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Abstract—This paper proposes a family of modular interfaces
for crossing between asynchronous and synchronous timing
domains. Motivated by asynchronous NoC and desynchronized
pipelines, these converters support two-phase, bundled data
communication. They provide high-throughput communication
and support an early-request protocol that can hide most of the
synchronization latency. Our designs are fully synthesizable using
widely available standard cell libraries and a standard ASIC
design flow. The converters have been integrated into an open-
source bundled-data desynchronization flow and evaluated in
isolation as well in the context of an encryption engine supporting
three block ciphers.

I. INTRODUCTION

Modern chip designs can consist of several billion tran-
sistors. Because of the difficulties of distributing high-speed
clocks with low skew and jitter, such chips are invariably or-
ganized as hundreds of relatively independent timing domains.
This approach leverages the mature, commercially supported,
design flows for building synchronous modules with millions
of gates, while providing a timing independence between these
modules. This simplifies timing closure, supports design reuse,
and enables independent voltage-frequency scaling to be used
in separate modules to maximize energy efficiency. Globally,
large chips are asynchronous. Therefore, optimizing the asyn-
chronous interfaces between timing domains is essential for
achieving efficient, high-performance systems.

As an example, Figure 1 depicts a simplified view of a
modern, multi-core CPU that has a crytpo-accelerator block.
In this figure, each core has its own L1 and L2 (level-1 and
level-2) caches, and an on-chip network connects the cores to
a shared L3 cache and accelerator. The CDC (clock-domain-
crossing) boxes provide the interfaces between different timing
domains. If the cores, NoC (network-on-chip), L3 caches, and
accelerator each operate with their own clocks, then each CDC
module must include a synchronizer, and the synchronization
latency is added to the total latency of the data transfer.
The example in Figure 1 shows that four such clock-domain
crossings are used to handle an L2 cache miss. With core-clock
frequencies of 3GHz or more, three-flip-flop synchronizers are
common, and the synchronization alone can contribute twelve
cycles to the total miss-processing time. Architects are always
asking for higher NoC bandwidth with lower latency, and a

12 cycle synchronization penalty is a significant performance
issue.

For these problems, asynchronous solutions offer several
advantages. First, no synchronization is needed when entering
the asynchronous time-domain. For the example of the multi-
core CPU, by simply using an ANoC [1]–[5], the twelve cycle
synchronization penalty of the all-synchronous example design
can be alleviated to half that, i.e. six cycles. Further reductions
in the synchronization penalty are possible by using an early-
request protocol when the maximum delay in a module can
be bounded.

It may also be advantageous that the CPU or the accelera-
tors be asynchronous. There are several asynchronous design
languages that support the design of asynchronous blocks
from scratch [6], [7]. Alternatively, desynchronization is an
attractive approach which leverages existing synchronous RTL
specifications, commercial synthesis tools, and cell libraries to
generate an asynchronous bundled-data pipeline [8]. Because
the pipeline uses local clocks generated via asynchronous
control, the pipeline is resilient to process, voltage, and tem-
perature (PVT) variations [9], [10] and can easily benefit from
dynamic voltage scaling. As in the ANoC, a critical aspect
of making such systems usable is the integration with low-
latency synchronizers. Moreover, because desynchronization
techniques yield unconditional pipelines they are particularly
well suited to take advantage of early-request protocols.

This paper thus focuses on interfaces between synchronous
and asynchronous timing domains that support early request
protocols. Our interfaces assume two-phase, bundled data
protocols because wire-delay is a key performance limiter for
large blocks or blocks that span a large portion of a chip (e.g., a
NoC). Using a two-phase protocol, each data transfer requires
a single round-trip between the sender and receiver: first, data
and a request are sent from the sender to the receiver; in
response, the receiver sends an acknowledgement back to the
sender. The throughput of the network is limited by this round-
trip time. If a four-phase protocol is used, two such round-trips
are required for each data transfer, achieving roughly half the
throughput of a two-phase design. We describe how the early-
request protocol can be incorporated into our desynchroniza-
tion process and evaluate it on an encryption accelerator that
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Fig. 1: CDC example: A multi-core CPU with a crypto accelerator

supports three block ciphers, Triple DES, Present, and Hight.
The contributions of this paper are as follows.
• We present a family of timing-domain crossing FIFOs

that support any combination of synchronous and asyn-
chronous interfaces, i.e. A2A, A2S, S2A, and S2S.

