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ABSTRACT

JavaScript has become the most popular language used by
developers for client and server side programming. The lan-
guage, however, still lacks proper support in the form of
warnings about potential bugs in the code. Most bug find-
ing tools in use today cover bug patterns that are discov-
ered by reading best practices or through developer intu-
ition and anecdotal observation. As such, it is still unclear
which bugs happen frequently in practice and which are
important for developers to be fixed. We propose a novel
semi-automatic technique, called BUGAID, for discovering
the most prevalent and detectable bug patterns. BUGAID
is based on unsupervised machine learning using language-
construct-based changes distilled from AST differencing of
bug fixes in the code. We present a large-scale study of
common bug patterns by mining 105K commits from 134
server-side JavaScript projects. We discover 219 bug fixing
change types and discuss 13 pervasive bug patterns that oc-
cur across multiple projects and can likely be prevented with
better tool support. Our findings are useful for improving
tools and techniques to prevent common bugs in JavaScript,
guiding tool integration for IDEs, and making developers
aware of common mistakes involved with programming in
JavaScript.
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1. INTRODUCTION

A recent survey of more than 26K developers conducted by
Stack Overflow found that JavaScript is the most-used pro-
gramming language [54]. JavaScript is the language used in-
side the browser but it is also becoming popular as a desktop
and server-side language thanks to the Node.js{ﬂ platform.

Despite this, JavaScript currently lacks IDE support [12]
in the form of analysis alerts that warn the developer about
potential bugs in their code. Such alerts are common to
compiled, strongly typed languages such as Java in the form
of compilers and bug finding tools like FindBugs [13]. The
lack of tool support for JavaScript is in part due to several
challenges that are unique to JavaScript including, but not
limited to weak typing [22}|49], dynamic field access and cre-
ation [51], higher order functions, dynamic code evaluation
and execution [50], and event-driven and asynchronous flow
of control [3] |16].

Recent research advances have made the use of static anal-
ysis on JavaScript more practical |12| 21} |25} 32 |40, 47,
53], while other techniques mitigate the analysis challenges
by using a dynamic or hybrid approach [4, (17, [34]. As
toolsmiths begin to develop the first bug finding tools for
JavaScript, it is unclear which bugs require the most atten-
tion. Unlike the most popular statically typed languages
(e.g., 15, 48, |56]), there is little research studying bugs in
JavaScript. While DOM API interactions have been shown
to dominate bugs in client-side JavaScript |46|, to the best
of our knowledge, there is no work studying common bug
patterns in JavaScript in general. The goals of this pa-
per are twofold, namely, (1) developing a systematic semi-
automated approach for discovering pervasive bug patterns;
(2) discovering bug patterns in server-side JavaScript that
occur frequently across projects. We accomplish these goals
in two parts.

First, we propose a novel semi-automatic approach to dis-
cover common bug patterns. Our approach, called BUGAID,
mines version control repositories and discovers bugs that
are frequently repaired by developers. Our insight that ma-
kes this approach effective is that instances of bug pat-
terns cau-sed by language misuse can be grouped together
by changes to language constructs in the bug fixing com-
mit. Using this intuition, BUGAID creates feature vectors
of language construct changes and uses unsupervised ma-
chine learning to group them into ranked clusters of bug
patterns. By inspecting these clusters, we create natural
language descriptions of pervasive bug patterns.

Second, we produce the first ranked list of frequently oc-
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curring bugs for a programming language by performing
a large-scale study of common bug patterns in server-side
JavaScript applications. Using BUGAID, we analyze 105,133
commits from 134 JavaScript projects (mostly server-side
Node.js applications and packages) and discover 219 com-
mon bug fixing change types. We inspect the commits in
each change type and discuss the 13 bug patterns that we
believe have the highest maintenance costs and are good
candidates for automated tool support.
This paper makes the following main contributions:

e A novel technique for automatically learning bug fixing
change types based on language construct changes.

e The first comprehensive study of pervasive bug pat-
terns in server-side JavaScript code.

e Our toolset BUGAID and empirical dataset, which are
publicly available [3].

2. CROSS-PROJECT BUG PATTERNS

Software bugs can be grouped by their fault (the root
cause of the bug), their failure (how they manifest in out-
put), or their fix. A group of defects along one of these di-
mensions is referred to as a defect class [35]. Defect classes
are important because they allow us to group defects while
designing techniques that mitigate them. For example, static
bug finding tools tend to look for defect classes grouped
by fault, dynamic bug finding tools target defect classes
grouped by failure symptom, and automated repair tools
fix defect classes grouped by repair.

Our interest in this work lies in defect classes that are
detectable across multiple projects. We call these defect
classes Cross-Project Bug Patterns.

Definition 1 (Cross-Project Bug Pattern) A pattern in
source code that produces incorrect behaviour, has a consis-
tent fault and repair, and occurs across multiple projects.
O

We include the fault in our defect classes because cross-
project tools typically discover defect instances based on
their fault. We also include the repair in our defect classes
because in order to be effective, cross-project bug finding
tools should also produce alerts that are actionable |19} 24,
29, 52].

1| function(obj, iterator, callback) {

2 callback = callback || noop;

3|+ obj = obj |l [1;

4 var nextKey = _keyIterator (obj);

5 if (limit <= 0) {

6 return callback(null);

7Y

Figure 1: A potential TypeError in _keyIterator at

line 4 is repaired by initializing obj if it is falsey at
line 3.

Consider the bug fix in Fig. [I] from the async Node.js
project. Prior to the repair, the parameter obj could have
the value undefined at line 4. When fields or methods are
accessed on undefined objects in JavaScript, a TypeError
is thrown. If obj is undefined, such an error is thrown in-
side the method _keyIterator. At line 3, the developer
repairs the bug by checking if obj could be undefined and
if it is, initializing it to an empty array. We consider this
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an example of a cross-project bug pattern because it has a
specific fault — dereferencing a non-value, a consistent repair
— checking if the value of obj is undefined, and can be seen
in many JavaScript projects.

3. APPROACH

The seminal static analysis papers by Engler [8] and Hov-
ermeyer [20] do not provide a systematic approach to discov-
ering and selecting pervasive bug patterns to detect. More
than a decade after their publication, many of the popu-
lar cross-project bug finding tools in use choose a set of
defect classes to detect based on best practices or through
developer intuition and observation; this is the case with
FindBugs [20] and DLint [17].

