
Mokey: Enabling Narrow Fixed-Point Inference for
Out-of-the-Box Floating-Point Transformer Models

Ali Hadi Zadeh
University of Toronto, Vector Institute

Toronto, Canada
hadizade@ece.utoronto.ca

Ameer Abdelhadi
University of Toronto

Toronto, Canada
ameer.abdelhadi@utoronto.ca

Mostafa Mahmoud
University of Toronto

Toronto, Canada
mostafa.mahmoud@mail.utoronto.ca

Andreas Moshovos
University of Toronto, Vector Institute

Toronto, Canada
moshovos@ece.utoronto.ca

Abstract—Increasingly larger and better Transformer models
keep advancing state-of-the-art accuracy and capability for
Natural Language Processing applications. These models demand
more computational power, storage, and energy. Mokey reduces
the footprint of state-of-the-art 32-bit or 16-bit floating-point
transformer models by quantizing all values to 4-bit indexes
into dictionaries of representative 16-bit fixed-point centroids.
Mokey does not need fine-tuning, an essential feature as often
the training resources or datasets are not available to many.
Exploiting the range of values that naturally occur in transformer
models, Mokey selects centroid values to also fit an exponential
curve. This unique feature enables Mokey to replace the bulk
of the original multiply-accumulate operations with narrow 3b
fixed-point additions resulting in an area- and energy-efficient
hardware accelerator design. Over a set of state-of-the-art
transformer models, the Mokey accelerator delivers an order
of magnitude improvements in energy efficiency over a Tensor
Cores-based accelerator while improving performance by at least
4× and as much as 15× depending on the model and on-chip
buffering capacity. Optionally, Mokey can be used as a memory
compression assist for any other accelerator, transparently stash-
ing wide floating-point or fixed-point activations or weights into
narrow 4-bit indexes. Mokey proves superior to prior state-of-
the-art quantization methods for Transformers.

I. INTRODUCTION

Creating machines that can “understand” our language and
“interact” with us as we interact with each other has always
been a dream that motivated many and captured the imagi-
nations of even more. Transformer models have demonstrated
remarkable success towards this goal by tackling many natural
language understanding tasks. Recently, Open-AI’s GPT-3 [1],
with its roughly 175 billion parameters, and Google’s Switch
transformer with its 1.6 trillion parameters [2], proved that
attention-based models — given enough parameters — can
perform tasks that they have not been explicitly trained for.
For example, with zero-shot learning [1], [3], a model that
is pre-trained for language modeling on copious amounts of
text (including Common Crawl’s Petabyte datasets [4]) could

answer various questions, including solving a mathematical
equation or writing an HTML script.

The development trend of these NLP models shows that the
more the parameters, the more powerful the model becomes.
Unfortunately, this comes at a cost: More parameters require
more storage, data transfers, and computation [5]. From 2018
with GPT [6] and BERT [7] with hundreds of millions of
parameters to 2021 with the 1.6 trillion parameter Switch
transformer, parameter footprint increased from hundreds of
megabytes to terabytes. Computing hardware must meet their
storage and compute needs and to do so within the constraints
of each use case. As these models are massive and as the on-
chip memory of modern silicon chips is limited, it is off-chip
memory accesses that account for most of the execution time
and energy consumption [8]–[10].

Transformer models also incur a quadratic growth in activa-
tion footprint when scaling the input sequence. For sequences
of up to 128 tokens (e.g., GLUE dataset tasks [11]), buffering
activations between layers requires anywhere between 1.5MB
to 2MB depending on the model, layer, and dataflow. Keeping
these activations on-chip is certainly possible and avoids the
one to two orders of magnitude higher energy and latency
costs of off-chip memory. However, when processing longer
sequences such as multiple paragraphs or a book chapter,
activation volume can easily exceed on-chip buffer capacities
[12]–[15]. As an example, Figure 1 shows the total footprint
of activations and weights as a function of sequence length for
BERT-Large. When the sequence length exceeds 512 tokens,
activations dominate total memory footprint.

Model compression reduces model size improving over-
all efficiency. Recent model compression works fall under
three general classes: Pruning which forces some weights
or activations to zero [16]–[23] combined with “zero-aware”
memory encoding. Knowledge distillation distills a larger,
“teacher” model into a smaller “student” model [24]–[30].
Lastly, quantization where the parameters and/or activations
are quantized to shorter bit-widths [9], [31]–[35]. By default
transformers use single-precision or 16b floating-point values.Accepted at the 49th IEEE/ACM International Symposium on Computer

Architecture (ISCA ’22) – DOI: 10.1145/3470496.3527438

https://doi.org/10.1145/3470496.3527438

0

1000

2000

3000

4000

5000

6000

128 256 512 1024 2048

To
ta

l F
o

o
tp

ri
n

t
(M

B
)

Weights Activations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

128 256 512 1024 2048

To
ta

l F
o

o
tp

ri
n

t
(%

)

Sequence Length Sequence Length

Fig. 1: BERT-Large: Weight and Activation Memory Footprint.

Except for I-BERT [33] which quantizes all values to 8b
fixed-point, quantization methods still require floating-point
or mixed fixed-point and floating-point units. In addition, all
aforementioned compression methods require fine-tuning —
further training for a few epochs over a previously trained
model — to compensate for lost accuracy. Fine-tuning is
expensive, requires access to sufficient system resources [36]
and worse to datasets that might be unavailable to end-users.
Having to search for optimal hyperparameters and quantization
per task further exacerbates the cost of fine-tuning. GOBO
is a post-training compression method for weights only that
requires no fine-tuning [9]. GOBO quantizes the vast majority
of weights to 3b or 4b indexes into a dictionary of 8 or 16
representative floating-point values (centroids). The very few
remaining outlier values remain as-is (in single-precision 32b
floating-point/FP32 or FP16). Further, GOBO still requires
floating-point units. Ultimately, a quantization method that
1) does not require fine-tuning, 2) quantizes weights and
activations, and 3) would require only fixed-point units, would
improve overall energy efficiency and execution time perfor-
mance. This is the goal of this work.

Quantizing activations presents additional challenges com-
pared to quantizing weights only. First, since weights are
statically known, quantization is done off-line using itera-
tive centroid selection algorithms. The runtime and energy
overheads of these algorithms are prohibitive for the runtime
calculated activations. Quantizing activations calls for light-
weight, online methods. Second, the value range of activations
is much wider than those for weights (see Table IV) [31]–[34].
Most quantization methods still require 8 bits per activation
or forego activation quantization altogether.

This work introduces Mokey, a post-training transformer
model compression method for activations and weights that
reduces memory traffic and computation costs. The key char-
acteristics of Mokey are:

1) It does not require fine-tuning.
2) It quantizes all weights and activations into 16-entry

dictionaries of 16 bit fixed-point centroids storing all
weights and activations as narrow indexes in memory.

3) It performs most computations directly on 4b dictionary
indexes without having to map them to their correspond-
ing 16b centroids. This is Mokey’s most innovative aspect.

4) It uses fixed-point arithmetic yielding 16b fixed-point
activations.

5) It quantizes the 16b fixed-point output activations into 4b
indexes on-the-fly.

6) It generates all dictionaries off-line using a light-weight
method utilizing linear transformations over a pre-
generated, model independent “Golden Dictionary”.

7) The Golden Dictionary is symmetric around zero requir-
ing only half of the entries to be stored.

8) It uses two dictionaries per tensor, one for the bulk of the
values and another for outliers.

9) Optionally, Mokey can be used as a compression plug-in
to any other accelerator.

In more detail, Mokey exploits the skewed, bell-shaped (Gaus-
sian) distribution of values naturally occurring in transformer
models: most of values are densely populated around their
mean (in a small range) and a small fraction of values
(covering a wider range) are outliers.

A key innovation in Mokey is that it adjusts the centroids in
each dictionary to fit the original tensor’s Gaussian distribution
and an exponential function. This is only possible because, for
the limited range of values used in transformers, a Gaussian
distribution can be approximated well by an exponential
function. It is this property that allows Mokey to replace 16-
or 32-bit floating-point multiply-accumulate operations with
narrow, 3-bit, integer additions (see Section II).

