
Noema: Hardware-Efficient Template Matching for Neural
Population Pattern Detection

Ameer M. S. Abdelhadi
University of Toronto

ameer.abdelhadi@utoronto.ca

Eugene Sha
University of Toronto

eugene.sha@mail.utoronto.ca

Ciaran Bannon
University of Toronto

ciaran.bannon@utoronto.ca

Hendrik Steenland
NeuroTek Innovative Technology Inc.

wsneurotek@gmail.com

Andreas Moshovos
University of Toronto

moshovos@ece.utoronto.ca

ABSTRACT
Repeating patterns of activity across neurons is thought to be key
to understanding how the brain represents, reacts, and learns. Ad-
vances in imaging and electrophysiology allow us to observe activ-
ities of groups of neurons in real-time, with ever increasing detail.
Detecting patterns over these activity streams is an effective means
to explore the brain, and to detect memories, decisions, and per-
ceptions in real-time while driving effectors such as robotic arms,
or augmenting and repairing brain function. Template matching
is a popular algorithm for detecting recurring patterns in neural
populations and has primarily been implemented on commodity
systems. Unfortunately, templatematching is memory intensive and
computationally expensive. This has prevented its use in portable
applications, such as neuroprosthetics, which are constrained by
latency, form-factor, and energy. We present Noema a dedicated
template matching hardware accelerator that overcomes these lim-
itations. Noema is designed to overcome the key bottlenecks of
existing implementations: binning that converts the incoming bit-
serial neuron activity streams into a stream of aggregate counts,
memory storage and traffic for the templates and the binned stream,
and the extensive use of floating-point arithmetic. The key innova-
tion in Noema is a reformulation of template matching that enables
computations to proceed progressively as data is received without
binning while generating numerically identical results. This drasti-
cally reduces latency when most computations can now use simple,
area- and energy efficient bit- and integer-arithmetic units. Fur-
thermore, Noema implements template encoding to greatly reduce
template memory storage and traffic. Noema is a hierarchical and
scalable design where the bulk of its units are low-cost and can be
readily replicated and their frequency can be adjusted to meet a
variety of energy, area, and computation constraints.

ACM Reference Format:
Ameer M. S. Abdelhadi, Eugene Sha, Ciaran Bannon, Hendrik Steenland,
and Andreas Moshovos. 2021. Noema: Hardware-Efficient Template Match-
ing for Neural Population Pattern Detection. In MICRO’21: 54th Annual

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480121

IEEE/ACM International Symposium on Microarchitecture (MICRO ’21), Octo-
ber 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3466752.3480121

1 INTRODUCTION
There are approximately 86 billion neurons in the human brain
with trillions of connections. These neurons generate and transmit
electrophysiological signals to communicate within and between
brain regions. More than two centuries ago Galvani pioneered the
study of bioelectricity using simple electrode technologies applied
to the frog nerve and muscle [25]. Our understanding of the elec-
trical currents of nerves has since greatly expanded using increas-
ingly refined techniques [32, 34] resulting in modern neuroprobe
technologies including the tetrode, Michigan silicon probes, Utah
microelectrode arrays, Thomas electrodes, electrode drive mech-
anisms [70], and neuropixel probes [36]. More recently, genetic
techniques manipulate neurons to express calcium indicators so
neuron bioelectricity could be imaged [80]. Collectively, these new
technologies enable us to capture the activity of ever increasing
populations of neurons. Ultimately, the signals these probes capture,
are digitized and processed in the digital domain.

Several challenges remain for the development of a widely ac-
cepted neuron-based brain machine interface, including electrode
bio-compatibility, large-scale sampling of neuronal data, real-time
pre-processing and storage of the data, “sorting” neural spike ac-
tivity, detecting neural patterns, and selecting the relevant pat-
terns [57, 69, 77]. These challenges require innovation in several
disciplines. Undergoing efforts in electrode bio-compatibility in-
clude coatings [69, 76, 78], avoiding the destruction of vascula-
ture [53], and the development of electrodes made from neural
tissue itself [9]. Attempts have been made in the calcium imag-
ing domain via some level of genetic manipulation [19]. However,
invasive imaging methods tend to have better long term signal
stability [10, 83], as demonstrated in animal models, and represent
a real future potential for neuron detection.

As advancements in sensing technologies accelerate, the down-
stream digital processing stack must also grow for the overall sys-
tem to keep pace. The success of such systems hinges upon meeting
latency, throughput, energy, and form-factor constraints when pro-
cessing the raw neural data stream. While innovations are still to
occur, the algorithms employed for processing have become widely
adopted and are sufficiently stable for a variety of applications. Ex-
isting implementations are predominantly in-house, most of which

https://doi.org/10.1145/3466752.3480121
https://doi.org/10.1145/3466752.3480121

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Ameer M. S. Abdelhadi, Eugene Sha, Ciaran Bannon, Hendrik Steenland, and Andreas Moshovos

are only appropriate for off-line analysis on a limited number of neu-
rons. Such implementations often fail to meet the aforementioned
constraints for portable applications such as neuroprosthetics. De-
veloping computing systems to meet the needs of current and future
neuron-based brain machine interfaces can be highly inaccessible
due to the need for multidisciplinary collaboration. The time and
effort required to learn to “speak” the language of other fields and
to hone in on the most relevant features are major up-front costs
necessitating strong commitments and incentives from all parties
involved. This is even more challenging when coupled with the
prototype development costs of custom hardware, and its eventual
deployment to scale.