Because the goal of software companies is to maximize
profitability, they should deploy tools that discover defect
classes with the highest costs. Monperrus describes the two
metrics of defect classes that contribute to costs as the fre-
quency with which a defect class appears and the severity of
a defect class. Frequent defect classes result in high mainte-
nance costs while severe defect classes result in high produc-
tion loss [35]. The question we are interested in is how do we
systematically discover frequently occurring bug patterns?

3.1 Reducing the Search Space

One way is to search for bug patterns that are frequently
repaired by developers. This can be done by inspecting
source code changes in project histories. There is, however,
a problem with this method. An inspection of all the bug re-
pairs in one project’s history by a human might take several
days for a project with a few thousand commits. This means
a manual inspection of a sufficient set of projects representa-
tive for a language is not feasible. We must therefore reduce
the search space in which we look for frequently occurring
bug patterns. Because bug patterns have consistent repairs,
we can reduce the search space by grouping bug patterns
based on their repairs. Repairs can be observed automati-
cally by extracting the source code changes of a bug fixing
commit [33]. We focus on commits rather than bug reports
because developers often omit links from commits to bug
reports or do not create bug reports in the first place [7].

First, we reduce the search space by only considering
commits where between one and six statements are mod-
ified (i.e., inserted, removed or updated). If zero statements
are modified, the commit has not modified any code, while
repetitive cross-project repairs have been shown to contain
six or fewer modified fragments [39].

The search space should now exclude many repairs that
are not repetitive across projects. However, there may still
be many bug patterns that do not occur frequently or related
bug patterns that are fragmented throughout the search
space, making manual inspection challenging. Next, we con-
sider automatically grouping related bug patterns.

3.2 Grouping Cross-Project Bug Patterns

Given a large number of commits with 1-6 modified state-
ments, our goal is to group bug fixing commits with the
same bug pattern. Because we do not have a priori knowl-
edge about what bug patterns exist, to achieve this goal
we perform cluster analysis using machine learning. The
challenge we face is selecting the best feature vector and
clustering algorithm such that (1) the number of commits
a human must inspect is minimized and (2) the number of



bug patterns recalled by an inspection of the clusters is max-
imized. Ideally, each cluster would contain all instances of
one bug pattern (perfect recall) and only instances of one
bug pattern (perfect precision).

So what should our feature vector look like? Our feature
vector must capture unknown semantic changes, while ig-
noring noise, such as variable names and minor differences
in control flow. A naive approach is to use a source code
differencing approach such as line level differencing or AST
differencing. As we discovered early in our work, such an ap-
proach does not consider the semantics of the changes and
is therefore highly susceptible to noise. A better approach
is change classification, where semantics are added to the
source code changes identified by source code differencing.

Change classification approaches already exist for Java.
Fluri and Gall [14] identify 41 basic change types that can
be performed on various Java entities, and use those basic
changes to discover more complex changes [15]. Kim et.
al. [27] enhance this approach by creating a database of ba-
sic change facts and using Datalog to specify more complex
change types. However, we wish to detect unknown change
types. From this context, both these approaches suffer, be-
cause the lowest level change types which they use, which we
call basic change types (BCTs), must be manually specified
(imperatively or declaratively). Such an approach is limited
by these pre-defined BCTs and does not scale to capture
new patterns with the addition of data.

3.3 Learning Change Types

Our intuition is that we can automatically learn BCTs by
combining information from a model of the language with
information from source code differencing. We introduce the
following abstraction for capturing BCTs. In our abstrac-
tion, all BCTs are made up of the following components:

Language construct type: the type of language artifact
or concept being modified. For JavaScript, a model of
the language may include reserved words, APT artifacts
(e.g., method and field names), statement types, op-
erators, behaviour (e.g., auto casting behaviour) and
even code conventions (e.g., error first protocol).

Language construct context: the context in which the
language construct appears. For example, the reserved
word this could be used in many different contexts
such as inside a branch condition or as an argument.

Modification type: how the language construct was mod-
ified by the commit. This information is computed by
the source code differencing tool.

Name: the name we assign to the language construct.

Assuming the order in which classified changes occur in
a commit does not matter much, we can represent more
complex change types, i.e., change types made up of one or
more BCTs, as a bag of words, where each BCT discovered
is a feature, and the number of times a BCT appears in
a commit is the value of that feature. For the rest of the
paper, when we refer to a change type, we mean a set of one
or more BCTs.

3.4 Language Construct Selection

We must decide which aspects of the programming lan-
guage we wish to model. To do this, we distinguish between
three types of bug patterns: patterns that are inherent to
the programming language, patterns that are inherent to
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Table 1: Feature Properties

Identifier Short Forms

Type Behaviour(B), Class(CL), Constant(CO), Con-
vention(CV), Error(EX), Event(EV), Field(F),
Method(M), Parameter(P), Reserved(RE), Vari-
able(V)

Context Argument(A), Assignment LHS(AL), Assign-

ment RHS(AR), Class Declaration(CD), Con-
dition(C), Expression(EXP), Error Catch(EC),
Event Register(ERG), Event Remove(ERM),
Method Call(MC), Method Declaration(MD), Pa-
rameter Declaration(PD), Statement(S), Variable
Declaration(VD)

Inserted(I), Removed(R), Updated(U)
undefined, equal, return, callback, error,...

Change Type
Name

external libraries, and patterns that are inherent to a par-
ticular project (e.g., [28] |55]). Our goal in this paper is to
discover bug patterns that are inherent to JavaScript. We
therefore use JavaScript reserved words, operators and stan-
dard methods/fields/events from the ECMAScript5 API |57,
36).

In addition, we include the following JavaScript inter-
preter behaviours and coding conventions:

falsey: all variables in JavaScript can be cast as booleans in
a branch condition. Types undefined, null and Nal,
and values 0 and ¢’ evaluate to false, while everything
else evaluates to true.

typeof: we consider the boolean operators and !'== with
the form [obj] {undefined | null | | 0 | ¢’
| NaN} equivalent to inserting a typeof keyword.

callback: callback functions are commonly given similar
names [16] (i.e., cb, callb, or callback), which we cap-
ture in our analysis.

error: we capture errors that are caught or used in the
error-first callback (1] idiom.