Additionally, all the dictionaries are derived from a refer-
ence “Golden” Dictionary which is created using a non-linear
quantization scheme based on Agglomerative clustering [37].
The Golden Dictionary is independent of specific models and
layers and the quantization method is shared across all models.
This results in a lightweight post-training quantization process
that simply applies a linear transformation of the Golden
Dictionary so that it fits the distribution of each tensor (as
described by the mean and standard deviation).

Optionally, Mokey can be used just for memory compression
to only compress values to 4b indexes when storing them
to higher and more energy demanding levels of the memory
hierarchy while expanding them to 16b fixed-point or FP16
floating-values when requested by the lower memory hierarchy
levels or directly by the processing units.

We evaluate Mokey over several FP16 pre-trained NLP
models and highlight the following experimental findings:

• Mokey quantizes model parameters (weights, embed-
dings) and activations to 4b indexes with an average
of 1.5% outliers for parameters and 4.5% outliers for
activations while maintaining model accuracy.

• Mokey’s compute units consume 2.7× less energy and are
1.6× smaller than FP16 Tensor Cores units and boost
energy efficiency by one to two orders of magnitude
based on different configurations.

• Mokey as a memory-compression-only method for FP16
models when deployed over a Tensor-cores based accel-
erator magnifies on-chip capacity and reduces off-chip
traffic by 4× improving overall energy efficiency by 11×.

2

II. MOKEY QUANTIZATION

It has been repeatedly shown that the values flowing through
state-of-the-art attention-based NLP models form bell-shaped
distributions per layer [9], [38], [39].

Mokey’s quantization exploits these naturally occurring dis-
tributions that all weights and most activations exhibit. In
contrast to past quantization methods that quantize each tensor
separately, Mokey uses a “Golden Dictionary” approach which
proceeds as follows:
Step 1: Golden Dictionary Generation: Mokey first generates
and quantizes randomly generated, bell-shaped distributions
with a mean of zero and a standard deviation of one. This
step is performed once and is independent of the model under
consideration. The resulting dictionary of centroids becomes
Mokey’s “Golden Dictionary”. In this work, this dictionary
contains 16b fixed-point values.
Step 2: Per Tensor (Activation and Weights) Dictionary
Generation: Mokey performs a profiling run of the model
collecting samples of the activation tensors. It uses the activa-
tion tensor samples and the statically known weight tensors to
scale and shift the Golden Dictionary to best fit each tensor.
These linear transformations utilize the target tensor’s mean
and standard deviation. Mokey produces two dictionary sets per
layer, one per input tensor — depending on the layer the input
is a (weight, activation) or an (activation, activation) tensor
pair. Per tensor, Mokey splits the value range into two subsets:
1) the Gaussian subset (G) contains the majority of values
(more than 98% for weights and 95% for activations) which
covers values near the mean. 2) The Outliers (OT) which are
the rest of the values that are scattered in a much wider range.
Mokey’s profiling-based approach for activation works well;
while individual activation values vary with the input, their
overall distribution per layer remains relatively unaffected. To
validate this approach profiling runs use a single randomly
selected batch containing 8 input samples (however, runs with
even fewer input samples proved enough). Efficacy measure-
ment runs use a non-overlapping set of input samples from
the validation set of each target task. While prior quantization
methods use an iterative per tensor approach [9], [31], [40],
Mokey’s quantization method, does so only during the Golden
Dictionary generation. Per tensor dictionary generation is non-
iterative, resulting in a much faster overall process.
Step 3: Pre-Encoding of Weights: Mokey then encodes all
weight tensors as indexes to their dictionaries (done offline).

At this point, the model is ready for inference.

A. Inference: Runtime Encoding/Decoding of Activations

During runtime Mokey produces 16b fixed-point output
activations. These are converted to short indexes to the re-
spective dictionaries prior to storing to memory. Since the
dictionaries have few entries, this is a lightweight process that
requires only a few runtime comparisons. Recall that in the
original model, each output activation typically entails several
hundreds of multiply-accumulate operations. As Section II-D
will explain, the Mokey accelerator performs most of the

4 2 0 2 4
Value range

0

200

400

600

800

1000

1200

1400

1600

Fr
eq

ue
nc

y

Fig. 2: Generating Golden Dictionary from a Random Gaus-
sian Distribution Using Agglomerative Clustering.

computation directly on indexes and does not need to convert
input activations into their 16b centroids.

The rest of this section explains the dictionary generation
process and the exponential function approximation used to
replace the original floating-point multiply-accumulate oper-
ations with narrow fixed-point operations comprising mostly
additions of dictionary indexes.

B. Generating the Golden Dictionary (GD)

The core of Mokey’s dictionary generation method is Ag-
glomerative Clustering (AC), a bottom-up approach which
initially considers each value as a separate cluster and that
proceeds to iteratively merge the closest clusters to reduce
overall cluster count to a desired target value. In contrast
to K-means, the method of choice in several prior works,
Agglomerative Clustering is not affected by the initial cluster
selection and results in higher accuracy in the quantized model.
However, applying AC even when done offline given that
weight or activation tensors can contain nearly a million
values is impractical since AC requires O(n2) memory and
O(n3) runtime. Mokey overcomes this challenge by exploit-
ing the morphological similarity of the value distributions
across tensors to apply AC using a “Golden Dictionary”
which it then scales to best fit each individual tensor. In
essence, this approach applies AC run on a representative
distribution to estimate AC’s clustering for the per tensor
distributions. The process is simple: first, generate a random
Gaussian distribution with 50,000 samples with a mean of
zero (m = 0) and a standard deviation of one (s = 1).
Then apply AC method on this distribution to produce the
quantization dictionary. To create the Golden Dictionary, we
repeat this process and compute an average over quantization
dictionaries. Figure 2 shows the histogram for an example
generated distribution and the resulting Golden Dictionary. In
this work, Golden Dictionary is generated once and is reused
across all models studied.

C. Generating Per Tensor Dictionaries

Mokey fits the Golden Dictionary (GD) to each tensor by
first determining the mean (m) and the standard deviation (s)

3

Fig. 3: Fitting an Exponential Curve to Golden Dictionary.

of the tensor’s values. These two parameters are constant for
weights and are estimated using profiling for activations. A
simple linear transformation of GD is all that is needed: GD×
s+m. This is done once per tensor using profiling.

Dictionary size affects overall accuracy. In general, the more
entries a dictionary has, the better it represents the original
tensor distribution and the better it preserves overall model ac-
curacy. However, larger dictionaries incur higher overheads. To
better balance dictionary overheads while preserving accuracy
Mokey uses two small dictionaries per tensor. The first “Gaus-
sian” dictionary quantizes the bulk of the values, whereas the
second “Outlier” dictionary maps the few remaining values of
much larger magnitude. To best explain how Mokey chooses
the respective ranges, it is best to first discuss how Mokey
manages to map what were originally floating-point values and
operations into fixed-point values and operations. Unique to
Mokey, the bulk of these operations manipulate narrow fixed-
point dictionary indexes instead of their respective centroids.

D. Integer Exponents for Compute Acceleration

Mokey quantizes weights and activations to a few unique
values. For clarity, this section assumes that there is a single
dictionary of 16 values which all follow a Gaussian distri-
bution with a narrow range near its mean (outlier handling
is described in Section II-E). With this quantization scheme,
there are just 256 (16 × 16) possible multiplication products
instead of the 232 possible products with the original FP16
model. This represents an opportunity to replace the native
FP16 multiply-accumulate (MAC) operations, with counting
per possible product (integer histogram), followed by a final
multiplication of the integer counts with the product of their
respective centroids. However, we anticipate that having 256
counters per processing element will be impractical due to high
energy and latency overhead compared to an FP16 MAC unit.