As a result of such a collaborative effort, we report our expe-
rience in analyzing and developing a custom hardware platform
to meet the requirements of a major component of such systems:
pattern matching. The goal of pattern matching is to detect if a
certain pattern of neuron activity occurs over some short period of
time. This processing is purely in the digital domain, and its input
are bit streams each representing the activity in time of one or more
neurons. Such patterns of neuron activity are thought to be key to
understanding how the brain represents, reacts, and learns from
the external environment [59, 60]: Neuronal populations have been
found to have reliable motor activation, replay patterns of activity in
association with previous experiences during wakefulness [16, 37],
sleep [20, 23, 37, 43, 46, 62, 74] and intrinsically [13, 48, 49] during
field oscillation. During sleep, these patterns can recur at accel-
erated rates [23, 43, 46, 54], and even in reverse order [24]. The
“memory” replay of these patterns can occur across various brain
regions and in coordination [35, 58]. Analytic output from popu-
lations of neurons can effectively drive robotic limbs [15, 42, 50].
Taken together, detecting patterns of neuronal populations is an
effective means to explore and predict the brain. Pattern matching
algorithms could detect memories, decisions, emotions, perceptions
in real-time while driving effectors such as robotic arms, memory
retrieval or even augment brain function. As most of these applica-
tions need to be untethered, where the device can be carried by the
subject with a portable power source, a small form factor and low
power consumption (less than 2W [53, 66]) are highly desirable.

As we will later expand upon, the current computational and
memory demands of pattern matching only worsen with the rapid
increase in the number of neurons simultaneously recorded. Re-
cent estimates range from 3,000 neurons [72] when recording with
electrophysiological signals [36] to upwards of a million when
recording from optical signals [39]. Accordingly, there is a grow-
ing need for accelerating algorithms and dedicated devices to pro-
cess patterns of neural data fast enough for real-time applica-
tions. Pattern matching is challenging since a pattern is not an
exact sequence of neuronal activity that repeats perfectly every
time. Instead, pattern detection has to cope with inherently “noisy”
neuron activity signals to assess patterns with some level of cer-
tainty. A range of algorithms have been used to assess patterns
of activity in populations of neurons and include; Bayesian decod-
ing [17, 29], recurrent artificial neural networks [15], explained
variance [41, 74], correlations of cell pairs [16, 37] and template
matching with the Pearson’s Correlation Coefficient, or Template
Matching for short [21, 23, 46, 51, 62, 74, 75, 79, 81]. The feasibility
of a real-time pattern detection system has been demonstrated with

a Bayesian decoding scheme with 128 electrodes [17, 29] while
studies involving recurrent artificial neural networks relied upon
32 neuron recordings [15]. A desktop-class GPU could process 2000
channels of data input in less than 250msec [33]. Unfortunately, in
real-time applications a 50msec response is highly desirable [18].

The memory and computation needs of Template Matching vary
depending on the number of sampled neurons, and the number
and size of the pre-recorded templates. We study representative
configurations for a broad spectrum of applications (Table 1). At
the lower-end are applications possible with existing commodity
hardware (albeit still not portable), whereas at the high-end are ap-
plications that are not practical today but for which the neuroprobe
technology is within reach. Inspired by previous work in template
matching [23, 46, 62, 74] Section 5 presents PCCBASE, a highly op-
timized vector-unit-based implementation of template matching.
PCCBASE is representative of current implementations. However,
our implementation optimizes memory and compute organization
to best match the needs of each configuration studied, some of
which far exceed previously published studies. For the configura-
tions studied, the computation requirements vary from 600MOPS
(operations, defined as an arithmetic operation) to 1.7GOPS per
template. The on-chip storage of PCCBASE ranges from 40KB for
our lowest-end configuration to 160MB for the most demanding
one. We highlight the following observations about past imple-
mentations of template matching as motivation for our optimized
design. Existing implementations of template matching implement
Pearson’s Correlation as originally proposed. To do so they first bin
the input bit-streams of activity, into streams of aggregate integer
counts. The core computation initiates only after a full time window
of relevant samples (equal to the template’s time dimension) has
been received, impacting memory storage needs and traffic and
worse response times. Many of these are floating-point computa-
tions. As Subsection 5.4 corroborates, even desktop-class GPUs fail
to meet real-time latency for more demanding applications.