Table [1| shows the concrete values we use for modelling
changes in JavaScript and their respective abbreviations used
throughout the paper.

3.5 Extracting Basic Change Types

Algorithm [1| shows a summary of our method for extract-
ing BCTs from a list of subject programs (P) into a relational
database (D) of {commit, BCT} pairs. For each commit (c)
in a project’s history (C), we obtain the set of all modi-
fied source code files in the commit. This gives us a set
F = {fo1, fri}-.{fon, frn} of n {buggy file, repaired file}
pairs. For each pair in F, we compute the BCTs that were
made to the source code using abstract syntax tree (AST)
differencing [11]. Because it considers the program struc-
ture when computing the changes between f, and f., AST
differencing is more accurate than line level differencing. It
also computes fine-grained changes by labelling each node in
the AST; this fine granularity is useful for learning BCTs.

The product of AST differencing is an AST for f, (AST})
and an AST for f. (AST,). For each {ASTy, AST,} pair,
we extract the set of functions that occur in both AST,
and AST,. We omit functions that were inserted or re-
moved because we find these represent refactorings, not bug
fixes. This gives us a set M := {myp1, mr1}...{mpx, mri} of
k {buggy function, repaired function} pairs.

For each pair in M, we extract BCTs into set T by analysing
the ASTs, whose nodes are annotated by the differencing



Algorithm 1: Basic Change Type Extraction

Input: P (subject programs)
Output: D (database of commits and change-types)
D+ 0
foreach p € P do
C <+ Commits(p);
foreach ¢ € C do
T «+ 0;
F < ModifiedFiles(c);
foreach {fs, f} € F do
{AST,, AST,} < ASTDIfi(fo, fr);
M <+ ModifiedFunctions(AST}, AST,);
foreach {m;, m,} € M do
| T+ T U ExtractBasicChangeTypes(my, m,);
end
end
D+ DU (c,T);

end
end

tool with the modification performed by the commit (i.e.,
inserted, updated or removed). Each ¢ has a one-to-many
relationship between it and the BCTs found within it (one
¢ contains zero or more BCTs) and is stored in a relational
database. Each c will be a feature vector in our dataset even-
tually, but it is convenient to store the dataset in a database
which we can query.

Once the database is populated, we filter out noise by
selecting candidate commits that (1) have between one and
six modified statements, (2) do not contain the text ‘merge’
in the commit message, (3) contain at least one BCT that
does not have language construct context ‘S’, and (4) has at
least one BCT that does not have modification type ‘U’. We
express this query in Datalog and build a dataset from the
results of this query.

Each BCT in the query results is converted to a feature,
while each commit in the query results is converted to an
instance of a feature vector in the dataset. Table[2shows an
example of three feature vectors. The feature vector includes
the the number of modified statements and a bag of words,
where the features are the BCTs and the values are the
number of times the BCT occurs in the commit. The first
commit (from the async project) shows the feature vector
of the change type from Fig. It contains one BCT that
states that one instance of the behaviour (B) falsey used
in a branch condition (C) was inserted (I). The other two
feature vectors pertain to different change types.

3.6 Clustering and Ranking

We can now obtain a list of change types that occur fre-
quently by clustering the dataset obtained in the previous
step (Section , The clustering algorithm we use is DB-
SCAN 9], because (1) it is a density-based algorithm, i.e.,
it groups feature vectors that are closely related, and (2)
unlike other clustering algorithms, it does not require the
number of clusters to be provided in advance as an input.
We use Manhattan distance as our distance function, be-
cause it computes shorter distances between commits with
the same BCTs. Change types are ranked by the number of
projects that are represented and by the number of commits
they contain. We expect change types with more projects
to contain cross-project bug patterns and change types with
more commits to contain frequently occurring bug patterns.

3.7 Change Type Inspection
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Table 2: An example dataset containing feature vec-
tors for three commits. There are three change
types in this feature vector. Change-type headers
have the form [Type]_[Context]_[Change] [Name].
The number beside the change-type header is the
value for that feature—the number of occurrences of
the change type in the commit. See Table [1]for short
forms.

Proj. Commit | Modified Change-type Header
Statements
async 63b 1 B_C_I_falsey [1
B_C_R_falsey [0
M_MC_Lbind [0
bower 2d1 4 _C_I_falsey [1
B_C_R_falsey [2
M_MC_Lbind [0
express | bcd 2 B_C_I_falsey [0
B_C_R._falsey [0
M_MC_Lbind [1

For our manual inspection of change types, we give prior-
ity to larger change types and only inspect change types that
contain five or more commits and are represented by more
than one project. We use a systematic inspection process,
based on grounded theory, to infer bug patterns from change
types, based on their faults and repairs. This approach is
described below.

Sampling. From each change type, we randomly select one
commit from each project to be part of that change type’s
sample. For example, if a change type contains 100 commits
from 40 projects, the sample size of that change type will
be 40. We choose this sampling method because our goal is
to find cross-project bug patterns. Selecting multiple items
from the same project may bias our results towards projects
with more bugs.

Summarizing. In order to help the inspectors understand
the change, we open the summary of the commit on GitHub
in a web browser. The summary includes a line level diff
of the commit, the commit message, and links to the bug
report (if any). Using the summary, we record a description
of the bug pattern (i.e., the fault and repair for the commit).

Grouping. From these descriptions we group bug pattens.
We compare the bug pattern of each commit to existing
groups. If the description of a commit’s bug pattern closely
matches the descriptions of the bug patterns in an exist-
ing group, we place the commit in that pattern. If no bug
pattern contains a similar fault and repair description, we
create a new bug pattern group.

Reviewing. Once all commits in the change type sample
have been placed into a group, we iteratively review pat-
terns, merging or splitting them according to their descrip-
tions.

3.8 Implementation

We implement our technique in a tool called BUGAID,
which is publicly available [3].

Project histories are explored using JGit [23], a Git client
for Java. JavaScript ASTs are created and explored using
a fork of Mozilla Rhino [37], a JavaScript parser and run-
time environment that we modify to better support AST
change classification. AST differencing is performed using a
fork of GumTree [11], a fine-grained AST differencing tool
that we modify to better support JavaScript AST change



Table 3: Evaluation Subject Systems. KLoC indi-
cates thousands of JavaScript lines of code, exclud-
ing comments and empty lines.