• The designs are highly parameterized and synthesizable
using standard, commercial cell libraries and design
flows. We provide open-source Verilog including the
FIFOs themselves and their test benches.1

• Our designs support two-phase, bundled-data with early-
request protocols. We present simulation results showing
how the use of early request can significantly reduce the
latency of A2S and S2S interfaces.

• We evaluated our FIFOs in isolation as well in the context
of an encryption engine supporting three block ciphers.

By providing a synthesizable library of high-throughput, low-
latency time-domain crossing interfaces, we provide designers
with a disciplined way to incorporate the use of ANoCs
and asynchronous modules into designs where some or many
modules are designed and synthesized using a traditional,
synchronous design flow. We believe these interfaces greatly
lower the barrier to entry for exploiting the advantages of
asynchronous designs in a heterogeneous design framework.

The remainder of this paper is organized as follows. Section
II reviews related work in synchronizers and desynchroniza-
tion. Section III presents our proposed synchronizing FIFOs.
Section IV focuses on our proposed early-request protocols
and their implementation. Section V presents our experimental
results followed by a summary in Section VI.

II. RELATED WORK

With the rapid progress of silicon technology, modern
devices comprise an increasing number of on-chip design
modules, incorporate multiple clock domains running at higher
frequencies. As these design challenges hinder system inte-
gration and timing closure, FIFOs become more attractive

1For the purposes of evaluation, we will provide a tar-ball to the PC chairs
upon request. After the blind review process is complete, we will post the
source code on git-hub.

solution for decoupling and transferring data between different
domains because they offer high throughput and simple flow
control. Synchronizing FIFOs are largely classified by the
design of the interface control logic, the data storage, and
the synchronization mechanisms between the interfaces. FIFOs
based on Gray code counters [11], [12] are the most common
synchronizing FIFOs. On a transition between two successive
numbers, exactly one bit of a Gray code counter makes
a transition which is very useful for synchronization. The
disadvantage of Gray codes is the difficulty of comparing two
Gray code values to determine which is greater. This tends
to be a slow operation that limits FIFO performance. Like
several other designs [13]–[16], our approach uses a unary
encoding of the FIFO pointers. These FIFOs offer very high
throughputs because ring counters are fast, and comparing
unary values is easy. Of these, our design is the first to support
two-phase asynchronous protocols. The main disadvantage of
unary control is the larger flip-flop count, especially for the
synchronizers. For desynchonization applications, FIFO depths
tend to be small whereas the word-width tends to be fairly
high. Both of these properties mitigate the overhead of using
unary control.

A novel feature of our design is the use of an early-request
protocol to reduce the latency penalty of synchronization when
transfering data to a synchronous timing domain. The idea is
that the sender can make an “early request” before the data to
be sent is available, as long as there is bound on when that
data will be available and the corresponding “real” request will
be made. We are aware of prior work exploring speculative
synchronization [17] that uses speculation, error-detection, and
retry to reduce the average synchronizer latency. This is similar
to the speculation techniques of Razor [18]. In contrast with
these methods, our early-request protocol does not require an
error-detection, roll-back, and retry mechanisms. Instead, we
use static timing analysis to generate a safe, early-request. This
approach is well-suited for desynchronization based designs
where the data-flow is readily identified.

Related desynchronizing efforts targeted both quasi-delay-
insensitive dual-rail circuits as well as bundled-data design that
use standard-cell single-rail logic [8], [19]–[22]. While most
of these approaches propose interfacing with synchronous
modules, they do not focus on the integration of the required
clock-domain-crossing logic. While applicable to all of these
techniques, our designs directly interface with desynchro-
nization approaches that target the two-phase bundled-data
protocol.

