaborate on some the
challenges involved using the examples illustrated in Figures
1–3. These are simple examples and the challenges are more
potent in large and complex applications.

2.1 Challenge 1: Server-Side Callbacks
Receiving requests at the end points. Various types of
HTTP requests are received at the end points on a server.
Node.js applications have one or more handlers assigned to
each incoming request. Each of the handlers can change the
flow of execution, return a response to the client, or pass
the execution to the next handler. The ability to register
anonymous functions, or arrays of functions, can complicate
the process of understanding and maintaining the handling
and routing the requests.
Example. The example of Figure 1 depicts an end point
for receiving a GET request (lines 12–18 use Express.js APIs
[14]). Three items are registered as handlers of the /locate

request. First, an anonymous function is registered (lines
12–15), which can return a response to the client condition-
ally (lines 13–14) and prevent the execution of the remaining
handlers. The second assigned handler (line 16) is an array
of callback functions cb1() and cb2() (line 8). An addi-
tional function cb0() can be pushed to the array at runtime
based on dynamic information (lines 9–11). cb0() can itself
affect the control flow and send a response to the client in
a specific scenario (lines 3–4). Finally, another anonymous
function is added to the list of request handlers (line 16).
Understanding how a request is received and routed in the
server depends on understanding the complex control flow
of all these handlers. This task becomes more challenging as
the number of handlers increases in practice.

Callback hell. Functions are first-class citizens in Java-
Script. They can be passed as arguments to other functions
and be executed later. Callback functions are widely used
in JavaScript applications [16]. However, It is not trivial
to understand the JavaScript code that deploys callbacks.
In many cases callbacks are nested (up to eight levels deep

1 var cb0 = function (req , res , next) {
2 var region = locateClient(req.body.client)
3 if (region.ASIA) {
4 res.send(customizedRes(req.body.content))
5 }
6 next()
7 }
8 var cbacks = cb1, cb2
9 if (user.isLoggedIn) {

10 cbacks.push(cb0);
11 }
12 app.get( '/locate ' , function(req , res , next) {
13 if (req.header( ' appStats '))
14 res.send(statCollectionResponse(req.body.←↩

stats))
15 next();
16 }, cbacks , function(req , res) {
17 // do stuff
18 })

Figure 1: Receiving HTTP requests at an end point

1 app.post( '/cparse ' , function(req , res) {
2 customParse(req.body , function(er, list) {
3 list.forEach(function (row , index) {
4 buildScript(row , req.body.format).←↩

extractArgs(row , function (instType) {
5 row.forEach(function (arg , i) {
6 resolveAliases(instType , arguments0);
7 }) }) }) })
8 // send response back
9 })

Figure 2: Callback hell

[16]) or are assigned in loops, which negatively impacts the
readers’ ability to follow the data and the control flow. This
problem is know as the callback hell by developers [8]. To
aggravate the situation, Node.js deploys the event loop model
for scheduling and organizing callbacks. The event loop is not
visible to the developers, but it determines the asynchronous
execution on the server side.
Example. The code in Figure 2 depicts a simple example
of callback hell. Many callback functions are passed as
arguments to other functions in a nested manner (lines 2–5).
Callbacks can also get assigned in loops. In the case of our
example (lines 3–5), the same anonymous function is assigned
as a callback for all iterations of a loop.

2.2 Challenge 2: Asynchronous Client Side
There are two asynchronous events typically used in the

client side. First, asynchronous XHR messages are used to
seamlessly communicate with the server without changing
the state. Second, timing events are utilized for performing
periodic tasks, or tasks that must take place after a temporal
delay. To handle asynchronous events, developers typically
use callbacks which are triggered when the event occurs.
However, mapping the observed functionality of the event to
its original source is a challenging task for developers. This
is especially so when the source and the callback are often
semantically and temporally separate.
Example. The sample code in Figure 3 displays a simplified
client-side JavaScript code. The updateUnits() function
(line 1) posts a set of XHR requests to the server in a loop
(lines 2–7). Each of these messages has a callback function
that is invoked upon receipt of the server’s response. The
callback function of all sent is the same anonymous func-
tion (lines 4–7). Based on the content of the response data,
a timeout may be set that will execute after a certain de-
lay (line 6). In another part of the code, an interval is set
that executes the periodicUpdate() function at periodic



1 function updateUnits () {
2 for (var i = 0; i < unit.length; i ++) {
3 (function(i) {
4 $.post(extractUrl(i), function(data) {
5 if (data.requiresAlert ())
6 setTimeout(extractMessage(data), ←↩

msgDelay);
7 });
8 } } })(i);
9 function periodicUpdate () {

10 $.get( '/pupdate ' , function(data) {
11 // do stuff
12 });
13 }
14 setInterval(periodicUpdate , updateCycle);

Figure 3: Asynchronous client-side JavaScript

intervals throughout the lifecycle of the application. peri-

odicUpdate() in turn sends a get request to the server and
continues its execution upon arrival of the response.

2.3 Challenge 3: Network Communication
The server and the client communicate through request/re-

sponse messages. Hence, the role of the network layer needs
to be taken into account to obtain a holistic overview of
the execution. The requests do not necessarily arrive at
the server in the same order as they are sent on the client
side. The processing times of different requests can vary
on the server side as well. Moreover, after the responses
are sent from the server, there is no guarantee on the time
and order in which they will arrive at the client. Observing
the behaviour of the application as a whole on both client
and server sides is non-trivial. However, this is necessary for
developers to understand the full functionality of the features
throughout their lifespan.