Measure MediacenterJS | PM2 Total
Size KLoC 39 16 55
Stars on GitHub 11,839 1,002 | 12,841
Commits 1,770 | 2,549 4,319
Candidate Commits 1,260 1,617 2,877

classification. Clustering is performed using Weka .

To assist in the manual inspection of change types, we
implement a script that randomly selects commits from a
change type and displays the GitHub commit summary in a
web browser.

4. CLUSTER EVALUATION AND TUNING

We evaluate our feature vectors and tune the parameters
of our clustering algorithm, DBSCAN. We use two popular
Node.js projects as evaluation subjects. MediacenterJS is a
home media server that we selected randomly from a web
search of popular Node.js applications. PM2 is a process
manager and load balancer that we selected randomly from
the npm homepage.

4.1 Gold Standard

To assess the accuracy of our clustering approach, we cre-
ate a gold standard of cross-project bug patterns by manu-
ally inspecting all commits of the two subject systems, where
[1-6] statements are modified. We classify the bugs repaired
by each bug fixing commit into bug pattern categories. We
categorize both the fault and repair of each bug and deter-
mine if a bug pattern meets our definition of a cross-project
bug pattern (see Definition [I]).

Our classification yields four-cross project bug patterns
with at least three instances:

TypeError Undefined A variable can be undefined but is
dereferenced. It is repaired by adding a branch condi-
tion that checks if the variable points to the undefined
object.

TypeError Falsey A variable can evaluate to falsey, but is
dereferenced. It is repaired by adding a branch condi-
tion that checks if the variable evaluates to false when
used as a boolean.

Error Handling A method call may throw an error that
is uncaught. It is repaired by surrounding the method
call with a try statement.

Incorrect Comparison A compare-by-value operator (i.e.
== or !=) is too permissive. It is repaired by replac-
ing the compare-by-value operator with a compare-by-
type-and-value operator (i.e. or !==).

4.2 Comparison

As discussed in Section[3:2} change type classification tools
already exist for Java. While we believe our approach is
uniquely suited to identifying unknown bug fixing changes
and could outperform existing change classification approa-
ches for this specialized task, existing tools for Java cannot
easily be converted to JavaScript. Therefore, a direct com-
parison is not possible. Instead, we compare our feature
vector of BCTs learned with language constructs to two al-
ternative approaches based on creating a feature vector of
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more naive BCTs built from AST node types. This gives
us three data sets to evaluate (one dataset for each feature
vector):

Dataset 1: Language Constructs BCTs are the same as
those described in Section [3.3]

Dataset 2: Statements BCTs are statement types (e.g.,
for loops, expression statements, function declarations,
etc.) and how they are modified (i.e., inserted, re-
moved, updated or moved).

Dataset 3: Nodes BCTs are AST node types (e.g., simple
names, literals, expressions, etc.) and how they are
modified (i.e., inserted, removed, updated or moved).

4.3 Evaluation Results

We cluster each of our three evaluation datasets into cha-
nge types using various values of DBSCAN’s density pa-
rameter epsilon, where the distance between data points in
the same cluster must be less than epsilon. Smaller values
of epsilon result in denser clusters. Because we assign the
modified statements feature a weight of 0.2 and BCT fea-
tures a weight of 1, values of epsilon that are less than 1
mean that commits in the same cluster have the same set of
BCTs, but may differ in the number of modified statements.
The first value of epsilon, 0.1, means that commits in the
same cluster have the same feature vector.

Each set of change types for a dataset/epsilon pair is eval-
uated against our gold standard. We consider a cross-project
bug pattern captured by a change type if there are two or
more instances of the pattern in the change type. This would
allow a human to identify the pattern if they manually in-
spected the change type. The results of the evaluation are
shown in Fig.

(A) Clustered Commits (B) Patterns Captured

oW

o 4

0 2 4 6

(D) Precision

% Clustered
o O O o

(C) F-Measure

[}
2
3 0.154

© ]
3 0.10

E. 0.05
LL 0.00-

0 2 4 6 0 2 4 6

(E) Avg Cluster Density

L.

(F) Avg Class Density

|

0 2 4 6 0 2 4 6

Epsilon Epsilon

Dataset |—| Language |—| Node |—|Statement

Figure 2: Evaluation and tuning results. In each
chart, the x-axis shows the values of epsilon — the
DBSCAN density parameter.

(A) Shows the percentage of commits that were clustered
relative to the number of commits in the dataset that



meet the modified statement requirements. Lower is
better in this case because most commits are unrelated
and should not be clustered. A low value also means
fewer commits need to be inspected by a human.

(B) Shows the number of cross project bug patterns in the
gold standard that would be captured if a human man-
ually inspected all change types. A y-value of 4 means
all patterns would be captured.

(C) and (D) Show precision and recall. An instance is re-
called if it is found with at least one other instance in
a cluster. In all cases higher is better.

(E) Shows the average percent of cross-project bug patterns
that make up their respective change type. A high
value means the pattern is more likely to be captured
by a random sample of the change type.

(F) Shows the average percent of cross-project bug patterns
that are included in a change type. A high value means
an estimate of the pattern frequency is more likely to
be correct.

When picking a feature vector and epsilon value, we are
interested in how much we can reduce the number of com-
mits we have to inspect while still capturing all frequently
occurring bug patterns. Charts (A), (B) and (E) are most
relevant for this purpose. Our dataset of language constructs
significantly outperforms the other datasets with respect to
the number of commits that need to be inspected (A), while
being competitive with the dataset of AST-node changes
with respect to patterns captured (B) and cluster density
(E). An epsilon value of between 0.3 and 0.9 seems to give
us the largest search space reduction while still maintaining
good recall.

It is worth mentioning that while precision and recall is
significantly better for the dataset of language constructs,
it is low relative to what one might expect from some other
clustering task. Precision seems low because there are many
bug patterns that were not identified in our manual inspec-
tion. Because clustering discovers unknown relationships,
this is not surprising. These patterns will be discusses in
the next section. A better measure of precision with re-
spect to cross-project patterns is the average cluster density
in chart (E). Recall is also low for small values of epsilon.
This indicates that our approach is susceptible to noise. For
example, the Incorrect Comparison pattern has only three
instances. Two of the instances fix more than one bug in
the same commit, which causes the distance between the in-
stances to increase. We rely on a large dataset to mitigate
the effects of low recall and sensitivity to noise.