We observe that a Gaussian distribution, provided that we
are only interested in values near its mean, can be approx-
imated well with an exponential function where values are
represented as aint + b, where int is an integer index and a
and b are appropriately chosen constants. As we explain here,
this approximation enables Mokey to reduce what otherwise
would have been 256 possible products into just 15 possible
exponent sums, making a histogram-based processing MAC
unit practical. Figure 4 illustrates, informally, how Mokey de-

A0 = a1 +b W0 = a2 +b
A1 = a4 +b W1 = a5 +b

EA EW

… …
Exponential terms (E)

∑#𝐴𝑊 = A0W0+A1W1+ …
= a1+2 + ba1 + ba2 + b2 +

a4+5 + ba4 + ba5 + b2 +
…

= (a3+a9+…)+b(a1+a4+…)+ b(a2+a5+…)+Nb2

Constant

Pre-computed
when compiling

Computed when quantizing
output of previous later

Constant

“Constant”

Range [0,14]

Sum of E Terms
for Activations

Sum of E Terms
for Weight

Calculated as:
(1) Histogram of exponents

(2) Weighted reduction

Range [0,7]

Fig. 4: Calculating output activations without having to expand
the quantized input activations and weights to their corre-
sponding centroids.

composes MAC operations into exponent counting (histogram)
for quantized indexes and some constants. In this simplified
example, all values are assumed to be positive and the layer’s
mean and standard deviation are assumed to be zero and one,
respectively.

In more detail: Since the Golden Dictionary is symmetrical
around 0 and for a limited range, we first fit an exponential
curve to one-half of the Golden Dictionary. The other half
holds the opposite values. We used MATLAB’s curve-fitting
toolbox [41] to fit a curve of the form aint + b where a, b
are the parameters that we are fitting and int is a list of
integers from zero to half of the dictionary size. Since we
have more values near zero and the density of the values
decreases as we go sideways, we apply a weighting scheme
during curve fitting to emphasize more densely populated
ranges. The weighting scheme uses a unit weight for the outer
bin, and doubles the weight for the bins as we move towards
zero. For 4 bit quantization, this results in 16 bins which are
symmetrical around zero: 8 are positive and 8 are negative
with identical magnitudes as their corresponding positive bin.
We fit the GD = aint + b curve on these 8 positive values
where a = 1.179, b = −0.977, where int is an integer in
range of [0, 7] and the fitting weights are in [27, 20] range.
Figure 3 shows the resulting exponential function (curve) and
the original Golden Dictionary entries (dots).

In the resulting 4 bit quantization, the most significant bit
is the sign of the value (0: positive , 1: negative) and the
following 3 bits are the index. For instance, if the quantized
representation is 0b1011 the corresponding value would be
−(a3+b). We emphasize that a and b are fitted to the Golden
Dictionary and this process is performed only once prior to
scaling the resulting dictionary to each tensor.
Computing using Dictionary Indexes instead of Dictionary
Centroid Values: We can now exploit that our values fall on

4

an exponential curve to simplify multiplication. At a high-level
the method takes advantage of property ai× aj = ai+j . After
approximating the dictionary with values on an exponential
curve, we are guaranteed that when we are multiplying two
input tensors, input values are of the form θ(aint+ b)×s+m
where theta is the sign, int a 3b Golden Dictionary index,
and s and m are constants, respectively, the standard deviation
and the mean of the tensor.

For clarity, let us assume that the layer operates on a
weight W and an activation A tensor. The respective values
would then be of the form: θW (aintW + b) × sW + mW

and θA(a
intA + b) × sA + mA where θA, θW are signs,

intW , intA are integer indexes, sW , sA are standard deviations
and mW ,mA are means for the corresponding weight and
activation tensors, respectively.

The weight and activation values can be simplified to:

(1)

A = θA(a
intA + b) × sA +mA

= θAsA.a
intA +θAsA.b+mA︸ ︷︷ ︸

µA

= θAsA.a
intA + µA

(2)

W = θW (a
intW + b) × sW +mW

= θW sW .a
intW +θW sW .b+mW︸ ︷︷ ︸

µW

= θW sW .a
intW + µW

where a is a fitted parameter which is constant for all tensors
across all layers and models, a sign (θ), intA and intW are
dictionary indexes, SA and SW are per tensor scalars scaling
factors, and µA and µW are shifts.

Each output activation is a sum of activation times weight
products, which given the form of the input values can be
expanded into a sum of four terms:

(3)

n−1∑
i =0

Ai.Wi =

n−1∑
i=0

(
θAisA.a

intAi + µAi

)(
θWisW .a

intWi + µWi

)

= sA.sW

n−1∑
i=0

(
θAiθWia

intAi
+intWi

)
︸ ︷︷ ︸

SoI

+ sA

n−1∑
i=0

(
µWiθAia

intAi

)
︸ ︷︷ ︸

SoA

+ sW

n−1∑
i=0

(
µAiθWia

intWi

)
︸ ︷︷ ︸

SoW

+

n−1∑
i=0

(
µAi .µWi

)
︸ ︷︷ ︸

PoM

The first term (SoI) is the sum of aintAi+intWi . Assuming
4b quantization (3b indexes plus 1b signs), intA+intW will be
in range of [0+0, 7+7] = [0, 14] which given the quantization
contains 15 unique values. Since the exponents are limited to
15 values we can first add intA and intW and count how many
times each exponent occurs (count how many a0, a1...a14

we have overall) then with 15 MAC operations (occurrences
×a0 + ...+occurrences ×a14) we can compute the SoI term.

The second term (SoA) can be decomposed into two
terms as per Eq. 4. The first term (SoA1) is a summation
of activations with respect to the sign of both weight and
activation. This term is computed during computation similar
to SoA, but it needs smaller counters as the range of activation

is limited to [0, 7]. The second term (SoA2) is the sum of the
input activations for this layer. This term can be computed
while the output of previous layer is being quantized so that
is available in advance of this layer.:

SoA = sA

n−1∑
i=0

(
µWiθAia

intAi

)
= sA

n−1∑
i=0

(
(θWisW .b+mW)θAia

intAi

)
= sA.sW .b

n−1∑
i=0

(
θWiθAia

intAi

)
︸ ︷︷ ︸

SoA1

+ sA.mW.

n−1∑
i=0

(
θAia

intAi

)
︸ ︷︷ ︸

SoA2

(4)

The third term (SoW), similar to SoA is decomposed into two
term as per Eq 5. The first term (SoW1) is the summation
of the weights with respect to the sign of both weight and
activation, and it is computed similar to (SoA1). The second
term (SoW2) is a summation over weights and is a constant
that can be computed statically before inference.

SoW = sW

n−1∑
i=0

(
µAiθWia

intWi

)
= sW

n−1∑
i=0

(
(θAisA.b+mA)θWia

intWi

)
= sW .sA.b

n−1∑
i=0

(
θAiθWia

intWi

)
︸ ︷︷ ︸

SoW1

+ sW .mA.

n−1∑
i=0

(
θWia

intWi

)
︸ ︷︷ ︸

SoW2

(5)

The last term (PoM) is decomposed in Eq. 6 to 4 terms.
The first term is a summation of the sign of multiplication
(PoM1) which is computed during inference. The second and
the third terms are the summation of activations’ sign (known
when quantizing last layer) and weights’ sign (known before
inference) and the last term is a constant.

PoM =

n−1∑
i=0

(
µAi .µWi

)
=

n−1∑
i=0

((
θAisA.b+mA

) (
θWisW .b+mW

))
= sA.sW .b

2
n−1∑
i=0

(
θAiθWi

)
︸ ︷︷ ︸

PoM1

+ sA.mW .b

n−1∑
i=0

(
θAi
)

︸ ︷︷ ︸
PoM2

+ sW .mA.b

n−1∑
i=0

(
θWi

)
︸ ︷︷ ︸

PoM3

+n.mA.mW︸ ︷︷ ︸
PoM4

(6)

In conclusion computation can proceed as follows: 1) Add
the indexes (3 bit values) for a weight and an activation
we want to multiply. 2) XOR the sign bit of weight and
activation and based on that result, 3) increment or decrement
the occurrences tables for SoI (15 entries), SoA1 (8 entries),
SoW1 (8 entries), and PoM1 (1 entry). 4) After filling the
occurrences tables (which typically will require thousands of
cycles given the tensor sizes), multiply each count with its
corresponding value (a0...a15) and accumulate all products
into a single value. 5) The final values are multiplied by their
coefficients and added with pre-computed terms (which at this
point are constants) (SoA2, SoW2, PoM2,3,4) producing the
final output activation.

The output activation can then be quantized by comparing
it against the dictionary for the output activation tensor. In
practice, we find that 16-entry dictionaries prove sufficient.

5

Values are quantized to a 4b indexes which are a 3b index
into the stored dictionary entries and a 1b sign.

E. Outliers

Outliers (OT) are exceedingly rare and represent less than
2% of weights and 5% of activations (varies per model
and task). However, they do span over a disproportionally
large value range. To quantize outliers, we adapt the Golden
Dictionary approach.

