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ABSTRACT
Code coverage is a popular test adequacy criterion in practice.
Code coverage, however, remains controversial as there is a
lack of coherent empirical evidence for its relation with test
suite effectiveness. More recently, test suite size has been
shown to be highly correlated with effectiveness. However,
previous studies treat test methods as the smallest unit of
interest, and ignore potential factors influencing this rela-
tionship. We propose to go beyond test suite size, by investi-
gating test assertions inside test methods. We empirically
evaluate the relationship between a test suite’s effectiveness
and the (1) number of assertions, (2) assertion coverage,
and (3) different types of assertions. We compose 6,700 test
suites in total, using 24,000 assertions of five real-world Java
projects. We find that the number of assertions in a test
suite strongly correlates with its effectiveness, and this factor
directly influences the relationship between test suite size
and effectiveness. Our results also indicate that assertion
coverage is strongly correlated with effectiveness and differ-
ent types of assertions can influence the effectiveness of their
containing test suites.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.8 [Software Engineering]: Metrics

General Terms
Experimentation, Measurement

Keywords
Test suite effectiveness; assertions; coverage;

1. INTRODUCTION
Software testing has become an integral part of software

development. A software product cannot be confidently re-
leased unless it is adequately tested. Code coverage is the

most popular test adequacy criterion in practice. However,
coverage alone is not the goal of software testing, since cover-
age without checking for correctness is meaningless. A more
meaningful adequacy metric is the fault detection ability of
a test suite, also known as test suite effectiveness.

There have been numerous studies analyzing the relation-
ship between test suite size, code coverage, and test suite
effectiveness [13, 14, 16, 17, 18, 19, 22]. More recently, In-
ozemtseva and Holmes [20] found that there is a moderate
to very strong correlation between the effectiveness of a test
suite and the number of test methods, but only a low to
moderate correlation between the effectiveness and code cov-
erage when the test suite size is controlled for. These findings
imply that (1) the more test cases there are, the more effec-
tive a test suite becomes, (2) the more test cases there are,
the higher the coverage, and thus (3) test suite size plays a
prominent role in the observed correlation between coverage
and effectiveness.

All these studies treat test methods as the smallest unit
of interest. However, we believe such coarse-grained studies
are not sufficient to show the main factors influencing a test
suite’s effectiveness. In this paper, we propose to dissect test
methods and investigate why test suite size correlates strongly
with effectiveness. To that end, we focus on test assertions
inside test methods. Test assertions are statements in test
methods through which desired specifications are checked
against actual program behaviour. As such, assertions are
at the core of test methods.

We hypothesize that assertions1 have a strong influence
on test suite effectiveness, and this influence, in turn, is
the underlying reason behind the strong correlation between
test suite size, code coverage, and test suite effectiveness.
To the best of our knowledge, we are the first to conduct a
large-scale empirical study on the direct relationship between
assertions and test suite effectiveness.

In this paper, we conduct a series of experiments to quanti-
tatively study the relationship between test suite effectiveness
and the (1) number of assertions, (2) assertion coverage, and
(3) different types of assertions.

This paper makes the following main contributions:

• The first large-scale study analyzing the relation be-
tween test assertions and test suite effectiveness. Our
study composes 6,700 test suites in total, from 5,892
test cases and 24,701 assertions of five real-world Java
projects in different sizes and domains.

1We use the terms ‘assertion’ and ‘test assertion’ interchange-
ably in this paper.
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• Empirical evidence that (1) test assertion quantity
and assertion coverage are strongly correlated with
a test suite’s effectiveness, (2) assertion quantity can
significantly influence the relationship between a test
suite’s size and its effectiveness, (3) the correlation
between statement coverage and effectiveness decreases
dramatically when assertion coverage is controlled for.

• A classification and analysis of the effectiveness of as-
sertions based on their properties, such as (1) creation
strategy (human-written versus automatically gener-
ated), (2) the content type asserted on, and (3) the
actual assertion method types.

2. RELATED WORK
Code coverage is measured as the percentage of program

code that is executed at least once during the execution
of the test suite. There is a large body of empirical stud-
ies investigating the relationship between different coverage
metrics (such as statement, branch, MC/DC) and test suite
effectiveness [13, 14, 16, 17, 18, 19]. All these studies find
some degree of correlation between coverage and effective-
ness. However, coverage remains a controversial topic [14,
20] as there is no strong evidence for its direct relation with
effectiveness. The reason is that coverage is necessary but
not sufficient for a test suite to be effective. For instance, a
test suite might achieve 100% coverage but be void of test
assertions to actually check against the expected behaviour,
and thus be ineffective.

Researchers have also studied the relationship between test
suite size, coverage, and effectiveness [22, 20]. In these papers,
test suite size is measured in terms of the number of test meth-
ods in the suite. Different test suites, with size controlled,
are generated for a subject program to study the correlation
between coverage and effectiveness. Namin and Andrews
[22] report that both size and coverage independently in-
fluence test suite effectiveness. More recently, Inozemtseva
and Holmes [20] find that size is strongly correlated with
effectiveness, but only a low to moderate correlation exists
between coverage and effectiveness when size is controlled
for. None of these studies, however, looks deeper into the
test cases to understand why size has a profound impact
on effectiveness. In our work, we investigate the role test
assertions play in effectiveness.

