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ABSTRACT

Clock skew variations adversely affect timing margins, limiting performance, reducing
yield, and may also lead to functional faults. Non-tree clock distribution networks
(CDN), such as meshes and crosslinks, are employed to reduce skew and also to mitigate
skew variations. These networks, however, increase the dissipated power while
consuming significant metal resources. Several methods have been proposed to trade off
power and wires to reduce skew. In this work, an efficient algorithm is presented to
reduce clock skew variations while minimizing power dissipation and metal area
overhead. With a combination of nonuniform meshes and unbuffered trees (UBT), a
variation-tolerant hybrid clock distribution network is produced. Clock skew variations
are selectively reduced based on circuit timing information generated by static timing
analysis (STA). The skew variation reduction procedure is prioritized for critical timing
paths, since these paths are more sensitive to skew variations. A framework for skew
variation management is proposed. The algorithm has been implemented in a standard 65
nm cell library using standard EDA tools, and tested on several benchmark circuits. As
compared to other nonuniform mesh construction methods that do not support managed
skew tolerance, experimental results exhibit a 41% average reduction in metal area and a
43% average reduction in power dissipation. As compared to other methods that employ
skew tolerance management techniques but do not use a hybrid clock topology, an 8%
average reduction in metal area and a 9% average reduction in power dissipation are

achieved.
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ABBREVIATIONS

ASIC Application Specific Integrated Circuit

CDN Clock Distribution Networks

DC Ultra Synopsys® Design Compiler® Ultra

GDSII Graphic Data System 11

PVT Process, Voltage, and Temperature

SoC System on Chip

TCL Tool Command Language
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UBT Unbuffered Tree

XML Extensible Markup Language
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NOTATION

S Collection of clock sinks (registers)

) 218 Maximum permissible delay for a local data path bounded by two

Delay ,max

sequentially-adjacent registers i and j

Lsetup Setup time of a register

skew" Maximum clock skew between two sequentially-adjacent registers i and j

skew" nom Deterministic nominal skew components between two sequentially-

adjacent registers i and j

H Y eew The mean of the skew between two sequentially-adjacent registers i and j

Gc Constraint graph, directed multi-graph
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SECTION I:
6 NOTATION

Vi Vertex in , representing a clock sink (register)

eij Weighted edge in G¢", connecting the two vertices v; and v

C(vi) Capacitance of the corresponding sink represented by the vertex v;

bbox(v;) Bounding box of the corresponding sink or group of sinks represented by

the vertex v; in Manhattan grid

Vusr A set of vertices representing the clock sinks within a skew region which

should be routed with unbuffered tree

m Amount of horizontal metal segments in a uniform mesh

T Threshold Vector; Contains all pre-determined threshold values and

defines basic time steps for mesh construction
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Section |

INTRODUCTION

Non-tree based clock distribution topologies (e.g., clock meshes) exhibit useful
topological characteristics due to multi-path signal propagation created by routing
redundancies [1]-[11]. These non-tree clock distribution networks distribute the global
clock signal over an integrated circuit, exhibiting high immunity to process, voltage, and
temperature (PVT) variations, while tolerating non-uniform switching and an unbalanced
distribution of the clocked elements. These networks achieve low and deterministic skew,
low skew variations, and low jitter. Clock meshes also overcome late design changes
while satisfying tight time-to-market deadlines [1]. Clock meshes constitute an effective
alternative for distributing global clock signals, and are used in high performance
microprocessors [1] such as the Power4 [2], Digital Alpha [3], Intel® Pentium® 4 [4],
and Xeon® [5].

Nevertheless, non-tree clock distribution networks suffer certain drawbacks. These
networks are composed of a large number of mesh nodes and unbalanced loads, making
these networks difficult to analyze, optimize, and automate [6],[12],[13]. Routing
redundancies require significant resources as compared to optimized tree-based clock
distribution networks where point-to-point routing is used [7]. Meshes dissipate higher
power [12] due to the large capacitance incurred by the additional metal wires and
drivers. Furthermore, clock gating is impractical in most mesh structures. Due to delay
differences in the drivers, short-circuit current loops are generated across redundant mesh
paths [12]. Increasing process variations [14],[15] dissipate more power, since a more
tolerant mesh structure dissipates higher power due to greater use of metal and driver
oversizing [15]. Several proposals for optimizing non-tree distribution networks have

been presented, employing either customized meshes [1]-[7] or automating the process of
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adding crosslinks to the clock tree to enhance tolerance and lower power [8],[9]. Yet
other methods propose removing some edges from a mesh to reduce power while

minimally increasing the skew [10],[11].

