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Abstract—We present an architecture of a reconfigurable high-
throughput synthesizable synchronization FIFO for crossing between
asynchronous and synchronous timing domains. This FIFO is composed
of reconfigurable mix-and-match components. The input and output inter-
faces are interchangeable for edge-triggered synchronous communication
and for the asP* asynchronous pulse-based handshake protocol. The
FIFO capacity, data width, synchronizer latency, and interface protocols
are independent design parameters. The FIFO is fully synthesizable using
widely available standard-cell libraries and a standard ASIC design flow.
Our post-layout design can operate at speeds greater than 1.2 giga-
transfer per second under worst-case conditions when implemented in a
65nm CMOS process.

Index Terms—asynchronous network-on-chip (ANoC), synchronizing
FIFO, clock-domain crossing (CDC), globally asynchronous locally syn-
chronous (GALS), asP* handshake protocol, multi-synchronous

I. INTRODUCTION

Modern chip designs can consist of several billion transistors.

Because of the difficulties of distributing high-speed clocks with

low skew and jitter [1], such chips are invariably organized as

hundreds of relatively independent timing domains. This approach

leverages the mature, commercially supported, design flows for

building synchronous modules with millions of gates, while providing

a timing independence between these modules. This simplifies timing

closure, supports design reuse, and enables independent voltage-

frequency scaling to be used in separate modules to maximize

energy efficiency. Globally, large chips are asynchronous. Therefore,

optimizing the asynchronous interfaces between timing domains is

essential for achieving efficient, high-performance systems. Current

Systems-on-chip designs are partitioned into multiple clock domains

and can involve large numbers of clock-domain crossings. This

motivates the Globally asynchronous Locally Synchronous (GALS)

design style, creating an asynchronous network-on-chip (ANoC).

Synchronizing FIFOs are critical components to interface between

the ANoC and the functional domains as depicted in Figure 1 (left).

As an example, Figure 1 (right) shows a simplified view of a

modern multi-core CPU. In this figure, each core has its own L1 and

L2 (level-1 and level-2) caches, and an on-chip network connects

the cores to a shared L3 cache. The CDC (clock-domain crossing)

boxes provide the interfaces between different timing domains. If the

cores, NoC (network-on-chip), and L3 caches each operate with their

own clocks, then each CDC module must include a synchronizer,

and the synchronization latency is added to the total latency of the

data transfer. The example in Figure 1 (right) shows that four such

clock-domain crossings are used to handle an L2 cache miss. With

core-clock frequencies of 3GHz or more, three-flip-flop synchronizers

are common, and the synchronization alone can contribute 12 cycles to
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the total miss-processing time. Architects are always asking for higher

NoC bandwidth with lower latency, and a 12-cycle synchronization

penalty is a significant performance issue.

For these problems, asynchronous solutions offer several advantages.

First, no synchronization is needed when entering the asynchronous

time-domain. For the example of the multi-core CPU, by simply using

an ANoC [2]–[5], the twelve-cycle synchronization penalty of the

all-synchronous design can be alleviated to half that, i.e., six cycles.

This paper thus focuses on a reconfigurable interface for crossing

between synchronous and asynchronous timing domains. Our asyn-

chronous interface assume the Asynchronous Symmetric Persistent

Pulse Protocol (asP*) [6] because wire-delay is a key performance

limiter for large blocks or blocks that span a large portion of a chip

(e.g., a NoC). As depicted in Figure 2, each data transfer of the

asP* protocol requires a minimal width pulse to travel a round-trip

between the sender and receiver: first, data and a request minimum

pulse are sent from the sender to the receiver; in response, the receiver

sends an acknowledgement minimum pulse back to the sender. The

throughput of the network is limited by this round-trip time. For each

transmission, each signal returns to zero, however, the return transition

is done immediately after a minimum pulse. A four-phase protocol is

also a return-to-zero (RZ), but requires two round-trips for each data

transfer, achieving roughly half the throughput of a two-phase of an

asP* design. While a two-phase protocol does not require a return-to-

zero transition (NRZ), its implementation is more complicated. The

asP* protocol benefits from the simplicity of return-to-zero protocols,

while achieving high speeds due to minimum-pulse communication.