Schuler and Zeller [24] propose the notion of ‘checked
coverage’2 as a metric to assess test oracle quality. Inspired by
this work, we measure assertion coverage of a test suite as the
percentage of statements directly covered by the assertions.
We are interested in assertion coverage because it is a metric
directly related with the assertions in the test suite. In
the original paper [24], the authors evaluated the metric
by showing that there is a similar trend between checked
coverage, statement coverage, and mutation score. In this
paper, we conduct an empirical study on the correlation
level between assertion coverage and test suite effectiveness.
In addition, we compose a large set of test suites (up to
thousands) for each subject under test, whereas only seven
test suites were compared in the original paper. Moreover,
we study the correlation between statement coverage and test
suite effectiveness, to compare with the relationship between
assertion coverage and test suite effectiveness, by composing

2We use the terms ‘assertion coverage’ and ‘checked coverage’
interchangeably in this paper.

test suites with assertion coverage controlled.
Cai and Lyu [14] studied the relationship between code

coverage and fault detection capability under different testing
profiles. They found that the effect of code coverage on fault
detection varies under different testing profiles. Also, the cor-
relation between the two measures is strong with exceptional
test cases, while weak in normal testing settings. However,
they did not examine the role assertions might play in differ-
ent profiles on the effectiveness of test cases. To the best of
our knowledge, we are the first to investigate the influence
of different assertion properties on suite effectiveness. We
classify assertion properties in three categories, and study
the effectiveness of each classification separately.

3. EXPERIMENTAL DESIGN
The goal of this paper is to study the relationship between

assertions and test suite effectiveness. To achieve this goal,
we design controlled experiments to answer the following
research questions:

RQ1 Is the number of assertions in a test suite correlated
with effectiveness?

RQ2 Is the assertion coverage of a test suite correlated with
effectiveness?

RQ3 Does the type of assertions in a test suite influence
effectiveness?

We examine these three main aspects of assertions in our
study because (1) almost all test cases contain assertions, but
the number of assertions varies across test suites (see Table 2);
we aim to investigate if the number of assertions plays a role in
effectiveness, (2) the fraction of statements in the source code
executed and checked directly by assertions should intuitively
be closely related to effectiveness; we set out to explore if and
to what degree this is true; and (3) assertions have different
characteristics, which may potentially influence a test suite’s
effectiveness, such as their method of creation (e.g., human-
written, automatically generated), the type of arguments
they assert on (e.g., boolean, string, integer, object), and the
assertion method itself (e.g., assertTrue, assertEquals).

All our experimental data is publicly available.3

3.1 Terminology

Test case: a JUnit4 test method annotated with @Test. We
use the terms ‘test method’ and ‘test case’ interchange-
ably in this paper.

Test suite: the collection of a subject program’s test cases.
Test suite size: number of test cases in a test suite.
Master/original test suite: the test suite written by the

developers of a subject program.

3.2 Subject Programs
To automate data collection, we selected Java programs

that use Apache Maven4 as their build system, and JUnit4
as their testing framework. We select programs of different
sizes to ensure the experiment results are not project size
dependent.

Our set of subjects contains five projects in different appli-
cation domains. JFreeChart [6] is a free Java chart library
for producing charts. Apache Commons Lang [1] is a package

3http://salt.ece.ubc.ca/software/assertion-study/
4http://maven.apache.org
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Table 1: Characteristics of the subject programs.

ID Subjects Java SLOC Test SLOC Test cases Assertions Statement coverage Assertion coverage

1 JFreeChart [6] 168,777 41,382 2,248 9,177 45% 30%
2 Apache Commons Lang [1] 69,742 41,301 2,614 13,099 92% 59%
3 Urban Airship Java Library [10] 35,105 11,516 503 1,051 72% 53%
4 lambdaj [7] 19,446 4,872 310 741 93% 65%
5 Asterisk-Java [2] 36,530 4,243 217 633 24% 10%

Total/Average 329,600 103,314 5,892 24,701 45% 30%

Table 2: Number of assertions per test case.

ID Min 1st Q. Median 3rd Q. Max Mean σ

1 0 1 2 4 114 4.1 6.7
2 0 1 3 6 104 5.1 7.4
3 0 0 1 2 42 2.1 3.6
4 0 1 2 3 21 2.8 3.2
5 0 1 2 3 17 3.0 2.9

of Java utility classes for the classes that are in java.lang’s
hierarchy. Urban Airship Java Library [10] is a Java client
library for the Urban Airship API. Lambdaj [7] is a Java
project for manipulating collections in a pseudo-functional
and statically typed way. The last subject, Asterisk-Java [2],
is a free Java library for Asterisk PBX integration.

The characteristics of these subject programs are summa-
rized in Table 1. Lines of source code are measured using
SLOCCount [9]. Columns 5–8 illustrate test suite size in
terms of number of test methods, assertion quantity, state-
ment coverage, and assertion coverage, of each subject’s
master test suite, respectively. Table 2 presents descriptive
statistics regarding the number of assertions per test case
for the subject systems.5

3.3 Procedure
To study the relationship between assertions and test suite

effectiveness, a large set of test suites with different assertion
related properties are required. In this section, we present
how the experiments are conducted with respect to each
research question. We first discuss the variables of interest,
then explain how test data are collected by generating new
test suites, and finally describe how the results are analyzed.

3.3.1 Effectiveness of Assertion Quantity (RQ1)
In order to answer RQ1, we investigate three variables,

namely, number of test methods, number of assertions, and
test suite effectiveness. We collect data by generating test
suites in three ways, (1) randomly, (2) controlling test suite
size, and (3) controlling assertion quantity. For each set of
test suites, we compute the correlation between the three
variables.

Number of test cases. We implemented a tool that uses
the JavaParser [4] library to identify and count the total
number of test cases in a given test suite.

Number of assertions. For each identified test case, the
tool counts the number of test assertions (e.g., assertTrue)
inside the body of the test case.