While most of these papers focus on skew variations, the approach proposed in this
dissertation manages skew tolerance based on the criticality of the timing margins. The
clock signals driving a critical logic path are required to be more tolerant to skew
variations to reduce the effect of skew on timing margins and cycle time. Those clock
signals that drive a non-critical logic path however must satisfy certain skew variations
without affecting the cycle time [16]. By relaxing skew variation requirements in the non-
critical paths, power savings can be achieved [1]. The proposed method employs graph-
theoretic and geometric algorithms with quasi-linear run time. Using static timing
analysis (STA), a physical floorplan, and process information, a hybrid topology of non-
uniform clock mesh and unbuffered trees which tolerates clock skew based on timing
path criticality is generated. Unbuffered clock trees are used as an extension to the clock
mesh within those regions with weak variational requirements. Since process variations
and power supply noise in clock buffers are the dominant sources of skew variations [14],
unbuffered clock trees, which are comprised primarily of wires and no transistors, exhibit
lower skew variations. The clock distribution network is adapted to satisfy clock skew
variations while minimizing power dissipation and metal area overhead. The proposed

flow has been successfully tested on several benchmark circuits.

The rest of the dissertation is organized as follows. Non-tree clock distribution networks,
skew constraints, constraint graphs, and clock skew uncertainty are reviewed in section
II. The motivation behind this work and a review of previous work on clock mesh
synthesis and optimization are discussed in section IIl. The timing—driven variation—
aware synthesis of non-uniform mesh and unbuffered tree-based clock distribution
networks and the proposed solution are presented along with a run time example in
Section IV. The experimental method and results are described in section V. Finally, this

dissertation is concluded in section VI and future research directions are suggested.
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Section I

CLOCK MESHES AND SKEW

In this section, essential preliminaries are outlined. Specifically, in section A, non-tree
clock topologies, and in particular, clock meshes are described. In section B, the concept
of clock skew, skew uncertainty modeling and notation, and constraint graphs for

representing synchronous circuits are reviewed.

A. Clock meshes

Clock tree topologies provide a single path for each sink. For distant sinks, these paths
are largely separate from each other. Each separate path suffers from delay uncertainty,
resulting in skew uncertainty between two sinks. One approach to reduce variations is
simply connecting nodes with a crosslink. Hence, the connected nodes will have more
than one path from the clock source, mutually compensating each path. This non-tree
approach has been manually applied to the Pentium 4 microprocessor [4], where spines
connect multi-clock nodes, as illustrated in Fig. 1(a). Automation of this method has been

evaluated in several papers [8].

Since spines or crosslinks connect pairs of nodes and do not cover an entire floorplan (see
Fig. 1(b)), metal grids driven by a top level clock driver which span several regions have
been introduced. A mesh is a grid of horizontal and vertical metal wire segments,
composed of interconnected mesh nodes. Typical mesh topologies consist of three parts:
the mesh itself (usually uniform), an upper driving tree, and local interconnects
connecting the clock sinks to the mesh, as shown in Fig. 1(c). A wide variety of mesh
structures has been proposed. Non-uniform meshes [5],[10],[11] have been developed to

save wire resources and power. Design automation and optimization of metal and power
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versus tolerance tradeoffs are discussed in [10],[11]. Mesh architectures differ in the
locality of the mesh. A global mesh with local trees (MLT) [6] is a mesh fed from a
global clock source with local trees distributing the clock to local regions (Fig. 1(d)),
while a global tree with local meshes (TLM) [6] is a clock tree fed from a global clock
source with a local mesh at each leaf (Fig. 1(e)). Other hybrid mesh-style structures are

also possible.

B. Skew constraints and uncertainty

Synchronous circuits comprise data paths, where each combinational logic path is located
between two registers. A clock network connects the clock source to a collection of clock
sinks S={s;,52,...,5,J. Two registers are sequentially-adjacent if the registers are
connected with a combinational data path [1], as illustrated in Fig. 2. The maximum
permissible delay for a local data path bounded by two sequentially-adjacent registers is