3. APPROACH
In this section, we first present the building blocks of our

model. We then discuss the different steps of our approach
and how they contribute to the generation of the model.

3.1 Temporal and Context-Sensitive Model
Our approach creates a custom directed graph of the

context-sensitive executions of events and functions during
their lifespan. The model is designed to accommodate the
temporal nature of function executions and the asynchronous
scheduling mechanisms of full-stack JavaScript. The relations
of functions and (a)synchronous events are also temporal to
reflect the precise dynamic and asynchronous behaviour of
the application. We use the notations introduced here to
show how our approach creates the model based on dynamic
analysis.

Vertices. The vertices of the graph can be events or lifelines
of function executions:

V ::= LL lifeline of a function execution
| E (a)synchronous client/server event

Function executions are the focal points of the model. Each
function can go through four phases in its lifecycle. Hence,
a lifeline of the ith execution of function f at time τ during
execution (LL < f, i, τ >) manifests as one of the following
phases:

Table 1: Types of vertices in the model graph
Event
Type

Node Client/
Server

Information gathered

DOM
event

Ve client user input information, DOM
element, handler function

Custom
event

Ve client Custom Event type, DOM
element, handler function

Node.js
event

Ve(s) server Custom event type, registered
function

Timeout
set

Vll(t) client&
server

Custom ID, delay, callback
function, setter function

Timeout
callback

Vll(t) client&
server

Custom ID, callback
function, setter function

XHR
send

Vll(x) client&
server

Custom ID, sent data,
callback function, opening and
sending functions

XHR
callback

Vll(x) client&
server

Custom ID, response data,
callback function, opening and
sending functions

LL < f, i, τ > ::= Sch(f) scheduled : as a callback
| Act(f) active: being executed
| Ina(f) inactive: in stack, but

another function is active
| Ter(f) terminated: execution has

finished
To understand the lifeline of each execution, the model

must account for all these phases. There can be a maximum
of one scheduling phase per function execution, depending
on whether it was triggered asynchronously. This means
Sch(f) can occur 0 or 1 times in the beginning of a lifeline.
Each execution has at least one active phase (Act(f)). If the
function invokes another function, the callee becomes active,
and the caller becomes inactive until the execution of the
callee is finished. Hence, after an initial active phase, a lifeline
can contain an arbitrary number of {Ina(f), Act(f)} pairs,
before its execution is finally terminated (Ter(f)). However,
there are cases where the execution is left unterminated, for
instance due to exceptions, or ending the execution before a
scheduled callback occurs. In general, the lifeline of function
f can be depicted as:

LL(f) = [Sch(f)]Act(f)(Ina(f)Act(f)) ∗ [Ter(f)]

The other type of nodes included in our model are events.
The events can be synchronous or asynchronous, and can
be triggered on the client or the server code. Capturing the
events and extracting their relations with the rest of the en-
tities in the application is crucial for program understanding.
Table 1 summarizes the information required for analyzing
various types of vertices that is captured by our approach,
in addition to the time of event occurrence.

Edges. The edges of the graph have three primary attributes,
namely time, type, and direction.

Function lifelines are temporal entities over a contiguous
time period. A lifeline can interact with other lifelines and
events at multiple points in time during its lifespan. The
edges must preserve the temporal aspects of the interactions,
and reflect them in the model.

The type of each edge represents the type of interaction
between the two involved graph nodes. Function lifelines can
interact with each other and with events through various
types of relations, which are summarized in Table 2.

The direction of an edge represents the direction of the
control flow between the involved nodes, which depends on
the type of the edge.
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Figure 4: A sample temporal, context-sensitive and asynchronous model of events, lifelines, and interactions.

Table 2: Interaction Edges
Edge Relation Src Dst Sync Gathered

information

Ec calls LL LL yes args, context info
Et terminates LL LL no return value
Ecs schedules LL|E LL no callback type
Ess schedules (s) LL LL no callback type
Ets timeout set LL LL no delay
Exs xhr send LL LL both data
Et triggers LL E yes event type
Ee emits E LL yes event type

Table 3 summarizes the algorithm of creating the model
graph based on a selective trace of execution. The rows of
the table are the transactions in the trace, and the columns
formulate the handling of nodes, edges, and the logic of the
algorithm for each transaction. Figure 4 provides a schematic
representation of the model. We refer to the algorithm table
and the model figure throughout the rest of the section, as
we discuss the formation of the model.

3.2 Client-Side Analysis
On the client side, each function is either invoked directly

by another function, or is triggered by a DOM event, a
scheduled callback (including timing events) or a response
to a request sent earlier. Next, we discuss how we create the
client-side model based on these entities and their relations.

Events and DOM Interactions. Our approach captures
both DOM and custom client-side events. For each event, we
gather information on the involved DOM element, the type
of user action or programmatic event, the user input and the
invoked handler. Furthermore, our previous study [2] shows
that around 14% of the triggered handlers are not invoked
directly by an event. These handlers are indirectly called
through event propagation mechanisms of JavaScript, where
a single event can trigger multiple handlers of the ancestors
of the target element [43]. Thus, we capture propagated
handlers and their relations with the original events.