Test suite effectiveness. Effectiveness captures the fault
detection ability of a test suite, which can be measured as a
percentage of faults detectable by a test suite. To measure

5
We were surprised to see such high max numbers of assertions per

test case, so we manually verified these numbers. For instance, the
114 max assertions for JFreeChart are in the testEquals test method
of the org.jfree.chart.plot.CategoryPlotTest class.

the fault detection ability of a test suite, a large number of
known real faults are required for each subject, which is prac-
tically unachievable. Instead, researchers generate artificial
faults that resemble developer faults using techniques such
as mutation testing. In mutation testing, small syntactical
changes are made to random locations in the original pro-
gram to generate a large number of mutants. The test suite
is then run against each mutant. A mutant is killed if any of
the test case assertions fail or the program crashes.

Mutation score. The mutation score, calculated as a
percentage of killed mutants over total number of non-equiv-
alent mutants, is used to estimate fault detection ability of
a test suite. Equivalent mutants are syntactically different
but semantically the same as the origin program, and thus
undetectable by any test case. Since there is no trivial way of
identifying equivalent mutants, similar to other studies [20],
we treat all mutants that cannot be detected by a program’s
original (master) test suite, as equivalent mutants when
calculating mutation scores for our generated test suites.

Mutations are produced by transforming a program syn-
tactically through mutation operators, and one could argue
about the eligibility of using the mutation score to estimate
a test suite’s effectiveness. However, mutation testing is ex-
tensively used as a replacement of real fault detection ability
in the literature [14, 20, 22]. There is also empirical evidence
confirming the validity of mutation testing in estimating test
suite effectiveness [11, 12, 15, 21].

We use the open source tool PIT [8] to generate mutations.
We tested each of our subject programs to ensure their test
suites can successfully execute against PIT. We use PIT’s
default mutation operators in all of our experiments.

Generating test suites. To answer RQ1, we generate test
suites in three different ways, from the master test suites of
the subject programs.

Random test suites. We first generate a set of test suites
by randomly selecting a subset of the test cases in the master
test suite, without replacement. The size of each generated
test suite is also randomly decided. In other words, we
generate this set of test suites without controlling on test
suite size or assertion quantity.

Controlling the number of test methods. Each test
case typically has one or more assertions. A test suite with
more test cases is likely to contain more assertions, and vice
versa. From our observations, if test suites are randomly
generated, there exists a linear relationship between test
suite size and the number of assertions in the suites. If
there is a linear relationship between two properties A (e.g.,
assertion quantity) and B (e.g., suite size), a relationship
between A and a third property C (e.g., effectiveness) can
easily transform to a similar relationship between B and C
through transitive closure. To remove such indirect influences,
we generate a second set of test suites by controlling the
size. More specifically, a target test suite contains all of the
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test methods but only a subset of the assertions from the
master test suite. Based on the total number of assertions
in the master test suite, we first select a base number b,
which indicates the size of the smallest test suite, and a step
number x, which indicates size differences between test suites.
Therefore, the i-th test suite to be generated, contains all of
the test cases but only b+ x ∗ i randomly selected assertions
of the master test suite.

Controlling the number of assertions. We also gen-
erate another set of test suites by controlling on assertion
quantity. To achieve this, we first assign test cases to disjoint
buckets according to the number of assertions they contain.
For instance, for JFreeChart, test cases are assigned to three
disjoint buckets, where bucket low contains test cases with 2
or less assertions, bucket middle contains test cases with 3 or
4 assertions, and bucket high contains the rest of test cases
which have 5 or more assertions. We divide test cases in
this way such that each bucket has a comparable size. Then
we generate 100 test suites from each of the buckets ran-
domly without replacement. Following this process, with a
similar test suite size, test suites generated from bucket high
always contain more assertions than test suites generated
from bucket middle, and so forth.

Correlation analysis. For RQ1, we use Pearson and Kend-
all’s correlation to quantitively study the relationship be-
tween test suite size, assertion quantity, and test suite effec-
tiveness. The Pearson correlation coefficient indicates the
strength of a linear relationship between two variables. The
Kendall’s correlation coefficient measures the extent to which,
as one variable increases, the other variable tends to increase,
without requiring that increase to be represented by a linear
relationship.

3.3.2 Effectiveness of Assertion Coverage (RQ2)
To answer RQ2, we measure a test suite’s assertion cover-

age, statement coverage, and effectiveness. We collect data
by first looking at the set of test suites which were randomly
generated for RQ1, then generate a new set of test suites
by controlling their assertion coverage. For each of the two
sets of test suites, we study and compare the correlations
between the three variables using the same analysis methods
as described in Section 3.3.1.

Explicit mutation score. Not all detectable faults in a
program are detected by test assertions. From our observa-
tions, mutants can either be explicitly killed by assertions or
implicitly killed by program crashes. Programs may crash
due to unexpected exceptions. Program crashes are much
easier to detect as they do not require dedicated assertions
in test cases. On the other hand, all the other types of faults
that do not cause an obvious program crash, are much more
subtle and require proper test assertions for their detection.
Since the focus of our study is on the role of assertions in
effectiveness, in addition to the mutation score, we also com-
pute the explicit mutation score, which measures the fraction
of mutants that are explicitly killed by the assertions in a
test suite. Table 3 provides mutation data in terms of the
number of mutations generated for each subject, number of
mutants killed by the test suites, number of mutants killed
only by test assertions (e.g., excluding crashes), and the
percentage of mutants killed by assertions with respect to
the total number of killed assertions.

From what we have observed in our experiments, PIT
always generates the same set of mutants for a piece of source

Table 3: Mutation data for the subject programs.