We could naı̈vely use a common dictionary for all values.
Starting with the 16 centroid dictionary for the G values, we
found that to support outliers, we need to widen the index
range to int = 45. Encoding the index to such a dictionary
would require 6(index)+1(sign)=7 bits per value. We use a
two-prong approach to limit index lengths to 4b. First, we use
a separate outlier dictionary. Second, we take advantage of
the exceedingly rare occurrence of outliers to store all values,
outlier or Gaussian, using a 4b index. A separate, space-
and access-efficient list of pointers explicitly identifies which
indexes correspond to outliers (all others index to the Gaussian
dictionary). Section III-A describes the encoding.

Outliers require different handling during computation as
they do not fit under the same exponents (0 to 7) as the
Gaussian values. For any product where at least one of the
values is an outlier, Mokey converts the values into their
centroids and performs a multiply-accumulate. Since outliers
are exceedingly rare, this is a rare occurrence (less than 4% of
the multiplications in BERT). However, unless further action
is taken, the centroids would be FP16 numbers necessitating
FP16 capable MAC hardware. Fortunately, Mokey is further
enhanced to require only fixed-point values and hardware.

F. Integer Computation Throughout

Integer compute units are faster and more energy-efficient
than floating-point units. Mokey maps what were originally
floating-point computations to the fixed-point (integer) do-
main. The conversion to fixed-point arithmetic is done during
profiling. The process starts after the mean, standard deviation,
the dictionary (bins) that we are going to use for outliers and
the few constants (SoW, PoM) have been derived. To convert
these parameters to integer, Mokey first needs to set the total
bit-width (b) and to compute the number of fractional bits per
layer (frac). The number of fractional bits (frac) needed is:

frac = b− ceil (log2(max−min)) (7)

where max and min are the maximum and minimum values
that appear for the layer. The float (fl) to fixed-point(fx)
mapping then is:

fx = round(fl × 2frac)/2frac (8)

G. Summary

In summary, Mokey quantized an input model as follows:
First, it generates the Golden Dictionary for quantization. This
step is done once and the output is reused across all models.
Second, it quantizes the model’s parameters and embeddings.
On average, these statically known values consist of about

9 2 7

4b

16 values

4
 lin

es
p

er gro
u

p

2

6b
OT/group0

1 31

6b 6b 6b
OT/group1

Q
u

an
ti

ze
d

 V
al

u
es

O
T

P
o

in
te

rs

M
em

o
ry

 C
o

n
tr

o
lle

r

Q
u

an
ti

ze
d

 V
al

u
es

OT Set

FP
 1

6
 v

al
u

es

32x16
LUT

32x16
LUT

32x16
LUT

64b

64b

4b

1b

Off-Chip Memory

Decompression Engine

Fig. 5: DRAM layout

98.5% G values and 1.5% outliers. G values are stored in the
form of exponents (4-bit) and outliers are stored as small (16
entry–4-bit) dictionary indexes where the dictionary entries
are 16b fixed-point values. A list of pointers identifies which
indexes are to the outlier dictionary. Third, Mokey performs
a run over a randomly selected batch of inputs to generate
the dictionaries for the activations. The profiling is to find the
mean, standard deviation, and the outlier bins that activations
are using. The dictionaries and other constants per tensor
are stored along with the model. The space needed for this
metadata pales in comparison with the size of the respective
tensors; a G dictionary (8×16b entries), an OT dictionary
(16×16b), plus a few constants and a list of outlier pointers.

III. MOKEY MEMORY LAYOUT AND PROCESSING UNITS

This section describes the memory encoding and processing
units of Mokey. Combined they reduce memory traffic and
footprint while performing most computations using narrow
fixed-point arithmetic.

A. Off-Chip Memory Layout

To take advantage of Mokey’s quantization for reducing off-
chip memory traffic and footprint, we need to map Gaussian
and outlier values in a DRAM-friendly data container. Per
tensor, Gaussian and outlier values are represented as 4b
indexes. Since outliers are rare, Mokey stores all values using
4b indexes as shown in Figure 5. An extra list of pointers
identifies which of those indexes are outliers. The pointers
are encoded as follows: Conceptually, the regular “Quantized
value” 4b index array is split into groups of 64, 4b indexes.
To identify those indexes that are outliers, the “OT Pointers”
list first stores outlier count per group, followed by a list of
6b indexes marking their relative position within the group. In
the example shown, group0 has two outliers at positions 1 and
31. This container is DRAM-friendly as accesses to the two
sub-arrays will be done through two streams, each proceeding
through the respective areas sequentially with the bulk of
accesses going to the “Quantized Values” area. For simplicity,
at an appropriate level of the on-chip hierarchy the values can
be expanded to 5b (dictionary selection/1b, sign/1b, centroid
index/3b) indexes. This facilitates single stream accesses per
tensor.

6

B. Processing Units

Mokey hardware accelerator enables compute units to di-
rectly operate on the quantized indexes using narrow fixed-
point processing elements (PEs) for the bulk of computation
(Gaussian “G” values). Only for products where at least one of
the operands (weight or activation) is an outlier (“OT”), Mokey
PEs convert the values into their respective int16 centroids.
This requires a simple lookup to the respective dictionary.
Tile architecture: Figure 6 shows the architecture of process-
ing unit of the Mokey hardware accelerator. As shown on the
left, the accelerator comprises an array of 8 cascaded Gaussian
PEs (GPEs) which share an outlier/post-processing circuitry
(OPP). At peak, each GPEi processes a group of compressed
activations (A0···7) and the corresponding group of compressed
weights (W0···7). The GPEs process the Gaussian-distributed
inputs only; the outliers are sent to the OPP unit for lookup
and accumulation. The OPP unit is activated only when an
outlier is received, or by the end of the computation for post-
processing. At a high-level, most activation and weight pairs
will use Gaussian values and will be processed by the GPEs
that accumulate the partial sums described in Section II-D.
The occasional pairs containing outliers are processed in the
OPP. Since these are rare, they are processed one at a time for
simplicity and area-efficiency. After the full tensors have been
processed, a final step uses the OPP to accumulate and scale
the various summations into the output 16b activation. The
unit processes activations and values that have been encoded
in 5b (1b dictionary index, 1b sign, 3b dictionary index).

The GPE is detailed in Figure 6 (middle). In the core of each
GPE, four individually sized Counter Register-Files (CRFs)
accumulate the SoI , SoA1, SoW1, and PoM1 summations
(Section II-D). The organization of the CRF units is illustrated
in Figure 6 (right). Each line (addressed by wAddr) can
be incremented or decremented using up/down, if wEn
is asserted. The read address, rAddr is used to scan the
register-file content during post-processing using the post-
processing address ppAddr. The multiplication output sign
(θAθW ≡ sgnA ⊕ sgnA) is used to increment/decrement all
CRFs. SoI is counted using a 15 × 8 CRF, and is addressed
with A+W ≡ idxA+idxW. SoA1 is counted using a 8× 8
CRF, and is addressed with A ≡ idxA. SoW1 is counted
using a 8×8 CRF, and is addressed with W ≡ idxW. Finally,
PoM1 is counted using a 1 × 8 CRF (a single byte). As
the post-processing is performed only once for each layer, its
timing is less critical. Thus, the post processing is performed
serially. Only one of the summations (SoI , SoA1, SoW1,
and PoM1) is selected for post processing as sData, and
is selected by the control signal sumSel.

Scheduling outliers processing: Since it is exceedingly
rare but possible that more than one GPE receive an outlier
simultaneously, the processing of outliers must be scheduled:
the lowest index GPE that contains an outlier is selected for
processing; all other GPEs with outliers send a hold signal
back through the input channel (hldA, and hldW, to hold
the activations and weights, respectively). Each GPE generates

a local outlier-is-present signal isOtlCur = isOtlA ∨
isOtlW. A serial, cascaded leading-one-detector across all
GPEs detects the first GPE with outlier (isOtlCur = 1). The
selected “leading” GPE with an outlier asserts its otlSel
signal (otlSel = 1) forcing the otlSel signals to be
deasserted (otlSel = 0) for all other GPEs. The one-hot-
encoded otlSel is used to route the corresponding indexes
to the OPP (routing is done via per GPE AND gates and an
OR level shared across all GPEs).