Upon invocation of the original handler, we create a node
representing the event and add it to the model (Table 3, row

1 & Figure 4, a). The node contains information about the
target DOM element and the input data (if applicable). If the
call stack at the time of event is empty and the event can be
handled immediately, a new lifeline is created for the handler,
and is initialized with an active phase. However, if the call
stack is not empty and the browser thread is executing other
JavaScript code, the lifeline will start with a scheduled phase,
which will terminate and enter an active phase as soon as
the stack and waiting event queue are empty and the handler
can be invoked. For each propagated handler, a new lifeline
is created (linked to the same event node of the original
event) that is initialized with a scheduled phase (Table 3,
row 2 & Figure 4, b). The lifeline enters the active phase
after the execution of the original (preceding) event and its
synchronous callers is finished, but before any asynchronous
event/callback scheduled in the preceding event handler.

A new edge is created from the event node to each of the
newly created handler lifelines. The edge to the original
handler’s lifeline maintains the user action. The edges to
the propagated lifelines (if any) will indicate the occurrence
of the propagation as well as the initial user action. We
intercept event handling by instrumenting the registration
of event listeners in the code. Our tracing technique then
retrieves information regarding the element, the event, and
the handler(s) once the event occurs.

Timeouts. There is often temporal and semantic separation
between setTimeout() and the callback function. Even in
the case of immediate timeouts, the callback is not executed
until the JavaScript call stack is empty, and there are no
other preceding triggered DOM and asynchronous events
that are yet not handled. Hence, a setTimout’s delay is
merely the minimum required time until the timeout expires.

We intercept all timeouts by replacing the browser’s set-

Timeout() similar to our previous work [3].
Each timeout must be set within the current active phase

of a lifeline. Upon setting a timeout, we create a new life-
line, representing the callback function execution, that is
initialized with a scheduled phase in the beginning. An edge
is created from current active lifeline to the newly created



Table 3: Creation and extension of the behavioural graph based on the operations
tll: Stack of function lifelines. ©: Node.js event loop. Πfe: List of fired DOM events. Πue: List of unhanded DOM events.
The time τ and the side (server/client) are included in all transactions.
Row Operation

Type
Node Edge Instructions

1 Original DOM
event <ev,el>

e := newVe(ev, el)
ll := newVll(ev → handler)
tll ← tll ∪ ll
Πfe ← Πfe ∪ e

d = newEe(src : e, dst : ll,
action)

if(JS active)
ll.init(Phase.Sch)
Πue ← Πue ∪ e

O.W.
ll.init(Phase.Act)

2 Propagated
DOM events
(Σpe)

ep := Πfe → head
∀ei ∈ Σpe
lli := newVll(pe→ handler)
tll ← tll ∪ ll

∀ei ∈ Σpe
d := newEe(src : ep,

dst : lli, ep → action)

∀ei ∈ Σpe
lli.init(Phase.Sch)

Πfe ← Πfe ∪ (ei)

3 Timeout set to− id := newuniqueTOID()
llc := tll → head
ll := newVll(to− id, delay)

d := newEts(src : llc, dst : ll,
delay)

ll.init(Phase.Sch)
if(serverside)
©←©∪ < TO, ll >

4 Timeout
callback

ll := tll.get(TO→ to− id) ll.end(phase.Sch)
ll.start(phase.Act)
if(serverside)
©.pop(ll→ to− id)

5 XHR send xhr − id := newuniqueXHRID()
llc := tll → head
ll := newVll(xhr − id, url,method)

d := newExs(src : llc, dst : ll,
data)

ll.init(Phase.Sch)
if(serverside)
©←©∪ < XHR, ll >

6 XHR callback ll := tll.get(XHR→ xhr − id) ll.end(phase.Sch)
ll.start(phase.Act)
if(serverside)
©.pop(ll→ xhr − id)

7 Server events llc := tll → head
e := newVe(ev)
ll := newVll(ev → handler)
tll ← tll ∪ ll

d = newEe(src : llc, dst : e,
e→ type)

d = newEe(src : e, dst : ll)

ll.init(Phase.Act)
llc.init(Phase.Ina)

8 Callback
scheduling

llc := tll → head
ll := newVll(callback)

d = newEcs(src : llc, dst : ll) ll.init(Phase.Sch)
if(serverside)
©←©∪ < CB, ll >

9 Callback
invokation

ll :=©→head ll.end(Phase.Sch)
ll.start(Phase.Act)
if(serverside)
©.pop(< CB, ll >)

10 Function
invokation

llc := tll → head
ll := newVll(function)

d = newEc(src : llc, dst : ll) ll.start(Phase.Act)
llc.start(Phase.Ina)

11 Function
termination

llc := tll → pop
llp := tll → head

d = newEt(src : llc, dst : llp) llc.start(Phase.Ter)
llp.start(Phase.Act)

scheduled lifeline (Table 3, row 3 & Figure 4, c). The new
edge includes the data regarding the details of the timeout
(delay and passed arguments). The lifeline proceeds to an
active phase when the timeout expires and the callback is
executed (Table 3, row 4 & Figure 4, d).

XHRs. The server is treated as a blackbox at this stage.
Our technique captures the information regarding sending
the request (e.g., method, data) and the means of receiving
the response (e.g., response data, callback) and how it is
handled on the client side (sync or async).