ID Mutants Killed (#) Killed by As-
sertions (#)

Killed by As-
sertions (%)

1 34,635 11,299 7,510 66%
2 11,632 9,952 7,271 73%
3 4,638 2,546 701 28%
4 1,340 1,084 377 35%
5 4,775 957 625 65%

code when executed multiple times. Thus, to measure the
explicit mutation score of a test suite, we remove all assertions
from the test suite, measure its mutation score again, and
then subtract the fraction of implicit killed mutants from the
original mutation score.

Assertion coverage. Assertion coverage, also called che-
cked coverage [24], measures the fraction of statements in the
source code executed via the backward slice of the assertion
statements in a test suite.

We use the open source tool JavaSlicer [5] to identify
assertion checked statements, which are statements in the
source code executed through the execution of assertions in a
test suite. JavaSlicer is an open-source dynamic slicing tool,
which can be used to produce traces of program executions
and offline dynamic backward slices of the traces. We auto-
matically identify checked statements of a test suite by (1)
identifying all assertion statements and constructing slicing
criteria, (2) using JavaSlicer to trace each test class sepa-
rately, and (3) mining the traces computed in the previous
step to identify dynamic backward slices of the assertions,
and finally (4) since each backward slice of an assertion in-
cludes statements from the test case, calls to the JUnit APIs,
and statements from the source code, we filter out the data
to keep only the statements pertaining to the source code.

For large test suites, we observed that using JavaSlicer
is very time consuming. Thus, we employ a method to
speed up the process in our experiments. For all the test
classes in each original master test suite, we repeat steps
1–4 above, to compute the checked statements for each test
method individually. Each statement in the source code is
uniquely identified by its classname and line number and
assigned an ID. We then save information regarding the
checked statements of each test method into a data repository.
Once a new test suite is composed, its checked statements
can be easily found by first identifying each test method in
the test suite, then pulling the checked statements of the
test method from the data repository, and finally taking a
union of the checked statements. The assertion coverage of a
generated test suite is thus calculated as the total number of
checked statements of the suite divided by the total number
of statements.

Statement coverage. Unlike assertion coverage, which
only covers what assertion statements execute, statement
coverage measures the fraction of the source code covered
through the execution of the whole test suite.

In this paper, we select statement coverage out of the
traditional code coverage metrics as a baseline to compare
with assertion coverage. The reason behind our selection
is twofold. First, statement coverage is one of the most
frequently used code coverage metrics in practice since it
is relatively easy to compute and has proper tool support.
Second, two recent empirical studies suggest that statement
coverage is at least as good as any other code coverage
metric in predicting effectiveness. Gopinath et al. [19] found
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statement coverage predicts effectiveness best compared to
block, branch, or path coverage. Meanwhile, Inozemtseva
and Holmes [20] found that stronger forms of code coverage
(such as decision coverage or modified condition coverage)
do not provide greater insights into the effectiveness of the
suite. We use Clover [3], a highly reliable industrial code
coverage tool, to measure statement coverage.

Generating test suites. To answer RQ2, we first use the
same set of test suites that were randomly generated for
RQ1. In addition, we compose another set of test suites by
controlling assertion coverage. We achieve this by controlling
on the number of checked statements in a test suite. Similarly,
based on the total number of checked statements in the
master test suite of a program, we predefine a base number b,
which indicates assertion coverage of the smallest test suite,
and a step number x, which indicates assertion coverage
differences between the test suites. When generating a new
test suite, a hash set of the current checked statements is
maintained. If the target number for checked statements is
not reached, a non-duplicate test method will be randomly
selected and added to the test suite. To avoid too many
trials of random selection, this process is repeated until the
test suite has [b+ x ∗ i, (b+ x ∗ i) + 10] checked statements.
This way, the i-th target test suite has an assertion coverage
of (b+ x ∗ i)/N , where N is the total number of statements
in the source code.

3.3.3 Effectiveness of Assertion Types (RQ3)
RQ3 explores the effectiveness of different characteristics

of test assertions. To answer this research question, we
first automatically assign assertions to different categories
according to their characteristics, then generate a set of
sample test suites for each category of assertions, and finally
conduct statistical analysis on the data collected from the
generated test suites.

Assertion categorization. Assertions can be classified ac-
cording to their characteristics. Some of these characteristics
may be potential influence factors to test suite effectiveness.
We categorize assertions in three ways:

Human-written versus generated. Human-written test
cases contain precise assertions written by developers about
the expected program behaviour. On the other hand, auto-
matically generated tests contain generic assertions. Com-
monly, it is believed that human-written test cases have a
higher fault detection ability than generated assertions. We
test this assumption in our work.

Assertion content type. Test assertions either check the
value of primitive data type or objects of different classes.
We further classify Java’s primitive data types into numbers
(for int, byte, short, long, double, and float), strings (for
char and String), and booleans. This way, depending on
the type of the content of an assertion, it falls into one of
the following classes: number-content-type, string-content-
type, boolean-content-type, or object-content-type. We explore
whether these assertion content types have an impact on the
effectiveness of a test suite.

For assertion content type, we apply dynamic analysis to
automatically classify the assertions in a given test suite to
the different categories. We first instrument test code to
probe each assert statement for the type of content it asserts
on. Then, we run the instrumented test code, and use the
information collected to automatically assign assertions to
the different content type categories.

Assertion method type. It is also possible to catego-
rize assertions according to their actual method types. For
instance, assertTrue and assertFalse, assertEquals and
assertNotEquals, and assertNull and assertNotNull can
be assigned to different categories. We investigate if these
assertion method types have an impact on effectiveness.

For assertion method types, we parse the test code and syn-
tactically identify and classify assertions to different assertion
method type classes.