P Di’ejllay,max =T tock —Loonp — Skewﬁ;lix 5 (1
where Tcx denotes the clock period, #,, is the setup time of the bounding registers, and
skew" ... denotes the maximum clock skew between two bounding registers [1]. The
maximum clock skew skew" ., is the difference in the clock arrival time between two
sequentially-adjacent registers. If d; and d; are the delay (maximum or minimum) of the
clock signals arriving at the registers i and j, respectively, the skew between two adjacent

registers is
skew,] =max, (‘di—dj‘). ()
The clock skew is therefore bounded by the following maximum skew constraint,

i,J
Skewi,j S ’Tclock - T - P

setup Delay ,max * (3 )
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Clock skew uncertainty

As technology scales, the effect of PVT variations on clock skew is aggravated [14],[15].
Clock skew can be modeled as composed of both deterministic and probabilistic elements
[13],[18]. The following notation is employed to describe these probabilistic effects. For
two sequentially-adjacent registers i and j, the deterministic nominal skew components is
skew™ .. and the maximum skew variation of the probabilistic component is & .. The
mean of the skew between two sequentially-adjacent registers i and j is denoted by £" e
and the standard deviation is denoted by ¢/, A possible 3¢ design target may require

that, for instance, the maximum skew will be limited by

L) b i,j
Skewmax = Mskew + 3.O-skew . (4)

Constraint graph

Synchronous circuits are represented as a directed multi-graph G¢ [1],[16],[17]. Each
clock sink is represented by a vertex v,-EGcV, such that GCV = S. Each local data path
located between two sequentially-adjacent clock sinks i and j is represented by a
weighted edge e,;jEGCE connecting the two vertices v; and v; (see Fig. 3). The graph

edges are therefore
Gt ={e,, =v,~v,IP}}, <e:v.,v,eGl]. (5)

The edges can be weighted by any corresponding combinational data path property, such
as delay, margin, and skew. Besides the edge weights, attributes can be attached to either
edges or vertices. For vertices, any corresponding sink attribute can be used, such as the

sink capacitance, location, clock delay, and data arrival time.
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Section III

HYBRID NONUNIFORM MESH/TREE
SYNTHESIS: MOTIVATION AND

RELATED WORK

Motivation for using timing information as a criterion for clock mesh synthesis is
discussed in section A. A review of previous clock mesh synthesis methods is presented

in section B.

A. Motivation

Aggressive process scaling increases the portion of the clock skew as compared to the
cycle time, reducing timing margins [14],[15]. Some approaches have been proposed to
minimize clock skew, but these methods usually incur an increase in power consumption.
Other methods exploit useful skew by scheduling clock skew to increase the maximum
frequency [17]. These methods, however, suffer from increased clock skew uncertainty
with process scaling. This issue limits circuit performance since timing margins are

reduced [14],[15].

Timing margins are provided to overcome uncertainty in the clock arrival time caused by
within-die variations. While poor margins reduce yield, extreme worst case margins can
produce overdesigned circuits with increased power dissipation and resource

consumption.
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In particular, the critical paths within a digital circuit are sensitive to skew variations.
Hence, skew variations should be minimized, particularly in those clock paths that drive
the critical paths. This method, however, is usually achieved at the expense of higher
power dissipation [1]. This work focuses on differential treatment of the clock and
selective management of the skew. The more critical a path, the more sensitive the path is
to skew variations and the greater the effort to reduce these skew variations [16]. Paths
that are non-critical are assigned a lower effort to reduce skew variations. Path criticality
prioritization is intended to save power since skew variations are not minimized on those
paths that do not affect circuit operation or speed. This approach is in contrast to skew
optimization methods that aim to reduce maximum or nominal skew over an entire

circuit.

B. Related work

The effect of increasing process variations is particularly pronounced in clock
distribution networks, since skew variations strongly influence system performance and
require careful analysis of minimum delays [14],[15]. Non-tree clock meshes, although
useful in mitigating process variations, are difficult to analyze and automate due to the
complex structure. Most mesh clock networks are manually designed in high
performance applications such as microprocessors [1]-[7]. Several approaches automate
the clock mesh design process. Mesh sizing and, in particular, segment wire width sizing
using network flow algorithms have been used to optimize nominal skew rather than
skew variations [19]. Other methods start from a clock tree and incrementally add
crosslinks among the tree nodes or leaves. Crosslinks are inserted between those nodes
exhibiting significant variations. The objective is to add the fewest number of crosslinks
while reducing the maximum or average variations [8],[9]. Other approaches start with a
fully uniform mesh, identify and remove redundant segments whose effect on variations
is minimal by applying network theory techniques, thereby trading off variations with