Overall, our proposed approach based on language con-
structs outperforms the two alternatives. Based on our eval-
uation results, we choose an epsilon value of 0.3 as the basis
of our feature vector. This value of epsilon yields the lowest
number of commits to inspect and the highest F-Measure
and cluster density while still capturing 3/4 patterns.

4.4 Clustering Example

Fig. [3] shows a breakdown of the commits for our evalu-
ation dataset using the language construct feature vector
and epsilon=0.3. The treemap on the left represents all
4,319 commits in PM2 and MediacenterJS. The box labelled
Merge represents the 637 commits removed because they
merge two branches. The box labelled Outside Modified
Statement Bounds represents the 2,803 commits removed
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Figure 3: A treemap of the search space reduction
(left) and the clusters and their patterns (right).
Patterns from the gold standard are marked with
a gold bar.

because they do not meet the modified statement require-
ments of repetitive changes. The box labelled Other Noise
represents the 465 commits removed because they do not
meet other requirements from the query filter. The box la-
belled UC (unclustered) represents the 342 commits removed
because they were not present in a change type with size >=
3. The smallest box labelled C' (clustered) represents the 72
commits which were clustered into change types.

The 72 clustered commits are expanded into the treemap
on the right, which shows a detailed breakdown of the change
types. Each colour shows one change type which is broken
down into bug patterns discovered within the change type.
In addition to the bug patterns identified in our gold stan-
dard, we inspect all change types and label additional bug
patterns which we didn’t identify in our manual inspection.
For example, the largest change type in red at the bottom
left of the treemap shows all instances that contain the fea-
ture B_C_I falsey[1-2] and 1 or 2 modified statements. An
inspection of this change type yields three bug patterns: one
identified in our manual inspection (TypeError falsey), and
two where the fault is that a program state is unchecked
or unhandled. The patterns not identified in our manual
inspection are arguably less relevant to cross-project tools,
but still interesting.

5. EMPIRICAL STUDY

In this section, we present our empirical study in which
we address the following research questions:

RQ1 What basic change types exist in JavaScript?
RQ2 What change types exist in JavaScript?
RQ3 What pervasive bug patterns exist in JavaScript?

Recall that BCTs are features in our feature vector, each
cluster represents a change type and bug patterns are in-
ferred from a manual inspection of change types.

5.1 Subject Systems

Our subject set contains 134 projects (70 packages and 64
applications) and 121,296 commits to analyse.

A JavaScript project is either a package (also called a
module) used in other projects, or an application, which is
normally executed as standalone software. We use both in
our study, but search for them in different ways.

For packages, we use nmeI a popular package manager for
Node.js. npm has become the largest software package repos-
itory with over 250,000 packages, now surpassing Maven
Central and RubyGems. The npm website provides lists of

Zhttps:/ /www.npmjs.com
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Figure 4: The distribution of the 1,031 BCTs dis-
covered by our analysis over the feature properties
from Table Column (A) shows the distribution
over language construct types. Column (B) shows
the distribution over language construct contexts.
Column (C) shows the distribution over modifica-
tion types.

Table 4: Subject Systems. KLoC indicates thou-
sands of JavaScript lines of code, excluding com-
ments and empty lines. Downloads are over the last
month, extracted from npm official website (only
available for modules).

Measure Average | Median Total
Size KLoC 18 4 2,459
Stars on GitHub 3,296 524 | 441,631
Downloads x107 1,958 120 | 262,503
Commits 905 257 | 121,296
Feature Vectors — — 105,133
Analysis Time 6m10s 4s 4h32m

the most depended-upon packages and most starred-by-
users packages . From each of the two lists above, we
take the top 50 packages and merge them into a single list.
We remove 27 duplicates which occur in both lists and three
projects which are written in CoffeeScript, resulting in a fi-
nal set of 70 modules. All these use Git and are hosted on
GitHub. In total, these 70 modules have been downloaded
more than 262 million times over the last month and have
around 425,000 stargazers (number of users that starred the
GitHub repository) on GitHub.

For finding popular Node.js applications, we rely on lists
curated by users that collect popular Node.js ap-
plications. After we remove duplicates and projects where
commit messages are not written in English, we end up with
a list of 64 Node.js applications. These applications have
more than 17,000 stargazers on GitHub. Table[d]summarizes
some of the characteristics of the 134 JavaScript projects we
use in our study.

5.2 Feature Extraction (RQ1)

We use BUGAID to extract BCTs from each commit and
build the database of { commit, BCT} relations. BUGAID is
run on a server with two Intel® Xeon®) E5-2640 CPUs and
64GB of RAM. Table M shows the time to extract the BCTs

150

|

Outside Other | C || e H
Modified Noise | _ _[: s ”l:::'}
Statement Merge L T I['r'mDrfl'
Bounds =

Figure 5: Of the original 105,133 commits, filter-
ing and clustering produces 219 clusters containing
4,179 commits.

from the commits of the subject projects. Four projects did
not complete after 24 hours because GumTree AST differ-
encing did not complete. These projects are omitted from
the analysis time statistics. The number of feature vectors
are less than the total number of commits because the analy-
sis for each project is done in a single thread, so the analysis
missed some commits from projects where GumTree did not
complete. A few large projects take up most of the analysis
time, with an average analysis time of 6m10s and a median
analysis time of 4s. The total analysis time is 4h32m.

BUGAID discovered 1,031 BCTs in the 105,133 commits
we analyzed. Fig.[dshows the distribution of the BCTs over
the feature properties described in Section [3.3] and listed in
Table[ll The first row shows the distribution over the BCTs
themselves, while the second row shows the distribution over
the BCT occurrences in the dataset. We do not show the
distribution over each language construct name (e.g., var,
falsey, etc.) because there are too many to fit within the
paper.

The number and diversity of BCTs supports our claim that
manually encoding all BCTs is impractical and that mod-
elling the language in order to automatically learn BCTs is
a more scalable approach. Because previous work required
BCTs be manually defined, the number of change types, or
the granularity of the results in studies using these tools may
be limited.

The full list of BCT's is available in our dataset .