Generating test suites. Under each assertion categoriza-
tion, for each assertion type, we compose 50 sample test
suites, each containing 100 assertions. A sample test suite
contains all test methods in the master test suite, but only
100 randomly selected assertions of the target type. For
instance, a sample test suite of the type string-content-type
will contain all the test methods in the master test suite but
only 100 randomly selected string-content-type assertions.

To quantitively compare the effectiveness between human-
written and generated assertions, for each subject program,
we generate (1) 50 sample test suites, each containing 100
human-written assertions from the master test suite, and
(2) 50 sample test suites, each containing 100 automati-
cally generated assertions using Randoop [23], a well-known
feedback-directed test case generator for Java. We use the
default settings of Randoop.

Analysis of variances. For assertion content type and
assertion method type, since there are multiple variables
involved, we use the One-Way ANOVA (analysis of vari-
ance) statistical method to test whether there is a significant
difference in test suite effectiveness between the variables.
Before we conduct the ANOVA test, we used the Shapiro-
Wilk test to pretest the normality of our data, and Levene’s
test to pretest the homogeneity of their variances. Both were
positive. ANOVA answers the question whether there are
significant differences in the population means. However,
it does not provide any information about how they differ.
Therefore, we also conduct a Tukey’s Honest Significance
Test to compare and rank the effectiveness of assertion types.

4. RESULTS
In this section, we present the results of our experiments.

4.1 Effectiveness of Assertion Quantity
Ignoring test suite size. Figure 1 depicts plots of our
collected data for JFreeChart.6 Figures 1a and 1b show that
the relationship between test suite size and effectiveness is
very similar to the relationship between assertion quantity
and effectiveness. As the plot in Figure 1c shows, there exists
a linear relationship between the number of test methods and
the number of assertions, in the 1000 randomly generated
test suites.

Table 4 shows the Pearson (ρp ) and Kendall’s (ρk) correla-
tions between effectiveness with respect to suite size (m) and
assertion quantity a, for the test suites that are randomly
generated for all the five subjects. As the table shows, there
is a very strong correlation between number of assertions in
a test suite and the test suite’s effectiveness, and the cor-
relation coefficients are very close to that of suite size and
effectiveness. This is consistent with the plots of Figure 1.

6Note that we observed a similar trend from the other sub-
jects, and only include plots for JFreeChart due to space
limitations.
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Figure 1: Plots of (a) suite size versus effectiveness,
(b) assertion quantity versus effectiveness, and (c)
suite size versus assertion quantity, for the 1000 ran-
domly generated test suites from JFreeChart. The
other four projects share a similar pattern consis-
tently.

Table 4: Correlation coefficients between test suite
size and effectiveness (m), and assertion quantity
and effectiveness (a). ρp shows Pearson correlations
and ρk represents Kendall’s correlations.

Subject ID ρp(m) ρp(a) ρk(m) ρk(a) p-value

1 0.954 0.954 0.967 0.970

< 2.2e− 16
2 0.973 0.973 0.969 0.969
3 0.927 0.927 0.917 0.917
4 0.929 0.928 0.912 0.930
5 0.945 0.947 0.889 0.894

The correlations between assertion quantity and effectiveness
are slightly higher or equal to the correlations between the
number of test methods and effectiveness.

Finding 1: Our results indicate that, without controlling
for test suite size, there is a very strong correlation between
the effectiveness of a test suite and the number of assertions
it contains.

Controlling for test suite size. Table 5 shows our results
when we control for test suite size. Column 2 shows the
number of assertions in the smallest test suite, and column
3 shows the difference in assertion quantity between gener-
ated test suites. Columns 3 and 4 present the Pearson and
Kendall’s correlations, respectively, between the assertion
quantity and the effectiveness of the test suites that are gen-
erated from the five subjects by controlling test suite size. As
the high correlation coefficients indicate in this table, even
when test suite size is controlled for, there is a very strong
correlation between effectiveness and assertion quantity.

Table 5: Correlations between number of assertions
and suite effectiveness, when suite size is controlled
for.

Subject ID Base Step ρp(a) ρk(a) p-value

1 1,000 50 0.976 0.961

< 2.2e− 16
2 100 100 0.929 0.970
3 0 10 0.948 0.846
4 100 10 0.962 0.839
5 100 5 0.928 0.781

Finding 2: Our results suggest that, there is a very strong
correlation between the effectiveness of a test suite and the
number of assertions it contains, when the influence of test
suite size is controlled for.
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Figure 2: Plot of mutation score against suite size
for test suites generated from assertion buckets low,
middle, and bucket high from JFreeChart. The other
four projects share a similar pattern consistently.

Controlling for assertion quantity. Figure 2 plots the
effectiveness of the test suites generated by controlling for
the number of assertions. Three buckets of high, middle
and low in terms of the number of assertions were used for
generating these test suites (see Section 3.3.1). From low to
high, each bucket contained 762, 719, and 742 test cases in
total, and the average number of assertions per test case was
0.9, 2.5, and 9.1, respectively. From the curves in the plot,
we can see that the effectiveness increases as the number of
test methods increase. However, comparing the curves, there
is a clear upward trend in a test suite’s effectiveness as its
assertion quantity level increases. For every given test suite
taken from the lower curve on the plot, there exits a test
suite with the same suite size that has a higher effectiveness
because it contains more assertions.

Finding 3: Our results indicate that, for the same test
suite size, assertion quantity can significantly influence the
effectiveness.

