
Generating Reusable Web Components from Mockups
Mohammad Bajammal

University of British Columbia
Vancouver, BC, Canada
bajammal@ece.ubc.ca

Davood Mazinanian
University of British Columbia

Vancouver, BC, Canada
dmazinanian@ece.ubc.ca

Ali Mesbah
University of British Columbia

Vancouver, BC, Canada
amesbah@ece.ubc.ca

ABSTRACT
The transformation of a user interfacemockup designed by a graphic
designer to web components in the final app built by a web devel-
oper is often laborious, involving manual and time consuming steps.
We propose an approach to automate this aspect of web develop-
ment by generating reusable web components from a mockup. Our
approach employs visual analysis of the mockup, and unsupervised
learning of visual cues to create reusable web components (e.g.,
React components). We evaluated our approach, implemented in
a tool called VizMod, on five real-world web mockups, and as-
sessed the transformations and generated components through
comparison with web development experts. The results show that
VizMod achieves on average 94% precision and 75% recall in terms
of agreement with the developers’ assessment. Furthermore, the
refactorings yielded 22% code reusability, on average.

CCS CONCEPTS
• Software and its engineering → Software development tech-

niques; Software prototyping;

KEYWORDS
web UI, web components, web refactoring, machine learning, com-
puter vision

ACM Reference Format:
Mohammad Bajammal, Davood Mazinanian, and Ali Mesbah. 2018. Gener-
ating Reusable Web Components from Mockups. In Proceedings of the 2018

33rd ACM/IEEE International Conference on Automated Software Engineering

(ASE ’18), September 3–7, 2018, Montpellier, France. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3238147.3238194

1 INTRODUCTION
The development of user interfaces (UIs) for web apps is often a
manual and time consuming task. In a survey of more than 5,700
developers, 51% reported working on app UI design tasks on a
daily basis [15], more so than other development tasks, which they
tended to perform every few days. Another study also showed that
an average of 48% of the code size of software is related to the user
interface [39].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238194

A common workflow for creating web user interfaces is mockup

based design [40, 41]. In this approach, a graphic designer creates a
rough illustration of the anticipated UI design, called the mockup

or wireframe, usually through a graphic design software or a WYSI-
WYG editor. This mockup is then exported to HTML to be rendered
in a browser. A web developer then examines the mockup and be-
gins constructing web components for the app, which are nowadays
implemented in one of the popular front-end frameworks such as
Angular [13] or React [16].

The main building block of UI design, and a cornerstone of
these front-end frameworks, is the concept of reusable compo-

nents [14, 17], which are a set of APIs and coding practices allow-
ing reuse and encapsulation of repeated patterns on the front-end.
Reusable components help improve modularity and maintainability,
make the code more testable, and effectively remove duplication,
by offloading the task of creating repetitive patterns to the web
browser at runtime. Recent surveys show that using front-end
frameworks is extensively popular among web developers. In one
survey more than 92% of around 28,000 surveyed web developers
stated that they use a framework rather than constructing UIs using
pure HTML [53]. As a result, creating reusable components is often
an essential element of building an app’s front-end.

This component creation process can often be time consuming
and tedious [47] in practice; it requires several manual steps, includ-
ing the examination of the mockup, checking potential elements
that may or may not be suitable for conversion to components, con-
structing a template for components that unifies repeated segments,
adding placeholders for variable content, and refactoring the code
to replace instances with instantiated components [47].

To the best of our knowledge, there has been little to no auto-
mated support in creating these reusable web components from
mockups. Existing techniques help to manage mockups themselves,
but do not generate any components. For instance, one set of ap-
proaches [44, 51] takes a mockup as input and converts its layout
into a responsive code (e.g., through CSS) such that it is flexible to
maintain the layout on different display sizes. Others [35] propose
a tool that overlays the mockup as a transparency layer while im-
plementing the UI, and performs a snapping-like functionality that
aligns against various parts of the mockup.

In this paper, we propose a technique, implemented in a tool,
VizMod, to fill this gap by automatically generating reusable web
components frommockups. Given a web mockup, our technique au-
tomatically identifies patterns on the UI, refactors the HTML code,
and creates reusable components for popular front-end frameworks
that are already familiar to developers such as React or Angular.
At the core of our approach is an unsupervised machine learning
process for the detection of reusable UI patterns; we use features
composed of a hybrid of information obtained from the Document
Object Model (DOM) as well as the visual analysis of the UI.

https://doi.org/10.1145/3238147.3238194
https://doi.org/10.1145/3238147.3238194

ASE ’18, September 3–7, 2018, Montpellier, France Mohammad Bajammal, Davood Mazinanian, and Ali Mesbah

We evaluate VizMod on five real-world web mockups by auto-
matically identifying and transforming 120 component instances
into 25 components. We also ask five experts to manually find
patterns on the mockups and compare the output from our ap-
proach with the manually-identified patterns. Our approach is able
to achieve 94% precision and 75% recall, on average, in correctly
detecting reusable patterns in the UIs.

This paper makes the following main contributions:

• A novel approach for automatically generating web compo-
nents (e.g., React, Angular) from mockups, which is the
first to address this issue, to the best of our knowledge.
• A technique for visually analyzing the structure of a mockup
and transforming it into components via unsupervised ma-
chine learning.
• An implementation of our approach, available in a tool called
VizMod.
• A qualitative and quantitative evaluation of VizMod in terms
of its accuracy and reusability of the generated components.

2 MOTIVATING EXAMPLE
Figure 1 illustrates a part of a sample UI mockup for a job hunting
website. The mockup, often designed by a graphics designer in a
team, provides a visual representation of what the UI of the web app
is supposed to look like. The code corresponding to this mockup
includes the HTML code, which defines the mockup’s structure
and content, and CSS code, which defines its style and presentation.
This code is typically generated automatically using popular web
UI editors (e.g., Muse, Dreamweaver, Visual Studio). The HTML
and CSS code is interpreted by web browsers to render the UI.

Subsequently, a web developer oversees the creation of the final
front-end code for the app. For the vast majority of developers, a ma-
jor part of this process is the creation of reusable components [53].
Using components is key in improving modularity and maintain-
ability and achieving the software engineering best practice of DRY
(Don’t Repeat Yourself). It is also an effective way to remove dupli-
cations in the app’s code, which has been shown to be associated
with increased error-proneness [19], maintenance effort [28], code
instability [37], as well as higher hosting costs and rendering de-
lays due to the transmission of redundant data. The utilization of
reusable web components can help to address these issues.

For example, observe in Figure 1 that there are four groups of
elements repeated in the mockup, denoted by A , B , C and D .
Notice that the repeated elements are not exactly similar; there are
differences in terms of, for example, the text and images appearing
within the elements. Nevertheless, the structure of the repeated
elements in each group and their overall visual appearances are
unquestionably repeating. Reptitions in UI are unavoidable and
neccessary. In fact, repetition is an important aspect of effective
visual design [33], and is known as a functional technique to achieve
appealing designs [11]. Research has shown that, when a visual

stimuli is repeated, it is more likely to be accepted by people, a
phenomenon called repeated exposure [23].

However, the process of creating components is rather time con-
suming, requiring manual effort [47]. When analyzing repetitions
in a mockup to construct components in one of the modern UI
frameworks, developers often face the following challenges:

A

B D
C

Figure 1: An example of a web UI mockup.