By providing a reconfigurable and synthesizable design of high-

throughput, low-latency timing-domain crossing interface, we provide

FPGA designers with a disciplined way to incorporate the use of

ANoCs and asynchronous modules into their designs. We believe

these interfaces greatly lower the barrier to entry for exploiting

the advantages of asynchronous designs in a heterogeneous design

framework. Our timing-domain crossing FIFO is fully synthesizable

sync. sync. sync.
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Fig. 1. (left) A Network-on-Chip accessing multiple timing domains. (right)
An example of a multi-core CPU crossing clock domains to access caches.
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Fig. 2. Self-timed handshake protocols.

using standard-cell-based libraries and standard design flows, highly

configurable, and supports any combination of synchronous and

asynchronous interfaces. The complete design framework is public

and open-source, including a Verilog description of the FIFO, support

for synthesis and simulation, a testbench for regression tests, and a

run-in-batch flow manager [7].

The remainder of this paper is organized as follows. Synchronizing

FIFOs are reviewed in Section II. Section III presents our proposed

synchronizing FIFOs. Section IV provides an analysis of throughput

and latency. In Section V our experimental framework is presented,

results are discussed, and other approaches are compared. Finally,

Section VI concludes the paper with future suggestions.

II. BACKGROUND, PRELIMINARIES AND RELATED WORK

Synchronizing FIFOs are largely distinguished by the design of

the interface control logic, the data storage, and the synchronization

mechanisms between the interfaces.

Gray-code FIFOs. The most common synchronizing FIFOs for

both ASICs [8] and FPGAs [9], [10], are based on Gray-code counters.

The advantage of a Gray-code is that on a clock transition, exactly

one bit of the counter makes a transition. If the put-controller uses a

Gray-code for its write pointer, then the bits of the pointer can be

synchronized to the get-controller using a separate synchronizer for

each bit. Because at most one bit will be changing at the receiver (get)

interface clock edge, at most one synchronizer will enter metastability.

When that bit resolves, the synchronizer outputs either the “before” or

“after” value of the write-pointer. Either is valid. The disadvantage of

Gray-codes is the difficulty of comparing two Gray-codes to determine

which is greater. Typical designs convert the Gray-code value to binary,

and then perform the comparison. The conversion requires a chain of

XOR gates whose length is the number of bits in the pointer (minus

one). This tends to be a slow operation that limits FIFO performance.

Unary-code FIFOs. An alternative to Gray code pointers is to

use some kind of unary encoding. Like several other designs [11],

[12], our approach uses a unary encoding of the FIFO pointers.

These FIFOs offer very high throughputs because ring counters are

fast, and comparing unary values is easy. Of these, our design is

standard-cell-based. The main disadvantage of unary control is the

requirement of large flip-flop counts, especially for the synchronizers.

For desynchonization applications, FIFO depths tend to be small

whereas the word-width tends to be fairly high. Both of these properties

mitigate the overhead of using unary control.

Pausible clock FIFOs. In addition to Gray code and unary counters,

many other designs have been proposed. Keller [13] presents a novel

implementation for GALS applications based on “pointer-increment”

signals. Keller’s design uses mutex elements to arbitrate between

communication and clock generation; because metastability is rare

and usually resolves quickly, Keller’s design, like most pausible clock

designs, achieves very low latency for cross-domain communication.

While we note a growing interest in pausible clock GALS (e.g.,

[8], [13]), the most common clock-domain-crossing designs remain

synchronous-to-synchronous, and we focus on that scenario here.

Ripple FIFO. Another approach to synchronization is to use a

ripple FIFO instead of a pointer based design. Seizovic showed

synchronization can be incorporated into the control path of a

ripple FIFO [14]. More recently, Jackson and Manohar showed a

generalization of Seizovic’s scheme where some pipeline processing

can be done along the datapath of the FIFO while the control

path accomplishes synchronization [15]. However, they use special

handshaking cells that are not amenable for standard synthesis.