4.2 Effectiveness of Assertion Coverage
To answer RQ2, we first computed the assertion coverage,

statement coverage, and mutation score of the randomly
generated test suites (see subsubsection 3.3.2). Figure 4a
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Figure 3: Mutation score (above) and explicit mutation score (below) plot against assertion coverage for the
five subject programs. Each box represents the 50 test suites of a given assertion coverage that were generated
from the original (master) test suite for each subject. The Kendall’s correlation is 0.88–0.91 between assertion
coverage and mutation score, and 0.80–0.90 between assertion coverage and explicit mutation score.

plots our results. The two fitted lines both have a very high
adjusted R2 and p-value smaller than 2.2e−16; this indicates
a very strong correlation between assertion coverage and
effectiveness as well as statement coverage and effectiveness.
The plot also shows that a test suite having the same assertion
coverage as another test suites’s statement coverage, is much
more effective in detecting faults. Compared with statement
coverage, assertion coverage is a more sensitive predictor of
test suite effectiveness.
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Figure 4: Plots of (a) mutation score against asser-
tion coverage and statement coverage, (b) assertion
coverage against assertion quantity, for the 1000 ran-
domly generated test suites from JFreeChart.

Figure 4b plots assertion coverage against number of as-
sertions in a test suite. From the plot, assertion coverage
of a test suite increases as test suite size increases. How-
ever, the increasing rate of assertion coverage decreases as
test suite size increases. There is a strong increasing lin-

ear relationship between assertion coverage and test suite
effectiveness. Therefore, it is expected that, test suite ef-
fectiveness increases as test suite size increases but with a
diminishing increasing rate, which is again consistent with
our results in subsection 4.1.

Finding 4: Our results suggest that, assertion coverage is
very strongly correlated with test suite effectiveness. Also,
ignoring the influence of assertion coverage, there is a
strong correlation between statement coverage and the ef-
fectiveness.

Controlling for assertion coverage. Figure 3 shows box
plots of our results for the test suites generated by control-
ling their assertion coverage. The adjusted R2 value for each
regression line is shown in the bottom right corner of each
box plot. It ranges from 0.94 to 0.99 between assertion cov-
erage and mutation score, and 0.80 to 0.99 between assertion
coverage and explicit mutation score. This indicates asser-
tion coverage can predict both mutation score and explicit
mutation score well.

Table 6 summarizes statistics for these test suites. Col-
umn 3 contains the Kendall’s correlations between statement
coverage and mutation score (0.50–0.76), column 4 presents
the Kendall’s correlations between statement coverage and
explicit mutation score (0.01–0.63). When assertion coverage
is controlled for, there is a moderate to strong correlation
between statement coverage and mutation score, and only
a low to moderate correlation between statement coverage
and explicit mutation score. For instance, only about 1/3
of the mutants generated for Urban Airship Library (ID
5) and lambdaj (ID 4) are explicitly detectable mutants;
correspondingly there is only a weak correlation (0.01–0.33)
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Table 6: Statistics of test suites composed at different assertion coverage levels.

Subject ID Assertion Coverage
Stat. Coverage Corr. Mutation Score Statement Coverage

ρgeneral ρexplicit general explicit

1

4.2% 0.62 0.17 0.21 0.13 15%
8.4% 0.60 0.22 0.35 0.24 23%
12.5% 0.59 0.11 0.48 0.35 30%
16.7% 0.63 0.33 0.61 0.45 36%
20.9% 0.58 0.26 0.73 0.61 41%
25.1% 0.71 0.32 0.85 0.75 47%

2

9.9% 0.67 0.49 0.17 0.12 21%
17.7% 0.67 0.51 0.30 0.22 34%
25.5% 0.65 0.48 0.43 0.31 46%
33.7% 0.66 0.50 0.56 0.40 57%
41.4% 0.58 0.27 0.69 0.50 68%

3

6.7% 0.62 0.06 0.18 0.05 19%
13.5% 0.74 0.06 0.33 0.10 30%
20.2% 0.76 0.01 0.46 0.14 39%
26.9% 0.75 0.07 0.59 0.17 48%
33.6% 0.76 0.05 0.70 0.20 55%

4

9.5% 0.76 0.21 0.17 0.06 19%
19.0% 0.73 0.33 0.31 0.10 32%
28.5% 0.70 0.30 0.46 0.15 45%
38.0% 0.63 0.23 0.61 0.20 58%
47.5% 0.50 0.10 0.76 0.26 70%

5

1.6% 0.73 0.63 0.10 0.06 4%
3.0% 0.76 0.35 0.23 0.15 8%
4.3% 0.70 0.38 0.41 0.28 12%
5.8% 0.60 0.25 0.57 0.43 16%
7.3% 0.62 0.24 0.71 0.56 19%

between their statement coverage and explicit mutation score.
A higher fraction (≈ 2/3) of the mutants generated for the
other three subjects are explicitly detectable mutants, and
thus the correlation between their statement coverage and
explicit mutation score increases significantly (from 0.11 to
0.63).

Columns 5–7 in Table 6 pertain to the average mutation
score, average explicit mutation score, and average statement
coverage of the test suites at each assertion coverage level,
respectively. As the results show, a slight increase in assertion
coverage can lead to an obvious increase in the mutation score
and explicit mutation score. For instance, for JFreeChart
(ID 1), when assertion coverage increases by around 4%,
the mutation score increases by around 12.4% and explicit
mutation score increases by around 11%. On the other hand,
a 4% increase in the statement coverage does not always
increase either mutation score or explicit mutation score.
This shows again that assertion coverage is a more sensitive
indicator of test suite effectiveness, compared to statement
coverage.

Finding 5: Our results suggest that, assertion coverage is
capable of predicting both mutation score and explicit mu-
tation score. With assertion coverage controlled for, there
is only a moderate to strong correlation between statement
coverage and mutation score, and a low to moderate cor-
relation between statement coverage and explicit mutation
score. Test suite effectiveness is more sensitive to assertion
coverage than statement coverage.