• They need to visually glance at the mockup and manually iden-
tify the patterns in the UI that can be potentially refactored to
create a reusable component. For instance, for group A , they
need to find all patterns in the page that represents components
similar to the elements inside group A . The repetition might
be spread across the web page, making the identification more
challenging. The developer has to repeat this same process for
other groups of components on the page, which quickly becomes
a time consuming manual effort. Note that, this identification is
not possible by only using existing code clone detection tools that
support HTML code as input (e.g., NiCad [49]), due to several
reasons:
(1) These tools leave out the visual appearance of the elements

and only work at the source code level, which is sub-optimal
since there are several inherent patterns in HTML which
do not necessarily represent a UI component. For example,
HTML tables are declared using a <table> tag followed by
a series of other tags, e.g., <thead>, <tbody>, <colgroup>,
<tr>, and <td>, nested in a predefined hierarchy. The clone
detector might mark all tables on the page for extraction,
even if they do not visually constitute a reusable component
in the UI. The same happens for several other elements, such
as (un)ordered, description, and drop-down lists.

(2) Clone detectors need to be configured properly in order to
yield desirable clones. There is usually a large list of parame-
ters and thresholds to tune, and finding an optimal configu-
ration is a laborious task [57].

(3) Clone detectors are not aware of the ultimate reason for
detecting clones, e.g., there is no configuration that can force
them to only identify refactorable clones.

• The developer also needs to unify the patterns to construct a
reusable component in a UI framework. This process needs care-
ful investigation of repeated HTML, to identify how elements
can be unified into one representative component, and which
elements can be parameterized when there are differences. For
example, in group A , a developer would examine each button

Generating Reusable Web Components from Mockups ASE ’18, September 3–7, 2018, Montpellier, France

DOM in
Web Browser Visual Elements

Refactored
HTML

Potential
Component Instance

Identification

Identified
Components

Visual UI
Normalization

UI Component
Generation

class C1 extends
 React.Component {
 render() {
 return(
 <div> ...
)
 }
}

class C1 extends
 React.Component {
 render() {
 return(
 <div> ...
)
 }
}

class C1 extends
 React.Component {
 render() {
 return(
 <div> ...
)
 }
}

UI Components
(React, Angular, ...)

Potential
Component

Instances

Unsupervised
Visual Matching

Figure 2: Overview of the proposed approach.

in the group, and determine which parts are repeated between
the buttons, and which part is variable (e.g., the button icon and
its label). The constructed component should resemble the exact
hierarchy of the original repeated elements, or else the output of
the resulting UI might differ from the original one.
• Moreover, to use the constructed component, the developer has to
instantiate it in the places where the repeated elements originally
appeared, with the appropriate parameters (e.g., original texts or
images) to preserve the output of the mockup. For example, in
group A , the developer needs to refactor the original code and
replace every occurrence of a button with a call to the button
component, passing along arguments for the button label and its
image.
To the best of our knowledge, there has been no techniques avail-

able to address the aforementioned issues and support developers
in the generation of components.

3 PROPOSED APPROACH
Figure 2 shows an overview of our proposed approach to automat-
ically generate modularized reusable UI components from mock-
ups. The approach begins by retrieving the DOM of the web app’s
mockup. Next, a visual abstraction is performed to generate a nor-
malized and abstract representation of the web app’s UI layout.
This transforms the mockup into a set of visual elements (VEs) on
which further analysis is conducted. The approach then performs a
dynamic grouping of visual elements, to identify subtrees which
correspond to potential instances of a UI component. This grouping
is used in the next step, where an unsupervised machine learning
technique applied on the potential UI component instances identi-
fies UI components. Finally, the actual code for the UI components
is generated by refactoring the original HTML code.

In the following subsections, we describe each step of the pro-
posed approach and illustrate some of their major components and
analysis procedures.

3.1 Definitions
Before we proceed to describe the details of the proposed approach,
we begin by declaring a few important definitions that are used
throughout the paper.

Definition 1 (UI Component). A UI component cE = ⟨n,N ⟩
for a repeated group of UI element trees E in a web application is a

tree structure rooted at n ∈ N , where N = T ∪ P is a set of abstract

user interface elements. The component includes the template T and

the placeholders P . The template of the UI component denotes the

nodes which do not change wherever the component is used (i.e.,

instantiated), while the placeholders allow parameterized nodes.

In this paper, we use the terms UI component and component

interchangeably.

Definition 2 (Component Instance). A component instance

i = ⟨cE , f ⟩ is a concrete and specific instantiation of a UI component

cE . Component instances share the template part with other instances

of the same component, but differ in the placeholder parts. The function

f : P → V assigns values v ∈ V to the placeholders p ∈ P of cE .

Definition 3 (Potential Instance). A potential instance is

a subtree of the DOM constructed for a web application’s user inter-

face, representing a concrete UI element tree that is likely to form a

component instance, but may not be so.

Potential instances are processed at multiple stages of the pro-
posed approach until they are either discarded or associated with a
component.

3.2 Visual UI Normalization
In the first step of the approach, we take as input the DOM of the
mockup after it is loaded and rendered in a browser, and perform a
visual normalization that transforms the DOM into a set of visual
elements. The goal of this step is to normalize the visual presentation
of a web user interface into a set of abstract elements that signify
the salient features of the page from a visual perspective, which
may represent potential component instances. The intuition behind
this is that normalization and abstraction can be helpful to achieve
our goal of detecting reusable patterns, since the exact and minute
details are less relevant when identifying repeated regions of a web
page. Furthermore, component instances are generally different
from each other in some aspects, while they still have similar overall
visual appearance. This normalization step enables obtaining a big
picture to identify these potential similarities.

The visual normalization is achieved as follows. First, we extract
from the DOM a set of nodes that represent visual content of the
UI, and we refer to each of these as visual elements. We define two
main types of visual elements: textual and graphical (image). The
extraction of text content is achieved by traversing text nodes of
the DOM. More specifically:

ΓT B {E (node) : node ∈ DOMR

∧node .hasTextContent } (1)

where ΓT is the set of all visual elements that represent text in
the UI, DOMR is the rendered DOM in the web browser, and
E (node) maps the node to the corresponding element. The predicate
hasTextContent examines whether there is a text associated with
the node, and covers two possibilities: non-empty nodes of type
#TEXT, representing string literals in DOMR , and nodes of input
elements that have an associated text value (e.g., buttons or lists).
Subsequently, we perform another extraction for image content.
We define this as follows:

ASE ’18, September 3–7, 2018, Montpellier, France Mohammad Bajammal, Davood Mazinanian, and Ali Mesbah

Figure 3: The result of the visual UI normalization stage (as
applied to the motivating example of Figure 1). Best viewed
on a color display.

ΓI B {E (node) : node ∈ DOMR

∧node .hasImaдeContent } (2)

where ΓI is the set of all visual elements that represent images. As
in the previous case, the predicate hasImaдeContent examines if
there is an image associated with the node. This again has two
possibilities: nodes of elements and non-img nodes with a
non-null background image attribute.

Subsequently, we use the set of all visual elements to construct
the normalized UI:

UIN = V (ΓI ∪ ΓT) (3)

where UIN is the resultant normalized UI and V is a visual projec-
tion operation that generates an image from the union of visual
elements. This is achieved as follows. First, we begin by collecting
the final computed properties of each element, when rendered in the
web browser. These properties represent the final state of elements
after the propagation of all changes and events. The properties
we collect are the size, location, and z-orders of these elements.
Next, we assign different colors to each class of visual elements.
We assign green for elements in ΓT , and blue for elements in ΓI .
While any arbitrary colors could have been chosen, we chose these
two colors in order to facilitate faster visual analysis in subsequent
steps, since these two are typically represented in separate color
channels. Figure 3 illustrates an example of the output generated
from this visual normalization step. As can be observed, the minute
details of the page are abstracted away while the main and essential
structure of the UI is accentuated.