III. THE FIFO ARCHITECTURE

Our goal is to support the design of asynchronous drop-in re-

placements for synchronous blocks with latency-insensitive interfaces.

This enables incremental incorporation of asynchronous blocks for

functions where they provide advantages as well as an interface

to chip-wide asynchronous NoCs. From the synchronous designer’s

perspective, the asynchronous modules communicate through latency-

insensitive interfaces; and no special considerations are needed to

account for the asynchronous implementation on the other side of these

interfaces. The two key interfaces are a synchronous-to-asynchronous

(S2A) converter that transfers data from the clocked, synchronous

domain to an asynchronous module using the asP* protocol. The

asynchronous-to-synchronous (A2S) converter is the inverse: it

transfers data, with proper synchronization, from the asynchronous

timing domain back to the clocked domain. The modular design of our

interfaces naturally provides synchronous-to-synchronous converters

that transfer data between two synchronous domains with independent

clocks. While the same modularity also allows the construction of

an asynchronous-to-asynchronous (A2A) interface, such interfaces

are rarely, if ever, needed. Unlike synchronous designs, asynchronous

modules are naturally composable without imposing timing-closure

headaches on their interfaces. The configuration fields of our proposed

FIFO are listed in Table I.

A. A Simplified asP* FIFO

The Asynchronous Symmetric Persistent Pulse Protocol (asP*) [6] is

used to implement our asynchronous interfaces because it offers major

benefits compared to other asynchronous protocols. First, asP* exhibits

high speeds, enabling low latencies and high performance. Using the

asP* protocol, each data transfer requires a minimal width pulse to

travel a round-trip between the sender and receiver: first, data and a

request minimum pulse are sent from the sender to the receiver; in

response, the receiver sends an acknowledgement minimum pulse back

to the sender. The throughput of the network is limited by this round-

trip time. While a two-phase protocol does not require a return-to-zero

transition, its implementation is more complicated. On the other hand,

a four-phase protocol requires two round-trips for each data transfer,

achieving roughly half the throughput of a two-phase design. The

asP* protocol benefits from the simplicity of return-to-zero protocols

and achieves high speeds due to minimum-pulse communication. The

asP* can also be implemented using standard-cell-libraries and does

not require special cells such as C-elements.

TABLE I
FIFO CONFIGURATION FIELDS.

Field #Bits Description Possible values

PP 1 Put Protocol ‘0’: asP*, or ‘1’: clocked
GP 1 Get Protocol ‘0’: asP*, or ‘1’: clocked
NFFS 2 #FFs in Synchronizer ‘01’: 1, ‘10’: 2, or ‘11’: 3 FFs
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A simplified asP* FIFO that is the base of our design is shown in

Figure 3. This FIFO consists of a control and datapath portions. The

datapath is a chain of D-latches that shifts the data from datain
towards dataout. This datapath is controlled by an SR-latch-based

control circuit. Each SR-latch in the controller indicates that its

corresponding stage is full, namely the D-latch in the same stage holds

a valid data. For each stage, the AND gate indicates that the data

should be moved to the current stage if the previous stage is full AND

the current stage is empty. For stage i, if the previous stage is full,

Q(SRLi−1) = 1, and the current stage is empty Q̄(SRLi−1) = 1,

DLi will be enabled and data will move from stage i− 1 to stage

i. Also, the reset signal (R) of SRLi−1 will be asserted indicating

that stage i− 1 is now empty, and the set signal (S) of SRLi will

be asserted, indicating that stage i is now full.
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Fig. 3. Asynchronous Symmetric Persistent Pulse Protocol (asP*) pipeline.

B. The FIFO Rings

Figure 4 shows the structure of our synchronizing FIFO. A sender

in timing domain A communicates with the receiver in timing domain
B through the FIFO. The FIFO is composed of two round-robin rings

of n stages, the put ring and the get ring. Each stage has a put

interface cell, a get interface cell and a full-empty control. In addition,

each FIFO stage includes a data store unit. Alternatively, a separate

two-ported memory array may be used, with control signals coming

from the put and get interface cells.