As our main contribution, Section 3 presents Noema, a hard-
ware accelerator that greatly reduces area and energy costs com-
pared to PCCBASE while maintaining real-time performance. Noema
reduces costs and up-time for the configurations that are practical
with PCCBASE, and supports even more demanding configurations
and thus can enable further advances in neuroscience. At the core
of Noema is a decomposition of the template matching algorithm
where the bulk of the computations are performed using simple,
low-cost, specialized bit-level operations. More importantly, in stark
contrast with existing implementations, Noema performs its bulk
of the computations as it receives samples bit-by-bit, producing
the final output only a few cycles after the last bit in the relevant
window is seen. Besides reducing latency, Noema’s approach avoids
having to temporarily store the incoming stream, saving memory
storage and traffic. To further reduce memory storage and traffic,
we observe that templates naturally exhibit a geometric-like distri-
bution in their value content which is heavily biased towards very
low magnitude values. We equip Noema with a hardware-efficient
decoder to greatly reduce template storage and traffic with little en-
ergy and area cost. For the most demanding configuration, Noema
needs 34MB of on-chip storage. The simplicity and tiny area cost
of the processing units of Noema enables tuning the operating fre-
quency to improve power efficiency via partitioning and replication

Noema: Hardware-Efficient Template Matching for Neural Population Pattern Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

at a minimal area overhead (see Subsection 3.6). We study Noema
and PCCBASE as custom hardware implementations performing
synthesis and layout and also summarize the characteristics of an
FPGA implementation of Noema. We use our template compression
for all designs. We also study the performance of our decomposed
template matching implementation over commodity hardware: an
embedded class general purpose processor (CPU), and a desktop
class graphics processor (GPU).

This work contributes a computer-architect-targeted introduc-
tion to a typical neuroprobe processing pipeline with the emphasis
being on a critical component, pattern matching, along with use
cases representative of a range of applications. This introduction
includes a detailed description of a popular template matching im-
plementation and a discussion of the challenges faced by implemen-
tations over a variety of commodity platforms. These summaries
motivate Noema a hardware-friendly reformulation of template
matching.

We highlight the following takeaways and innovations:
• As presented and currently implemented, Pearson’s Correlation
requires storing the templates and a correspondingly large win-
dow of the input incoming stream in binned form. These matrices
are costly, e.g., 1.24Gb each.
• The computation needs also grow and reach 1.6TOPs (mostly
floating-point) for the largest configuration studied.
• Computation latency and throughput are the primary challenges
as the computation has to finish within strict constraints (5 msec
per window).
• Noema reformulates the computation so that the input streams
are consumed as they are received bit-by-bit, obviating the need
for buffering the input. This: 1) greatly reduces memory needs,
and 2) allows Noema to meet real-time response times as it leaves
very little computation to be done after a window’s worth of
input is received (throughput is now the key constraint).
• Noema’s formulation enables the use of tiny bit-serial units for
the bulk of the computation. Noema replicates and places these
units near the template memory banks (near memory compute).
This enables high data parallel processing and scaling at low cost.
• Noema uses a hierarchical, tree-like arrangement of the compute
units where floating point and expensive operations are needed
sparingly.
• Noema exploits the sparsity of the template content via per bank,
light-weight, hardware friendly decompression units. Templates
are compressed in advance in software.
• Noema can greatly reduce power by gating accesses to the tem-
plate memory, as the input bit stream is sparse and the inputs
are processed a single bit at a time.

We highlight the following experimental findings:
(1) Noema can meet the real-time requirements: Depending on

the configuration it requires 683mw to 1.2W and occupies
respectively 0.11mm2 to 205mm2 in a 65nm process node.

(2) Noema’s template compression reduces template memory
size by at least 2.79× (most demanding conf.).

(3) An FPGA implementation meets real time requirement only
for some of the configurations studied.

(4) An embedded class CPU fails real-time constraints for all
configurations while a desktop class GPU fails for the most
demanding ones.

2 BACKGROUND AND PRELIMINARIES
Fig. 1 shows a high-level neural processing system for pattern de-
tection. Using neuroprobes, electrophysiological spikes of a living
brain tissue are continuously sampled and processed initially as
analog signals. This spike detection and sorting stage produces a
time-ordered digital stream of binary indicators (0 or 1). There is
one indicator qn[t] per neuron n and per time step t. The typical
sampling rate of neural spikes is 30KHz [26, 30, 56] resulting in
a 30,000 bits/sec stream per neuron. Today, applications use neu-
roprobes capable of capturing the activity of several hundreds of
neurons [36, 72]. However, the technology is rapidly evolving and
neuroprobes capturing thousands and eventually millions of neuron
are within sight [40, 52].

Spike

Detection

and

Sorting

Neuroprobes
(electrodes)

Neural
Interface

Feedback to silence

@ 30KHz

Offline template collection

T
em

p
la

te
 i

T
em

p
la

te
 1

T
em

p
la

te
 2

This work

Figure 1: Abstraction of template matching applications.