III. THE FIFOS

Our goal is to support the design of asynchronous drop-in
replacements for synchronous blocks with latency-insensitive
interfaces. This enables incremental incorporation of asyn-
chronous blocks for functions where they provide advantages
as well as an interface to chip-wide asynchronous NoCs,
or anything in between. From the synchronous designer’s
perspective, the asynchronous module(s) communicate through
latency-insensitive interfaces; and no special considerations
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are needed to account for the asynchronous implementation
on the other side of these interfaces. The two key inter-
faces are a synchronous-to-asynchronous (S2A) converter that
transfers data from the clocked, synchronous domain to an
asynchronous module using a two-phase, bundled data pro-
tocol. The asynchronous-to-synchronous (A2C) converter is
the inverse: in transfers data, with proper synchronization,
from the asynchronous timing domain back to the clocked
domain. The modular design of our interfaces naturally pro-
vides synchronous-to-synchronous converters that transfer data
between two synchronous domains with independent clocks.
While same modularity also allows the construction of an
asynchronous-to-asynchronous (A2A) interface, such inter-
faces are rarely, if ever, needed. Unlike synchronous designs,
asynchronous modules are naturally composable without im-
posing timing-closure headaches on their interfaces.

A. A2S – The Asynchronous-to-Synchronous Interface

We start with the A2S interface, as the others can be under-
stood as fairly simple modifications of this design. The A2S
module comprises a two-phase, bundled data, asynchronous
read interface and a positive-edge triggered, synchronous
write-interface. A write is performed by providing data at dIn
and toggling wReq. The A2S interface toggles wAck to indicate
the transfer is complete and a new transfer can be initiated.
Data is output on dOut and the dValid signal indicates that
the data has not yet been consumed by a read-request, i.e.
asserting rReq. The dOut, dValid outputs are synchronous to
the receiver’s clock, rClk as is the rReq input. The interface
supports a throughput of one data word per clock-cycle. The
receiver can continuously assert rReq, and the interface will
assert dValid on cycles where data is available on dOut. If rReq
is asserted on a cycle when no data is available, the request
is ignored.

Figure 2 (top) shows the control logic. From the syn-
chronous designer’s perspective, the interface implements a
simple, latency insensitive protocol. When data is available
from the FIFO, dValid will be high. The synchronous domain
takes the data by asserting rReq. The data will be output on
the next rising edge of the clock, and dValid is updated on
the same cycle. If there is data in the FIFO, a new value
can be removed on each cycle of rClk. The outputs of the
A2S interface are properly synchronized – thus preserving the
functionality of a latency-insensitive design.

The asynchronous write-interface and synchronous read
interface each has a Johnson counter. When wVaci = rVaci,
stage i is empty; conversely, when wVac i 6= rVacii, stage
i is full – data latch[i] holds data that has been written by
the sender and is waiting to be consumed by the receiver. For
each Johnson counter, there is exactly one flip-flop for which
Q 6= D; this is the flip-flop that will transition on the next
write or read event, and is a pointer to the latch to be written
or read.

Consider an initial condition where all of the flip-flops in
the two Johnson counters are in the Q = 0 state – the FIFO
is empty. On the other hand, fi = 0 for every stage, thus

dValid = 0. Furthermore, assume wReq = wAck = 0, and
rClk = 0. Because wReq = wAck = 0, the sender is allowed
to insert a new value into the FIFO by applying data at dIn and
transitioning wReq to 1. The rising edge of wReq propagates
to w0 and triggers wVac0 and wAck flip to transition to 1. The
transition of wVac0 to 1 causes e0 to fall, and the data is stored
in data latch[0]. The rising edge of wAck flip triggers the flip-
flop that drive wAck and acknowledges the data transfer. The
falling edge of e0 causes w0 to return to 0 which then causes
wAck flip to return to 0 as well. Now, the flip-flop driving
wVac1 is the active stage. The next request is signaled by
a falling edge of wReq which causes an equivalent sequence
of transitions on w1, wVac1, e1, wAck flip, and wAck, and
stores the next data value into data latch[1]. In this manner,
values can be loaded into the FIFO until a state is reached
where stage i is the next to write but wVac i 6= rVacii. This
indicates that the stage is full, and a transition on wReq will not
be acknowledged until rVaci transitions to indicate that the
stage is empty and a new value can be stored in data latch[i].