The FIFO uses tokens to mark the location of the next write

and read operation. Initially, the put and get tokens are in the

put and get interface cells of stage 1. Each time a data value is

written to the FIFO, the put token is advanced to the next stage.

Similarly, the get interface cells advance the get token on a read

operation. The structure of a FIFO stage is shown in Figure 5. For

simplicity, only some signals are shown. Next sections give a more

detailed account of all signals involved in the operation. Signals

put_token_in and get_token_in come from the previous

stage, while put_token_out and get_token_out go to the

next stage. Initially the stage is empty and signal stage full is

low and stage empty is high. If signal put_token_in is high, an

incoming req_put causes signal write to go high, which in turn

causes the full-empty control to raise stage full and lower stage
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Fig. 4. Architecture overview.

empty. After a successful write operation, the token is transferred

from this stage to the next by lowering put_token_in and raising

put_token_out. Likewise, a req_get request causes signal

read to go high and subsequently stage full to drop and stage

empty to go high. In the data store, signal write causes the input

data datain to be stored, while signal read causes the output data

bus dataout to be driven with the data value for this stage. This

will be explained in more detail in next sections. There are two types

of put and get interface cells, clocked and clockless. Similarly, the

full-empty control can be clocked or clockless.

C. Full-Empty Control

Each FIFO stage has one full-empty control block. Figure 6 shows

the full-empty control block, consisting of three portions. The put

interface (left side), the synchronization block (middle), and the get

interface (right side). The put/get interface can be either clocked or

clockless. Synchronization is only required when crossing between

clocked interfaces. Clocked and clockless interfaces can be combined

in all possible mix-and-match ways, such as two clocked interfaces

(upper left case), or two clockless interface (lower right case). In

the clockless put interface, the write signal causes the toggling

of flop fap, while in the clocked get interface the flop fsg toggles

on a rising read clock edge, when signal read is high. The two

flops fap and fsg encode the state of the FIFO stage: if the outputs

of the flops are the same, then the FIFO stage is empty; if they

are different, then the FIFO is full. The clocked put/get interface

requires a synchronizer to minimize metastability-related failure. The

synchronizer can consist of any number of half-cycle and fullcycle

synchronization stages. Note that only the signal from the other clock

domain needs to pass through the synchronizer. Thus, a state change

due to a read operation causes the stage empty signal to go high

without incurring the synchronization latency penalty, and similarly

for write operations and stage full. As a result, the FIFO will not

overflow or underflow.

The configurable version of the controller is shown in Figure 6

(bottom). In this version all four mix-and-match combinations

are merged and the configuration fields are using to select the

write/read signals for the clockless configuration interface, or the

clk_put/clk_get for the clocked configuration. The numbers of

flip-flops in the timing-domain crossing synchronizer are configurable,

or are completely bypassed if we cross to a clockless domain.
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Fig. 5. A single FIFO stage for all mixed-timing combinations.
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Fig. 6. (top) Full/empty controller for all mixed-timing combinations. (bottom)
A reconfigurable version of the full/empty controller.

Distributed synchronization. As described above, our FIFO has

a one-bit synchronizer in each clocked full-empty interface. This is

in contrast to traditional synchronizing FIFO designs that have a

top-level synchronizer. We chose to use a distributed synchronization

scheme to make our design more modular. If the synchronized full

signal is asserted in the receiver’s domain, then the stage is guaranteed

to hold data and therefore a read is safe. Likewise, assertion of the

synchronize empty signal in a clocked sender’s domain guarantees

that the stage is empty and that a write to the stage is safe. This design

prevents invalid states from being sampled, since it is acceptable for

any changing bit to have its old or new value sampled.