5.3 Clustering (RQ2)

We use BUGAID to (1) build a dataset of commits based
on the query in Section and (2) cluster the commits in
to change types.

Fig. [f] shows a breakdown of the commits. The tree map
on the left shows that after filtering commits with our Data-
log query, we are left with 11,928 commits to cluster (from a
total of 105,133 commits). Clustering removes another 7,731
commits, leaving 4,197 commits in 219 clusters with size >=
5. The tree map on the right shows the size of each of the
219 clusters. The smallest clusters contain five commits.

Fig. [B] shows the 219 change types in more detail. change
types are shown in two facets: the number of BCTSs in the
change type and the average number of modified statements
(MS) in the change type. There are 85 change types with one
BCT, 101 with two, 29 with three and 4 with four. Commits
with fewer modified statements are more repetitive, so there
are more change types with fewer modified statements.

Table [5| gives descriptive statistics of the change types in
Fig. [f] For each change type, it includes the number of
commits, the number of projects represented, the number of
modified statements, and the number of BCTs. There are
three change types with only one project represented, which



Table 5: Change types descriptive statistics

Measure [ Min | Average [ Median | Max
Commits 5 19 8 655
Projects 1 9 6 67
Modified Statements 1 1.7 1 6
Basic Change Types 1 1.8 2 4

Change Type

Figure 6: Clustering produced 219 change types.
The BCT facet stores the number of BCTs in the
change type. The MS facet stores the average num-
ber of modified statements in the change type.

are excluded from our inspection.

The change type with the most commits has the signa-
ture {B_C_-falsey_1}, which inserts one falsey check into a
branch condition and has one modified statement on aver-
age. This is typically to repair a TypeException or to handle
a missing edge case. As another example, the most frequent
change type with four BCTs has the signature {R_S_I_var_1,
B_C_I falsey_1, R_AR.I true_1, R_AR_I false_1}, which de-
clares a new variable, adds a falsey branch condition and
adds one true and one false reserved word to the right
hand side of assignments. When we inspect the commits
with this change type, we see that this change type repairs
a bug where a method should only be executed once.

The full list of change types is available in our dataset .

5.4 Pervasive Bug Patterns (RQ3)

Our manual inspection took two authors approximately
18 man hours to inspect the change types described in Sec-
tion Compared to an earlier inspection, where it took
one author over five days to inspect approximately 500 com-
mits from only two Node.js projects, our approach is able to
greatly reduce the inspection time. We found that in most
cases, the change types produced by BUGAID have very
similar bug patterns, i.e., usually between one and three
patterns per change type

We now provide a qualitative analysis of common bug pat-
terns from our inspection. We discuss the bug patterns at a
high level and omit discussing each change type individually.
For example, a bug pattern where null or undefined could
be dereferenced is present in multiple change types because
it can be repaired in multiple ways, such as putting the deref-
erence inside a conditional statement, exiting the function
before the dereference occurs or initializing the variable. For
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each group of bug patterns, their frequency, the associated
change type (CT) ID, and a link to a representative commit
are listed in our online dataset and tech report for the
interested reader.

The following are the inferred patterns that we believe are
the most relevant to the development of tools and IDE sup-
port for detecting and preventing bugs in JavaScript code.

5.4.1 Dereferenced Non-Values

In JavaScript, there are two types, null and undefined,
which indicate that a variable does not have a value. Deref-
erencing these objects produces a TypeError. A variable
which is not declared or initialized points to the property
undefined, while it is convention to assign the value null
to a variable that has no value. The following repairs fre-
quently occur for this bug pattern:

Protect with falsey check (9 CTs). In JavaScript, sev-
eral types and values are coerced to the boolean value false
when used as a boolean in a condition. These include false,
0, "", null, undefined and NaN and are known as falsey val-
ues. This repair prevents the dereference of null or unde-
fined values by checking if they are coerced to false.

1
2

+ if (!target.parts) return;
part = target.parts[playingPart];

Protect with no value check (2 CTs). There are two dif-
ferent equivalence comparison operators in JavaScript. The
first is the value comparison operator (== and !=), which
checks if two variables have the same value. null and unde-
fined are value-equivalent, because both are considered to
have no value. This repair prevents the dereference of null
or undefined values by checking if they do not have a value.
1| - if ( val <= 0 ) {

2+ if ( val <= 0 || wval null ) {
3 val = curCSS( elem, name );

Protect with type check (4 CTs). The second equiva-
lence comparison operator is the value and type comparison
operator (=== and !==), which checks if two variables have
the same value and type. Types can also be checked with
the typeof keyword. This repair prevents the dereference of
null or undefined values by performing a type check with
either a value-and-type comparison operator or the use of a
typeof operator.

1
2

+ if (typeof torLink === 'string') {

if (torLink.toLowerCase().match(...) != null) {

5.4.2 Incorrect Comparison

Because there are multiple ways (falsey, check-by-value or
check-by-value-and-type) of checking equivalence in Java-
Script, it is possible to use a comparison operator that per-
mits too many types, or too few types to pass a branch
condition.

Compare fewer types (3 CTs). A variable can be com-
pared for multiple types by coercing it to a boolean or by
using a check-by-value operator. In some cases, the omission
of type equivalence causes an incorrect result for a branch
condition. For example, if the variable port may be unde-
fined, it is incorrect to prevent its use in a URL by checking
if it is falsey. Such a comparison would also filter out port
number zero, which is a valid port. The use of compare-by-
value operators are discouraged for this reason, and linting
tools typically generate a warning when it encounters one.



In most cases, the repairs we see address bad practice, how-
ever, we also see instances of bugs that result from the use
of compare-by-value operators.

1

2
3

- if (typeof opt.default 'undefined ')
+ if (typeof opt.default 'undefined")
self.default (key, opt.default);

Compare more types (1 CT). In the opposite scenario, a
value may be encoded in different types (e.g., no-value can
be expressed as null or undefined), but the comparison
permits only one of those values.

TEST")
== "TEST")

1| - if (encoded_test
2|+ if (encoded_test

5.4.3 Missing argument (2 CTs)

JavaScript functions are variadic, i.e., they can accept a
variable number of arguments. This means JavaScript does
not require that the arguments in a function call match the
parameters in a function definition. Because of this, argu-
ments may be accidentally omitted, resulting in an incorrect
argument order. In the callee, this means the parameters
will be out of order. This bug is often repaired by passing
null in place of the missing argument.