wire length and power. A set-cover problem is solved to obtain mesh-based pre-driver
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minimum buffers [10],[11]. The initial uniform grid is designed to ensure that metal
redundancies within the grid satisfy target skew requirement [10]. Whereas some
methods generate a clock distribution network with nonuniform meshes, adapting the
mesh structure to satisfy skew variation requirements [21], other methods manually
combine uniform meshes and trees to construct a hybrid topology [22],[23]. The
objective of these hybrid methods is to reduce the maximum nominal skew of the clock
tree by adding a mesh to the leaves of the tree [22]. Other hybrid topology methods
combine meshes with zero skew trees (ZST) to construct a zero skew clock distribution
network [23]. Nevertheless, the above methods do not exploit circuit timing information

for selectively reduction of skew variation.
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Section IV

SYNTHESIS OF HYBRID MESH/TREE

CLOCK DISTRIBUTION NETWORKS

Timing-driven variation-aware hybrid mesh/tree clock distribution network synthesis is
discussed in this section. The problem formulation and solution approach are presented in

sections A and B, respectively.

A. Problem statement

The problem of managing skew variations can be formulated using the notations defined

in Section II (B).

Inputs

Given a circuit connectivity, physical placement, and static timing analysis, including (1)
a set of clock sinks in Manhattan plane S={s;,s,...,5,/, (2) maximum skew constraints
between each set of sequentially-adjacent registers s; and s;, namely, the maximum
permissible skew skewi’jallowed, and (3) the relative tolerance parameter . The relative
tolerance parameter ¢ is a user defined parameter denoting the upper bound of the
maximum skew variation ratio over all maximum skew constraints allowed for all data
paths,
o

§z_—mm— (Ve eGE). (6)

allowed
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Problem formulation

Construct a hybrid mesh/tree clock distribution network consisting of nonuniform meshes
and unbufferd trees with reduced wire length and power consumption. This clock
distribution network limits the fraction of the maximum skew variation over all

maximum skew constraints by ¢ for every combinational data path, as expressed by (6).

The mesh density is the number of nodes connecting wire segments within the mesh. A
uniform mesh consists of m horizontal segments and n vertical segment requiring nxm

nodes.

Higher levels of ¢ lead to further reductions in clock skew variations at the expense of a
denser mesh, longer wire length, and higher power consumption. Alternatively, lower
levels of ¢ lead to a sparse mesh or even a tree, since skew variation reduction
requirements are relaxed. Thus, power and metal savings could be achieved. £ may be
tuned by considering the tradeoff among power dissipation, metal consumption, and

design robustness.

B. Hybrid mesh/tree construction algorithm

The algorithm places multiple clock meshes or unbuffered trees over certain rectangular
regions. The meshes may be of different densities. The unbuffered trees are attached to
the nonuniform mesh structure as extensions of this mesh. The regions may partly
overlap. Each region covered by a mesh is associated with a specific maximum skew
constraint, which determines the density of the corresponding mesh. The algorithm
comprises four phases. In phase I, the constraint graph is derived from static timing
analysis and connectivity information. A skew map, comprising floorplan regions with
different skew variation requirements, is extracted in phase II. The overlap among the
skew regions is removed in phase III. Finally, a mesh with a specific density or an
unbuffered tree is matched to each skew region in phase IV, constructing a hybrid

mesh/tree topology.
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Phase I; Derivation of constraint graph

A constraint graph, as defined in Section II (B) above, is derived from -circuit
connectivity information. See the example shown in Fig. 4. The vertices represent clock
sinks and the edges represent data paths between vertices. The edge weight w(e;;)
represents the maximum skew constraint of the local data path represented by the edge
eij, w(eij)= skew™ iweq. Bach vertex can be assigned multiple attributes, such as the
capacitance of the corresponding sink C(v;)=Capacitance(s;) and the geometric location

of the clock sinks of the vertex.

As the algorithm progresses, some vertices are merged, representing a geometric
rectangular region containing multiple clock sinks. As the vertices are merged, the inner
connectivity between the constituent sinks is ignored, and only the inter-vertex
connectivity is preserved. The attributes of a vertex represent the properties of all sinks
included in the vertex: the capacitance is the sum of all sink capacitances and the
geometric location is replaced by a rectangular bounding box covering the physical

location of all of the corresponding clock sinks.