The Outlier/Post-Processing (OPP) unit: First, when an
outlier has been detected, where the isOtl signal is asserted,
the OPP uses its G/OT-LUT to retrieve the outlier value and
performs a MAC operation. Second, in Post-processing where
sData will hold one of the summations (SoI , SoA1, SoW1,
and PoM1). A single PE will be selected iteratively using the
selector pePESel. The G/OT-LUT will operate as a G-LUT
and produce the bases of the summations. Finally, the bases
from the G-LUT and the summations from the GPEs will be
multiplied and accumulated.
Output Activation Quantizers: Prior to storing them in
memory, the output activations (OA) of each layer are quan-
tized using the prepared OT and G dictionaries. Figure 7
shows the organization of the quantization units. An output
activation OA is compared with every centroid from both
the G and the OT dictionaries. Since the dictionary values
are sorted, and assuming 16 values per dictionary, the output
of the comparators will be a 32b vector of 0s followed by
1s. A leading-one detector drives two 32-to-1 multiplexers,
respectively, selecting the two corresponding 16b centroids CL
and CH: the one corresponding to the leading 1 position and
the one before it or the same if the position happens to be
the first one. To determine the nearest to the OA centroid of
the two, OA is subtracted from each of CL and CH, and the
two differences are compared to find the smaller of the two
identified by the signal Ci. The relative position of this centroid
is then encoded as a 5b index. If written off-chip, a controller
packs them to the format of Figure 5.

C. Using Mokey For Memory Compression Only

Optionally, Mokey can be used just as a memory compres-
sion method where the values are transparently converted to
fixed-point 16b or (FP16 if desired) when written or read from
an appropriate level in the memory hierarchy. In this case,
when reading values, lookup tables can convert the indexes
into their corresponding centroids. Quantizers placed just
before the memory level pack the activation values into indexes
to dictionaries. When the compression targets an on-chip
buffer, the activations are best encoded with 5b (1b dictionary
OT or G, 1b sign, 3b index), whereas when writing to off-chip
memory, the Mokey off-chip memory format would improve
space efficiency. Using the less efficient 5b representation on-
chip avoids the overheads of creating the OT Pointer metadata
and the need for two access streams per tensor.

7

id
xA

isO
tlA

sg
nA

hl
dA

ot
lA

idxW

isOtlW
sgnW

hldW

otlW

sData

Activations
Channel Ai

W
ei

gh
ts

C
ha

nn
el

 W
i

GPE0

GPE6

GPE7

sData

otlA

ot
lW

sData

otlA

ot
lW

sData

otlA

ot
lW

isOtl

isOtlppEnb

ppPESel

w
A

dd
r

rA
dd

r

rData

wData

-1 1
up/down

wAddr

rData

rAddr

0

10

0
1

ad
dS

el
A

m
ul

S
el

A

ad
dC

ns
t

m
ul

C
ns

t

Counters
Register-File

(CRF)Gaussian PE (GPE)
Outlier/Post-
Processing (OPP)

pp
A

dd
r

pp
E

nb

A7

A6

A0

W7

W6

W0

m
ul

S
el

B
ad

dS
el

B

SoI

SoA1

SoW1

PoM1

θA

θW
θAθW

A+W A0
1

w
A

dd
r

rA
dd

r

rData

wData
Output

accumulator
 8×16

G/OT
LUT

16×16

rD1

rD2

rA1

rA2

1×
8

8×
8

8×
8

15
×

8

Fig. 6: Architecture of Mokey Hardware Accelerator.

16b

O
u

tp
u

t
A

ct
iv

at
io

n
 (

O
A

)

<< < < <

G_DICT0 G_DICT1 G_DICT2 OT_DICT14 OT_DICT15

Encoder

Quantized OA

- 1

16b

5b

32b

-

-

<
16b

CL

CH

Ci

Leading 1
detector

M
em

o
ry

 C
o

n
tr

o
lle

r

Q
u

an
ti

ze
d

 V
al

u
es

OT Set

FP
 1

6
 v

al
u

es

32x16
LUT

32x16
LUT

32x16
LUT

64b

64b

4b

1b

Decompression Engine

16b

Fig. 7: Output Quantization Engine.

IV. EVALUATION

A. Model Task Performance

We first evaluate the effect of Mokey quantization on task
performance over various models, tasks, and datasets. Task
performance refers to how well the model performs each
task. The metric used is task-dependent. We show that Mokey
maintains task performance without requiring fine-tuning.

We applied Mokey on the following models: DeBERTa [42],
a recent model from Microsoft that is in the top-ranked models
on GLUE [11] benchmark, on Facebook’s RoBERTa [43]
which is used widely used in sentiment analysis, and on
models from Google’s BERT family of models [7] which
powers the search engine to show more related results in
search queries. The pre-trained models were obtained from
the Hugging Face Model hub [44]. The Golden Dictionary
was created by generating a random normal distribution and
applying Agglomerative Clustering using the SciKit-Learn
library [45]. Our main benchmark to evaluate model accuracy
is the MNLI task in the GLUE dataset, as it is the most
sensitive task to quantization and has the most comprehensive
set for language inference in the dataset [9], [39]. Furthermore,
MNLI trained models are publicly available. Where possible,

however, we also study STS-B and SQuAD.
BERT: Bidirectional Encoder Representations from Trans-
formers (BERT) [7] is a well-known and widely used trans-
former model for NLP applications such as similarity detec-
tion, sentiment analysis, and question answering. We apply
Mokey on BERT-Base (12 Encoders, 110M parameters) and
BERT-Large (24 Encoders, 340M parameters) on MNLI (The
Multi-Genre Natural Language Inference), STS-B (Semantic
Textual Similarity Benchmark) from GLUE benchmark, and
SQuADv1 [46] (Stanford Question Answering Dataset) task.
RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach (RoBERTa) [43] shares the same architecture as BERT
but benefits from an optimized training recipe that leads to
higher accuracy. We evaluate Mokey on RoBERTa-Large using
MNLI, STS-B and SQuAD v1 tasks. RoBERTa-Large has 24
Encoder layers and a total of 340M parameters.
DeBERTa: Decoding-enhanced BERT with disentangled at-
tention (DeBERTa) [42] is a state-of-the-art transformer model
that increases the accuracy of Transformers by decoupling
the position of the tokens from their context embedding. We
evaluate DeBERTa-XL (48 Encoder layers, 750M parameters)
on the MNLI task since trained MNLI models are publicly
available.

Table I reports the resulting task performance under the
“Score” columns. The “FP Score” column reports the task
performance of the original FP32/FP16 models, whereas the
other two score columns report task performance when we
quantize weights alone or weights and activations. The higher
the score, the better the model performs. The change in task
performance is also listed under the “Err” columns. Overall,
Mokey is within 1% of the FP baseline and closer for the most
recent DeBERTa. The table also lists the fraction of outlier
values in weights (W OT%) and activations (A OT%). In the
worst case, outliers account for just 2.5% of the overall values.
In some applications, there may be enough on-chip buffering
to store the activations as-is. Accordingly, the table also reports
task performance when Mokey is applied only to weights.
Task performance is, as expected, slightly better and, in some
cases, even better than the FP baseline. Such variations in task
performance are normal. The outlier fraction is also noticeably
lower for the weights, which is also expected as the activations

8

TABLE I: The Effect of Mokey Quantization on Task Performance (see text for definition.)

Model Configuration Weight only Quant. Weight + Activation Quant.

Model Task Metric FP Score W OT% Score Err A OT% Score Err

BERT-Base MNLI Acc-m 84.44 1.6 84.80 -0.36 4.5 84.22 0.22

BERT-Large MNLI Acc-m 86.65 1.51 86.39 0.26 4 85.69 0.96
BERT-Large STS-B Spearman 90.25 1.51 90.12 0.13 2.5 89.51 0.74
BERT-Large SQuAD F1 93.15 1.54 93.17 -0.02 1.7 92.22 0.93

RoBERTa-Large MNLI Acc-m 90.58 1.48 90.38 0.20 4.1 89.81 0.77
RoBERTa-Large STS-B Spearman 92.41 1.48 92.25 0.16 4.4 91.52 0.89
RoBERTa-Large SQuAD F1 93.56 1.48 93.25 0.31 2.9 92.58 0.98

DeBERTa-XL MNLI Acc-m 91.75 1.2 91.78 -0.03 4.3 91.18 0.57

Profiling Trial #

A
cc

ur
ac

y
(B

R
E

T
- B

as
e

M
N

LI
)

80.00%

80.83%

81.67%

82.50%

83.33%

84.17%

85.00%

1 3 5 7 9 11 13 15 17

Fig. 8: Profiling effect on accuracy.

exhibit a much larger range, as corroborated by the use of
longer datatypes for activations in prior quantization work.