Pattern detection relies on the observation that certain events of
interest such as memories, decisions, or perceptions, manifest as
patterns in the neuron stream [35, 58]. Informally, as Fig. 1 depicts,
in these applications, patterns of interest have been pre-recorded
and are continuously compared against the incoming indicator
stream. Naturally, this pattern matching process is not precise and
has to rely on some stochastic proximity metric. This work targets
applications where pattern matching occurs in real time. Relevant
applications include memory detection in real time for prosthetic
control. a pattern detection latency of 50ms is desirable [18]. This
is defined as the time needed to detect the pattern once receiving
the very last indicator. We will use the term latency to refer to the
pattern detection latency.

2.1 Template Matching
Informally, as Fig. 1 shows, template matching involves sliding the
incoming neuronal activity stream over a spatiotemporal template
of activity indicators — a matrix corresponding to pre-recorded
neural activity where rows correspond to neurons and columns to
indicators over a period of time — to determine when there is a
sufficient correlation. For clarity, lets assume that there is only one
template. The process proceeds in parallel for multiple patterns.

Formally, the templatematching unit accepts as input: i)N digital
streams of spike indicators qn [t] : n ∈ {1 . . .N }, each being a single
bit denoting if a spike from neuron n occurred at time t , and ii) a
template matrix D ∈ BN×M of N rows andM columns containing
pre-recorded binary indicators over a time periodM . The typical
sampling rate for input indicators is 30KHz [26, 30, 56]. However,

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Ameer M. S. Abdelhadi, Eugene Sha, Ciaran Bannon, Hendrik Steenland, and Andreas Moshovos

the spiking rate of neurons is typically between 1Hz and 20Hz
with a 1KHz maximum [45]. Using a much higher sampling rate of
30KHz provides precise temporal resolution for when spikes occur.
As the indicator stream is noisy, every B indicators per neuron in the
incoming stream and the template are “binned”, that is aggregated
into a fixed point value of BEff ≪ B bits (defined in Subsection 3.4).
Binning occurs at runtime for the incoming stream, and off-line for
the template D. B is chosen empirically to best match the resolution
needed. The lower the B the higher the resolution of the observable
spatiotemporal relationships, but also the noisier they become. The
matching unit performs correlation once it receivesM indicators.
The correlation process is repeated in a sliding window fashion
over the input stream, and every time another complete bin of B
indicators per neuron is received. Fig. 2 is an example of binning
the incoming stream.

M=20 (bits)

11110

N
=

6
(n

eu
ro

ns
)

00001
10111
11000
00000
11001

11111
11001
01001
11001
00011
00010

00011
11111
00000
01011
00111
01110

00100
10001
11011
10111
01001
00101

B=5

N
=

6
(n

eu
ro

ns
)

t

00110
01010
11010
00001
10111
00000

M=20 (bits)

4 5 2 1
1 3 5 2
4 2 0 4
2 3 3 4
0 2 3 2
3 1 3 2

2
2
3
1
4
0

M=4 (bins)

B
in

ni
ng

 w
it

h
B

=
5

t

Slides B=5 bits Slides one bin

M=4 (bins)

Figure 2: A toy example of the binning operation over a
sliding-window on incoming indicator streams. The N × M
window slides by B = 5 bits every timestep. Two windows
are outlined in black and red.

Template matching uses the Pearson’s Correlation Coefficient
(PCC) which is a general measure of similarity between two samples
X , and Y of size L defined as:

r (X ,Y) =

L∑
i=1
(xi − x)(yi − y)√

L∑
i=1
(xi − x)2

√
L∑
i=1
(yi − y)2

, (1)

where x is the arithmetic mean of the sample x = 1
L

∑L
i=1 xi .

In template matching we perform the above correlation element-
wise between two binned indicator matrices: the pattern matrix D
and of an equally sized windowW of the incoming indicator stream
matrixQ . D andW are derived from N ×M ×B indicators, and after
binning contain N × M̂ elements each of lд(BEff) bits. The compu-
tational and memory needs of PCC vary greatly depending on the
following four parameters: N the number of neurons, the event
durationM , the resolution at which activity is to be aggregated or
bin size B, and finally the number of templates T .

2.2 Multiplexing of the Indicator Streams
While thus far we assumed (for clarity) that there are N separate
incoming streams, one per neuron, the costly analog front-end
unit that generates the indicators is typically shared over multiple,
if not all neurons [1, 47, 82]. As a result the analog front-end’s
output naturally time-multiplexes the indicators of several neurons

over the same digital output serial link as Fig. 3 shows. Given
the relatively low acquisition rate of 30KHz per neuron a single
digital serial link can easily communicate the indicators of 10s of
thousands of neurons. Without loss of generality, from this point
on we assume that all N neurons are serialized into a single batch
of N binary indicators all corresponding to the same time step. B
of those batches are read to form a complete bin, thus NB serial
indicators are read as a complete bin. Similarly, M̂ bins are read to
form a complete sliding window, thus NM̂B serial indicators are
read as a complete sliding window.

 t

NN
NB

NN
NB

NM=NBM

w:

Neurons

Bins

Sliding Window

^

Figure 3: The indicators from multiple neurons are time-
multiplexed over a single serial link.