Misplaced registers, e.g., sequentially-adjacent registers bounding a critical timing path
and placed diagonally apart, may cause undesired results. These cases are reported at an

early stage, suggesting replacing interfering registers to avoid unnecessary design loops.
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| bbox(v1)=[[0,21,[0,2]]
 bbox(vz)=[[1,2],[1,2]]
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Fig. 4. Phase I, constraint graph construction: (a) synchronous circuit floorplan and

connectivity with placed registers, (b) corresponding constraint graph; edge weights are

the maximum allowed skew, and (c) vertex attributes and edge weights are the initial

values
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Phase II; Skew map extraction

The rectangular regions satisfying certain skew requirements are identified. The
algorithm iterates over an increasing threshold level. A vector T contains all pre-
determined threshold values and defines basic time steps for mesh construction. At each
iteration, each connected vertex is interconnected by edges with a weight below the
current threshold and merged into a new vertex. A geometric bounding box covering all
clock sinks within the same vertex is identified. The algorithm is described in Fig. 5(a). A
threshold ¢€T is selected, edges with weight less than the threshold are eliminated (step
1.2), the corresponding vertices are identified as a connected component (step 1.3), and
these vertices are merged into one larger vertex (step 1.4.1). The skew constraint of this
new vertex is the tightest skew constraint among all edges inside the corresponding
connected component (step 1.4.2). The algorithm terminates when no threshold values

remain in T, or only one vertex remains.

A run time example of Phase II is shown in Fig. 5(b). The merge operation is performed
by the subroutine shown in Fig. 6, as follows: The inner edges inside a connected
component are removed and externally connected edges are connected to the new merged
vertex (step 2). The attributes of all vertices inside the connected component are merged
into the attributes of the corresponding new vertex. The capacitance is the sum of all
inner capacitances (step 3) and the bounding box bounds all inner sinks or inner bounding
boxes (step 4). The merge operation is illustrated in Fig. 7. Note that this phase produces

a set of possibly overlapping rectangular regions.

The time complexity of Phase II is O(ISI). Extracting and merging all connected
components requires O(1G¢'|+1G¢"l). The overall run time of phase II is therefore
O(TI-(1GS1+1GF1)). Since IT! is constant and the number of edges is of the same order
as the number of vertices IGCEI:OIGCVI, the time complexity of phase II is

001G 1=0(18)).



SECTIONIV:
24 SYNTHESIS OF HYBRID MESH/TREE CLOCK DISTRIBUTION NETWORKS

Phase II; skew map extraction

Inputs: G¢: Constraints graph, 7: Thresholds vector

Output: skewBbox  stack, contains [skew,.,cap,c.bbox,..]
triplets, in ascending order by skew

1.foreach teT

1.1. Grecd = gerUndirected(Ge)
1.2. foreach ee G~
1.2.1. lf W, >t GCundirecfedz GCundirected/e
1.3. UCC=getConnectedComponents(G¢"""*"?)
1.4. foreach ucce UCC
1.4.1. Vyerge=mergeVertices(Ggucc)
1.4.2. skew,..=min(w.le=vi~v; v,v;€ucc)
1.4.3. bbox,.c=bbox(Veree)
1.4.4. capycc=cap(Vimerge)
push(skewBbox, skew,..,cap,..bbox,..])

(a)
Initial Graph G, Remove edges Merge connected Get [skew,cap,bbox]
with w,>t from component into [skew,cap,bbox] triples pushed
Gmiirected (1,2) G, (step 1.4) triples into SkewBBox
0 6 a>0>
= L 0-0
[
=T 0 0
T ~N
==
[1,C4,[10,01,[1,2]11
(]
]
~N—
[2,C5[[1,1,[2,2]1]
[1,C4,[10,01,[1,2]11
en
4 [3,C5,[10,01,[2,2]11
[2,C,[[1,11,[2,2]11
[19C19[[090]9[1,2]]]

(b)

Fig. 5. Phase II algorithm for skew map extraction: (a) algorithm description
(mergeVertices() is shown in Fig. 6), and (b) execution example. The rows are iterations

and columns are steps of the algorithm
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Merge vertices procedure

Inputs: G: Graph,
V: Group of vertices to be merged

Output:  Viperee: Merged vertex with merged attributes

MergeVertices(G,V)
1. create new vertex Viyerge
2. foreach veV

2.1. foreach e=v~v’

211 ifvVEVe=v~Vumerge

2.2. remove v
3. CVmerge)=2vevC(v)
4. BbOX(Vinerge)=[min(xo),min(yo),max(x;),max(y;)] | (xo,y0,x1,y1)=bbox(v), v€V

5. Feturn Vimerge

Fig. 6. Vertex merging algorithm (part of Phase II)