4.3 Effectiveness of Assertion Types
To answer RQ3, we examined the 9,177 assertions of JFr-

eeChart.

Assertion generation strategy. Figure 5a plots the effec-
tiveness of human-written test suites and Randoop generated
test suites against assertion quantity. As we can observe,
the effectiveness of human-written and generated test suites

both increase as the assertion quantity increases. However,
the effectiveness of the generated test suites gets saturated
much faster than human-written test suites.

From our observations of the composed test suites, the
50 human-written sample test suites are effective in killing
mutants, while the 50 generated test suites can hardly detect
any mutant. We increased the assertion quantity in the
sample test suites to 500, but still saw the same pattern.

Finding 6: Our results indicate that, human-written test
assertions are far more effective than automatically gener-
ated test assertions.

Assertion content type. Assertions are also classified
based on the types of the content they assert on. Figure
5b box plots the effectiveness of the sample test suites that
exclusively contain assertions on object, boolean, number,
or string types. Tables 7 and 8 show the ANOVA and the
Tukey’s Honest Significance test, respectively. The F value is
1544 with a p-value very close to 0, thus we can confidently
reject the null hypothesis of equal variances (effectiveness)
for the four assertion content types. Table 8 shows the
estimated difference in mutation score in column 2, and
the 95% confidence interval of the difference in columns 3
and 4. The Tukey’s test indicates that there is a significant
difference between the effectiveness of assertions that assert
on boolean/object, string, and number types. Assertions
that assert on boolean types are as effective as assertions
that assert on objects.

Finding 7: Our results suggest that, there is a significant
difference between the effectiveness of assertions that assert
on different content types. Their effectiveness can be ranked
in increasing order: (1) string, (2) number, (3) boolean or
object type.

Assertion method type. Assertions can also be classified
by their actual method types. Figure 5c plots the effectiveness
of the sample test suites that belong to the three assertion
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Figure 5: Plots of (a) assertion quantity versus ef-
fectiveness of human-written and generated tests,
(b) assertion content types versus effectiveness, and
(c) assertion method types versus effectiveness. In
(b) and (c), each box represents the 50 sample test
suites generated for each type; the total number of
assertions of each type are indicated in red.

Table 7: One-Way ANOVA on the effectiveness of
assertion content types and actual assertion types.

Df Sum Sq Mean Sq F value Pr(>F)

Assertion Content Types
Type 3 0.15675 0.05225 1544 <2e-16
Residuals 196 0.00663 0.00003

Assertion Method Types
Type 2 0.01398 0.006988 87.87 <2e-16
Residuals 147 0.01169 0.000080

method types. In this paper, we did not study assertSame
and assertNotSame, because there were only 27 of them
in JFreeChart, which is a low number to be representative.
The bottom half of tables 7 and 8, present the ANOVA and
Tukey’s Honest Significance test, respectively, for assertion
method types. The F value is 87.87 with a p-value very close
to 0, thus we can reject the null hypothesis of equal variances
(effectiveness) for the three assertion method types. The
Tukey’s test shows that there exists a significant difference
between the effectiveness of the three assertion method types.

Finding 8: Our results indicate that, there is a significant
difference between the effectiveness of different assertion
method types. The effectiveness of the method types can
be ranked from low to high as: (1) assert(Not)Null, (2)
assert(Not)Equals, and (3) assertTrue/False.

5. DISCUSSION

Table 8: Tukey’s Honest Significance Test on the ef-
fectiveness of assertion content types and assertion
method types. Each of the sample test suites used
for the comparison contains 100 assertions of a tar-
get type.

Types diff lwr upr p adj

Assertion Content Types
Boolean vs. Object -0.0002 -0.0032 0.0028 0.9985
Number vs. Boolean -0.0470 -0.0500 -0.0440 0.0000
String vs. Number -0.0156 -0.0186 -0.0126 0.0000

Assertion Method Types

assertNull/Not
-0.0103 -0.0145 -0.0060 1e-07

vs. assertTrue/False
assertEquals/Not

-0.0133 -0.0175 -0.0091 0e+00
vs. assertNull/Not

5.1 Test Suite Size vs. Assertion Quantity
From the findings 1 and 2, the number of assertions in a

test suite is very strongly correlated with its effectiveness with
or without controlling for the influence of test size. However,
according to finding 3, if we in turn control for the number
of assertions, a test suite’s effectiveness at a same test size
level can be directly influenced by the number of assertions it
contains. Thus, test suite size is not sufficient in predicting
the effectiveness without considering the influence of assertion
quantity. In addition, assertion quantity provides extra
indications about the suite’s explicit mutation score, which
constitutes a large portion of the mutation score. Therefore,
test suite size can predict the effectiveness only under the
assumption that there is a linear relationship between the
number of test methods and the number of assertions in
the test suite. We believe this is an interesting finding,
which explains why previous studies [20] have found a strong
correlation between suite size and effectiveness.

5.2 Implicit vs. Explicit Mutation Score
We noticed an interesting phenomenon, namely, that mu-

tants that are implicitly detectable can also be detected by
assertions, if the mutated statement falls in the coverage
of the assertion. However, mutants that are explicitly de-
tectable by assertions can never be detected by non-assertion
statements of the tests. This is because explicitly detectable
mutants cannot be detected by simply executing the mu-
tated part of a program; i.e., a specific assertion statement is
required to catch the program’s unexpected behaviour. This
is due to the fact that explicitly detectable mutants inject
logical faults into a program that lead to a contradiction with
the programmers’ expectations. From our observations, more
than half of all detectable mutants (28%–73%) are explicitly
detected by assertions in a test suite; and therefore assertions
strongly influence test suite effectiveness. If we only focus
on explicitly detectable mutants, then test assertions are
the only means to achieve suite effectiveness. This might
also explain why statement coverage achieves a relatively low
correlation with explicit mutation score.