1| if (completed
2| - callback ();

3|+ callback(null);

arr.length) {

5.4.4 Incorrect API configs (6 CTs)

One of the more common change types is the repair of API
configurations. In this bug pattern, an API configuration
option is not specified or not correct.

There are several factors that may contribute to this pat-
tern. First, APIs can be configured in many different ways
(e.g., through constructors, object literals, JSON;, etc.), but
very rarely are developers forced to specify a configuration
option. In a statically typed language such as Java, the de-
veloper might be forced to assign values to fields through
the constructor, which would be enforced at compile time.
Second, many JavaScript IDEs do not support code com-
pletion, forcing a developer to manually look up expected
options. Third, Node.js applications rely heavily on a large
number of APIs maintained by different developers. Such
variation in developers may contribute to a wide variety of
APIs that may be non-trivial to configure.
grunt.initConfig ({

clean: {

force:
build:

true,

1
2
3|+
4 ['dist ']

5.4.5 +this not correctly bound

In JavaScript functions, the reserved word this is bound
to the object which first executes the function. Because of
JavaScript’s closure property, developers may incorrectly as-
sume that this is bound to the object in which the function
is defined.

Access this through closure (2 CTs). Because of Java-
Script’s closure property, a function declared inside another
function can access the local variables of the parent function.
This property can be used to eliminate the use of this inside
a callback function, and avoid binding issues.

1|+ var self = this;
2 self.serverConfig.connect (function(err, result) {
3 self._state = 'connected';
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Bind this (1 CT). JavaScript contains three functions that
explicitly bind this to an object before a function is called.
These functions are call, bind and apply. This repair binds
this using one of these three functions.

1 -
2|+

_kiwi.global.panels

= this.panels;
_kiwi.global.panels =

_.bind(this.panels, this);

5.4.6 Unhandled exception

Error handling in JavaScript can be messy and error-
prone. Because JavaScript is often asynchronous and event-
based, errors are propagated in many different ways.

Catch thrown exception (1 CT). In sequential Java-
Script, where errors are propagated with a throw statement
and caught with a catch statement, error handling is not
enforced, which can lead to uhandled errors.

1|+ try {

2 html = kiwi.jade.compile(str)(...);

3|+ } catch (e) {

4| + response.statusCode = 500;

Error not propagated to callback (1 CT). Callbacks
and promises complicate the propagation of errors in Java-
Script because in this asynchronous model, errors cannot be
propagated up the stack |16]. Errors that must be explicitly
propagated through callbacks or promises are often forgotten
about.

Server.prototype.handle = function(outerNext) {

function next(err) {
- outerNext ();
+ outerNext (err);

1
2
3
4
Check callback exception (1 CT). Similar to the pre-
vious repair, errors given to callback functions are often
left unchecked. This repair handles an error that has been
passed to the callback function.

1 return fs.readFile(path, function(err, buffer) {

2] + if (err) {
3| + throw err;

6. DISCUSSION

Due to space limitations, we have only presented a few of
the more common bug patterns that exist in our dataset of
change types. Many more exist, although building a generic
tool to look for some of them might be prohibitively difficult
because of their project-specific characteristics.

One interesting question is, of the bug patterns we iden-
tify, which are currently handled by existing tools? Type
checking tools for JavaScript [10] [22] [49] have been a re-
search focus recently; once adopted and integrated into IDEs
they may help to reduce bug patterns such as those in deref-
erenced non-values. Linting tools such as JSHin1E| can also
help prevent some, but not all of the bugs in incorrect com-
parison. Simple tools like argument-validator [6] may help
prevent the missing arguments bug pattern. Still, techniques
for preventing these bugs are far from mature. New ideas,
implementations and integrations are needed to further re-
duce their prevalence.

For other bug patterns like this not correctly bound, incor-
rect API configurations and unhandled exception, there is a
lack of tool support, to the best of our knowledge.

3http://jshint.com
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We must also consider bugs we expected but did not find.
For example, we found that prototype handling was often
done very well, with changes to prototypes often reflecting
changes to a module’s API. This was often the best docu-
mented and well-formatted code. We did not encounter any
repairs involving the use of eval, considered by many [21,
50] as a problematic language construct. While eval did
appear in our list of BCTs, it did not appear in any change
type. This likely indicates that eval is either used sparingly
in Node.js JavaScript or it is not as error-prone as people
might have expected.

Our findings may be used to (1) direct researchers towards
creating and improving tools and techniques to prevent com-
mon bugs in JavaScript, (2) act as a guide to which tool
support to implement in a JavaScript IDE, and (3) make
developers aware of the common mistakes involved with pro-
gramming in JavaScript so that they can adopt their pro-
gramming style accordingly.

Threats To Validity. Threats to internal validity are: (1)
the language model we use is not complete. There are lan-
guage constructs which we did not include in our language
model (e.g., the < operator). A better language model may
discover more bug patterns, however, we believe that our
language model includes the most important JavaScript con-
structs and likely captures many of the most pervasive bug
patterns; (2) the subjects and change types used in tuning
our clustering approach may have caused over-fitting. We
attempted to mitigate this by keeping our language model
simple and by using a large data set to mitigate the effects of
a small epsilon; (3) we only inspect repairs which appear in
a commit. Bugs that are repaired before a commit is merged
into the main branch are not captured by our method.

Threats to external validity are: (1) the results may not
extend to client-side JavaScript. Almost all of our subjects
are server side Node.js projects under heavy use and devel-
opment; (2) the results may not generalize to all Node.js
projects. While this is unlikely for the most frequently oc-
curring patterns, some results may be specific to our subject
systems; (3) we discuss a subset of bug patterns based on our
knowledge of program analysis and testing. There may be
bug patterns that are more interesting or relevant to others,
which is why we make the data set of bug patterns publicly
available.