C(Vmerge) = ¢(V3) +
C(V4) +
C(Vs) +
c(Ve)

beX(Vmerge)=
[ [1,01,[2,1]]

w(ey) = w(ey)

wi(es) = w(es)

@ (b) ©

Fig. 7. Merge example: (a) constraint graph, vertices are placed at the same place as the
corresponding registers, (b) constraint graph after merge, and (c) value of attributes after

merge
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Phase 11I; Overlap removal

Partly overlapping rectangular skew regions are merged into polygons, and skew levels
are assigned to the polygons. When two skew regions overlap, the tighter skew constraint
prevails and is inherited by the resulting polygon, as illustrated in Fig. 8(a). The input
[skew, capacitance, bounding box] triplets are sorted in ascending order of skew.
Iteratively, a triplet with a tighter skew constraint is removed from the input stack (step
2.1). The circuit floorplan is filled with non-overlapping skew regions (steps 2.2 and 2.3).
Polygon shaped skew regions are constructed from overlapping regions. A run time

example of Phase III is shown in Fig. 8(b).

Polygon union and intersection operations can be performed in O(n-log(n)) steps using a
segmented tree data structure [20], where n is the total number of polygon segments. This
complexity is the same order as the number of vertices n=0(IGCVI1)=0(1S1), and the

computational runtime of this phase is therefore quasi-linear, O(1SI-log(1S1)).
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Phase III; overlapping removal
Inputs: [skew,capacitance,bbox] triplets from phase II
Output:  skewPolygon stack, containing [skew,capacitance,polygon] triplets
1. covered=0
2. while skewBbox#+0

2.1. [skew,cap.,bbox]=

pop(reversed((skewBbox))

2.2. polygon=covered Nbbox

2.3. covered=covered Ubbox
push(skewPolygon[skew,cap,polygon])

(@)
reversed( |skew Bbox polygon Covered [skew,cap,polygon]
skewBbox)

[1,C,,[10,0,[1,2]1] 1 171
[29C29[[191]9[252]]]
[3,C5,[10,01,[2,2]1]

\4

i
s
i

\ 4
A

o
-
N
o
-
N
o
N
N

> |[1,C4,[[0,01,[0,2],[1,2],[1,01]]

[29C29[[191]9[252]]]

[\S]
0 1 2
0 1 2
0 1 2

[2,C5,[[1,1),[1,2],[2,2],[2,111]

1

o
-
N
o
N
o
-
N

[3,C,[10,01,[2,2111 > > > |[1,C1,[[0,01,[0,2],[1,21,[1,0]1]
0 1 2 0 1 2 0 1 2
A NA} A
3 ~ T -~ [39C39[[190]9[151]a[231]s[290]]]
[2,Ca,[[1,11,[1,21,12,21,[2,1]1]
[3,C3,[10,01,[2,2111 O — | Ly | O —  |[1,C4,[10,01,[0,21,[1,21,[1,011]

(b)

Fig. 8. Phase III; generating nonoverlapping skew map (a) algorithm description, and (b)

execution example. The rows are iterations and columns are steps of the algorithm
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Final Phase IV; Hybrid mesh/tree generation

A clock mesh or unbuffered tree is designed for each of the non-overlapping skew
polygons. Each mesh or tree should satisfy the skew requirement of the polygon. If the
maximum allowed skew for a specific region is skew,gxaiiowed; the maximum allowed

variation is 5"

max < E-SkeWaxaiowea. If the variation target, namely skev s satisfied
by an unbuffered tree, an unbuffered tree is synthesized to connect all of the clock sinks
within the current skew region. The root of this unbuffered tree is attached to the closest
mesh by the shortest Manhattan path between this attaching point and the center of mass
of the clock sinks within the current skew region. The center of mass is the average
location of all of the clock sinks, weighted by the sink capacitances [24]. Let Vypr denote
a set of vertices representing the clock sinks within the current skew region, the center of

mass of these vertices can be expressed as:

2 c()x(v) X e(v)y(v)

(Ko Vo) = Z 0] Z ol @
veVupr veVupr

Where (xX¢myem) and (x(v),y(v)) denote the coordinates in Manhattan grid of the center of
mass and the clock sink represented by v, respectively. Since unbuffered trees consist of
only metal interconnect, the skew variation of these trees is proportional to the
interconnect delay variation. Due to slew rate degradation of the clock signal along the
unbuffered long wires, those skew regions covered with unbuffered trees are restricted by
the area and sink capacitances [25]. If the target skew variation is not achieved with
unbuffered trees, meshes are used. The skew variation is inversely proportional to the
mesh density. The density of each mesh is therefore tuned to match the required skew
variation. Skew as a function of mesh density has also been discussed in [10]. Optimized

pre-drivers are placed by solving a set-covers problem [10],[11].

