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There are approximately 86 billion neurons in the human brain
with trillions of connections. These neurons generate and transmit
electrophysiological signals to communicate within and between
brain regions. In the 1780s, Galvani pioneered the study of bioelec-
tricity using simple electrode technologies [1]. Our understanding
of these signals has since evolved, resulting in modern neuro-
probes which capture the activity of ever increasing populations
of neurons, e.g., [2], [3], [4]. The captured activity is digitized
and processed in the digital domain. As advancements in sensing
technologies accelerate, the downstream digital processing stack
must also grow for the overall brain-machine interface system to
keep pace and effectively utilize the incoming data. The success of
such systems hinges upon meeting latency, throughput, energy, and
form-factor constraints when processing the raw neural stream.

We present Noema One, an implementation of our Noema
scalable architecture [5] that meets the requirements of a major
component of such brain-machine interfaces: pattern matching.
The goal of pattern matching is to detect, in real-time, when
spatiotemporal neuron activity patterns of interest occur. This
processing is purely in the digital domain, and its input are bit
streams each representing the activity in time of a neuron. Such
spatiotemporal patterns of neuron activity are thought to be key
to understanding how the brain represents, reacts, and learns
from the external environment [6], as the patterns are curated
excerpts of memories, decisions, or perceptions [7], or reliable
motor activations [8]. By detecting memories, decisions, emotions,
and perceptions in real-time, pattern matching is essential for
brain-machine interface applications including driving effectors
such as robotic arms, memory retrieval, or even augmenting or
“repairing” brain function. As most of these applications need to
be untethered—where the device can be carried by the subject
with a portable power source—a small form factor, low power con-
sumption (e.g. < 2W [9]) and meeting a 5ms real-time processing
constraint [5], [10] are highly desirable.

Fig. 1 shows a brain-machine interface (BMI) with template-
matching based pattern detection. Using neuroprobes, neural activ-
ity is continuously sampled and processed by the spike detection
and sorting stage, producing a time-ordered digital stream of
binary indicators. The typical sampling rate for neural spikes is
30KHz [2] resulting in a 30,000 bits/sec stream per neuron. While
modern neuroprobes are capable of capturing the activity of several
hundreds of neurons [11], [12], the technology is rapidly evolving
and neuroprobes capturing thousands and eventually millions of
neuron are within sight [13], [14].

Noema One implements a widely used algorithm for pattern
matching which computes the Pearson’s Correlation Coefficient
between the input stream and each of the pre-recorded templates.
The memory and computation costs of Template Matching are
dependent on the number of sampled neurons, and the number and
size of the pre-recorded templates. The cost becomes prohibitive
with the rapid increase in the number of neurons simultaneously
recorded. Recent estimates range from up to 3K neurons [11] when
recording with electrophysiological signals [12] to upwards of a
million for optical signals [14].

Prior implementations of template matching implement Pear-
son’s Correlation as originally proposed resulting in prohibitive
memory, compute and energy costs. As we have shown, even
desktop-class GPUs fail to meet real-time latency for more de-
manding applications [5]. These implementations first bin the input
bit-streams of activity into streams of aggregate integer counts. The
core computation initiates only after a full time window of relevant
samples (equal to the template’s time dimension) has been received,
increasing memory storage and traffic while delaying response
times. This motivated us to develop the Noema architecture.

Noema One is a prototype of our family of hardware accelerators
that greatly reduce area and energy costs compared to commodity
solutions while achieving real-time performance. Noema reduces
costs and up-time while supporting more intensive workloads to
enable further advances in neuroscience. A study of Noema justi-
fying the architectural choices has been previously published [5].
This manuscript complements this prior work by presenting, for
the first time, a fully-fabricated device of a Noema chip. To design
a scalable solution we studied representative configurations for
a broad spectrum of applications. At the lower-end are applica-
tions possible with existing commodity hardware (albeit still not
portable), whereas at the high-end are applications that are not
practical today but for which the neuroprobe technology is within
reach. Noema One prototype chip supports a stream of 1K neurons,
however, the architecture can be scaled to 30K neurons while still
consuming much less than 2W.

At the core of the Noema architecture is a decomposition of the
template matching algorithm where the bulk of the computations
are performed using simple, low-cost, specialized bit-level opera-
tions. Noema performs computations as it receives samples bit-by-
bit in sliding time window fashion. This enables Noema to produce
the final output only a few cycles after the last bit in the relevant
window is seen and avoids having to buffer the incoming stream—
in contrast with existing implementations—saving memory storage
and traffic. In contrast, existing implementations need to buffer a
window’s worth (template size in time which is in the order of 10s
of megabytes for the most demanding configuration) of incoming
data and can perform the computation only after the last sample
is received failing to meet real-time constraints.
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Fig. 1: Abstraction of template matching applications.