When the active lifeline sends a request, we create a new
node, initialized with a scheduled phases (Table 3, row 5
& Figure 4, e). A new edge connects the current active
lifeline to the new scheduled one. The new edge encapsu-
lates information regarding the request (type of the request,
sync/async, url, possible sent data). When the response is
received, the captured information is completed with the
response data (Table 3, row 6 & Figure 4, f).

Function executions. Our analysis of function executions
is similar to creating a dynamic call graph that is temporal
and context sensitive. Our method accumulates a trace of
function executions initiated by regular function calls, as well
as the function executions caused by any of the mechanism
discussed above.

The lifeline node representing the lifecycle of a function
execution preserves the temporal states of the function and

their respective edges represent their relations with the rest
of the application. Lifelines and their edges map to particular
executions of functions and maintain the information regard-
ing the context of that execution (e.g., caller information,
dynamic arguments, return values).

There are three possible cases of function invocation, each
of which is handled differently. First, when a function is
invoked without passing any callbacks, a new lifeline node is
created (Table 3, row 10 & Figure 4, g). The new lifeline is
initialized with an active phase, and the execution continues
from there. Meanwhile, an inactive phase is added to the
caller lifeline, which finishes and enters the active phase when
the callee returns. Second, when a function is invoked with a
callback, but the callback is not immediately (synchronously)
executed, a new lifeline is added for the callee. The lifeline is
initialized with a scheduled phase and is not marked as active
yet (Table 3, row 8 & Figure 4, h). Finally, when a function
is invoked with a callback function, and the passed callback
function is executed, our method retrieves the existing lifeline
where the callback is already scheduled, and transitions it to
an active phase (Table 3, row 9 & Figure 4, i). Synchronous
callback invocations are treated as regular function calls.

Every time a new lifeline is created, it is added to a stack
of lifelines (tll). When the execution of a function lifeline
terminates after an active phase, the lifeline enters the ter-
minated phase, and is popped (Table 3, row 11 & Figure 4,
j).



Our technique instruments all JavaScript functions in order
to gather a detailed execution trace dynamically. JavaScript
functions can have different return statements in different
intra-procedural execution paths. Hence, our method instru-
ments all existing return statements individually. Should
a path terminate without a return statement, we inject a
different logging function for marking the termination of
the function. Function invocations are wrapped within our
trace functions. All arguments are examined and if they are
functions, additional instrumentation is added to distinguish
potential callback scheduling. The analysis recursively checks
the subprogram and if the potential callback is eventually in-
voked, the actual callback invocation are annotated through
additional tracing code. Further, to distinguish between
multiple invocations of the same function, we maintain its
contextual information in the caller function, and update it
per execution of the callee. We pass the updated state to
the callee through our instrumentation, where it is used to
customize the collected trace for that specific execution.

3.3 Server-Side Analysis
Our approach tracks the incoming requests from their

arrival at the endpoints of the server. The endpoint layer
typically contains minimal logic, but can highly affect the
flow of execution (e.g., routing to different handlers, sending
the response back). The essence of this part of the analysis is
similar to the client side. However, the focus at this stage is
on challenges specific to server-side JavaScript development,
such as the callback hell and the server-side events. Before
discussing our analysis of the server-side behaviour of a Java-
Script application, we need to describe the role of the event
loop on the server.

Event loop. The event loop consists of a queue of asyn-
chronous events waiting to be executed at each tick of the
loop when the stack (of synchronous functions) becomes
empty.

The stack, the event loop, and the mechanisms of push-
ing/popping events in/from the loop determine the order and
time of asynchronous events execution. Hence, we need to
consider them in our analysis. For example, there are three
ways of scheduling an immediate callback in a Node.js appli-
cation, namely Immediate setTimeout() (a timeout with 0
delay), setImmediate() and process.nextTick() However,
the order and time of execution of the callbacks using each
method differs based on the contents of the event loop. pro-

cess.nextTick() pushes the callback to the front of the
event loop queue regardless of the contents of the queue.
setImmediate() enters the callback into the queue after the
I/O operations, but before timing callbacks. setTimeout(0)

pushes the callback to the end of the queue (after all exist-
ing callbacks). Hence, even though the delay is set to 0, it
may be executed with more delay in practice. This shows
the importance of reflecting the exact dynamic execution of
asynchronous JavaScript in helping developers understand
the behaviour of the application.

Callbacks. We capture all callback invocations (synchronous
or asynchronous), their relations with the events in the loop
that triggered them, and the consequences of their executions.
When a callback is scheduled, a new lifeline node is created in
the server-side of the model for the callback function, which
starts with a scheduled phase. The respective asynchronous
event is added to the list of events in the loop. Later when
the event is popped and the callback is invoked, the lifeline

is retrieved, the scheduled phase is terminated and the active
phase starts. This part of the analysis is similar to that of
the client side, although we consider the event loop and the
respective scheduling methods (Table 3, rows 8–9 & Figure 4,
k).