Read operations are similar; for the A2S, the read logic is
synchronous. Each wVaci signal is passed through a synchro-
nizer so it can be safely used in the synchronous domain and
compared with rVaci. If the synchronized version of wVaci is
not equal to rVaci, then the data latch[i] is full and the data
can be read. The signal rStg i indicates the currently active
stage, and controls the multiplexor that selects a data-latch
to output dOut prev. The output is registered to prevent fall-
through glitches.

This simplicity of the control circuitry makes it modular.
The FIFO capacity, word width, and synchronizer depth can all
be changed independently. Likewise, changing configurations
to produce S2A or S2S designs is straightforward as described
below. The two-phase protocol appears to simplify the im-
plementation of the synchronizers. For example, the design
described in [16] uses an asymmetric synchronizer where all
stages of the synchronizer are reset by the receiver when a
data value is removed. With the two-phase protocol, successive
requests are indicated by a transition of the synchronizer
output, and no reset is required.

B. S2A – the Synchronous-to-Asynchronous Interface

The S2A interface is shown in the left side of Figure 4. It
is the complement of the A2S. The S2A provides a positive-
edge triggered, synchronous write-interface, and a two-phase,
bundled data, asynchronous read interface. The synchronous
writer provides data at dIn and asserts wReq prior to a
rising edge of its clock, wClk. If there is space available as
indicated by SpaceAv, the write will be performed; otherwise
it is silently ignored. The SpaceAv output is synchronous to
wClk. A write can be performed on every cycle of rClk by
continuously asserting rReq and confirming that there was
space in the FIFO and that the write was performed by
checking the value of SpaceAv.

The implementation of the S2A is very similar to that of the
A2S. The main difference is that there is no synchronization
on the request path – data can be transferred directly from
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Fig. 2: Mixed-timing FIFO, (top) control logicc (bottom) data path, (left) A2S FIFO, and (right) S2A FIFO.
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the synchronous domain to the asynchronous block without
synchronization, and thus with no latency penalty. The syn-
chronizer appears instead on the acknowledgement path. This
latency can be “hidden” by using a FIFO of sufficient capacity.
A minimum capacity of two plus the number of synchronizer
flip-flop stages is required to maintain one transfer per clock
cycle. In practice, the FIFO should be sized slightly larger
than this to include the req-to-ack delay of the asynchronous
block in the timing budget.

C. S2S – the Synchronous-to-Synchronous Interface

While this paper focuses on A2S and S2A, the modularity
of our design supports S2S interfaces, allowing a designer
to use one, parameterized design for all time-domain-crossing
interfaces. The S2S interface is shown in the right side of Fig-
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Fig. 5: Latency of the A2S interface without early request

ure 4. The implementation consists of the synchronous write
interface of the S2A and the synchronous read interface of the
A2S. This clock-domain crossing interface has a throughput
of one data transfer for each cycle of the slower clock. To
do so, the FIFO capacity must be at least four plus twice the
number of flip-flop stages in each synchronizer.

IV. EARLY REQUEST

Figure 5 shows how data propagates through the A2S
interface. We measure the latency of the interface as the time
from when dIn has settled to a value, v, until that value is
available to the receiver at dOut. The data from the sender,
dIn must have its stable value, v, before the transition on
wReq requesting the transfer (arrow 1). The transitionon wReq
causes the wVac signal for the active stage to transition (2),
which propates through the synchronizer (3), to assert dValid
and output v on dOut. In the latency critical case, the receiver
is waiting for dValid, and we consider the simplest version
where the FIFO was empty prior to inserting v. In this case,
data latch was transparent from the outset, and the data was
waiting at the output of the latch during the synchronization
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of the control signal. There are no synchronizers for the data
itself, but dValid is not signaled until the synchronization in
the control path is complete. A key observation is that the
data is not needed until the synchronization is complete. This
motivates the early request designs described here.