5.3 Statement vs. Assertion Coverage
From findings 4 and 5, assertion coverage is a good esti-

mator of both mutation score and explicit mutation score.
If the influence of assertion coverage is controlled, there is
a passable level of correlation between statement coverage
and mutation score, while only a weak correlation between
statement coverage and explicit mutation score. Therefore,
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statement coverage is a valid estimator of mutation score
only under the assumption that not all of generated mutants
are explicitly detectable mutants. In other words, statement
coverage is not an adequate metric of logical-fault detection
ability. Statement coverage includes more statements than
assertion coverage from source code, without providing any
extra insights for predicting test suite effectiveness. Com-
pared with statement coverage, assertion coverage is very
strongly correlated with the effectiveness regardless of the
distribution of implicitly or explicitly detectable mutants.
Our results suggest that testers should aim at increasing the
assertion coverage of their test suite instead of its statement
coverage, when trying to improve a test suite’s effectiveness.

5.4 Utilizing Assertion Types
Our results also confirm that generated assertions are much

less effective than human-written assertions, and thus should
only be used as a supplement of human-written assertions
instead of a replacement. More interestingly, Findings 7 and
8 show us that assertion types can significantly influence a
test suite’s effectiveness. Therefore, it is indispensable to con-
sider the distribution of assertion types in a test suite when
predicting its effectiveness. This is an interesting finding
that merits more empirical investigation.

5.5 Threats to Validity
Internal validity: To conduct the controlled experiments,

we made use of many existing tools, such as PIT [8], Clover
[3], and JavaSlicer [5]. We assumed these tools are able to
produce valid results. Therefore, any erroneous behaviours of
these tools might introduce unknown factors to the validity
of our results. To mitigate such factors as much as possible,
we tested our own code that uses these external tools. Similar
to previous studies [20], we treated mutants that cannot be
detected by the master test suites as equivalent mutants,
which might overestimate the number of equivalent mutants.
However, since we are mainly concerned with the correlations
between mutation/explicit mutation score and the other
metrics, subtracting a constant value from the total number
of mutants generated, will not impact the correlations.

External validity: We study the relationship between
assertions and test suite effectiveness using more than 24,000
assertions collected from five open source Java programs.
However, programs written in Java may not be representa-
tive of the programs written in other languages. Thus, our
results might not extend to other languages. Moreover, the
assertions we examine in this paper are JUnit4 assertions,
and our results may not apply to assertions used in other
testing frameworks. We mainly looked at the 9,177 asser-
tions for JFreeChart [6] when comparing the effectiveness of
different assertion types. Although the set of assertions used
is large and written by real developers, our findings may not
generalize to other programs. In addition, there might be
some interdependencies between assertion content types and
assertion method types. For instance, it is difficult to control
the confounding factor between assertions on the boolean con-
tent type and assertions that make use of assertTrue/False
method type, as both will be present in each measurement;
we do not know if a particular effectiveness correlation is due
to the content type (boolean) or the assertion method type
(assertTrue/False). Moreover, we used PIT to conduct
mutation testing; PIT stops executing once a test assertion
detects a mutant. However, it is helpful to know all the asser-

tions that would fail when studying assertion types. We used
Randoop to generate test cases with assertions, which were
compared to human-written assertions. However, there also
exist other test oracle generation strategies than feedback-
directed random test generation, and using a different test
generation strategy might influence the results. We used
Randoop, because of its relative ease of use.

Our empirical data as well as the five subject programs
are all available online, making our study repeatable.

6. CONCLUSIONS
In this paper, we studied the relationship between test

assertions and test suite effectiveness. First, we examined the
correlation between assertion quantity and the effectiveness,
and further analyzed the influence of assertion quantity on
the correlation between test suite size and the effectiveness.
Second, we investigated the relationship between assertion
coverage and suite effectiveness, and explored the impact of
assertion coverage on the relation between statement coverage
and effectiveness. Finally, we compared the effectiveness of
different assertion characteristics. Based on an analysis of
over 24,000 assertions collected from five cross-domain real-
world Java programs, we found that:

• There is a very strong correlation between the num-
ber of assertions and test suite effectiveness, with or
without controlling for the number of test methods in
the test suite. Thus, the number of assertions in a test
suite can significantly influence the prediction power
of test suite size for the effectiveness.

• There is a very strong correlation between assertion
coverage and test suite effectiveness. With assertion
coverage controlled for, there is a moderate to strong
correlation between statement coverage and mutation
score, and only a weak to moderate correlation between
statement coverage and explicit mutation score. There-
fore, statement coverage is an adequate metric of test
suite effectiveness only under the assumption that the
faults to be detected are not only explicitly detectable,
while assertion coverage is a good estimator of test
suite effectiveness without such a constraint.

• Types of assertions can influence the effectiveness of
their containing test suites: (1) human-written asser-
tions are more effective than generated assertions, (2)
assertions which assert on boolean/object content types
are more effective than assertions that assert on string
and number types, and (3) assertions with method type
assertTrue/False are more effective than those with
type assertEquals/Not and assertNull/Not.

Our results indicate that it might be sufficient to use
the assertion quantity and assertion coverage as criteria to
measure a suite’s adequacy, since these two metrics are at
least as good as suite size and statement coverage.

For future work, we would like to conduct experiments on
more programs to further validate our findings. Moreover,
we will conduct a qualitative analysis of a set of assertions
to understand the reasons behind the effectiveness variations
in different assertion types.
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