Events. There is no DOM on the server side and hence there
are no user events. However, developers can take advantage
of Node.js events to trigger custom events and invoke their
handlers using EventEmitters. A major difference between
EventEmitters and client-side events is that the former are
synchronous in nature and thus do not occur in the event
loop. Although these events can be emitted in asynchronous
functions, the invocation of handlers is different from asyn-
chronous handlers and thus has to be analyzed differently.
In our model, for each emitted event a new event node is
created. An edge connects the current active lifeline to the
event. The current lifeline enters an inactive phase. A new
lifeline in the active phase is created, which is connected to
the new event node through an edge. When the execution
of the handler finishes, the inactive phase of the original
lifeline will finish and it will be active again (Table 3, row 7
& Figure 4, l).

3.4 Connecting Client and Server
In a typical web application, execution starts on the client

side with an event, which can trigger an asynchronous request
to the server. This entails code execution on the server and
sending the response back to the client, which will complete
the lifecycle of interaction when the execution terminates on
the client side. However, JavaScript execution can continue
on the client side even while the asynchronous request is
being handled on the server. The synchronization of the
client and server side executions of a full-stack feature occurs
in our model when the two ends communicate through XHR
objects (Table 3, rows 5–6 & Figure 4, m).

We create temporal models for both client and server sides.
Due to the network layer in the middle, each side initially
treats the other side as a black box. The connections between
the two sides are made by marking and tracking the XHR
objects. Because the client and the server may have different
clocks, we cannot use the timestamps produced by their
respective clocks for synchronization. Hence, we track all
communications between the client and the server. This way,
our approach can find windows of synchronization between
the two sides, which start by a request arriving at the server
and end when the response is sent back to the client. While
this approach only provides a relative sense of time globally,
in practice, this is sufficient for the purposes of our approach,
since it is accurate for each specific full-stack interaction.

3.5 Visualizing the Model
In the last step of the approach, we create a visual interface

based on our inferred temporal model. The visualization
shows the temporal characteristics of the lifelines, events,
and their relations, to facilitate understanding of execution
patterns. There are three major criteria that need to be
considered in creating a visualization for temporal data [1].

1) Time. There are two types of temporal primitives. Time
points are specific lines on the time axis. Time intervals
constitute ranges on the time axis. our visualization uses
time points to represent events and event loop ticks, and
time intervals, to depict function lifelines and the phases of
their lifespans. The time axis can follow one of the common
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structures of time: linear, cyclic or branching. The structure
of our time axis is a mixture of subsets of both linear and
branching structures. As a linear structure, it follows the
natural perception of time, where time passes from past to
future, and the temporal primitives are ordered (as opposed
to a cyclic perception of time). Moreover, similar to the
branching structure, multiple edges can exit a single temporal
primitive node. But unlike branching, the outgoing edges
actually occur at different timestamps and do not represent
alternatives.

2) Data. Data is the second criterion of time-series visualiza-
tion and can be examined from different aspects. The frame
of reference for our data is abstract, since it does not encom-
pass a spacial layout. The data is multivariate since each
node contains a set of information (variables) accumulated
for the event or lifeline it represents.

3) Representation. The final criterion is the representation
of the time-relevant data. This can be of two kinds: static
or animated. We deploy a static approach, meaning that our
visualization makes all the information available on screen on
demand, and hence the viewers can concentrate on the data
itself and make comparisons on different parts of the model.
We collect multiple variables for each node. Presenting them
all to the viewers can be overwhelming and obstruct the
overview of the whole model. We utilize basic interaction to
allow users to view information on demand by clicking on
any of the events.

Lifeline visualization has been extensively used for display-
ing histories in domains such as medical records [37]. We
incorporate custom lifeline visualization in the interface of
our behavioural model.

Visualization example. Figure 5 displays a sample snap-
shot of the interface. The main frame of the visualization
depicts our lifelines. Each lifeline represents a particular
context-sensitive execution of a function (a). Different phases
of a lifeline are depicted as rectangles with different colours
on the lifeline (b). If a lifeline represents an asynchronous call-
back, it will start with a scheduling phase (c). Lines between
caller/scheduler lifelines and their respective callee/scheduled
lifelines display the edges between the function executions
(d).

Once an XHR is sent to the server, an edge connects the
the scheduled callback to the handler on the server. However,
due to the potential network delays, the handler execution
may start later than when the request is sent (g). The request
is then dispatched and handled, until the response is sent
back to the client (h). In addition to the main panel, there
are two smaller panels to represent the client-side events and
the server event loop. The first row on the client panel (i)
represents the DOM events, and timeout and XHR callbacks
that occur on the client side. The colour and label of each
cell on this row depict the type of each event. The server’s
event loop is depicted at the bottom of the server panel (j).
Every time a user-defined callback is scheduled, a timeout
is set, or an XHR is sent, an event is pushed to the event
loop (marked with a green border). When it is a callback’s
turn to be executed, the corresponding event is popped from
the loop (marked with a red border), while the remaining
events (if any) can still be observed in the loop. Finally, the
horizontal axis below both panels represents the time.

3.6 Implementation
We implemented our approach in a tool called Sahand.

We instrument JavaScript code on the server side at startup,
using a proxy server built with Node.js and Express.js, and
on the client-side code on the fly. We create an AST of
the code using Esprima [12], instrument the AST using
Estraverse [13], and serialize the AST back into JavaScript
code with Escodegen [11]. The visualization is built on top
of the timeline view of Google chart tool [17]. Sahand is
publicly available [39].