Having one synchronizer in each FIFO stage in some situations

could incur a prohibitively large area overhead. We compared the area

of our design with one using Gray-code counters. Noting that the

area of our control circuit is dominated by the area for flip-flops, we

compared the two designs based on flip-flop count. For a 16-stage, 32-

bit wide FIFO, we estimate that our control circuit is 45% larger than

a Gray-code based FIFO, and for a 32-stage FIFO, our control circuit

is 54% larger. If the FIFO uses a latch array for storage, this translates

to a total area overhead of 16% and 19% respectively. On the other

hand, the one-hot encoding provided by the tokens and the single

bit-comparison implied by the per-stage synchronizer avoids decode

and multi-bit compare operations in the critical path. This allows

our FIFO to run at higher speeds than a traditional pointer-based

synchronizing FIFO. The higher throughput and greater modularity of

our design make these modest overheads acceptable for many designs.

D. The FIFO Interface

The FIFO’s top-level signals and stage connectivity are shown

Figure 7. A put request from the sender is broadcast to all FIFO stages.

In the clocked version the put request will be broadcasted if there is

an available space, thus it will be masked with the space_avail

signal. The stage space_avail(i) signals from all FIFO stages are

combined in an OR tree to the acknowledge signal back to the sender.

Similarly, the clocked version is the space_avail signal where all

space_avail(i) clocked signals from all stages are OR’ed. At

any time, one stage at most will raise its space_avail(i) signal.

A clockless receiver will constantly check data_valid signal to

examine if the FIDO stores data that can be read. The receiver will

reply by raising the signal req_get, telling the FIFO the current

data has been read and it should move to the next stage. Similarly,

on the clocked receiver side, the FIFO tells the receiver that it has

valid data at its dataout output by raising signal data_valid,

which is the OR’ed data_valid(i) clocked signals.

The FIFO interface units (within each stage) are shown in Figure 8.

The get and put rings are part of the get and get interfaces, respectively.

Each ring is composed of a shift register (one flip-flop per stage)

holding a one-hot value. Initially, the token is located in the first

stage, thus the first flip-flop stores 1, while all other flip-flops are

zero. For the clocked interface, the token ring moves forward on

the clock edge, and is enabled by enb_put/enb_get, for the

put/get interfaces, respectively. The clockless ring, on the other

hand, moves on the rising edge of req_put/req_get, for the

put and get interfaces, respectively. Other signals are generated based

on the token ring, which indicate the current active stage for get

and put interfaces. In the clocked interfaces, write/read signals

are asserted if the current stage is active, and there is a put/get

request, respectively. space_avail(i) and datav_valid(i)
(clocked) are asserted if the current stage is active, and the current

stage is not full/empty, respectively. The clockless interface behaves

similarly, however, req_put/req_get signals are incorporated in

the generation of the write/read signals, respectively.

Minimum pule-width timing constraints. To ensure the correct

functionality of the asP* FIFO, the following minimum-pulse width

must be satisfied by the asP* interface user. req_put/req_get
signals are used to trigger the put/get token ring flip-flip, and the

fap/fag flip-flops in the full-empty control, respectively, thus,

minPulseWidth(req putLO) ≥ minPulseWidth(DFF.CLKHI),

minPulseWidth(req getLO) ≥ minPulseWidth(DFF.CLKHI).

All flip-flops are triggered simultaneously to pass on the put and get

tokens. The propagation delay from one flip-flop to the next has to be

greater than the hold time of the flip-flop; otherwise additional delay

needs to be inserted into the token wires to ensure that the flip-flops’

hold time constraints are met. Standard timing tools are used to check

and fix these timing constraints as described in Section V.
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Fig. 7. The FIFO structure for all mixed-timing combinations.
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Fig. 8. Interface components.

E. Data Store

To reduce storage area, latches are used to store data instead of

registers as described in Figure 5. Each FIFO stage has a latch array

for the data; the latch enable is controlled by the stage’s write signal.