Often, we can determine when data will be output by an
asynchronous block before the data is actually available. For
example, our open-source desynchronization flow excludes
arbitration and conditional branching, and bounds on the
arrival time of a data value at the output of a pipeline can be
determined by earlier stages2. In this case, the asynchronous
block can generate an early request, wReqE. An early request
is a guarantee that the actual request will be asserted within a
specified time bound – we describe the details of this bound
shortly.

Figure 6 shows the control-path for A2S interface with
early request; the data path is the same as shown in Figure 2
(bottom, left). The interface has two Johnson counters in the
write interface. The “early-counter” shown in red handles
the handshake with wReqE and wAckE. The wVacEi signals
generated by this counter are synchronized by the receiver to
determine when data is available. The wReq signal indicates
the actual arrival of data. This is used to generate the ei signals
that control when the data latches are transparent. In particular,
data latch[i] goes opaque when ei falls, indicating that the
anticipated data has arrived.

Figure 7 shows how data propagates through the A2S
interface with early request. In this design, a transition on
wReqE triggers an transition on wVacE i (arrow 1), where
i is the cuurently active stage. The transition on wVac0 i

then propagates through the synchronizer (arrow 2), and the
synchronized result triggers the assertion of dValid and the
update of dOut (arrow 3).

The lower part of Figure 7 shows the data-path. The data
at dIn propagates to data latch[i] (arrow 4). If the latch is
empty, dIn propagates immediately (as shown in the figure);
otherwise, it waits for transition on rVaci, delaying wAck as
well. The output of data latch[i] is transfered to dOut (arrow
5) on the edge of rClk determined by the control path as
described above. The figure also shows the bundling constraint
that dIn must settle before the transition on wReq (arrow 6); the
interface responds to wReq with a transition on wAck (arrow
7); and that the sender must maintain stable data on dIn until
after receiving the acknowledgment on wAck (arrow 8).

Comparing with Figure 5, we see that the wReqE signal
takes the role of the wReq signal for generating a synchronized
control signal in the receiver’s domain. However, the dIn does
not need to settle until shortly before the edge of rClk that
sets dValid to true. In other words, dIn can settle roughly the
synchronizer delay after the wReqE event. If the delay of the
asynchronous pipeline is sufficiently long and predictable, then
most of the synchronizer latency can be hidden. In practice, we
expect an asynchronous block to perform a substantial amount

2If there is back pressure, it comes from the A2S interface itself, and data
is guaranteed to arrive if each stage of the asynchronous block has a cycle
time that is less than the clock period of the synchronous circuit.

of computation – if its function were trivial, a synchronous
implementation would be just as good. Furthermore, static-
timing analysis tools are now sufficiently accurate to provide
reliable bounds on the worst-case delays of paths in the
asynchronous block.

A. Timing Constraints

For correct operation, data must arrive at the D input of the
dOut flip-flop early enough to satisfy the set-up requirement
on the cycle that the synchronized wReqE propagates to the
enable input. Thus, we need a lower bound for the delay from
wReqE to the edge of rClk that uses the resulting assertions
of the en input of the dOut flip-flop. We also need an upper
bound for the delay from dIn to the D input of the same flip-
flop.