2.3 Implementation Challenges
Table 1 identifies four configurations that are representative of cur-
rent and future applications as per the following best-practices
in neuroscience: In accordance with previous neuroscience re-
search demands and configurations, bin sizes range from 5 to
250msec [23, 46, 62, 74, 81] while window values range from 1 to
9sec [74]. The maximum number of neurons recorded with electro-
physiology is around 3000 [72], while the number of templates may
vary (and can be increased) as the use-cases demand. Accordingly,
for the purpose of stress-testing, our configurations (CFG1−4) en-
compass the extreme values currently used in neuroscience (CFG1)
while anticipating an increase in the number of neurons simulta-
neously recorded as technology evolves (CFG4). For applications
that involve detecting memories (e.g., traumatic events), templates
of 5 to 9 seconds (M) binned over 5 to 250 msec (B) are of interest
(recall, the acquisition rate is 30KHz).

Table 1: Representative Hyperparameter Configurations
and resulting GOPS/Template and Memory Footprints.

N T M M̂ B Requirements

N
eu
ro
ns

Te
m
pl
at
es

Sa
m
pl
es

se
c.

Bi
ns

Sa
m
pl
es

m
se
c.

G
O
PS

/
Te
m
pl
at
e

M
em

or
y

(M
b)

CFG1 1K 1 150k 5 20 7500 250 0.6 0.3
CFG2 10K 2 150k 5 1000 150 5 314.0 114.4
CFG3 20K 3 270k 9 36 7500 250 21.6 33.0
CFG4 30K 4 270k 9 1800 150 5 1696.6 1236.0

The table also reports: a) the number of arithmetic operations
needed over a single template and one window of the input, and
b) the on-chip memory needed. The sheer volume of data and
number of computations can be daunting especially for untethered

Noema: Hardware-Efficient Template Matching for Neural Population Pattern Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

applications. In real-time applications, another major challenge
emerges: the bulk of the computations can be performed only after
the last indicator has been received, exacerbating computation and
memory needs. The hardware has to be capable of performing
the computations within stringent latency constraints, and also
has to buffer a window sized sample of the binned input streams
which further increases memory demands. Another undesirable
feature of PCC is that the bulk of the computations have to use
floating point arithmetic. Coupled with the latency constraints
this necessitates numerous, expensive execution units. Section 5
presents an optimized vector-unit-based that implements Pearson’s
Correlation Coefficient as originally proposed and currently used.

3 NOEMA
This section presents Noema which overcomes the challenges of
exiting PCC implementations. Central to Noema is a novel decom-
position of the PCC into simple bit-level operations which Sub-
section 3.1 presents. Subsection 3.2 and Subsection 3.3 detail the
hardware implementation. Subsection 3.4 discusses the on-chip
memory required motivating the hardware efficient template en-
coding method presented in Subsection 3.5. Finally, Subsection 3.6
explains scaling in the number of neurons and templates.

3.1 Reformulating Pearson’s Correlation
Recall that the PCC between two samples X and Y of length L is
defined in Equation (1). Substituting the arithmetic means, squaring
and rearranging the PCC equation yields:

r (X , Y)2 =

(
L

L∑
i=1

xiyi −
L∑
i=1

xi
L∑
i=1

yi

)2
(
L

L∑
i=1

x 2
i −

(
L∑
i=1

xi

)2) (
L

L∑
i=1

y2
i −

(
L∑
i=1

yi

)2) (2)

Let D (template) andW [t] (input indicator stream window start-
ing at time t) be respectively two matrices of indicators. Our goal
is to calculate the PCC of the binned D̂ and Ŵ [t]. Recall that before
binning D andW contain N × M̂ × B indicators, whereas D̂ and
Ŵ [t] contain N × M̂ binned values where M̂ = M/B, B the number
of indicators per bin, N the total number of neurons, andM the per
neuron sample count in indicators of the template. Let dn,c,b and
d̂n, ĉ be respectively the indicators and the corresponding binned
indicators of the template D and where n a neuron, c and ĉ respec-
tively columns of the pre-binned D and the binned D̂, and b the 3rd
dimension index of the indicator matrix D that are binned together
to produce the binned values of D̂. Similarly, wn,c,b [t] (�wn, ĉ [t])
refer to the corresponding elements for the current windowW [t]

(Ŵ [t]) matrix captured from the incoming stream.
We observe that the squared Pearson’s Correlation Coefficient

can be split into constants and summations:

r [t]2 =
(C1S1[t] −C2S2[t])