Our experiments show profiling has almost no effect on
the accuracy: Figure 8 shows the accuracy after profiling
model multiple times with different random samples of the
training set and the result of profiling is almost identical each
time. The reasons behind this are I) In our method, the bins
get exponentially wider when the index (aindex) gets larger.
This means the bins that will contain outliers are wide and
capture an extremely wide range of values. II) weights in the
model act as a regularizer for the activations and shape the
output distribution. Also, transformer-based models have layer
normalization and softmax which limits the range of values.

B. Hardware Evaluation Methodology

As our baseline, we use a spatial 2048 FP16 Tensor Cores-
based accelerator [47], [48] and we sweep a range of possible
on-chip buffer capacities. We use this baseline to demon-
strate that Mokey compression alone can benefit an existing
accelerator and to also demonstrate that a design using the
Mokey processing units can outperform it. We also compare
with GOBO [9]. The dataflow for all designs is optimized to
minimize the number of off-chip transactions.

Cycle counts are measured using a custom cycle-accurate
simulator that uses DRAMSIM3 [49] to model DRAM trans-
actions for a DDR4-3200 dual-channel main memory. The
simulator has been tested with various microbenchmarks and
verifies the correctness of the simulated output. Memories

TABLE II: Area, Cycle Count and Energy for BERT-Base.

Compute BERT-Base/512KB buffer

Architecture Units Area (mm2) Cycle Count Energy (J)

FP16 Tensor Cores 2048 16.1 167M 0.36
FP16 GOBO 2560 15.9 52M 0.17
Mokey 3072 14.8 29M 0.09

are divided into banks to meet the target access time and
bandwidth. Area and power for the on-chip memories are
modeled using CACTI [50].

We use post-layout energy and area estimates. All designs
are implemented in Verilog. Major arithmetic units are in-
stantiated from Synopsys DesignWare Building Block IP Li-
brary [51]. For synthesis, we use Synopsys’ Design Compiler
(ver. N-2017.09) [52] with a 65nm TSMC technology node
targeting 1 GHz frequency and for placement and routing, we
use Cadence Innovus (ver. 20.13) [53]. Power consumption
is estimated in Innovus using the post-layout netlist with an
activity factor generated by Intel ModelSim.

C. Mokey Acceleration

The baseline architecture uses FP16 — an FP32 baseline
which is more common today, would have resulted in higher
benefits for Mokey. Table II reports area used by their process-
ing elements and their count for the baseline Tensor Cores,
GOBO (refer to section V) and Mokey. Since the area of
each Mokey processing element (PE) is smaller than either
those of Tensor Cores or GOBO, Mokey can afford to pack
more elements within less area. Moreover, since Mokey stores
values using short indexes, it does not need wide memories to
supply its units. For example, the Mokey PE is 39% smaller
compared to a tensor-core unit with an equivalent compute-
capability (MAC/cycle). This superior processing power per
area and energy vs. the baseline is an additional advantage of
Mokey.
Comparison with Tensor Cores: We first compare Mokey
with the baseline Tensor Cores accelerator reporting execution
time performance and energy efficiency. All measurements
are normalized over the corresponding baseline configuration.
Tensor Cores and Mokey use the same compute area and the
same buffer capacity – total chip area for Mokey is smaller
as it uses narrower buffers and interconnect. Figure 9 reports
the execution time in cycles for the baseline configurations.

9

Fig. 9: Baseline Accelerator: Inference Cycle Counts.

As expected, using larger on-chip buffers decreases execution
time as 1) it allows for more overlap between off-chip accesses
and on-chip compute, and 2) reduces the number of off-chip
transactions due to higher reuse.

Figure 10 shows that Mokey reduces execution time com-
pared to the baseline. Although Mokey has some overheads
for computing outliers and for the post-processing stage, on
average it outperforms the baseline by 11× when the buffers
are small and by 4.1× faster for the large 4MB buffers.

Figure 11 also reports the resulting relative energy efficiency
for the Mokey accelerator. Even for the 4MB on-chip buffer
configurations, the Mokey hardware accelerator boosts energy
efficiency by 13×. For the 256KB configurations Mokey is
78× more energy efficient.
Advantages of Mokey Hardware Accelerator: Table III
shows breakdowns of area, performance, and energy for Tensor
Cores and Mokey with BERT Large on SQuAD. 1) Area:
Since Mokey PEs are 39% smaller, more can fit in the same
compute area. Furthermore, since Mokey computes directly on
quantized indexes, it requires on-chip buffers with significantly
narrower data interfaces and interconnects with area and
energy benefits. For example, due to the narrower interface,
Mokey’s 1MB buffers use as much area as the 256KB buffers
of Tensor Cores. However, in this evaluation, we did not
use this to Mokey’s advantage, e.g., by introducing more
units. Instead we used an iso-compute-area and iso-buffer-
capacity constraint and showed that Mokey outperforms Tensor
Cores even under this worse for Mokey constraint. If we were
to account for this advantage of Mokey, combined the 4×
reduction in memory area and the reduction of values from
16b to 5b, would translate into a nearly 13× amplification of
on-chip memory capacity. Section IV-D shows that the Mokey
accelerator is still better than the Tensor Cores even when
the latter uses Mokey just for on- and off-chip memory com-
pression. Processing with Tensor Cores requires converting the
indexes into the corresponding centroids via lookup tables.

2) Performance: Mokey’s on-chip compression allows more
values to be stored on-chip and increases the overlap of
compute and memory transactions. For example, with the

256KB on-chip buffer, Mokey increases compute/memory
overlap from 27% to 58%. Also, since Mokey can fit more
weights and activations on-chip it can better reuse values and
reduce the overall off-chip traffic. 3) Energy: Mokey compute
units are extremely energy efficient. Mokey, despite having
1.5× more compute units, it burns 2× less energy as they
perform mostly counting on narrow fixed-point indexes.
Comparison with GOBO: Figure 12 shows that Mokey is
faster than the GOBO accelerator. The figure shows Mokey’s
execution time normalized over GOBO with the same on-chip
buffer size. Whereas GOBO stores activations in FP16, Mokey
quantizes them to 4b. This magnifies on-chip buffer capacity,
boosting performance for tasks with longer sequence lengths
(e.g., SQuAD). With larger on-chip buffers, Mokey remains
faster albeit at a lesser degree since the source of performance
benefits shifts more to the difference in peak compute capa-
bility. Another advantage of Mokey is that its PEs are more
efficient as they perform fixed-point operations vs. GOBO’s
FP16 PEs. This is shown in Figure 13 which reports the overall
energy efficiency of Mokey over GOBO. Mokey consumes less
energy and is 9× more energy efficient compared to GOBO
with smaller buffers. The energy efficiency remains high at
2× even with the 4MB on-chip buffers.

D. Using Mokey for Memory Compression Only

We consider using Mokey only as compression mechanism
(weights and activations) over the Tensor Cores baseline.
Larger on-chip buffers store more values on-chip, resulting
in 1) better overlap between computation and memory trans-
actions, and 2) a reduction in DRAM transactions.
Mokey Off-Chip Compression: In the first set of exper-
iments, Mokey compresses values off-chip only. When the
values are transferred to the chip, they get expanded into FP16
centroids. Figure 14 shows performance normalized over the
corresponding baseline configurations that do not use Mokey
compression. The average speedup for a small 256KB buffer is
about 3.9× and it improves when the on-chip buffer gets larger
to 4.3× for a 4MB buffer. These models are mostly memory
bound, and with the smaller on-chip buffers, compute units
consume the data faster than DRAM transactions resulting in
idle time. These configurations most of the time cannot overlap
computation with off-chip memory transactions. As the on-
chip capacity grows larger, computation and off-chip access
overlap becomes increasingly frequent.