3.3 Potential Instance Identification
The result of the previous step consists of only a set of visual el-
ements. These visual elements on their own do not necessarily
represent reusable repetitive UI patterns. The goal of this step is to
transform the set of individual visual elements into a set of poten-
tial reusable UI component instances. These potential component
instances will be further checked and analyzed in the subsequent
steps in order to generate a final set of components.

Identifying potential component instances can be an intricate
decision since there are multiple levels of hierarchy that can be
considered. For example, consider group A in Figure 1. Notice
how the icons in that group would constitute repeated elements.

The same is true for the text labels under the icons. Yet another
repetition pattern is taking the icon and text as one component
that is repeated multiple times. Accordingly, in order to identify
potential component instances, we propose an approach that aims
to maximize two complementary aspects, namely, the number of
repetitions of a component, and the amount of repetitions encapsu-
lated within each component instance. We refer to this combination
of aspects as the modularization potential, where a high value of
modularization potential indicates a highly reusable UI component.
Our goal is therefore to utilize this modularization potential to
optimize a set of potential instances, Ψ:

Ψ B argmax
C

∏
ci ∈C

���{ci (γT ,γI) : γT ,γI ⊂ UIN }
��� (4)

where C is the set of all component instances, ci is a potential in-
stance, and the optimized function is the modularization potential.
This optimization yields a global optimum set of potential instances
between two extremes. At one end of the spectrum, each visual ele-
ment represents a component of its own. This yields a sub-optimal
component set that has low modularization potential because of
a lack of repetitions. For this case, the modularization potential in
eq. (4) yields a score of 1 since each component encapsulates only a
single element. At the other end of the spectrum, one might theoret-
ically consider the entire collection of visual elements to represent
a single component that is repeated only once. This results in a
score equal to N , the number of total visual elements, in eq. (4). Ψ,
on the other hand, represents a global optimum between the afore-
mentioned two extremes. Ψ captures a set of potential component
instances that aims for both a large number of components, and
for an instance that in itself has a large number of UI repetitions.
The subsequent steps of the approach will therefore only use Ψ for
further analyses and final generation of components.

We now describe the implementation for generating Ψ. Figure 4
shows an illustration of this process. First, we obtain DOM locators
(e.g., XPath expressions) for each of the visual elements. Next,
starting from these locators as leaf nodes, we iteratively build a
tree from the bottom up (as shown in Figure 4), adding the DOM
parent of every tree node with each iteration. At each iteration, we
calculate the modularizaton potential of eq. (4), with every node’s
subtree representing a potential instance ci . The potential instances
are illustrated using the red outlines in Figure 4. Note how at the
very first iteration, each potential instance is simply the visual
element itself. In the next iteration, the potential instances grow
larger to include more visual elements as shown by the larger red
outlines at iteration 1. Finally, the iteration that yields the maximal
modularization is reported as theΨ set and passed to the subsequent
stage.

3.4 Unsupervised Visual Matching
The output of the previous step is a set of potential component
instances that maximizes the modularization potential out of many
alternative sets of instances. However, these are only potential

instances that may or may not actually belong to a component. In
other words, there is still no information as to which subgroup
of potential instances do indeed belong together and constitute
a reusable component, versus other potential instances that are
simply visual elements that do not represent repetitive reusable

Generating Reusable Web Components from Mockups ASE ’18, September 3–7, 2018, Montpellier, France

<HTML>

<DIV> <DIV>

<A> <A>

Iteration

0

1

N

<DIV>

<A>

Figure 4: Illustration of the potential instance identification
stage. Each iteration considers a different group of potential
instances before selecting an optimum set.

components. In this stage, we process the set of potential component
instances and reduce it into a final set of components.

In order to create the final components, we propose an approach
that visually examines potential instances and combines them into
components via unsupervised machine learning. The intuition be-
hind adopting this approach is that if potential instances match with
other potential instances, the “potential” qualifier can be dropped
from these instances and they would be recognized as constituting
a component together. In this approach, we use a clustering mecha-
nism to create components in order to facilitate robust matching of
potential instances.

We now describe the details of the process. First, we obtain the
screenshot image of the visual elements per potential instance. This
results in one image (containing all visual elements) for each po-
tential instance. Next, for each potential instance image, we extract
a feature vector. We compute the feature vector using a vectorized
pixel histogram, which is a process that captures a summary of
the overall content in the instance image. However, unlike typical
approaches from the machine vision literature [26, 27] where a
binning parameter (a parameter for categorizing pixels) is required,
we generate the vectorized histogram without requiring this param-
eter. Instead, due to the nature of visual normalization that we have
proposed, only two categories need to be considered: one for text
visual elements, and another for image visual elements. Therefore,
we finally end up with a feature vector for each potential instance.
Subsequently, we compute the cosine distance between each pair
Ii , Ij of potential instances:

Di, j = 1 −
Ii · Ij
∥Ii ∥∥Ij ∥

(5)

Next, we perform an unsupervised clustering process. The selec-
tion of an appropriate clustering is of paramount importance due
to a couple of challenges. First, the clustering can be challenging
due to the wide range of possibilities of arrangements and struc-
tures of component instances. In other words, there is potentially a
large range of inter- and intra-component variations. This makes it
difficult to use hierarchical clustering, for instance, due to its very
high sensitivity to outliers and therefore would be a poor choice
for handling large component variations, and also due to its high
dependence on order of data, which can make it less effective for de-
tecting instances far way from each other. Furthermore, performing

a cut on the clustered hierarchies often requires specifying the num-
ber of clusters or some other parameter, which can be difficult and
brittle to specify. Density-based algorithms (e.g., DBSCAN) would
not be effective either, as they would have difficulty handling the
variable densities present between potential clusters of instances.
Accordingly, we opted for a technique that can be flexible enough
to correctly identify such variations and be able to better recognize
the final components. To do this, we select a method that performs
variable-density clustering with a hierarchy of densities [5]. The
hierarchy of variable-densities allows the method to automatically
detect stable clusters in a parameter-free fashion. More importantly,
the method is built to handle varying-densities, which becomes
very important when handling the potentially large range of inter-
and intra-component variations.

Once the components have been identified through unsuper-
vised visual matching, we extract the corresponding locator in the
DOM (e.g., XPaths) per instance. The final result is a superset of
component instance locator sets. This superset is passed on to the
next step in order to combine the component instances into final
components.

3.5 UI Component Generation
We propose an algorithm that unifies the UI component instances
identified in the previous steps into a component implemented
using a web framework (e.g., React, Angular,HTMLWeb Compo-
nents [38]). However, instead of directly generating the framework-
specific code for components, we opt for constructing an intermedi-

ate model that effectively represents components at a higher level of
abstraction. This allows building different translation strategies for
generating the actual code for different frameworks from the same
model, with the added benefit of remaining agnostic to the specific
details of a particular framework. Our implementation supports the
React [16] translation strategy, which is the preferred framework
for a significant number of developers in practice [52, 53]. We first
define the terms used in this step.

Definition 4 (MappingNodes Set). LetT = {t1 . . . tn } be the
list ofDOM subtrees forn instances of a UI component identified by the

previous phases of the approach. A set D = {d1 ∈ t1,d2 ∈ t2 . . .dn ∈
tn } of DOM nodes corresponding to T is a Mapping Nodes Set, when

every pair (di ,dj) of DOM nodes belonging to D aremapping.