2

C3
(
C1S3[t] − S2[t]2

) , (3)

where the constants are — recall, all d̂x,y are statically-known
binned template values:

C1 = M̂N , C2 =
M̂∑
m̂=1

N∑
n=1

�dn,m̂, C3 = C1

M̂∑
m̂=1

N∑
n=1

�dn,m̂ 2
−C2

2, (4)

and the summations are:

S1[t] =
M̂∑

m̂=1

N∑
n=1

�wn,m̂ [t]
�dn,m̂ (element-wise multiply-sum)

S2[t] =
M̂∑

m̂=1

N∑
n=1

�wn,m̂ [t] (accumulation)

S3[t] =
M̂∑

m̂=1

N∑
n=1

�wn,m̂ [t]
2 (sum of squares).

(5)

The constants, hereafter referred to as Pearson’s constants, are
terms involving templates only (independent of the sliding indi-
cator matrix Ŵ [t]) and can be computed offline. The summations,
hereafter referred to as Pearson’s summations, are terms dependent
on Ŵ [t] and can only be calculated at runtime, once a complete bin
is received. We next detail our efficient computation of Pearson’s
summations based on bit-serial binary indicator arithmetic.

3.2 Implementing the Pearson’s Sums
Summation S2 is the sum of all binned values in the incoming
window. Since each binned value is itself a count of indicators, S2
is simply the count of all NM indicators in the window. While this
count changes as the window slides, we avoid storing the whole
window. As described in Algorithm 1, we store the population count
per column (bin) of the sliding matrix Ŵ [t] into memory R2 (line 6).
Once we complete the accumulation of a new column P2 that enters
to the sliding window (line 5), we add this column sum to the final
S2 sum and subtract the column that exits the sliding window and
was computed M̂ columns in the past (line 7).

Algorithm 1: S2 Summation Process.
// all variables are initially zero

1 while TRUE do
2 for m̂ = 1 to M̂ do
3 for b = 1 to B do
4 for n = 1 to N do

// timestep: (m̂ − 1)BN + (b − 1)N + n
// if w indicates a spike

// Increment column sum

5 P2 ← P2 +w ;

// store current column sum to R2 RAM

6 R2[m̂p] ← P2 ;
// add newestColumn-oldestColumn to S2

7 S2 ← S2 + P2 − R2[m̂];
8 Send a copy of current S2 to next stage;
9 P2 ← w ; // clear column sum

10 m̂p ← m̂ ; // store previous m̂

Fig. 4 (c) shows the hardware implementation of S2 PE. First,
we accumulate the input indicators (received serially at w) into
the S2 column sum register (P2). The control signal sEnb indicates
when a column sum is ready. This happens every NM̂ cycles. Once
we finish accumulating a column (bin) of indicators, we move the
sum P2 to the column sum memory R2 and reset P2 to prepare it
for the next column accumulation. The final stage of processing S2
is the bit-serial add-sub-accumulate. This block receives the new
column sum (to be added) from the column sum register P2, and
the oldest column sum (to be subtracted) from the column sum

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Ameer M. S. Abdelhadi, Eugene Sha, Ciaran Bannon, Hendrik Steenland, and Andreas Moshovos

memory R2[m̂]. Both of these sums are serialized using a Parallel-
Input-Serial-Output (PISO) unit, and the difference of those sums
is accumulated (serially) to the final S2 value.

Summation S3, as shown in Equation (5)requires accumulating
the squares of the binned input. One approach is to accumulate
the binned indicators and then square the accumulated value for
each bin. This is expensive as it has to accumulate values ahead of
processing, and a cost-prohibitive squarer circuit for each bin of a
total of N bins. Instead, we break the squares into partial sums that
will be generated and accumulated as new values are received by
utilizing the popular sum of first odd natural numbers equation:

a2 =
a∑
i=1
(2i − 1). (6)

Substituting in Equation (5) yields:

S3[t] =
M̂∑

m̂=1

N∑
n=1

�wn,m̂ [t]
2 =

M̂∑
m̂=1

N∑
n=1

a∑
i=1
(2i − 1) (7)

Where the upper bound for a is �wn,m̂ [t], the corresponding
binned value. This summation happens on-the-fly, incrementing a
every time a 1 is received. Accordingly, we do not need to know the
upper bound in advance. We “discover” it naturally as the stream is
received.

For efficient implementation, the summations should be orga-
nized to match the order in which the indicators are received as
shown in Fig. 3: m̂ in the outer summation, b in the middle sum-
mation, and n in the inner summation, namely

∑Ŵ
ŵ=1

∑B
b=1

∑N
n=1.

For this purpose, we need to keep the running indexes i for each
element of the current column. This can be solved by storing inter-
mediate copies of the variable i one per neuron n, as described in
Algorithm 2.