In general, off-chip compression reduces DRAM energy
consumption by a factor of 4× reducing overall relative energy
(Figure 15). With the 256KB on-chip buffer, on average 82%
of total energy is due to memory transactions. This is less with
the larger on-chip buffers as they access DRAM less. With the
4MB on-chip buffer, memory transactions account for 53% of
energy consumption. Regardless, Mokey off-chip compression
improves energy efficiency of the 256KB configuration by 11×
and by 7.8× for the 4MB configuration.
Mokey On-Chip Compression: In this application, Mokey
stores 5-bit indexes in on-chip buffers and expands the

10

Fig. 10: Mokey Accelerator Speedup over Tensor Cores. Fig. 11: Mokey Energy Efficiency over Tensor Cores.

Fig. 12: Mokey Accelerator Speedup over GOBO. Fig. 13: Mokey Energy Efficiency over GOBO.

TABLE III: Area, Performance and Energy breakdown for Tensor Cores and Mokey for BERT Large on SQuAD.

256KB on-chip buffer 512KB on-chip buffer 1MB on-chip buffer

Tensor Cores Mokey Tensor Cores Mokey Tensor Cores Mokey

Area (mm2)
On-chip Buffer Area 13.2 4.7 16.8 8.0 24.7 14.6
Compute Area 16.1 14.8 16.1 14.8 16.1 14.8
Total Chip Area 30.7 20.5 34.5 23.9 42.7 30.8

Performance
Memory Transfer Cycles 3690 M 226 M 1730 M 151 M 938 M 108 M
Compute Cycles 60 M 55 M 60 M 55 M 60 M 55 M
Total Cycles 3734 M 249 M 1772 M 163 M 953 M 109 M
Compute/Memory Avg. Overlap % 26.7% 57.7% 29.0% 77.0% 76.5% 98.2%

Energy (J)
Off-chip Memory Energy 5.79 0.35 2.72 0.24 1.47 0.17
On-chip Memory Energy 0.1 0.01 0.1 0.01 0.11 0.02
Compute Energy 0.95 0.48 0.95 0.48 0.95 0.48
Total Energy 6.84 0.84 3.77 0.73 2.53 0.67

values once they are requested by compute units. In Fig-
ure 14 (OC+ON) set of bars report the corresponding speedup.
Compressing data allows us to store more weights and activa-
tions, maximize reuse and significantly reduces the number
of DRAM transactions. The smaller the on-chip capacity,
the higher the potential benefits from on-chip compression.
In transformer models, activations grow quadratically with
respect to sequence length. BERT-Large and RoBERTa-Large
on the SQuAD task used a sequence length of 384 tokens,
while for other model/tasks use a sequence length of 128. This
explains why these two models on SQuAD task benefit the
most from on-chip compression in the smaller buffer sizes. As
the on-chip buffer gets larger, eventually, all activations would
fit on-chip and the weights need to be loaded only once from
off-chip. With Mokey compression, the on-chip buffer size at
which this becomes possible is smaller.

Energy reduction with on-chip memory compression ex-
hibits a similar trend as with off-chip as shown in Figure 15.
Energy reduction is significant with the smaller on-chip buffers

as Mokey boosts their effective capacity reducing off-chip
accesses. With the 256KB buffer Mokey improves energy
efficiency by 54× and by 8× with the 4MB buffer.

V. RELATED WORK

This section discusses how Mokey compares to state-of-the-
art model compression methods for Transformer models.
Integer/Floating-Point Quantization: Q8BERT quantized
weights and activations to 8-bit fixed-point. It requires fine-
tuning to reduce quantization error and FP32 compute cores
for some layers such as Softmax [32]. I-BERT also quantizes
weights and activations to 8 bits, but by leveraging approx-
imations for nonlinear functions it uses fixed-point through-
out [33]. Table IV compares Q8BERT and I-BERT with
Mokey. Mokey is a post-training method and can be applied
on out-of-the-box models without requiring access to datasets
or systems that are capable of training these models. Mokey
reduces activation and weight footprint by approximately 2×

11

Fig. 14: Tensor Cores speedup w/ Mokey Memory compression for Off-chip only (OC) and Off- and On-chip (OC+ON) traffic.

Fig. 15: Tensor Cores Relative Energy w/ Mokey Memory compression for Off-chip only (OC) and Off- and On-chip (OC+ON).

TABLE IV: Comparing Various Quantization Methods for BERT-Base on the MNLI task. INT Comp indicates if the computation
is in fixed-point domain. Compression Ratio reports the total memory footprint reduction.

BERT-Base MNLI Parameters (bit) Activations (bit) Accuracy (m) Error INT Comp Post-Training Compression Ratio

FP32 Baseline 32 32 84.44 - 7 7 1×
Q8BERT [32] 8 8 83.75 0.69 3 7 4.0×
I-BERT [33] 8 8 84.12 0.32 3 7 4.0×
Q-BERT [31] 4 8 83.89 0.55 7 7 6.9×
GOBO [9] 3 32 83.76 0.68 7 3 4.1×
TernaryBERT [34] 2 8 83.30 1.14 7 7 10.8×
Mokey 4 4 84.22 0.22 3 3 7.9×

compared to Q8BERT and I-BERT, has higher accuracy, and
performs all computations in fixed-point with most using 3b.
Dictionary-Based Quantization: Q-BERT is a group-wise
dictionary-based quantization method [31]. It divides the pa-
rameters of each layer into groups (typically 128) each of
which it quantizes to a dictionary of 4 to 16 representative
values. Q-BERT quantizes activations to 8b. It requires fine-
tuning. GOBO is a post-training dictionary-based quantization
method that quantizes weights only to 3b or 4b (activations
remain in FP16 or FP32) [9]. GOBO uses an iterative centroid
selection method similar to k-means. Table IV compares Q-
BERT and GOBO with Mokey. Compared to Q-BERT, Mokey
requires no fine-tuning, reduces footprint for activations more,
and has better accuracy. Compared to GOBO, Mokey quantizes
both weights and activations, achieves higher accuracy, and
replaces floating-point arithmetic with narrow fixed-point op-
erations. Mokey quantizes layers based on a Golden Dictionary
which is faster than GOBO’s iterative process.
Pruning, Distillation and NAS: Model pruning, Distillation
and Neural Architecture Search (NAS) can reduce model size
and are orthogonal to quantization methods such as Mokey.
TernaryBERT uses a combination of knowledge distillation
and quantization to compress BERT [34]. It quantizes weights
to 2b and activations to 8b. TernaryBERT’s extreme quanti-
zation comes at the expense of a 1.14% drop in accuracy,

and the distillation process requires training the model while
searching for suitable hyperparameters. SpAtten prunes less
effective cascade heads and tokens from attention layers [23].
HAT is a NAS method which alters model architecture to best
fit a target hardware configuration [54].

VI. CONCLUSION

The bulk of the operations and data transfers in state-of-
the-art NLP models are due to multiply-accumulate operations
(MACs) over floating-point values. Mokey introduces a unique
quantization that maps the original floating-point value space
into a few fixed-point values which are a small subset of a
larger fixed-point value space. Mokey chooses this subset so
that all its values fit under some exponential curve. It is this
property that enables Mokey to replace MACs over floating-
point tensors, transforming them into counting of 4b centroid
indexes without even having to map to the centroid values
themselves — at the end, a few scaling operations using fixed-
point arithmetic map the final result into the target fixed-point
value space. Since Mokey adjusts the exponential curve to best
fit each layer, it does not restrict the set of possible centroid
values. We expect that future work will expand and improve
upon quantization methods such as Mokey. These are methods
that carefully select not only the target value space, but also
a subset within it to maximize cost reduction opportunities.

12

ACKNOWLEDGEMENT

This work was supported by the NSERC COHESA Strategic
Research Network and an NSERC Discovery Grant. The
University of Toronto maintains all rights to the technologies
described.

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language
models are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[2] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” CoRR,
vol. abs/2101.03961, 2021.

[3] M.-W. Chang, L. Ratinov, D. Roth, and V. Srikumar, “Importance
of semantic representation: Dataless classification,” in Proceedings of
the 23rd National Conference on Artificial Intelligence - Volume 2,
AAAI’08, p. 830–835, AAAI Press, 2008.