Definition 5 (Mapping). Two DOM nodes di and dj are map-

ping (denoted as di ↭ dj) when:

• Both di and dj are root nodes of their trees, or
• di and dj are not root nodes, and
– di .parent .taд = dj .parent .taд, and
– di .parent ↭ dj .parent , and
– di and dj have the same child index (e.g., they are both the first

child of their parents).

Definition 6 (Component IntermediateModel). The Com-

ponent Intermediate Model is a rooted, ordered tree in which each

node corresponds to a Mapping Nodes Set. The hierarchy of this tree

follows the mapping DOM nodes’ hierarchy.

Example. Figure 5(a) depicts the HTML code snippets correspond-
ing to two identified UI component instances. The corresponding

ASE ’18, September 3–7, 2018, Montpellier, France Mohammad Bajammal, Davood Mazinanian, and Ali Mesbah

(c)

Non-parameterized node Soft-parameterized node Hard-parameterized node

t2

t1 <DIV>

<DIV>

#TEXT

#TEXT

<DIV>

<DIV> <DIV>

#TEXT #TEXT

#TEXT

(b)

foo src="1.png"

bar src="2.png"

baz

text1 text2

(a) (d)

1

2

3 4

5
1

2

3
4 5

<component>
 <div>
 <div>
 {arg0}

 </div>
 {arg2}
 </div>
</component>

<div>
 <div>
 foo

 </div>

 baz

</div>

<div>
 <div>
 bar

 </div>
 <div>
 text1
 text2

</div>

<component args=["foo", "1.png", "baz"] />
<component args=["bar", "2.png", <div>text1text2</div>"] />

(e)

1

2

3

4

5

Figure 5: (a) Initial HTML code fragments. (b) Correspond-
ing DOM subtrees. (c) The constructed Component Interme-
diate Model. (d) The final generated UI component. (e) The
calls to the generated UI component.

DOM subtrees, and the constructed Component IntermediateModel
for these subtrees are respectively shown in Figure 5(b) and (c). The
connected DOM nodes with dotted arrows form Mapping Nodes
Sets. Notice that non-mapping DOM nodes do not form a node in
the intermediate model. This model can be translated to a React-
like component similar to what is shown in Figure 5(d). Finally, the
generated component is instantiated two times in the refactored
HTML code to replace the originally-repeated DOM nodes. The
calls to the component can look like what is shown in Figure 5(e).

When generating the actual framework code, each model node
results into a DOM node in the framework component (as depicted
in Figure 5(d)), which essentially unify the nodes in the Mapping
Nodes Set to remove duplication. There are three possibilities for
framework component DOM nodes:

• When all pairs of DOM nodes in a Mapping Nodes Set have the
same tag and identical attribute values, they can be unified in one
DOM node of the same tag. For example, the two <div> nodes
in Figure 5 corresponding to model node 1 form a <div> node
in the component.
• A pair of DOM nodes in a Mapping Nodes Set which have dif-
ferent tag names cannot be unified into one DOM node in the
component (e.g., and <div> corresponding to model
node 5 in Figure 5). Similar is two text nodes with different
content (e.g., the foo and bar corresponding to the model node
3 in Figure 5). In such cases, the DOM nodes (and the whole
subtree rooted at them) should be hard-parameterized in the
resulting component, i.e., a placeholder should be created. The
original parameterized DOM nodes are later passed as arguments

when instantiating the component to recreate the original DOM
hierarchy.
• A pair of DOM nodes in a Mapping Nodes Set that have the
same tag name but different values for one of their attributes
might be unifiable into a DOM node via soft parameterization,

where the differing attribute values are parameterized (e.g., the
 tags corresponding to model node 4 in Figure 5, with
parameterized src attribute values). This can be done only if
the used framework supports parameterizing attribute values.
Otherwise, the parameterization should be done as if it was a
hard parameterization.

The intermediate model construction and refactoring algo-
rithm. The inputs of Algorithm 1 are the original mockup HTML,
the list of component instance DOM subtrees, and the translation
strategy. The output is the refactored HTML wherein duplication
is removed using the UI components.

Algorithm 1 Component Intermediate Model Generation
Input: The original DOM of the mockup (DOMor iдinal), UI component

instances DOM subtrees (subtrees), UI component translation strategy
(strateдy)

Output: The new DOM after refactoring (DOMr ef actored)
1: model ← ConstructEmptyIntermediateModel()
2: coveredNodes ← ∅
3: templateT ree ← getSmallestTree(subtrees)
4: templateNodes ← BFS(templateT ree)
5: for templateNode ∈ templateNodes \ coveredNodes do
6: coveredNodes ← coveredNodes ∪ {templateNode }
7: mappedNodes ← getMappedNodesSet(templateNode, subtrees)
8: parameter ization ← NULL
9: for currentNode ∈ mappedNodes \ coveredNodes do
10: parameter ization ← compare(templateNode, currentNode)
11: if parameter ization , NULL then
12: break
13: end if
14: end for
15: parent ←model .getModelNodeFor(templateNode .parent)
16: if parameter ization , NULL then
17: if parameter ization = SOFT_PARAMETERIZATION

∧strateдy .supportsAttributeParameters() then
18: model .addSoftParamNode(parent,mappedNedesSet)
19: coveredNodes ← coveredNodes ∪mappedNodes
20: else
21: model .addHardParamNode(parent,mappedNedesSet)
22: coveredNodes ← coveredNodes∪

GetAllSubtreeNodes(mappedNodes)
23: end if
24: else
25: model .addNonParamNode(parent,mappedNedesSet)
26: coveredNodes ← coveredNodes ∪mappedNodes
27: end if
28: end for
29: DOMr ef actored ← strateдy .refactor(DOMor iдinal ,model)

Algorithm 1 starts by constructing an empty model (line 1), and
an exclusion list (coveredNodes in line 2) that contains the orig-
inal DOM nodes of the component instances which are already
covered by the algorithm (e.g., a model node has been created for
them), so that they are skipped in future iterations. To construct the
intermediate model, the algorithm chooses the DOM subtree of one
of the component instances (i.e., the template subtree) to follow its
hierarchy. The template subtree is the one with the smallest number
of DOM nodes, chosen in line 3. This is because the intermediate
model cannot have more DOM nodes than the smallest subtree,
as it resembles the intersection of the component instances’ DOM
subtrees. The algorithm loops over all the uncovered template sub-
tree’s DOM nodes, following the subtree’s breadth-first traversal

Generating Reusable Web Components from Mockups ASE ’18, September 3–7, 2018, Montpellier, France

order (lines 5 to 28). Each template DOM node is compared to other
DOM nodes of its Mapping Nodes Set (identified according to Defi-
nition 4 in line 7) using the compare() function (line 10), which
returns the type of parameterization needed to unify two given
DOM nodes, and NULL if no parameterization is needed. Note that,
even if one node in a Mapping Nodes Set should be parameterized
when compared to the template DOM node, the resulting model
node will be either hard- or soft-parameterized, thus comparing
other nodes of Mapping Nodes Set is not required (line 12).

The intuition behind comparing nodes in the breadth-first order
is that, across the component instances’ DOM subtrees, it is more
likely that the the inner nodes (which define the structure of the
final UI component) are similar, while the leaf nodes (texts, images)
are more probable to differ. The inner nodes are thus compared
before leaves, also facilitating the identification of Mapping Nodes
Set based on Definition 4, as the nodes’ child indices follow the BFS
traversal order.