Incoming data is propagated to each FIFO stage, and data latches in

stage i are transparent when stage i’s write signal is high. At any given

time, only one stage will have a high write signal and only one stage

will store the incoming data. For FIFO read operations, the get token

determines which FIFO stage drives the output data. The selection can

be done with passgates, tri-state buffers, or multiplexers. For example,

the design described in Figure 7 uses gate-based multiplexers for ease

of implementation with a standard CAD flow. The writing and reading

with clocked interfaces is straightforward. The write signal is used

to enable the storage latches. Note that write is only high during

the clock low phase, such that the write clock high phase can be used

to drive the data onto the bit lines, whenever enb_put is asserted.

A read operation is performed when enb_get is asserted. Signal

read is only high for half the cycle, leaving the first half of the read

clock cycle for precharge. The data can be gated using the get token.

If the put protocol is clockless (PP field is low), the clk_put will

be masked, leaving the write signal only to enable the data latch.

IV. THROUGHPUT AND LATENCY ANALYSIS

A. Minimum Latency Through the Clockless FIFO

The latency of asP* FIFO stage is measured from a put request

is issued by the sender until this stage becomes empty again and

stage full falls. The chain of events is shown in Figure 9 and is as

follows (with the delay in brackets):

1 req_put goes high and propagates to all stages [number of

gates depends on FIFO depth]

2 write goes high in put interface [delay of a 3-input AND gate]

3 FF toggles in full-empty control [2→1 mux + clk→q delay]

4 Put→get synchronizer is bypassed [delay of a 4→ 1 mux]

5 stage empty rises [delay of an XOR gate]

6 data_valid OR-tree fan-in [gates depends on FIFO depth]

7 get data rises [delay in receiver]

8 read signal rises in get interface (assuming req_get is already

asserted) [delay of 3-input AND gate]

9 FF toggles in full-empty control [2→1 mux + clk→q delay]

10 Put→get synchronizer is bypassed [delay of a 4→ 1 mux]

11 stage full rises [delay of XOR gate]

B. Minimum Latency Through the Clockled FIFO

The latency through the clocked FIFO is defined as the time from

the first write clock edge after a put request until the read clock edge

that allows the receiver to retrieve the data. The latency is shortest

when the FIFO is empty. The latency path goes from the write clock

domain to the read clock domain, so the latency depends on the

relationship between the write and the read clock. Figure 10 shows

the timing diagram. Counting from the first write clock edge after the

put request rises, the latency consists of one write clock cycle, the

phase difference, the synchronization latency (in read clock cycles),

and one read clock cycle.

C. Throughput of the Clockless FIFO

The throughput of asP* FIFO is defined as the number of data

items that the receiver can read out in a given time. Because the

clockless FIFO does not need synchronization, as soon as there is

data in the FIFO, it can be read out. Consider the case where the put

interface is slower than the get interface. Even if the put interface

writes data to the FIFO as fast as it can, the get interface will always

read it out faster than the next item can be written. At any given

time there will be at most one item in the FIFO. The throughput in

this situation is determined by the slower put interface. Consider the

opposite case where the get interface is slower than the put interface.

If the put interface writes data to the FIFO as fast as possible, the

FIFO will eventually fill up. The get interface remains busy reading

out data as fast as possible. The throughput is now determined by the

slower get interface. Assuming the FIFO is written and read as fast

as possible, the only situation where its steady state is neither full nor

empty is when both put and get interfaces are equally fast. In that

case, the FIFO can have any number of data items in a steady state.

As long as there is at least one data item, the get interface can read

out data items as fast as possible and the throughput is unchanged. In

summary, if the FIFO has more than one data item in its steady state,

then the get interface is at most as fast as the put interface and the

throughput is determined by the get interface. Thus, the throughput

is unchanged if there is at least one item in the FIFO. Consequently,

having more than one item in the FIFO increases the latency, but

does not affect the throughput.

D. Throughput of Clocked FIFO

The throughput of the clocked FIFO depends on the FIFO size. To

achieve maximum throughput, the FIFO must have sufficient capacity

to cover the synchronization latencies in the full-empty control blocks.