Algorithm 2 is very similar to Algorithm 1, however, we store a
copy of the current index i of neuron n into the memory location
in . in is incremented if the spike indicatorw is active, and will be
cleared for everyn on the first bit of each the bin (line 5). The column
sum P3 will be incremented by 2in − 1 if the incoming indicator
w is active. This will generate the sum of squares as dictated by
Equation (6).

As illustrated in Fig. 4 (b), we accumulate the incoming indicators
into an indices memory for each neuron of the N neurons separately,
say in for neuron n ∈ {1, · · · ,N }. Afterwards we compute 2in − 1,
and accumulate it to the column sum register P3. The computation
of 2ni−1 is performed for each neuron separately. The control signal
iRst is activated every B cycles for a period of N cycle to clear the
previous content of the memory. Note that we start accumulating
the fragments of the squares before having the complete square
value. The rest of S3 PE is similar to S2 PE.

Summation S1, as shown in Equation (5), is different than the
previous two sums as it involves the template. S1 is an element-wise
multiply-sum of elements from the binned template and elements
from the sliding spikes matrix. The major challenge of element-wise
multiply-sum that it requires recomputing all matrix elements for
each incoming bin (a column in the matrices). Unlike S2 and S3 we
cannot perform this summation by adding the difference between
the first and the last column. However, our approach simplifies this
compute-intensive operation and does not require any multiplier.

Algorithm 2: S3 Summation Process.
// all variables are initially zero

1 while TRUE do
2 for m̂ = 1 to M̂ do
3 for b = 1 to B do
4 for n = 1 to N do

// timestep: (m̂ − 1)BN + (b − 1)N + n
// if first bit in bin clear sum index,

otherwise increment

5 in ← w+
{
0 if b = 1,
in otherwise;

// if w indicates a spike

// increment sum index

6 P3 ← P3 +w (2in − 1);

// store current column sum to R3 RAM

7 R3[m̂p] ← P3 ;
// add newestColumn-oldestColumn to S3

8 S3 ← S3 + P3 − R3[m̂];
9 Send a copy of current S3 to next stage;

10 P3 ← w ; // clear column sum

11 m̂p ← m̂ ; // store previous m̂

We instead use an accumulator for each of the matrix columns by
substituting the binned form of the input spikes sliding matrix Ẑ
from Equation (5) with the serialized input w . S1 will thereby be
computed by:

S1[t] =
M̂∑

m̂=1

N∑
n=1

B∑
b=1

{�dn,m̂ ifwn,m̂,b [t] = 1
0 otherwise

(8)

For each of the N neurons, the binned value of the template is
accumulated if the input spike indicatorw is active. For instance, if
the incoming spike indicators stream is “...0100101” and the current
bin value is x , the value of x will be accumulated three times. The
accumulators are connected in series to implement the sliding win-
dow. Once a complete bin (column) is computed (i.e., control signal
sEnb is asserted), its accumulated value is moved and accumulated
in the neighboring accumulator. After M̂ successive bin accumu-
lations, all M̂ bins (columns) will be accumulated in the leftmost
register. Finally, the accumulated S1 is serialized.

3.3 Post-Processing
To find the Pearson’s Correlation Coefficient value, we substitute
the Pearson’s sums together with the pre-computed Pearson’s con-
stants into Equation (3). This computation requires (1) a constant
multiplier, (2) a subtractor, (3) a squarer, and (4) a fractional di-
vider. To reduce the overhead of the post-processing hardware, it
has been implemented using traditional bit-serial arithmetic. Fig. 5
illustrates a family of bit-serial arithmetic circuits that were modi-
fied to fit our needs. Our implementation exhibits a unit latency,
namely, the first output bit is generated at the same cycle that the
first valid bit has been received. Simply, the first valid bit propa-
gates through a combinatorial logic to generate the first valid bit. A
single register is added between each cascaded unit to break long
combinatorial paths that may be created. The constant multiplier
and squarer are modified versions of Gnanasekaran’s carry-save
add-shift semi-systolic multiplier [27]. While the aforementioned
bit-serial arithmetic circuits require a control signal to indicate the
last bit of bit-serial value, our modifications are only required to

Noema: Hardware-Efficient Template Matching for Neural Population Pattern Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

(b) Serialized S3 PE:

Template RAM (gated)

+

w

sE
nb

sE
nb

y1,1

yN,1

y2,1

y1,2

yN,2

y2,2

y1,M

yN,M

y2,M

+

sE
nb

+

sE
nb

(d) Serialized S1 PE:

P a r t i a l S u m s

(a) Control logic:

w

P
2

+R
2

,1

R
2,M

R
2

,2

̶ so+so

S
2

iRst
i1iN i2P

3

+

w +

R
3

,1

R
3,M

R
3

,2

̶ so+so

S
3 in

2in-1 compute

in -1

n

+

‘1
’

b

+
+

b
=

0
iR

st

Figure 4: OURL’s core compute units. (a) control logic. (b) Sum of sample squares S3. (c) Sample sum S2. (d) Element-wise
sample-template multiply-sum S1.