To further reduce memory costs, Noema exploits the observation
that templates naturally exhibit a geometric-like distribution in their
value content which is heavily biased towards very low magnitude
values. Noema incorporates a hardware-efficient decoder to greatly
reduce template storage and traffic with little energy and area cost.
The simplicity and tiny area cost of Noema’s processing units
enables tuning the operating frequency to improve power efficiency
via partitioning and replication at a minimal area overhead.

We highlight the following architectural takeaways and innova-
tions the characterize the Noema architecture:
• As presented and currently implemented, template matching

requires storing large matrices for the templates and binned input
streams, which reach 1.24Gb each.

• The computation needs also grow and reach 6.6TOPs (mostly
floating-point) for the largest configuration planned (see Table I).

• Computation latency and throughput are the primary challenges.
The compute throughput has to keep pace with the incoming
stream while latency is restricted to 5 msec.

• Noema reformulates the computation so that the input streams
are consumed as they are received bit-by-bit, obviating the need
for buffering the input. This: 1) greatly reduces memory needs,
and 2) allows Noema to meet real-time response goals as it leaves
very little computation after the last piece of input is received.

• Noema’s formulation enables the use of tiny bit-serial units for
the bulk of the computation. Noema replicates and places these
units near the template memory banks (near memory compute).
This enables highly parallel processing and scaling at low cost.

• Noema exploits the sparsity of the template content via per bank,
light-weight, hardware friendly decompression units. Templates
are compressed in advance in software (offline). Noema’s tem-
plate compression reduces template memory size by at least
2.79× (most demanding configuration).

• Noema can greatly reduce power by gating accesses to the
template memory, as the input bit stream is sparse and the inputs
are processed a single bit at a time.

• An FPGA implementation meets real time requirement only for
some of the configurations studied.

• An embedded-class CPU fails real-time constraints for all con-
figurations while a desktop-class GPU fails the most demanding.
Table II shows the physical attributes of the Noema device

family. Noema One (NOEMA01K1T05S250) has been fabricated in
TSMC 65nm GP technology. The chip micrograph and floorplan
are shown in Fig. 2. Noema One performs the equivalent of
600MOPs 32bit floating-point operations consuming just 730µW
while also meeting the real-time constraint (24µs per template in
a sliding window fashion). This is only possible because Noema
rethinks how to compute the Pearson’s Correlation Coefficient over
binary indicator streams and in sliding window fashion. As a result,
the bulk of the operations Noema performs use bit-serial, near
memory units without loss of accuracy. By comparison, an Nvidia
Jetson Nano requires 10W while it barely meets the real-time
constraints for the same configuration and fails to do so for the
larger configurations. An Intel i5-7000 also fails to meet real-time
latency constraints (63ms). Noema One occupies 2.1mm2 in the
65nm process mode and operates in 30MHz.

The larger Noema devices have been fully simulated for func-
tional correctness and are planned for fabrication. The most
demanding configuration requires 1.2W, occupies 205mm2 while
performing the equivalent of 6.6TOPs (FP32).

TABLE I: The Noema device family
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NOEMA01K1T05S250 30 1 1 5 250 0.6 0.3 ✓ ✓
NOEMA10K2T05S005 300 10 2 5 5 628.0 114.4 ✓ Planned
NOEMA20K3T09S250 600 20 3 9 250 64.8 33.0 N/A¶ Planned
NOEMA30K4T09S005 900 30 4 9 5 6786.4 1236.0 N/A¶ Planned

* Duration of the decoded experience
# Resolution window of the incoming activities. Activities within this windows are binned (averaged).
† If executed on commodity hardware.
‡ Intels Stratix 10 FPGA
§ TSMC 65nm GP
¶ Not application; device cant meet target frequency.

TABLE II: Noema ASIC devices

Silicon Area (mm2) Power (mW)
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Memory Logic Total Memory Logic Total

NOEMA01K1T05S250 0.36 0.07 ∗0.43 0.30 0.43 0.73 23.9 In lab
NOEMA10K2T05S005 28.46 1.35 29.81 89.78 84.28 174.06 2.8 Simulated†‡

NOEMA20K3T09S250 6.26 0.09 6.25 18.55 9.68 28.23 1.5 Simulated†

NOEMA30K4T09S005 202.00 3.42 205.42 682.70 522.76 1205.46 1.0 Simulated

* Core only; Total die size is 2.1 mm2

† Fabricated with TSMC 65nm GP
‡ Also tested on Intels Stratix 10 FPGA
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Fig. 2: NOEMA01K1T05S250 (left) die micrograph, and (right) floorplan. Dis-
tributed RAM blocks are highlighted, (A) template, (B, C, and D) compute RAM.
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