The algorithm then continues to add a model node for each
Mapping Nodes Set (lines 15 to 27). First, the model node that has
been created for the template DOM node’s parent (in the previous
runs of the loop) is retrieved from the model (line 15), to which the
new model nodes will be added as children. This effectively allows
the model to preserve the original hierarchy of the instances’ DOM
subtrees. If the model is empty, the new model node will form the
model’s root. The subsequent lines of the algorithm add the new
model node based on the parameterization type. In each step, the
DOM nodes in the Mapping Nodes Set for which a model node is
created are added to the coveredNodes to be skipped in the next
iterations. As mentioned, in case of a hard-parameterized model
node, all the DOM nodes belonging to the subtrees rooted under
the corresponding mapping DOM nodes should be marked to be
skipped (e.g., node 5 in Figure 5).

Finally, the actual refactoring is conducted using the constructed
Component Intermediate Model (line 29). The details of the refactor-
ing are built-in the translation strategy, which can be implemented
virtually for any UI framework of interest.

3.6 Implementation
We implemented the proposed approach in a tool calledVizMod [36]
(short for VisualModularizer). VizMod is implemented in Java and
Python 3. We use the Selenium web driver to view the mockup
and extract DOM trees and their relevant computed properties. For
clustering, we use the implementation provided by Campello et.
al. [5] and the numpy [56] library for mathematical and numerical
functions.

4 EVALUATION
To evaluate VizMod, we conducted qualitative and quantitative
studies aiming at answering the following research questions:

RQ1 Are the refactorings by VizMod’s component generation
correct?

RQ2 How effective is VizMod in identifying UI components com-
pared to manual examination by web developers?

RQ3 How much code reusability can be achieved through the
proposed refactorings?

In the following subsections, we discuss the details of the experi-
ments that we designed to answer each research question, together
with the results.

4.1 RQ1: Correctness of Component
Generation Refactorings

4.1.1 Study Design. For the proposed componentization applied
on HTML to be safe, the main criterion is that the original and the
refactored HTMLs must result into the same DOM tree landed into
the users’ web browsers. Consequently, to devise a technique that
can automatically assess the safety of the applied transformations,
we relied on the equivalence of the DOM subtrees rendered in
the web browser, before and after refactoring. If the DOM trees
are the same, given that our refactorings do not change any CSS
style rules, the resulting presentation semantics of the HTML files
remain intact.

To automate this process, we serialized the final DOM trees
rendered in the browser to the pretty-printed HTML code and
compared them pre- and post-refactoring. This allows a fast com-
parison of the structure of the DOM trees. We normalized the DOM
trees by removing text nodes which are empty or contain only
white spaces. This is done because React interprets these nodes
differently [18, 46] compared to the standard HTML specifications.

4.1.2 Results and Discussion. Using the aforementioned technique,
we compared the DOM subtrees of the UI component instances
before and after refactoring for the 120 UI component instances
(i.e., 25 UI components) identified by VizMod. The tests has passed
for all subjects, indicating that the refactorings introduced by com-
ponent generation do preserve the DOM trees, and as a result, the
transformations are safe to apply.

4.2 RQ2: UI Component Identification
4.2.1 Study Design. We asked independent expert web developers
to participate in a qualitative study, with the goal of understanding
what they would identify as being a component pattern in a web UI.
With this study, we aim at evaluating the (dis)agreement between
the proposed approach and expert developers in terms of identifying
the UI components.
Subject Systems. The author(s) searched the Internet to findmock-
ups suitable for this study (using keywords like “web mockups”,
“web templates”, “front-end templates”). Our selection criteria for
choosing mockups were:
• They should be non-trivial, both visually and code-wise (i.e.,
HTML and CSS). Note in Table 1 that the mockups are indeed
complex, in terms of the number of DOM nodes and CSS code
size.
• The number of subjects should be small and manageable enough
so that we can ask participants to highlight potential components
in all of them, without causing too much burden, mental fatigue,
or boredom on them which can negatively distort the study.
• They should only represent the UI front-end, i.e., without back-
end or front-end business logic or functionalities.
Based on these criteria we chose five mockups for our evaluation.

We use the same mockups in all the evaluation experiments. Table 1
shows descriptive statistics for them.

ASE ’18, September 3–7, 2018, Montpellier, France Mohammad Bajammal, Davood Mazinanian, and Ali Mesbah

Table 1: Subjects’ descriptive statics

Subject# Body size (KB) #DOM nodes CSS size (KB)†

1 18 754 323
2 20 915 279
3 33 1,990 350
4 24 1,226 330
5 49 1,065 254

† Some mockups use CSS frameworks (e.g., Bootstrap). This
corresponds to the total CSS size, including the frameworks.

Participants. We emailed developers who have worked in local
businesses or research labs and asked them to voluntarily partici-
pate in our study. We attached a zip package containing our subject
systems together with a link to a post-study questionnaire aimed at
collecting information about the participants’ demographics (e.g.,
number of years of experience in software engineering in general
and in web development in particular, and their self-assessment
on web application development skills). We asked them to manu-
ally highlight repetitions on the UI of each subject (by drawing a
rectangle on each repetition) and send the results back to us.

Accordingly, we emailed 10 developers and informed them of
the study, and asked them to also pass it on to their contacts. We
received responses from a total of five developers. Table 2 shows
participants’ demographic information. As it is shown, all the par-
ticipants were quite experienced in web development, as measured
by the years of software and web development experience and their
own self assessment.
Comparison with Developers. For each subject, we compared
the components highlighted by the experts with those components
that VizMod automatically identified as UI components. In par-
ticular, when more than half of the experts highlighted a pattern
on the mockup as repeated, we assume the majority is correct and
consider it as a UI component that our technique should be able
to identify. The performance of VizMod is then determined using
the well-known precision and recall measures. A true positive for
the approach is defined as a UI component that has been manually
identified by more than half of the experts (in our case, three or
more participants). A false positive, on the other hand, is a UI com-
ponent that is reported by the approach, yet less than half of the
experts have identified it. Finally, a false negative of the approach
is a UI component that is reported by more than half of the experts,
but the approach could not identify.

Table 2: Demographics of the Participants

Participant# SW dev. Web dev. Web dev. self assessment
(#Years) (#Years) (1–5, 5=Highly Expert)

1 10 5 4
2 8 2 4
3 3 3 4
4 11 3 3
5 9 8 5

4.2.2 Results and Discussion. Table 3 shows the results of compar-
ing the UI patterns identified by our approach to the UI patterns
identified by participating developers in our experiment. The table
shows the values for true positives, false positives, false negatives,
and finally precision and recall. The values for recall range between
74% and 100%. We examined the subjects at the lower end of the
range to investigate further. Almost all the components that were
missed by our approach had many elements that had animations
or moving sub-elements (e.g., a carousel that changes every few
seconds). Our technique was not designed with animations in mind.
Capturing and analyzing animations can be challenging, due to dif-
ficulties in keeping track of changes over time and deciding which
time instant to take as representative. This might be a possible
venue for future work.