[4] C. C. nonprofit 501(c)(3) Organization, 2021.
[5] R. Desislavov, F. Martı́nez-Plumed, and J. Hernández-Orallo, “Compute

and energy consumption trends in deep learning inference,” arXiv
preprint arXiv:2109.05472, 2021.

[6] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT, 2019.

[8] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data
movement is all you need: A case study on optimizing transformers,”
Proceedings of Machine Learning and Systems, vol. 3, 2021.

[9] A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos, “GOBO:
quantizing attention-based NLP models for low latency and energy
efficient inference,” in 53rd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 2020, Athens, Greece, October 17-21,
2020, pp. 811–824, IEEE, 2020.

[10] P. Ganesh, Y. Chen, X. Lou, M. A. Khan, Y. Yang, H. Sajjad, P. Nakov,
D. Chen, and M. Winslett, “Compressing large-scale transformer-based
models: A case study on bert,” Transactions of the Association for
Computational Linguistics, vol. 9, p. 1061–1080, Sep 2021.

[11] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
OpenReview.net, 2019.

[12] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, “Transformers
are rnns: Fast autoregressive transformers with linear attention,” in
International Conference on Machine Learning, pp. 5156–5165, PMLR,
2020.

[13] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer:
Self-attention with linear complexity,” arXiv preprint arXiv:2006.04768,
2020.

[14] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti,
S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang, et al., “Big bird:
Transformers for longer sequences.,” in NeurIPS, 2020.

[15] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-
document transformer,” arXiv preprint arXiv:2004.05150, 2020.

[16] J. Mao, H. Yang, A. Li, H. Li, and Y. Chen, “Tprune: Efficient
transformer pruning for mobile devices,” ACM Trans. Cyber-Phys. Syst.,
vol. 5, apr 2021.

[17] S. Kim, S. Shen, D. Thorsley, A. Gholami, W. Kwon, J. Hassoun, and
K. Keutzer, “Learned token pruning for transformers,” arXiv preprint
arXiv:2107.00910, 2021.

[18] F. Lagunas, E. Charlaix, V. Sanh, and A. M. Rush, “Block pruning for
faster transformers,” arXiv preprint arXiv:2109.04838, 2021.

[19] A. Parnami, R. Singh, and T. Joshi, “Pruning attention heads of trans-
former models using a* search: A novel approach to compress big nlp
architectures,” arXiv preprint arXiv:2110.15225, 2021.

[20] J. Li, R. Cotterell, and M. Sachan, “Differentiable subset pruning of
transformer heads,” arXiv preprint arXiv:2108.04657, 2021.

[21] D. Peer, S. Stabinger, S. Engl, and A. Rodriguez-Sanchez, “Greedy
layer pruning: Decreasing inference time of transformer models,” arXiv
preprint arXiv:2105.14839, 2021.

[22] K. Shim, I. Choi, W. Sung, and J. Choi, “Layer-wise pruning of
transformer attention heads for efficient language modeling,” arXiv
preprint arXiv:2110.03252, 2021.

[23] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention
architecture with cascade token and head pruning,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pp. 97–110, IEEE, 2021.

[24] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” 5th Workshop on
Energy Efficient Machine Learning and Cognitive Computing - NeurIPS,
2019.

[25] G. Aguilar, Y. Ling, Y. Zhang, B. Yao, X. Fan, and C. Guo, “Knowledge
distillation from internal representations,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, pp. 7350–7357, 2020.

[26] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International Conference on Machine Learning,
pp. 10347–10357, PMLR, 2021.

[27] R. Masumura, N. Makishima, M. Ihori, A. Takashima, T. Tanaka,
and S. Orihashi, “Hierarchical transformer-based large-context end-to-
end asr with large-context knowledge distillation,” in ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5879–5883, IEEE, 2021.

[28] S. Mukherjee and A. H. Awadallah, “Distilling bert into sim-
ple neural networks with unlabeled transfer data,” arXiv preprint
arXiv:1910.01769, 2019.

[29] L. Liu, H. Wang, J. Lin, R. Socher, and C. Xiong, “Mkd: a multi-task
knowledge distillation approach for pretrained language models,” arXiv
preprint arXiv:1911.03588, 2019.

[30] Y. Jiang, B. Sharma, M. Madhavi, and H. Li, “Knowledge distillation
from bert transformer to speech transformer for intent classification,”
arXiv preprint arXiv:2108.02598, 2021.

[31] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W. Mahoney,
and K. Keutzer, “Q-bert: Hessian based ultra low precision quantization
of bert.,” in AAAI, pp. 8815–8821, 2020.

[32] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, “Q8bert: Quantized
8bit bert,” 5th Workshop on Energy Efficient Machine Learning and
Cognitive Computing - NeurIPS, 2019.

[33] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, “I-bert:
Integer-only bert quantization,” arXiv preprint arXiv:2101.01321, 2021.

[34] W. Zhang, L. Hou, Y. Yin, L. Shang, X. Chen, X. Jiang, and Q. Liu,
“Ternarybert: Distillation-aware ultra-low bit bert,” arXiv preprint
arXiv:2009.12812, 2020.

[35] I. Chung, B. Kim, Y. Choi, S. J. Kwon, Y. Jeon, B. Park, S. Kim, and
D. Lee, “Extremely low bit transformer quantization for on-device neural
machine translation,” arXiv preprint arXiv:2009.07453, 2020.

[36] O. Sharir, B. Peleg, and Y. Shoham, “The cost of training NLP models:
A concise overview,” CoRR, vol. abs/2004.08900, 2020.

[37] M. L. Zepeda-Mendoza and O. Resendis-Antonio, Hierarchical Agglom-
erative Clustering, pp. 886–887. New York, NY: Springer New York,
2013.

[38] E. Wang, J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk, P. Y. K.
Cheung, and G. A. Constantinides, “Deep neural network approximation
for custom hardware,” ACM Computing Surveys, vol. 52, p. 1–39, May
2019.

[39] M. A. Gordon, K. Duh, and N. Andrews, “Compressing bert: Studying
the effects of weight pruning on transfer learning,” arXiv preprint
arXiv:2002.08307, 2020.

[40] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” in 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings (Y. Bengio and Y. LeCun, eds.), 2016.

[41] MATLAB, version 9.9.0 (R2020a). Natick, Massachusetts: The Math-
Works Inc., 2020.

[42] P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced bert
with disentangled attention,” arXiv preprint arXiv:2006.03654, 2021.

[43] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[44] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, and J. Brew, “Hugging-
face’s transformers: State-of-the-art natural language processing,” ArXiv,
vol. abs/1910.03771, 2019.

13

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[46] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” arXiv preprint
arXiv:1606.05250, 2016.

[47] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting
the NVIDIA volta GPU architecture via microbenchmarking,” CoRR,
vol. abs/1804.06826, 2018.

[48] L. Durant, O. Giroux, M. Harris, and N. Stam, “Nvidia developer blog,”
May 2017.

[49] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3:
A cycle-accurate, thermal-capable dram simulator,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 106–109, 2020.

[50] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Cacti 6.0: A
tool to model large caches,” HP Laboratories, 01 2009.

[51] Synopsys Inc., DesignWare® Building Block IP User Guide, December
2016. Ver. M-2016.12.

[52] Synopsys Inc., Design Compiler® User Guide, September 2017. Ver.
N-2017.09.

[53] Cadence Design Systems Inc., Cadence Innovus User Guide, January
2021. Ver. 20.13.

[54] H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han, “Hat:
Hardware-aware transformers for efficient natural language processing,”
arXiv preprint arXiv:2005.14187, 2020.

14

	I Introduction
	II Mokey Quantization
	II-A Inference: Runtime Encoding/Decoding of Activations
	II-B Generating the Golden Dictionary (GD)
	II-C Generating Per Tensor Dictionaries
	II-D Integer Exponents for Compute Acceleration
	II-E Outliers
	II-F Integer Computation Throughout
	II-G Summary

	III Mokey Memory Layout and Processing Units
	III-A Off-Chip Memory Layout
	III-B Processing Units
	III-C Using Mokey For Memory Compression Only

	IV Evaluation
	IV-A Model Task Performance
	IV-B Hardware Evaluation Methodology
	IV-C Mokey Acceleration
	IV-D Using Mokey for Memory Compression Only

	V Related Work
	VI Conclusion
	References