4. EVALUATION
We conducted a comparative controlled experiment [46] to

investigate the effects of using Sahand on the performance
of developers when understanding full-stack web applications.
Our experimental dataset is available online [39].

4.1 Experimental Setup
The participants in our study are asked to perform three

comprehension tasks on a full-stack JavaScript application.

Experimental subjects. We recruited 12 participants for



Table 4: Comprehension tasks of the experiment
Task Description

T1 Understanding full-cycle implementation of submitting a
correct answer on the client side.

T2.a Understanding time-triggered feature of terminating
game rounds managed by the server.

T2.b Detecting a potential for an event-race condition during
client-server communications.

T3.a Understanding the purpose of a new feature involving
nested callbacks.

T3.b Understanding the asynchronous execution of a function
involved in nested callbacks.

the experiment, 11 males and one female, aged between 23
and 33. All of the participants are graduate students at
UBC who regularly program with JavaScript. None of the
participants had used Sahand prior to the experiments.

Experimental object. We use Math-Race [25] as our ex-
perimental object. It is an open-source, online game that
allows multiple players to compete over solving simple math-
ematical problems. During timed cycles of the game, they
players can answer questions, keep the history of their scores,
and enter the game’s hall of fame if they achieve high scores.
We chose this application because it is a full-stack Java-
Script application built on Node.js. It is also relatively small
(about 200-300 LOC of JavaScript on each of the client and
server sides), and hence it is feasible for our participants
to understand its main features during the limited time of
the experiment (about 75 minutes). Although it is a small
application, it employs many advanced features such as asyn-
chronous events and callbacks. Our participants had never
seen Math-Race before the experiment.

Experimental design. The experiment had a between-
subject design. We divided the participants into two groups.
The experimental group used Sahand for performing a set
of comprehension tasks. The participants in the control
group were allowed to use any existing web development
tool. They all selected Google Chrome’s Developer Tools
[10], one of the most popular client-side development tools,
as they all self-reported as experts in it. We also provided
the control group with JetBrain’s WebStorm [44], a popular
JavaScript IDE, for working with the server-side code of the
experimental object. In contrast, the experimental group
were only allowed to view the code in addition to Sahand’s
visualization, and not permitted to use an IDE or debugger.
We limited their access to other tools because we wanted to
gain a better control of Sahand’s impact on understanding.

Task Design. We designed a set of tasks that represented
common comprehension activities performed in normal de-
velopment proposed by Pacione et al. [36]. Each of our tasks
covers multiple activities, and also involves elements specific
to JavaScript comprehension. The tasks are summarized in
Table 4.

Variables. We wanted to measure the performance of
developers in performing program comprehension tasks. The
dependent variables (DV) should quantify developers’ perfor-
mance. Our design involves two interval dependent variables,
task completion duration and accuracy. We also considered
two nominal independent variables (IV). The first IV is the
tool (set of tools) used for the experiment, and has two levels.
One level is Sahand, and the other is the set of Chrome’s
DevTools and WebStorm. The second IV is the expertise
level of participants. We wanted to investigate the effects

of expertise of the participants on how they comprehend
web applications. We classified participants into two groups,
namely experts and novices, based on their responses to a
pre-questionnaire form (described below).

Experimental procedure. This consists of four parts. In
the first part, the participants completed a pre-questionnaire
form where they ranked their expertise in web application
development using a 5-point Likert scale, and prior experience
with software development in general. We used a combination
of their self-reported expertise and experience to assign an
expertise score to each participant. The expertise score was
used to assign the participant to either the experimental or
control group. We manually balanced the distribution of
expertise in both groups. We also used the expertise score
to assess whether the expertise of participants affects their
program comprehension performance. In the second part of
the experiment, we presented a short tutorial on Sahand for
the experimental group. However, we did not present any
tutorial to the control group as they identified themselves as
expert in Chrome Developer Tools. Both groups were given a
few minutes to familiarize themselves with the settings of the
application, the object application, and the tools. In the third
part, the participants performed the tasks (Table 4). We
presented each task to the participants on a separate sheet
of paper, and measured the time from when they started
the task until they returned the answer. This setup ensured
that the time-tracking process was not biased towards either
the examiner or the participant. We measured the accuracy
of the answers later, based on a grading rubric that we had
finalized prior to conducting the study. The accuracy of
the tasks could be quantified with a grade between 0 and
100 per task. The tasks and their rubrics, along with the
rest of documentations of the study are available online
[39]. In the fourth part, when the participants finished all of
the tasks, they were given a post-questionnaire form. The
form asked about their experience with the tool used in
the experiment, and its pros and cons. We also solicited
participants’ opinions on the features they thought would be
useful for a web application comprehension tool.

4.2 Results
We were interested in observing the effects of tool and

expertise on task completion duration and accuracy. Both
variables are conceptually dependent although we did not ob-
serve a correlation between them in our experiments. Imagine
a case where a participant finishes the tasks early thinking
she has found the correct answer, but the answer is incorrect
or incomplete. In this case, the fast completion of a task
is not an improvement, since the purpose of the question is
not fulfilled and the participant has not performed better.
Because of this relationship, we performed a multivariate
analysis, where we examined the pair of both duration and
accuracy as the dependent variable.