As for the precision, we further examined the nature of false
positives in order to better understand the performance. Following
this examination, we identified another variable while performing
the comparison with participants: the potentially missed opportu-

nities. We define missed opportunities as those patterns that were
reported by as few as one developer (but not the majority), as well
as our tool. The reason for introducing this variable is that, by
manually examining the false positives, we noticed that there were
a few potential opportunities that were missed by the majority of
developers. We postulate a number of possible causes as to why
such patterns were not reported by the majority of participants:
• Some repeating components were laid out far away from each
other (e.g., at the very top and very bottom of the page). This often
makes it difficult for human developers to remember patterns
that are not immediately visible within the same view, especially
if there are lots of patterns that they have to keep track of. The
human brain has been shown to have a short-term memory
capacity of only around 3 to 7 objects at a time [8]. This fact,
coupled with patterns that are far away from each other and
interlaced with multiple other patterns, can cause humans to
miss some patterns. Our approach, however, is agnostic to where
the pattern is located, and is able to recognize matching patterns
from far ends of a web UI just as easily as patterns immediately
next to each other.
• Some components included images or icons that were designed
to be faint or barely visible due to artistic reasons. Such icons,
especially when present close to very vibrant and large repeat-
ing components, are often skipped potentially due to the visual
attention in the brain being directed at the larger clearer pat-
terns. However, due to the visual normalization adopted in our
approach, such artistic choice do not make any difference and the
pattern is recognizable regardless of how visually pronounced it
is.
For these reasons, we believe that the potentially missed op-

portunities are a better indicator of performance and we include
their numbers in the table. Therefore, we finally indicate that the
precision and recall performance of the tool are 93.6% and 75.2%,
respectively, as shown in Table 3.

4.3 RQ3: Code Reusability
4.3.1 Study Design. We now proceed to determine howmuch code
reusability can be attained with the components generated by the

Generating Reusable Web Components from Mockups ASE ’18, September 3–7, 2018, Montpellier, France

Table 3: Comparison of automatically identified components to manually-identified ones by developers

Subject #Identified Refactoring Opportunities FN TP FP Precision Recall Considering PMO†

#Components #Component Instances #PMO Precision Recall
1 5 29 0 19 9 67.9% 100.0% 8 96.4% 77.1%
2 5 27 0 15 2 88.2% 100.0% 2 100.0% 77.3%
3 5 26 6 17 5 77.3% 73.9% 0 77.3% 68.0%
4 6 21 3 9 12 42.9% 75.0% 12 100.0% 84.0%
5 4 17 3 13 4 76.5% 81.3% 3 94.1% 69.6%

Avg. 5 22 70.5% 86.0% 5 93.6% 75.2%
† PMO = Potentially Missed Opportunities.

approach. For each test subject, we compare the size of the HTML
code of the mockups before and after refactoring as a measure of
how much reusability has been achieved.

Let Tr be the set of DOM subtrees corresponding to the UI com-
ponent instances which are going to be removed by a refactoring
operation, r , from the original HTML. The refactoring r adds the
necessary code which unifies Tr subtrees into a UI component ur
to the original HTML code. Moreover, r replacesTr subtrees with a
setCr of calls to instantiate ur . Accordingly, the size reduction SRr
for the refactoring r is computed as:

SRr =
∑
t ∈Tr

sizeO f (t) − sizeO f (ur) +
∑
c ∈Cr

sizeO f (c) (6)

where t is a component instance, c is a component instantiation
call, and sizeO f (x) is the number of bytes corresponding to x
when serialized to HTML. In an HTML mockup, there might be
several sets of component instances (i.e., several UI components
might be created). The overall size reduction SR, which is achieved
by applying the set R of all refactoring opportunities found in a
mockup, is calculated as SR = ∑

r ∈R
SRr .

We calculate the size reduction in two different ways: 1) based on
an implementation using a UI framework (which we have chosen to
be React), and 2) based on the representation contained in the Com-
ponent Intermediate Model. This is because each UI framework (e.g.,
React, Angular) has its own syntax and idiomatic mechanisms
for creating UI components and instantiating them. As a result, the
actual size reduction would be different depending on which, and
how, a UI framework is used. All UI frameworks, however, follow
the same basic principle: the set of DOM nodes that can be uni-
fied into single DOM nodes form a template for the UI component,
while other nodes form the parameters (i.e., placeholders) in the
UI component. These placeholders are filled with the arguments

passed when calling the UI framework. As a result, calculating the
size reduction based on the nodes and arguments identified when
constructing the Component Intermediate Model allows a more
accurate determination of how the algorithm intrinsically performs
in terms of code reusability, regardless of the differences between
the many possible UI frameworks that can be used.

Moreover, when using a third-party UI framework, it is usually
required that the framework’s JavaScript library code is imported
at the client-side so that the web browser is able to render the
UI, potentially increasing the overall size of the client-side code.

Subjects

S
iz

e
 R

e
d

u
c
tio

n
 (

%
)

Intrinsic performance Performance with React

0
1 2 3 4 5

10

20

30

35.5%

19.3% 20.3%

9.2%

21.3%

16.0% 14.9%

6.0%

19.3%
15.0%

Figure 6: Code reusability performance achieved by the pro-
posed component generation, as measured by final size re-
duction.

However, if the web application wants to enjoy the maintainabil-
ity benefits of the UI framework, the JavaScript files should be
imported anyway. As mentioned, this is an extensively-popular
trend among the developers [52, 53]. Notwithstanding, if develop-
ers opt for using standard HTMLWeb Components [38] instead
of third-party UI frameworks, there will be no burden in terms of
the additional imported JavaScript files. As a result, when report-
ing the size measurements for React, we only consider the code
generated by our approach for implementing UI components, not
React’s own core JavaScript code.

4.3.2 Results and Discussion. Figure 6 illustrates the results of ap-
plying the proposed refactorings on the test subjects. Observe that,
using React implementation, refactoring UI components results
in reducing the size of the HTML code by 6%–19.34%, with an av-
erage of 11.56%. The intrinsic performance of the algorithm itself,
however, is higher: 14.90%–35.54%, with an average of 18.96%. This
difference highlights that React components require quite consid-
erable amount of added code to the original DOM information of
the UI component instances. For example, a UI component shown
in Figure 5(d) needs to be wrapped into a function named render
implemented in a JavaScript class that extends the internal Re-
act class, React.Component. We also need to add additional code
to pass arguments to the UI components for each UI component
instance. As mentioned, using another UI framework can yield
different saving ratios. It is for these reasons that reporting the
intrinsic performance is important.

It is worth mentioning that this saving is not meant to replace
existing techniques that, for instance, minify HTML by removing

ASE ’18, September 3–7, 2018, Montpellier, France Mohammad Bajammal, Davood Mazinanian, and Ali Mesbah

white space, or via any other reduction approach. Rather, whatever
savings obtained from the components can complement them by
adding even more saved bytes on top of what they would normally
save.

5 DISCUSSION
Context within web development. The approach we present in
this paper refactors repetitions in the UI and merges them into a
template, which is finally converted into a component in one of
the common front-end frameworks (e.g., React, Angular). This
automates one of the initial steps in making a full-fledged web app
UI, which is often time consuming and is done manually. The use of
this approach, of course, would not mean that the web app is ready
to launch to clients and the development process is finished. The
developer would use these components and continue the develop-
ment, by, e.g., adding business logic, handling events, connecting to
databases or other sources. Furthermore, the approach we present
in this paper is for modularizing the UI view itself, and is there-
fore orthogonal to the remaining components of the architecture
pattern of the app (e.g., Model-view-controller (MVC), Model-view-
presenter (MVP)) and to any backend server functionality.
Threats to validity. We chose test subjects (i.e., mockups) ran-
domly from the Internet with the mentioned criteria in Section 4.2.1,
to avoid any selection bias. Plus, the evaluation participants are
expert web developers with different years of web development ex-
perience, mitigating the threats to the internal validity of the study.
The mockups are diverse and complex enough to be representative
of real-world app front-ends, mitigating the external validity of the
study by making the results generalizable. To make the study repli-
cable, we have made VizMod’s source code, evaluation subjects,
and the anonymized participants’ responses available online [36].

