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BMIs at the edge
What if we can detect patterns of neuron activity in real-time?

Applications
Repair brain function

Interface brain regions which no 
longer connect, e.g. Alzheimer’s

Replacement of damaged
hippocampus with a chip [1]

[1] https://www.newscientist.com/article/dn3488-worlds-first-brain-prosthesis-revealed/ (Hippocampus repair)

Detect, in real-time, memories, decisions, emotions, and experiences

3
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BMIs at the edge
What if we can detect patterns of neuron activity in real-time?

Detect, in real-time, memories, decisions, emotions, and experiences

Applications

Woman controls robotic arm 
with 100-channel Utah array [2]

Repair brain function

Interface brain regions which no 
longer connect, e.g. Alzheimer’s

Replacement of damaged
hippocampus with a chip [1]

Drive effectors

Greater accuracy and 

dexterity, e.g. robotic limbs

Anticipate and prevent 
harmful neural activity

e.g. epilepsy

Responsive neurostimulator 
system for epilepsy [3]

[1] https://www.newscientist.com/article/dn3488-worlds-first-brain-prosthesis-revealed/ (Hippocampus repair)
[2] https://continuum.utah.edu/web-exclusives/the-bionics-man/ (Utah Array)
[3] Critical review of the responsive neurostimulator system for epilepsy (Thomas and Jobst, 2015)
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The Challenge and Opportunity
Capture Capability Growing Exponentially

Constraints for a portable implanted device
1. Fast (real-time, <5ms detection latency)
2. Low-power & low-area
3. Scalable

Simultaneously Recorded 
Neurons

Data from https://stevenson.lab.uconn.edu/scaling/
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Constraints for a portable implanted device
1. Fast (real-time, <5ms detection latency)
2. Low-power & low-area
3. Scalable

The Challenge and Opportunity
Capture Capability Growing Exponentially

Simultaneously Recorded 
Neurons

Data from https://stevenson.lab.uconn.edu/scaling/

Brain activity decoding is 
memory intensive & 

computationally expensive

Limited number of neurons
Not real-time
High power

Physically large

Existing solutions can’t cope

Data quickly outpacing analysis techniques
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Roadmap to NOEMA

• Input to the system

• Template matching 

• Baseline design & Noema

• Results

5



34

The Raw Input Data

Neural 
probes
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Temporal Binning

Temporal Binning
Data “smoothing”
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Template Matching

Which template does the input 
most closely resemble?

Templates

#1 #2

Binary input Binned input

#3
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Template Matching

How do neuroscientists determine this?

Templates

#1 #2

Binary input Binned input

#3
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Pearson Correlation Coefficient (PCC)

Widely used metric to measure 

the “closeness” of two matrices
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PCC Example
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Template Matching Overview
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Entire input buffer fills 
before compute begins

→ High latency

Most difficult 
requirement

5ms for real-time

Input buffer

Costs of baseline template 
matching design
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NOEMA [MICRO’21, Patented]:
Brain Interfaces at the Edge

A multidisciplinary collaboration effort in analyzing and developing 
a custom hardware platform to decipher the brain neural activity

14



34

NOEMA [MICRO’21, Patented]:
Brain Interfaces at the Edge

Enabling truly portable systems for processing high-resolution brain 
activity signals for treatment, augmentation, and repair of brain functions

A multidisciplinary collaboration effort in analyzing and developing 
a custom hardware platform to decipher the brain neural activity

14



34

NOEMA [MICRO’21, Patented]:
Brain Interfaces at the Edge

Enabling truly portable systems for processing high-resolution brain 
activity signals for treatment, augmentation, and repair of brain functions

A multidisciplinary collaboration effort in analyzing and developing 
a custom hardware platform to decipher the brain neural activity

• Fabricated with TSMC 65nm GP technology

• Only 24μsec latency!

• 5 sec experience, 1K neurons @ 0.73 mW

• Scales to 30K neurons, 10×more than have ever been recorded

• Scales to meet future demand!

NO EMA ’s Prototype Chip
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NOEMA's innovations
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NOEMA's innovations

16

S1

PE
S2

PE
S3

PE

Post Processing

On-chip 
template 
memory 

Bit-serial input
• No buffering overhead
• Compute immediately when received

Simple memory 
compression (~2.8x)

Near-memory bit-serial PEs
• Based on reformulated PCC
• Tiny, easy to scale

Fits well with existing probe interfaces (time-multiplexed ADC out)
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Baseline to NOEMA Overview

On-chip template memory 

…

Input buffer
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Performance Results
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Power & Area Results
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The NOEMA Family

1. Duration of the decoded experience
2. Resolution window of the incoming activities.

Activities within this windows are binned (averaged).
3. If executed on commodity hardware.
4. Intel’s Stratix 10 FPGA
5. TSMC 65nm GP
6. Not applicable; device can’t meet target frequency.

Device Fmax
(MHz)

Neurons
(thousands)

Templates Duration1

(seconds)

Resolution2

(milliseconds)

Requirements3 Implementation

Compute
(GOPs)

Memory 
(Mb)

FPGA4 ASIC5

NOEMA01K1T05S250 30 1 1 5 250 0.6 0.3  

NOEMA10K2T05S005 300 10 2 5 5 628.0 114.4  Planned

NOEMA20K3T09S250 600 20 3 9 250 64.8 33.0
O

6 Planned

NOEMA30K4T09S005 900 30 4 9 5 6786.4 1236.0
O

6 Planned

21
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NOEMA’s ASIC Devices

Device
Silicon Area (mm2) Power (mW) Latency

(μs)
Chip

StatusMemory Logic Total Memory Logic Total

NOEMA01K1T05S250 0.36 0.07 0.43* 0.30 0.43 0.73 23.9 In lab+#

NOEMA10K05S005MS 28.46 1.35 29.81* 89.78 84.28 174.06 2.8 Simulated#

NOEMA20K09S250MS 6.26 0.09 6.25* 18.55 9.68 28.23 1.5 Simulated#

NOEMA30K09S005MS 202.00 3.42 205.42* 682.70 522.76 1205.46 1.0 Simulated#

* Core only; 2.1mm2 total silicon area.
+ Fabricated with TSMC 65nm GP
# Also tested on Intel’s Stratix 10 FPGA

22
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NOEMA01K05S250MS

• TSMC 65nm GP
• 24μsec latency
• 1K neurons

(scales to 30K)
• 5sec experience
• Consumes 0.73mW
• Equivalent of

600MOPs 32bit-FP

By Comparison:
• Nvidia Jetson Nano

• Consumes 10W
• Barely meets 5ms

real-time latency

• Intel i5-7000
• 63ms latency
• Fails to meet

real-time latency
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NOEMA
Key Takeaways

Brain machine interfaces:
O Exponential growth in data
O Current solutions are not sufficient

NOEMA’s key innovation:
✓ Uses simple, low-cost, area- and energy efficient bit-

serial and integer arithmetic units
✓ Enables computations to proceed progressively as 

data is received
✓ Scales to meet future demand

• 14x less power, 2.6x smaller, order of μsec latency
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Thank you!