In general, a FIFO with equal read and write clock frequencies and a

n-FF synchronizer needs 2n+ 2 stages: 2n to hide the synchronizer

latencies and 2 additional stages to cover the maximum delay before

the synchronizers sample a state change. However, if the FIFO has

enough stages to cover the synchronization overhead, the throughput is

limited by the critical paths from one stage to the next within the put

and get interfaces. These paths are longer for larger FIFOs because of

the larger fan-outs. Therefore, given a clock ratio and synchronization

latency, there is a FIFO size that maximizes the throughput.
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V. FIFO IMPLEMENTATION

To illustrate the suitability of our FIFO design for inclusion in

reconfigurable devices, we have implemented the FIFO using a

standard ASIC design tools and standard cells starting with a Verilog

description and finishing with fully placed and routed gates. Details

and results of this process are described in the following subsections.

A. Platform Settings

In order to verify, simulate, and synthesize the suggested approach

with various parameters in batch, we wrote a fully parameterized

Verilog modules, together with a run-in-batch flow manager that

runs Synopsys synthesis tools for each design instance. The Verilog

modules and the flow manager are available online [7]. The design

package is composed of a fully configurable Verilog description of the

proposed FIFO, a Verilog testbench, tool configuration scripts, and a

run-in-batch manager. The Verilog description of the proposed FIFO

is parameterized and can be instantiated in other Verilog projects as

a stand-alone IP.

Our design framework consists of a run-in-batch manager that

allows synthesizing and simulating a number of FIFOs in batch.

A list of design parameters (e.g., interface protocols, stages, data

width, and synchronizers’ depth) can be provided to the run-in-batch

manager, together with the required flow stages. The design flow

targets TSMC 65nm technology process and stardard-cell library. The

design stages are implemented using Synopsys tools and ordered

as follows. (1) Logic synthesis using Synopsys Design Compiler.

(2) The cell placement, cell sizing, repeater insertion, and detailed

wire routing was performed using using Synopsys IC Compiler; This

include delay and parasitic extraction using Synopsys StarRC. (3)

Static timing analysis using Synopsys PrimeTime. (4) Functional Gate-

level-Simulation was done using Synopsys VCS MX/VCS MXi. with

the fully annotated post-layout netlist and the Verilog testbench. The

testbench generates input vectors, checks the outputs, and compares

them against a generic FIFO. The simulation also generates the activity

data for power analysis. (5) Power analysis using PrimeTime to

estimate both dynamic and leakage power. The power analysis was

based on a simulation with 100k random transactions, which on

average generated a new transaction for 50% of the available slots.

Each simulation was done with the same 100k random transactions

and with the same operating frequency.

B. Experimental Results

The performance of each FIFO configuration is shown in Table III.

For the clocked FIFOs we show the maximum clock rate at which

that the circuits can operate, while for the asynchronous FIFOs this

is the fastest rate at which requests can be serviced. The data in

Table III shows that the throughput of the FIFO scales relatively well

as the number of stages is increased from 8 to 64. Both clocked

and asynchronous FIFOs are able to run at over 1.2 GHz with 64

stages. All FIFOs have a data throughput equivalent to the maximum

clock/request frequency.

The minimum latency through the FIFOs is also listed in Table III.

These were measured from timing-annotated simulations using values

automatically extracted from the placed and routed design. All

numbers assume worst-case process, voltage and temperature. For the

synchronous FIFOs we assumed both clocks had the maximum clock

frequency and were in phase; then the minimum latency is 5 cycles.

The power measurements are shown in Table III. The power analysis

was based on a simulation with 100k random transactions, which on

average generated a new transaction for 50% of the available slots.

Each simulation was done with the same 100k random transactions

and with the same operating frequency.

Resources consumption is listed in Table IV, and shows that our

design consumes 10n flip-flops and 32n storage latches, where n is

the number of stages. This is inline with our design that consumes

10 flip-flops and 32 storage latches (for 32-bit data ) per FIFO stage.