Let Nsync denote the number of flip-flops in the synchro-
nizer and P denote the period of rClk. If the input to the
synchronizer changes just before a rising edge of rClk, then
it will propagate to the output of the synchronizer in time
(Nsync − 1)P plus some adjustments for the hold-time of
the first flip-flop and the clock-to-Q time of the last one.
The path from wReqE to en consists of a combinational
logic path including the hold time for the first flip-flop of
the synchronizer plus (Nsync− 1)P for the synchronizer, plus
P because en is used one clock cycle after the synchronizer
output changes. Let δctrl0,min be the minimum delay of this
combinational logic path. Let δctrl,min denote the minimum
delay from a transition on wReqE to an

δctrl,min = δctrl0,min +NsyncP (1)

The upper bound for the data path is straightforward. This
is the D-to-Q delay of the transparent latches plus the delay
of the data multiplexor (shown as 2-input AND-gates and a
wide OR-gate) plus the set-up time for the dOut flip-flop. Let
δdata,max be the maximum delay for this path. Let κ denote
the “kiting delay”, i.e., the amount of time by which wReq
can anticipate the arrival of data at dIn. The key constraint is

κ = δctrl,min − δdata,max

= NsyncP + δctrl0,min − δdata,max
(2)

Note that κ grows as NsyncP . This means that by using
early-request, we can hide most of the synchronizer latency
with the operation time of the asynchronous module. The
synchronization overhead remains non-zero because of the
static timing-analysis margins (i.e. using max-delays for δdata
and min-delays for δctrl0). The synchronizer adds an additional
latency between 0 and P because the incoming data must wait
until the next edge of rClk to be transfered to the receiver’s
clock domain.

B. Simply vs. Aggressively Early

In practice, we found that there are two approaches to
exploiting early requests. The first approach assumes that
κ < P – this means that the wReqE transition for the kth

data transfer occurs after the wReq event for transfer k − 1.
In this case κ just the time from a transition on wReqE to a
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Fig. 6: Control of A2S with early request (4-stages example)
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transition on wReqE. Generating the SDC timing constraints is
straightforward and can be easily generated automatically. The
performance cost is that this simple form of early-request can
hide at most one clock period of synchronizer latency. This
is acceptable with a two, flip-flop synchronize where that’s
the maximum latency that can be removed. For higher clock
frequency designs, synchronizers with three or four flip-flops
are needed to achieve acceptable failure rates. In this case,
the more aggressive use of early-request described below can
offer better performance.

A more aggressive use of early-request allows κ > P a
transition on wReqE to be followed by further wReqE events
before the wReq event occurs. The design shown in Figure 6
supports this aggressive use of early request, and this is

v3

v2v1v0 v3

v4v0 v1 v2 v3

v4

rclk

wAckE

wReqE

wReq

wAck

data_latch

dIn

dOut

dValid

v4v0 v1 v2

Fig. 8: Operation of the A2S interface with aggressive early request

the logic produced by our Verilog code. Figure 8 depicts
the operation of this design, again assuming three flip-flop
synchronizers. The magenta arrows show the timing-constraint
for the early-request: dIn must settle within κ time units after
the wReqE event. The blue arrows show the data bundling
constraint: dIn must settle before the wReq. The red arrow
shows the propagation of data values from the data latches to
dOut. dOut changes synchronously on the rising edge of rClk,
but not necessarily on the first rising edge after the data is in
the latch. In the example in Figure 8, the asynchronous block
produces a burst of four data items, v0, . . . , v3, with a cycle
time less than the period of rClk, followed by a pause and
then a fifth data value, v4. The Johnson counters in the FIFO
ensure that these values are output in the correct order, and
some values (e.g. v2 and v3) are delayed to a later clock edge.

Checking the timing constraints requires keeping track of
which wReqE event corresponds to wReq event. Currently,
we construct these constraints manually. In summary, the
aggressive approach offers better performance at a cost of
some manual checking of timing constraints.
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Fig. 9: Measurement set up for evaluating the latency of early requests

C. Early Request and the S2A and S2S interfaces

Although there is no synchronization in the data path
of the S2A interface, the early request technique still finds
application. The most-common application of a desynchro-
nization flow is to incorporate asynchronous blocks in a
synchronous design. In this case, a synchronous block that
communicates through a S2A can provide an early request to
notify that asynchronous block that a request is forthcoming.
The asynchronous block can use this early request to generate
its own early request to a downstream A2S, thus lowering the
latency at that interface. This approach is particularly attractive
when the synchronous can provide an early request a known
number of clock cycles before the actual request. This gives
the designer a very precise specification of the amount by
which the early request leads the actual request.