6 RELATEDWORK
Visual analysis. There exist a few techniques that analyze web
applications from a visual perspective. Choudhary et al. [6] propose
an approach that detects cross-browser compatibility by examin-
ing visual differences between the same app running in multiple
browsers. Burg et al. [3] present a tool that helps developers un-
derstand the behavior of front-end apps. It allows developers to
specify which element they are interested in, then tracks that ele-
ment for any visual changes and the corresponding code changes.
Bajammal et al. [1] propose an approach to analyze and test web
canvas element through visual inference of the state of the can-
vas and its objects, and allowing canvas elements to be testable
using common DOM testing approaches. In contrast to our work,
none of these studies aims to automatically identify and extract
web components. Stocco et al. [22, 54] explore visual techniques
for web testing applications, including visual-based test repair and
techniques for migrating DOM-based tests to visual tests.
Clone detection. There is a large body of work on clone detec-
tion in conventional source code [45, 48, 50]. Some techniques also
exist targeting web artifacts, such as for identifying duplicated
content [2] or script function clones [4, 21], and quantifying the
structural similarity across pages [10]. A number of existing publi-
cations [12, 24, 25, 29] propose template identification for Java code

by defining a number of heuristics to compute code similarity. Ra-
japakse and Jarzabek [42] use CCFinder [20] to identify duplication
in web applications. Synytskyy et al. [55] use an island grammer to
identify cloned HTML forms and tables. Cordy et al. [7] propose a
language-independent technique to identify exact/near-miss clones
(initially in HTML) using island grammars, pretty-printing and
textual differencing. Inspired by that work, NiCad clone detector
is proposed [49].

Transformation and refactoring. Various techniques are pro-
posed to convert static pages to dynamic ones [2, 55], to gener-
alize dynamic web pages [9, 43], or to find similar functionalities
across web pages [10]. Other techniques [34] use clustering to group
similar static web pages together to extract single-page templates.
Pattern mining techniques are used [30–32] for identifying and
refactoring duplicated CSS code in web apps. In contrast to our
work, none of these studies aims at automatically identifying and
extracting web components from mockups.

7 CONCLUSIONS
The development of a web app front-end involves multiple stake-
holders, chief among them the graphics designer and web devel-
oper. A UI mockup designed by the graphics designer has to be
analyzed and processed by a web developer in order create the
app’s front-end code, a task that is laborious and involves manual
time consuming steps. In this paper, we proposed an approach to
automate this aspect of web development by generating reusable
web components from a mockup. We implemented our approach
in a tool called VizMod, and evaluated on real-world web mock-
ups and assessed its generated components through comparison
with expert developers. It achieves an average of 94% precision and
75% recall in terms of agreement with the developers’ assessment,
performs the refactorings in a correct manner, and the components
achieve a 22% reusability, on average.

REFERENCES
[1] Mohammad Bajammal and Ali Mesbah. 2018. Web Canvas Testing through

Visual Inference. In Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST). IEEE Computer Society, 12 pages.

[2] Cornelia Boldyreff and Richard Kewish. 2001. Reverse engineering to achieve
maintainable WWW sites. In Proceedings of the 8th Working Conference on Reverse

Engineering (WCRE). 249–257.
[3] Brian Burg, Andrew J Ko, and Michael D Ernst. 2015. Explaining visual changes

in web interfaces. In Proceedings of the 28th Annual ACM Symposium on User

Interface Software & Technology. ACM, 259–268.
[4] Fabio Calefato, Filippo Lanubile, and Teresa Mallardo. 2004. Function clone detec-

tion in web applications: a semiautomated approach. Journal of Web Engineering

3, 1 (2004), 3–21.
[5] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. 2013. Density-based

clustering based on hierarchical density estimates. In Pacific-Asia conference on

knowledge discovery and data mining. Springer, 160–172.
[6] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. 2012. Crosscheck:

Combining crawling and differencing to better detect cross-browser incompati-
bilities in web applications. In Software Testing, Verification and Validation (ICST),

2012 IEEE Fifth International Conference on. IEEE, 171–180.
[7] James R Cordy and Thomas R. Dean. 2004. Practical language-independent

detection of near-miss clones. In Proceedings of the 14th Conference of the Centre

for Advanced Studies on Collaborative Research (CASCON). 1–12.
[8] Nelson Cowan. 2001. The magical number 4 in short-term memory: A reconsid-

eration of mental storage capacity. Behavioral and Brain Sciences 24, 1 (2001),
87–114.

[9] A. De Lucia, R. Francese, G. Scanniello, and G. Tortora. 2004. Reengineering
web applications based on cloned pattern analysis. In Proceedings of 12th IEEE

International Workshop on Program Comprehension. IEEE, 132–141.

Generating Reusable Web Components from Mockups ASE ’18, September 3–7, 2018, Montpellier, France

[10] A. De Lucia, Rita Francese, G. Scanniello, and G. Tortora. 2005. Understanding
cloned patterns in web applications. In Proceedings of the 13th International

Workshop on Program Comprehension (ICPC). IEEE, 333–336.
[11] Donis A Dondis. 1974. A primer of visual literacy. MIT Press.
[12] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander

Egyed. 2014. Enhancing clone-and-own with systematic reuse for developing
software variants. In Software Maintenance and Evolution (ICSME), 2014 IEEE

International Conference on. IEEE, 391–400.
[13] Google Inc. 2016. Angular. https://angular.io/ Accessed: 15 February 2018.
[14] Google Inc. 2017. Angular Core Documentation: Components. https://angular.

io/api/core/Component Accessed: 4 April 2018.
[15] IDC. 2015. Mobile Trends Report. https://www.appcelerator.com/

resource-center/research/2015-mobile-trends-report/ Accessed: 15 February
2018.

[16] Jordan Walke, Facebook, Instagram and community. 2013. React - A JavaScript
library for building user interfaces. https://reactjs.org/ Accessed: 15 February
2018.

[17] Jordan Walke, Facebook, Instagram, and community. 2013. React documentation:
React.Component. https://reactjs.org/docs/react-component.html Accessed: 4
April 2018.

[18] Jordan Walke, Facebook, Instagram and community. 2014. JSX Whitespace.
https://reactjs.org/blog/2014/02/20/react-v0.9.html#jsx-whitespace Accessed: 16
April 2018.

[19] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner.
2009. Do code clones matter?. In Proceedings of the 31st International Conference

on Software Engineering (ICSE). 485–495.
[20] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A

multilinguistic token-based code clone detection system for large scale source
code. IEEE Trans. on Software Engineering 28, 7 (2002), 654–670.

[21] Filippo Lanubile and Teresa Mallardo. 2003. Finding function clones in web ap-
plications. In Proceedings of the 7th European Conference on Software Maintenance

and Reengineering (CSMR). 379–386.
[22] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2018. PESTO:

Automated migration of DOM-based Web tests towards the visual approach.
Software Testing, Verification And Reliability 28, 4 (2018), e:1665.