Overhead of Distributed Synchronization As noted earlier, our

FIFO trades off re-usability and modularity for more area. Unlike

a traditional pointer-based FIFO, where the pointer size grows

logarithmically with the number of FIFO stages, our FIFO has

a distributed synchronization scheme, where every stage has a

synchronizers, and grows linearly with the number of stages. As a

first-order estimate of the overhead incurred by our FIFO, we counted

the number of FFs, the total area, throughput, power consumption, and

energy per bit of our FIFO and a traditional gray-code pointer-based
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TABLE II
SYNCHRONOUS FIFO AREA COMPARISON

stages
Pointer-based FIFOs Our synchronous FIFO Diff. [+%]

#FFs
Area Throughput Power Energy

#FFs
Area Throughput Power Energy

Area Throughput Power Energy
[μm2] [Gtransfer/s] [μW] [fJ/bit] [μm2] [Gtransfer/s] [μW] [fJ/bit]

8 24 4096 1.03 102.64 3.12 80 4582 1.79 118.80 2.31 11.87 73.79 15.75 -33.34
16 32 6166 0.89 122.33 4.30 160 7237 1.58 156.43 3.22 17.37 77.53 28.21 -27.68
32 40 12336 0.72 168.38 7.31 320 15286 1.32 239.52 5.43 23.92 83.34 42.27 -22.30
64 48 20568 0.59 226.60 12.01 640 30745 1.21 391.37 10.11 49.48 105.09 72.74 -15.83

TABLE III
PERFORMANCE AND POWER CONSUMPTION (WITH 3-FF SYNCHRONIZERS)

FIFO Configuration Throughput Latency Power Energy
Put Get Stages [Gtransfers/s] [ns] [μW] [fJ/bit]

clkd clkd 8 1.79 4.15 118.80 2.31
clkd clkd 16 1.58 4.39 156.43 3.22
clkd clkd 32 1.32 4.90 239.52 5.43
clkd clkd 64 1.21 5.63 391.37 10.11

asP* clkd 8 1.63 3.87 109.67 2.11
asP* clkd 16 1.58 4.16 219.12 4.34
asP* clkd 32 1.37 4.50 351.44 8.02
asP* clkd 64 1.19 4.98 516.40 13.57

clkd asP* 8 1.63 3.86 107.23 2.06
clkd asP* 16 1.60 3.98 173.74 3.40
clkd asP* 32 1.48 4.42 361.80 7.64
clkd asP* 64 1.22 5.92 575.66 14.75

asP* asP* 8 1.75 0.49 102.65 1.84
asP* asP* 16 1.66 0.58 246.50 4.65
asP* asP* 32 1.50 0.65 376.21 7.84
asP* asP* 64 1.34 0.77 616.43 14.38

TABLE IV
RESOURCES CONSUMPTION OF MULTIPLE FIFO INSTANCES (32-BIT DATA)

Stages Total Area [μm2] #flops #latches Datapath [%]

8 4581.71 80 256 46.74
16 7236.20 160 512 52.30
32 15285.34 320 1024 55.15
64 30744.82 640 2048 56.59

FIFO (Table II). As expected, compared to a gray-code pointer-based

FIFO our FIFO can consume up 50% more silicon area for the largest

configuration, on the other hand, our FIFO doubles the throughput

for the same configuration. Energy efficiency is improved for at least

15% for all configurations.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents configurable high-performance synthesizable

interfaces for crossing between asynchronous and synchronous timing

domain. The interface protocol can be configured as synchronous or

asynchronous (asP*) protocol. In addition, the number of FIFO slots

and the number of synchronization flip-flops are also configurable.

The configurability, performance, and vast applications of our FIFO

make it suitable for hard-coded integration in reconfigurable devices.

As a future work, we are planning to support SRAM-based

storage [16] instead of latch-based storage to increase area efficiency.

Furthermore, we are planning to investigate searchable FIFO structures

known as Content-Addressable FIFOs [17], enabling configurability

via hierarchical content-addressable memories [18]–[20]. Finally, it is

advantageous to support the two-phase asynchronous protocol in our

configurable FIFO due to its power and speed efficiency.
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