The overall run time for the entire algorithm is quasi-linear in the number of clock sinks:

O(IS1-log(1S1)). An example output of the algorithm is illustrated in Fig. 9.
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(b)

Fig. 9. Example of the proposed hybrid nonuniform mesh/unbuffered tree structure; (a)
The skew map is shown in the background. Darker regions indicate a tighter variation

target. The circular spots are clock sinks, and (b) a 3-D representation of the network
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Section V

EXPERIMENTAL RESULTS

To verify the capability of the proposed method to reduce power and wire length
consumed by the mesh architecture, and to compare these capabilities to previous
methods, several experiments have been conducted. These experiments are described and

the results are discussed in sections A and B, respectively.

A. Flow and design environment

The proposed algorithm has been implemented in Perl and TCL. Experiments have been
performed on several circuits from the ISCAS89 sequential benchmark suite. These
benchmark circuits have been designed using the Virage Logic SiWare™ standard cell
logic library with a 65 nm process operating at a 1 GHz frequency. An RTL
representation of the benchmark circuits have been synthesized into a netlist using
Synopsys”® Design Compiler® Ultra (DC Ultra) and placed and routed by the Cadence®
SoC Encounter™ RTL-to-GDSII System. A TCL hook procedure is used to construct the
constraint graphs, which are imported into an XML database. The proposed algorithm
generates mesh and pre-driver locations. Unbuffered clock trees are routed with the
Cadence® SoC Encounter™ internal clock router. The Cadence® SoC Encounter™
constructs the final physical layout. Results are analyzed using the Cadence® Virtuoso®
UltraSim Full-Chip Simulator, a transistor-level FastSPICE circuit simulator. Statistical
distribution of logic paths is also obtained by Cadence® Virtuoso® UltraSim advanced
Monte Carlo statistical analysis. The Monte Carlo variation parameters are device
channel length, interconnect width, power supply voltage and load capacitance. These
variation parameters are varied in an uncorrelated manner around their nominal values

with a standard deviation of 5%.
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B. Results

The results of applying the proposed algorithm to several benchmark circuits are listed in
Table 1. The first five rows list the benchmark name, the number of clock sinks, logic
gates, logic paths, and skew regions, respectively. The following two row blocks list,
respectively, the total wire length, and power consumption. The experimental parameter ¢
is varied around a typical value. The granularity of the skew regions is affected by the
circuit characteristics and the user defined thresholds vector, T. The experiment evaluates
the relationship among the metal resources, power consumption, and relative skew
tolerance parameter ¢. As expected, a larger ¢ increases the wire length and power
consumption but reduces the maximum skew (see Fig. 10(d)). Comparing these results to
the methods proposed in [10], [11], and [21], a typical value of £ = I improves the wire
length and power dissipation, as depicted in Fig. 10. As compared to other nonuniform
mesh construction methods without skew tolerance managing capabilities [10],[11], the
proposed method achieves a 41% average reduction in metal consumption and a 43%
average reduction in power dissipation. Relative to other methods that employ a skew
tolerance managing mechanism but do not use a hybrid clock topology [21], an 8%
average reduction in metal consumption and a 9% average reduction in power dissipation

is achieved.

Table II lists the statistical distribution of the logic paths of the proposed method
compared to [21], with respect to the maximum skew variation ratio over all maximum
allowed skew constraints (see (6)). A histogram of the logic paths distribution is plotted
in Fig. 11. As shown in Fig. 11, both the proposed method and [21] successfully bound
the maximum skew variation ratio over all maximum allowed skew constraints by ¢, as
required. The histogram shows that the proposed method moves logic paths toward the
bounding value (£), exhibiting a tighter bound than [21]. A tighter bound means that the
design skew variation is closer to the required value, namely less overdesign, hence, a
reduction in metal consumption and power dissipation. Hybrid clock topologies

successfully achieve design targets, while avoiding overdesign.
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Statistical distribution of the logic paths is not available for [10] or [11], hence, a
comparison of logic paths distribution could not be performed. However, [10] and [11]
employ a different approach which makes comparing maximum skew or maximum skew
variations to the proposed method impractical. While [10] and [11] aim to reduce the
overall maximum skew and incur an overdesign overhead, the proposed method

selectively reduce skew variation, in order to avoid overdesign, hence save metal

consumption and power dissipations.
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TABLE I