We performed a set of multivariate analysis of variance
(MANOVA) tests to investigate the effects of tool and ex-
pertise on the integration of duration and accuracy. Using
MANOVA entails two advantages for our analysis. First, it
can reveal differences that are not discovered by ANOVA.
Second, it can prevent type I errors that may occur when
multiple independent ANOVA tests are conducted. We per-
formed the MANOVA tests on the total duration and accu-
racy (combining all tasks). Next, we ran a MANOVA test
on each individual task. If the results of a MANOVA test
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Figure 6: Accuracy results. Gold plots display ex-
perimental (Sahand) group, and green plots display
the control group. Higher values are better.

were significant, we examined the univariate tests (ANOVA)
to see if the significance in performance improvement was
due to the duration, accuracy, or both.

Examining the total results, we found a significant main
effect of tool (p < .0001) on the group of accuracy and du-
ration, but no significant main effect of expertise (p > .05).
For individual tasks too, we found a significant main ef-
fect of tool (T1:p < .001, T2:p < .001, T3:p < .05), but
not of expertise. We then examined the univariate tests
(ANOVA) for each significant result, to find which depen-
dent variable(s) contributed to the significance. From the
results, we found that there is a statistically significant dif-
ference (p<.00001) in accuracy between the group using
Sahand (M=89%, SD=10%) and the control group (M=30%,
SD=11%). However, we did not find a statistically signif-
icant difference for duration (p > .05) between the group
using Sahand (M=32:06, SD=5:43) and the control group
(M=33:49, SD=6:37).

The above results suggest that that task completion ac-
curacy was the determining factor in the significance of the
results of the multivariate tests. The accuracy results are
shown in Figure 6. We find that Sahand helped developers
perform comprehension tasks three times more accurately,
in about the same amount of time used by the control group.

4.3 Discussion
“Fast Is Fine, but Accuracy Is Everything”. Using Sa-
hand significantly improved the accuracy of each individual
task in the experiment. The large difference between the
means of two groups, and the high confidence of the test
results emphasize the impact of the challenges of understand-
ing full-stack JavaScript, even for a simple application as
our experimental object. Tasks T1 and T2 were seeking
developers’ understanding of two of the basic features of the
application, whose implementation was divided between both
ends of the application. The tasks also involved understand-
ing features such as event propagation on the client-side, and
asynchronous time management on the server side. Task
T3 required understanding the execution of a nested call-
back code segment, which can create implicit and intricate
connections in the application.

Manual analysis of the answers of the control group showed
that they all had an incomplete and sometimes incorrect vi-
sion of the full-stack execution of the features. Their mental
model of the application’s behaviour missed both entities
and connections, on both client and server and their interac-
tions. They gained significantly lower accuracy scores, while

spending about the same time as the experimental group.
On the other hand, Sahand users were able to see all the
involved entities and their relations. The model allowed them
to extract the information usually hidden in the application,
and finish the tasks much more accurately.

“It Will Get Better ... in Time”. The results did not
show a statistically significant difference of task completion
duration between experimental and control groups. Manual
investigation of the control group’s answers showed that al-
most all of them had incomplete (and not necessarily wrong)
answers for most of the questions. Therefore, it is possi-
ble that these participants spent the whole time on a small
portion of the answer compared to the experimental group.
This means that overall, as the multivariate tests found, Sa-
hand users performed better than the control group as they
used approximately the same amount of time for providing
significantly more accurate answers.

Further, none of the participants in the experimental group
had seen Sahand before the experiment. We observed that
Sahand users looked more often at the source code and spent
more time analyzing and interpreting the interface at the
beginning of the session. However, near the end of task T1,
they would shift almost all of their attention on the model
while solving the problems. We believe this is due to two
main reasons: (1) the users required a short learning phase
for performing a real task (although they had a tutorial in
the beginning), (2) only after multiple comparisons between
the interface and the actual code, were the users able to
trust Sahand as a fair representation of the behaviour. We
believe that developers will get faster using Sahand once
these barriers are overcome. Examining the average time
spent on each task, we observed that Sahand users finished
T1 only 8% faster than the control group in the beginning of
the session. However, by the end of the session, Sahand users
finished T3 32% faster on average. This result strengthens
our intuition that by adopting the tool for a longer period of
time, users will become much faster in performing the tasks.

User Feedback. According to the post-questionnaire forms,
all Sahand users found the tool useful. They particularly
liked the overview it provided of the whole interaction. They
found the unified client/server view most useful. The par-
ticipants also found it easy to infer function relations from
the model, and liked the abstraction and filtering of details
in the visualization. However, some of them mentioned
that the context-sensitive depiction of functions can become
overwhelming in large interaction sessions. They requested
interface features such as direct links to the code, showing
connections to the DOM, and integration with a debugger.
These are interesting directions for future work.