[23] William Lidwell, Kritina Holden, and Jill Butler. 2010. Universal principles of

design, revised and updated. Rockport Pub.
[24] Yun Lin, Guozhu Meng, Yinxing Xue, Zhenchang Xing, Jun Sun, Xin Peng, Yang

Liu, Wenyun Zhao, and Jinsong Dong. 2017. Mining implicit design templates
for actionable code reuse. In Automated Software Engineering (ASE), 2017 32nd

IEEE/ACM International Conference on. IEEE, 394–404.
[25] Yun Lin, Xin Peng, Zhenchang Xing, Diwen Zheng, and Wenyun Zhao. 2015.

Clone-based and interactive recommendation for modifying pasted code. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 520–531.

[26] Guang-Hai Liu, Lei Zhang, Ying-Kun Hou, Zuo-Yong Li, and Jing-Yu Yang. 2010.
Image retrieval based on multi-texton histogram. Pattern Recognition 43, 7 (2010),
2380–2389.

[27] Nuno Vieira Lopes, Pedro AMogadouro do Couto, Humberto Bustince, and Pedro
Melo-Pinto. 2010. Automatic histogram threshold using fuzzy measures. IEEE
Transactions on Image Processing 19, 1 (2010), 199–204.

[28] Angela Lozano and Michel Wermelinger. 2008. Assessing the effect of clones on
changeability. In Proceedings of the 24th IEEE International Conference on Software

Maintenance (ICSM). 227–236.
[29] Jabier Martinez, Tewfik Ziadi, Tegawende F Bissyande, Jacques Klein, and Yves

Le Traon. 2015. Automating the extraction of model-based software product
lines from model variants (T). In Automated Software Engineering (ASE), 2015

30th IEEE/ACM International Conference on. IEEE, 396–406.
[30] Davood Mazinanian and Nikolaos Tsantalis. 2016. Migrating Cascading Style

Sheets to Preprocessors by Introducing Mixins. In Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering (ASE)

(ASE 2016). 672–683.
[31] Davood Mazinanian and Nikolaos Tsantalis. 2017. CSSDev: Refactoring duplica-

tion in Cascading Style Sheets. In Proceedings of the 39th International Conference

on Software Engineering (ICSE) Companion (ICSE 2017). 4.
[32] Davood Mazinanian, Nikolaos Tsantalis, and Ali Mesbah. 2014. Discovering

Refactoring Opportunities in Cascading Style Sheets. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering

(FSE). 496–506.

[33] Philip B. Meggs. 1992. Type and Image: The Language of Graphic Design. Van
Nostrand Reinhold. 206 pages.

[34] Ali Mesbah and Arie van Deursen. 2007. Migrating Multi-page Web Applications
to Single-page Ajax Interfaces. In Proceedings of the Conference on Software

Maintenance and Reengineering (CSMR). IEEE Computer Society, 181–190.
[35] Bogdan Mihalcea. 2014. User interface construction with mockup images. US

Patent 8,650,503.
[36] Mohammad Bajammal, Davood Mazinanian, and Ali Mesbah. 2018. VizMod tool

repository. https://github.com/msbajammal/vizmod
[37] Manishankar Mondal, Chanchal K. Roy, and Kevin A. Schneider. 2012. An

empirical study on clone stability. Applied Computing Review 12, 3 (Sept. 2012),
20–36.

[38] Mozilla Developer Network. 2017. Web Components. https://developer.mozilla.
org/en-US/docs/Web/Web_Components Accessed: 4 April 2018.

[39] Brad A Myers and Mary Beth Rosson. 1992. Survey on user interface program-
ming. In Proceedings of the SIGCHI conference on Human factors in computing

systems. ACM, 195–202.
[40] Mark W. Newman and James A. Landay. 2000. Sitemaps, Storyboards, and

Specifications: A Sketch of Web Site Design Practice. In Proceedings of the 3rd

Conference on Designing Interactive Systems: Processes, Practices, Methods, and

Techniques (DIS). 263–274.
[41] Fatih Kursat Ozenc, Miso Kim, John Zimmerman, Stephen Oney, and Brad Myers.

2010. How to Support Designers in Getting Hold of the Immaterial Material of
Software. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI). 2513–2522.
[42] Damith C. Rajapakse and Stan Jarzabek. 2005. An Investigation of Cloning inWeb

Applications. In Proceedings of the 5th International Conference of Web Engineering

(ICWE). 252–262.
[43] Damith C. Rajapakse and Stan Jarzabek. 2007. Using Server Pages to Unify

Clones in Web Applications: A Trade-Off Analysis. In Proceedings of the 29th

International Conference on Software Engineering (ICSE). 116–126.
[44] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, Jesús García Molina, and Jean

Vanderdonckt. 2016. A layout inference algorithm for Graphical User Interfaces.
Information and Software Technology 70 (2016), 155–175.

[45] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165 – 1199.

[46] React Issues on GitHub. 2017. White-space between inline elements #1643.
https://github.com/facebook/react/issues/1643 Accessed: 16 April 2018.

[47] ReactJS. 2018. Thinking in React. https://reactjs.org/docs/thinking-in-react.html
Accessed: 15 February 2018.

[48] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone

detection research. Technical Report. Queen’s School of Computing.
[49] Chanchal K. Roy and James R. Cordy. 2008. NiCad: Accurate detection of near-

miss intentional clones using flexible pretty-printing and code normalization. In
Proceedings of the 16th IEEE International Conference on Program Comprehension

(ICPC). 172–181.
[50] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and

evaluation of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming 74, 7 (2009), 470 – 495.

[51] Nishant Sinha and Rezwana Karim. 2013. Compiling Mockups to Flexible UIs. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering

(ESEC/FSE). 312–322.
[52] StackOverflow. 2017. Developer Survey Results. https://insights.stackoverflow.

com/survey/2017 Accessed: 4 April 2018.
[53] stateofjs.com. 2017. Worldwide usage of JavaScript front-end libraries. https:

//stateofjs.com/2017/front-end/results/ Accessed: 10 April 2018.
[54] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual Web

Test Repair. In Proceedings of the 26th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE

2018). ACM.
[55] Nikita Synytskyy, James R. Cordy, and Thomas R. Dean. 2003. Resolution of

static clones in dynamic Web pages. In Proceedings of the 5th IEEE International

Workshop on Web Site Evolution (WSE). 49–56.
[56] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy

array: a structure for efficient numerical computation. Computing in Science &

Engineering 13, 2 (2011), 22–30.
[57] TiantianWang, Mark Harman, Yue Jia, and Jens Krinke. 2013. Searching for Better

Configurations: A Rigorous Approach to Clone Evaluation. In Proceedings of the

9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE). 455–465.

https://angular.io/
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://www.appcelerator.com/resource-center/research/2015-mobile-trends-report/
https://www.appcelerator.com/resource-center/research/2015-mobile-trends-report/
https://reactjs.org/
https://reactjs.org/docs/react-component.html
https://reactjs.org/blog/2014/02/20/react-v0.9.html#jsx-whitespace
https://github.com/msbajammal/vizmod
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://github.com/facebook/react/issues/1643
https://reactjs.org/docs/thinking-in-react.html
https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2017
https://stateofjs.com/2017/front-end/results/
https://stateofjs.com/2017/front-end/results/

	Abstract
	1 Introduction
	2 Motivating Example
	3 Proposed Approach
	3.1 Definitions
	3.2 Visual UI Normalization
	3.3 Potential Instance Identification
	3.4 Unsupervised Visual Matching
	3.5 UI Component Generation
	3.6 Implementation

	4 Evaluation
	4.1 RQ1: Correctness of Component Generation Refactorings
	4.2 RQ2: UI Component Identification
	4.3 RQ3: Code Reusability

	5 Discussion
	6 Related Work
	7 Conclusions
	References