RESULTS OF THE PROPOSED ALGORITHM AS COMPARED WITH OTHER APPROACHES [10], [11], [21]

Testcase $9234 | s5378 | s13207 | s15850 | s38584 | s35932 | Average

Clock sinks 135 165 500 566 1426 1728 753

Logic gates 5.6K | 2.8K 8K 9.8K 19.2K 16K 10.2K

Logic paths 3.1K | 54K | 124K | 18.6K | 545K | 433K | 229K

Skew regions 3 3 4 6 8 6 5
E =1.1|12113 | 19436 | 46533 | 40379 | 156197 | 212638 | 81216
z E=10]|11713 | 16683 | 47623 | 46139 | 151995 | 218274 | 82071.2
% £ =09 12506 | 19725 | 46893 | 42046 | 161538 | 223442 | 84358.3
'?, [10] | 33610 | 31009 | 82884 | 84055 | 256567 | 349432 | 139593
=
E [11] | 27177 | 24911 | 109538 | 100778 | 262528 | 321293 | 141038
[21] | 13376 | 20839 | 51443 | 45628 | 166274 | 239342 | 89483.7
E=11]| 485 | 412 | 1033 | 11.37 | 36.23 | 38.74 17.6
E=10] 5.18 | 453 | 11.71 12.55 | 37.46 | 39.81 18.5
E £E=09] 67 4.66 | 12.04 | 13.53 | 39.17 | 42.39 19.7
:% [10] 8 6.7 20.6 22 65.2 73.5 32.7
[11] 6.7 6.72 23.8 23.8 60.9 74.3 32.7
[21] 527 | 484 | 1259 | 1393 | 41.18 | 44.25 20.3
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Fig. 10. Proposed method with £ = 1 vs. [10], [11], and [21]: (a) wire length, (b) power,

and (c) power and maximum skew vs. relative skew tolerance parameter .
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TABLE II
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THE NUMBER OF THE LOGIC PATHS IN THE CIRCUIT WITH RESPECT TO THE MAXIMUM SKEW V ARIATION

RATIO OVER ALL MAXIMUM ALLOWED SKEW CONSTRAINTS
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=

s5378
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Juiaiy
w
N
S
~
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Juy
[9)]
o0
N
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Fig. 11. A histogram showing the distribution of the logic paths of the proposed method
compared to [21], with respect to the maximum skew variation ratio over all maximum

allowed skew constraints.
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Section VI

CONCLUSIONS

An efficient graph-theoretic and geometric quasi-linear algorithm for managing clock
skew tolerance is presented in this dissertation. Skew variations are managed while
considering the criticality of the timing of each data path. An algorithm and flow for
planning and synthesizing non-uniform clock meshes are integrated with current CAD
tools and demonstrated on a 65 nm CMOS process and cell library. Experimental results
on a set of benchmark circuits exhibit a 41% average decrease in metal wire length and a
43% average decrease in power dissipation as compared to existing methods that do not
employ selective reduction of skew variations. Comparison to other methods with
variation managing techniques using only meshes exhibits an 8% average reduction in

metal consumption and a 9% average reduction in power dissipation.

These results demonstrate that managing skew tolerance by wisely prioritizing critical
paths saves significant metal resources and dissipates less power as compared to
traditional methods. Furthermore, hybrid clock structures consisting of both nonuniform

meshes and trees are capable of further reducing power and metal consumption.

Future improvements of the algorithm are possible. Other design parameters, e.g., metal
width and layer, could be integrated into the optimization process. Since constraint graph
extraction is computationally expensive, registers at the same local region could be
clustered into one node before extraction. The algorithm presented here can be adapted to
automate the crosslink insertion process [8]. Rather than inserting crosslinks to reduce
maximum variations, the crosslinks could be inserted according to the criticality of the
individual data paths. The algorithm presented here targets a mesh for zero skew; useful
skew [17] may also be considered. The selective resource management idea could be

adapted to construct and optimize power grid networks, in addition to clock distribution
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networks. A power grid is constructed to satisfy current consumption for each consumer.
This method is anticipated to reduce metal area, hence power grid capacitance, and
thereby smaller power switches may be needed to drive the power grid. However, some
applications call for increasing the capacitance of the power grid for mitigating power

supply noise, so that this method should be employed with care.
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