In a similar manner, when the synchronous interface can
provide an early request a known number of clock cycles
before the actual request, the S2S interface can exploit this to
hide synchronization latency. In both the S2S and S2A case,
the clock periods of the send and receiving domains must be
specified to verify the timing constraints for the early request.

V. EXPERIMENTAL RESULTS

A. An Open Source IP and Design Flow

In order to verify and evaluate our proposed family of
FIFOs, we designed a fully parameterized open-source CDC
framework. The framework include a Verilog description of the
proposed converters, associated Verilog testbench, a Synopsys
design constraint file, tool configuration scripts, and a run-
in-batch manager. The Verilog description of the proposed
FIFO is parameterized and can be synthesized in isolation or
automatically added to desynchronized blocks. The package
also includes a run-in-batch manager that allows synthesizing
and simulating a number of FIFOs in batch. The testbench
will generates input vectors, check the outputs, and compare
them against a generic FIFO.

B. Early Request

We set up a test for measuring CDC latency as shows in
Figure 9 using 4-stage A2S and S2A synchronizers with a
synchronous interface running at 500MhZ. The asynchronous
block has an adjustable latency from a1 to a2 of δasync,
which we implemented by a programmable delay line. δsync
is the time a token traveling from s1 to a1, then processed by
asynchronous block and transferring through A2S interfaces.

Fig. 10: Comparison of early-request protocols in terms of δsync

Fig. 11: Comparison of early-request protocols in terms of δsync − δasync

Therefore, the difference between δsync and δasync is the delay
stemming from S2A and A2S interfaces. Because of the early
request, part of logic of asynchronous block overlaps with
some preparing actions in the A2S, as we increase δasync,
δsync will not increase as fast as the counterpart without
early request, thereby the difference of δsync and δasync also
drops, which means the latency decreases. This is illustrated
in Figures 10 and 11.

C. Area and Max Frequency

Figure 12 and Figure 13 present the area and maximum
frequency of S2A and A2S with different sizes obtained from
Synopsys’s Design Compiler Framework using a 28nm FDSOI
cell library. We swept the data width from 8 to 32 bits and
the FIFO depth from 4 to 32. The figures show the results
for synchronizer depth of 4 to provide reasonable mean-time-
before-failure for the obtained high frequencies. The area and
frequency trends for other depths are similar. In particular,
for all designs, the maximum read-side frequency is from 4-
5 GHz with the higher rates for designs with smaller widths
and/or depths. The area is proportional to the data width and
fifo depth.

D. Integration with a Desynchronization Flow

The CDC framework has been incorporated into an open-
source desynchronization flow [23]. The desynchronization
flow optionally surrounds the desynchronized block with an
A2S and S2As to more easily integrate it into synchronous
SoC. An extra output from the delay line to the A2S is tapped
to produce the early request, as shown in Figure 14. Both
the early and total delays are programmable. We tested the
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Fig. 12: Area and max frequency of different size S2A modules

Fig. 13: Area and max frequency of different sized A2S modules

CDC integration on a de-synchronized encryption engine that
includes pipelined implementations of three block ciphers,
Triple DES, Present, and Hight. The latency improvement is
consistent with the simple early request in Figures 10 and
11 with a maximum estimated total latency savings of 5%-
10% with a synchronous frequency of 500 MhZ. Our future
work includes integrating the aggressive early request which
involves tapping the early request from earlier in the pipeline
and automatically pipelining the handshaking signals between
it and the A2S.

VI. SUMMARY AND CONCLUSIONS

This paper presents open-source high-performance synthe-
sizable interfaces for crossing between asynchronous and
synchronous timing domain. The interfaces support an early-
request two-phase bundled-data protocol that can hide most of
the synchronization latency. The circuits have integrated into
the open-source desynchronization flow and evaluated both
in isolation as well in the context of an encryption engine
supporting three block ciphers, Triple DES, Present, and Hight.
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