7. RELATED WORK

Mining change types. Fluri et al. [15] use hierarchical
clustering to discover unknown change types in three Java
applications. This approach is similar to ours, however, the
basic change types they use are limited to the 41 BCTs
identified in [14] and do not use language constructs. Unlike
BUGAID, this work does not identify pervasive bug patterns.
Negara et al. [38] use an IDE plugin to track fine-grained
changes from 23 developers and infer general code change
patterns. Livshits and Zimmerman [31] discover application-
specific bug patterns (methods that should be paired but are
not) by using association rule mining on two Java projects.
Unlike BUGAID, this work is limited to method pairs only.
Pan et al. [48] use line level differencing to extract and reason
about repair patterns for automated program repair. The
repair patterns they identify are coarse grained and do not
identify the root cause of the bugs. Kim et al. [26] discover
six common repair patterns in Java by grouping changes
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with groums [41]. They suggest possible root causes for
three of these patterns. However, the focus of their work is
on discovering repair patterns for automated repair. They
do not provide metrics or discussion on the root causes of
the six repair patterns. It is unclear whether using groums
for discovering change types is more effective than any of the
approaches previously discussed. An implementation of the
groum mining tool is not available (and may not be feasible)
for analyzing JavaScript.

In our experience, these techniques have not been able to
group repair patterns tightly enough to easily infer the root
cause of each bug. This limitation from our perspective may
not be relevant to automated repair research, however, it is
worth considering if a more fine grained grouping of repair
patterns will enhance automated repair approaches.

Mining bug patterns. Liet. al. group bugs by classifying
the natural language content of bug reports [30]. This is
useful for inferring what kinds of bugs are being repaired
at a high level, but does not give us the exact source code
changes that are taking place. Further, because many bugs
are repaired without records in a bug report, this technique
may miss important bug patterns.

JavaScript bug patterns. There have been very few stud-
ies which investigate bug patterns in dynamic languages.
Ocariza et al. [46] manually inspect bug reports pertain-
ing only to client-side JavaScript code. They find that the
majority of reported JavaScript bugs on the client-side are
DOM-related, meaning the fault involves a DOM API call
in JavaScript code. We apply our technique to JavaScript
applications and server-side JavaScript code (in which the
DOM is non-existent), to detect and analyze bug patterns
that are inherent to the JavaScript language. In addition,
our study includes 134 JavaScript applications, making it
the largest empirical study to find common JavaScript bug
patterns.

8. CONCLUSION AND FUTURE WORK

We proposed BUGAID, a data mining technique for dis-
covering common unknown bug patterns. We showed that
language construct changes are closely related to bug pat-
terns and can be used to group bug fixing commits with
similar faults and repairs. Using BUGAID, we performed
an analysis of 105,133 commits from 134 server-side Java-
Script projects. We discovered 1,031 BCTs and 219 change
types. From our inspection of change types, we discussed 13
groups of pervasive bug patterns that we believe are among
the most pressing issues in JavaScript.

With a better language model, weighing of features and
enough data, it is feasible in future work that the density
of the clusters could be increased so that almost all clus-
ters include only one bug pattern. If such a result could
be achieved, our approach to discovering pervasive bug pat-
terns will be completely automated, with human interven-
tion only required to create natural language descriptions of
the bug patterns. This could have implications for a num-
ber of research areas including automated repair and defect
prediction.

9. ARTIFACT DESCRIPTION

In this section we describe the artifact (dataset and tool)
that accompanies this paper. The purpose of the artifact is
to enable replication of the evaluation and empirical study,



and to allow users to explore some of the bug patterns that
exist in JavaScript in greater detail than could be presented
in this paper. It has multiple components including: an
executable for reproducing or expanding the dataset, the
list of subjects, the raw data, the list of basic change types
(BCTs) and the list of change types. In addition to the
raw data and executable, for each component we provide a
graphical web interface for exploring the data.

9.1 Executable and Subjects

We provide an executable and a list of git repositories for
reproducing or expanding the results of our empirical study.
The executable has two main classes: the first builds the raw
dataset of (commit, BC'T) relations by mining the repository
histories; the second filters the data and clusters the commits
into change types. Installation and useage instructions are
available in the executable’s README [2].

The list of git repositories is the same as what we used
in our empirical study. Detailed information about these
repositories is available on the artifact’s web page [3].

9.2 Raw Data

Our commit mining process created (commit, BCT) re-
lations for 105,133 commits. The dataset is available as a
CSV file which is downloadable from the artifact’s web page.
Each row contains the commit ID, the number of modified
statements in the commit and a list of BCT's that are present
in the commit. It can be used in lieu of regenerating the
dataset with the executable or to perform alternate data
mining tasks.

9.3 Basic Change Types

A BCT is the smallest unit of change in our method. The
list of 582 unique BCTs in the raw data and the number of
occurrences of each BCT is available through a searchable
interface on the artifact’s web page. The dataset is useful for
looking up the relative frequency of BCTs. For example, the
most frequently inserted call to a JavaScript API method is
replace, which was inserted 269 times in our subjects. By
contrast, the builtin method ewval was only inserted 11 times.

9.4 Change Types

Change types are groups of commits which share a sim-
ilar set of BCTs and number of modified statements. The
list of 219 change types discovered in our empirical study is
available as an .arff file and through a searchable interface
on the artifact’s web page.

The dataset is useful for exploring bug patterns that ex-
ist for JavaScript. In our empirical study, we highlighted
12 bug patterns that we believe are good candidates for de-
tection using static analysis tools. There are many more
patterns that either occurred less frequently in our dataset
or that require project-specific or API-specific knowledge to
diagnose. Because there are alternate applications for which
these patterns may be relevant, we provide an interface for
exploring change types in the same manner that we used in
our empirical study.

We suggest the following method for investigating a par-
ticular class of bug:

1. Identify which BCTs might be included with the class
of bug under investigation.

2. Use the interface on the artifact’s web page to find
change types that contain these BCTs.
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3. For each change type, use the interface to inspect the
commits inside the change type.

For example, assume we are interested in bugs associated
with using callbacks. First, we identify relevant BCTs. In
this case they are BCTs that change a callback conven-
tion token, such as the BCT CV_MC_I callback. Next, we
search for clusters that contain this BCT. Cluster #3 in-
cludes this BCT. Finally, we inspect the commits in cluster
#3 by opening the commit summaries on GitHub using the
provided links. We observe that in general, the commits
in cluster #3 repair an error caused by unchecked state by
returning control through a callback function.

9.5 Evaluation Data

The raw data used in the evaluation — both (commit, BCT)
relations and change types — is available as a download from
the artifact’s web page. It can be used to replicate the eval-
uation.
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