Threats to Validity. The first internal threat is the exam-
iner’s bias in measuring the time. We addressed this threat
by enforcing a mutual supervision on timekeeping by the
examiner and the participant. The start and end time of
each task were marked by the exchange of sheets of paper
containing the question and the answer of that task between
the examiner and the participant. The same threat arises
from examiner’s bias while marking the accuracy of the tasks.
We mitigated this risk by devising the rubrics of each task
before conducting the experiments. The rubrics were later
used to mark the accuracy of the answers. Another threat is
the impact of the expertise level of the participants on their
performance in the experiment. We eliminated this threat



by determining the expertise level of participants through a
pre-questionnaire form before conducting the experiments.
We used this information to rank participants into multiple
bins based on their expertise levels, and then used random
sampling to assign the members of each bin to one of the con-
trol and experimental groups. The tools used by the control
group can introduce another threat. We avoided this threat
by letting the participants choose the browser development
kit for client-side analysis (all chose Chrome). For the server
side, we provided them with WebStorm, a popular enterprise
IDE for web development. We resolved the bias of the ex-
periment tasks by designing the tasks based on a framework
of common comprehension tasks [36]. Using this framework,
we also eliminate a potential external threat arising from the
representativeness of the tasks. The second external threat
is the representativeness of the participants. We addressed
this threat by recruiting graduate students who regularly
performed (and researched) JavaScript development. Many
of the participants had professional development experience
during or prior to the time of this work. However, our par-
ticipants were not full-time professional developers and this
could still threaten the validity of our experiment. Finally,
to ensure the reproducibility of the experiment, we used an
open-source experimental object, and made our tool, the
tasks, questionnaires, and the rubrics public [39].

5. RELATED WORK
JavaScript Analysis. There are numerous static analy-
sis techniques proposed for JavaScript analysis in different
domains [15, 20, 21, 26, 32, 41]. We did not choose a static ap-
proach, since many event-driven, dynamic and asynchronous
features of JavaScript are not well supported statically. Dy-
namic and hybrid JavaScript analysis techniques have at-
tempted to solve the shortcomings of static analysis [2, 3,
33, 45]. However, existing techniques focus on the client-side
and do not consider the server.

Magnus et al. recently proposed a technique to build an
event-based call graph for Node.js applications [27]. There are
two differences between their work and ours. First, Sahand
considers functions in the graph as temporal and context-
sensitive nodes, which can interact with each other and
with events throughout different phases of their lifecycle.
Second, Sahand accounts for various means of asynchronous
scheduling. It integrates client information, client-server
interactions, and asynchronous server execution and creates
a behavioural model. It is through this model that Sahand
can provide a holistic and temporal overview of full-stack
execution.

Asynchronous Events. Different approaches target asyn-
chrony in different domains, such as comprehension, debug-
ging and testing. Frameworks such as Arrows [22] have
been proposed to help developers understand and avoid asyn-
chronous errors. Zheng et al. [48] used static analysis to find
asynchronous bugs in web applications. WAVE [19] is a test-
ing platform for finding concurrency errors on the client side.
Libraries and features such as Async.js [9] and Promises [38]
have been adopted to “tame” the asynchronous JavaScript
issue. Despite being very useful and promising, Async.js
is not native to JavaScript. Both Async.js and Promises
require the current and future code to follow specific design
and syntactic guidelines, which impede their wide adoption.

Feature Location, Record & Replay, and Tracing.

Many papers have focused on locating the implementation
of UI- and interaction-based features [7, 24, 28, 29] in web
applications. However, they only retrieve the client-side im-
plementation of a feature, and they require a constant manual
effort for selecting the elements or features under investiga-
tion. FireDetective [47] is a Firefox add-on that captures
the client-server interactions to facilitate comprehension. Al-
though its purpose is similar to Sahand, it only supports
partial Java execution on the server side. Further, it does
not support a higher level model or a temporal visualization
of the trace.

Record and replay techniques aid the understanding and
debugging tasks of web applications [5, 6, 30, 31]. The goal of
these techniques, however, is to provide a deterministic replay
of UI events without capturing their consequences. Unlike
Sahand, they don’t collect detailed traces of the execution
and only support client-sider JavaScript. Jalangi is a multi-
purpose framework for record-replay and dynamic analysis of
JavaScript [40]. Unlike Sahand, it neither extracts full-stack
interactions, nor does it provide a high-level visualization of
the model as its goals are different from ours.

Tracing techniques such as FireCrystal [35] and DynaRIA
[4] collect traces of JavaScript execution selectively. In our
prior work, we introduced Clematis [3], a tool for code
comprehension, which creates a behavioural model of the
captured trace. Clematis focuses entirely on the client-side
code and does not take into account server-side features
such as the routing and handling the requests and responses.
Moreover, it does not target callbacks, their scheduling, trans-
mutations, and interactions. Overall, Clematis introduces
a more primitive type of model that does not support the
temporal nature of execution. Unravel [18] is a more recent
tool for supporting developer learning. Similar to our work,
these tools provide a high-level abstraction and visualization
of the trace. However, all these techniques only focus on the
client-side JavaScript. Sahand, on the other hand, traces,
models and connects both client and server side traces with
a focus on asynchronous JavaScript execution.

6. CONCLUSION
Full-stack JavaScript development is becoming increasingly

important; yet there is relatively little support for program-
mers in this space. This paper introduced Sahand, a novel
technique for aiding developers’ comprehension of full-stack
JavaScript applications by creating a behavioural model of
the application. The model is temporal and context sensi-
tive, and is extracted from a selectively recorded trace of the
application. We proposed a temporal visualization interface
for the model to facilitate developers’ understanding of the
behavioural model. The implementation of the approach
is available as an open-source Node.js application [39]. We
investigated the effectiveness of Sahand by conducting a
user experiment. We found that Sahand improves devel-
opers’ performance in completing program comprehension
tasks by increasing their accuracy by three times, without a
significant change in task completion duration.
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