indicate the first bit of the bit-serial value at the beginning of the
computation. This further simplifies the design. An ultra low-area
fractional divider has also been implemented.

c[0]

bit-serial multiplicand
sm

sp

FA
r

1

0
e r

bit-serial multiplicand
sm

s

c

start

ss

seria l
square
s = m

2

FA
s

c

c[1]

FA
s

c

c[W-1]

FA
s

c

“0”

FA
r

1

0
e r

s

c
FA

r

1

0
e r

s

c

“0”

FA

s

cstart
sb
sa so

o
=

a
-b

se
ri

a
l

in
p
u

ts

FA

s

cstart
sb
sa so

o
=

a
+

bse
ri

a
l

in
p
u
ts

(a)

(b)

(c)

(d)

Figure 5: Bit-level arithmetic units: (a): Adder. (b): Subtractor.
(c) Constant multiplier. (d): Squarer.

Fig. 6 (b) shows the implementation of the post-processing cir-
cuitry. The post-processing unit receives bit-serial Pearson’s sums,
and bit-parallel Pearson’s constants. Our bit-serial arithmetic units
are cascaded to compute the squared PCC as formulated in Equa-
tion (3). To increase the maximum possible Fmax, we pipeline the
computation together with the start signals that synchronize the
computation start time for each unit. The computation performance
and latency are dominated by the fractional divider, thus the post-
processing units can process one set of inputs everyWP cycles,
whereW is the data width and P is the precision of the output.

w

S
1
 P

E

C
o
n

tr
o

l

S
2
 P

E
S

3
 P

E

P
C

C
2

P
o
st

 P
ro

c
es

s
in

g

×

c1

sm sp
start

×

c2

sm sp
start

×

c1

sm sp
start

×
 sm ss

start

̶ so
start

×
 sm ss

start

×

c3

sm sp
start

s2

s1

s3

start

PCC2

bit-serial

bit-serial

bit-serial

r
start

ready
/

̶ so
start

Post Processing(a) (b)

Top-level

Figure 6: Templatematching system: (a) Top-level hierarchy.
(b): Post-processing unit.

The post-processing unit has two major inputs, the Pearson’s
sums and the Pearson’s constant. The Pearson’s sums are generated
serially by S1 PE, S2 PE, and S3 PE. As depicted in Fig. 6, the post-
processing unit receives those sums as bit-serial inputs, together
with a control signal to start the processing. On the other hand,
Pearson’s constants are generated offline and are loaded to the
post-processing unit.

3.4 On-Chip Memory Costs
Table 2 shows the cost in bits of the various storage elements given
a configuration. Beff is the expected maximum count for the bin
values. This maximum is a function of the intrinsic firing rate of the
brain and of the sampling rate used by the analog front-end. It is
known that the neurons fire at a maximum rate of 1KHz, whereas
a commonly used sampling rate for neuroprobes is 30KHz (e.g.
Intan technologies data acquisition system). The higher sampling
rate permits a resolution that is necessary for identifying when
spikes occurs. Accordingly, the expected maximum value for a
binned value will not exceed B/30, where B is the total number of
samples binned per value. A real example, confirmed using indicator
traces from mice [71], demonstrated that for B = 150 the maximum
expected value Beff = 5. As Subsection 5.1 will show, most of
Noema’s area is consumed by the template memory. Accordingly,
we consider space efficient encoding of the template matrix next.

Table 2: Storage usage in bits.

Sub-module Resource Width Depth

S1 PE
Registers (P1 , PISO) M̂ log2(N M̂B2

eff) 1
Template RAM M̂ log2(Beff) N

S2 PE
Registers (P2 , PISO, SR) log2(N 4M̂B4

eff) 1
Column RAM (R2) log2(NBeff) M̂

S3 PE
Registers (P3 , PISO, SR) log2(N 4M̂B8

eff) 1
Column RAM (R3) log2(NB2

eff) M̂
Indices RAM (i) log2(Beff) N

Post-Processing Registers 80 log2(N M̂Beff) 1

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Ameer M. S. Abdelhadi, Eugene Sha, Ciaran Bannon, Hendrik Steenland, and Andreas Moshovos

3.5 Template Memory Compression
As Table 3 shows, the template memory size can reach hundreds
of Mbits. While feasible, such memory sizes are undesirable for
untethered applications. Using off-chip memory is also undesir-
able due to its energy and latency costs compared to using on-chip
SRAM. Therefore, we explore the alternative of compressing tem-
plate values on-chip.

We find that templates collected from thousands of neurons in
mice [71] exhibit a geometric distribution of values, where low
magnitude values dominate.Accordingly for the case of B = 150
(max binned value BEff = 5) we encode the values 0, through 5
respectively as 0b, 10b, 110b, 1110b, 11110b and 11111b. However,
for larger values of B unary decoding requires large one-hot to
binary decoders. Inspired by Golomb[28] and Rice[63] codes, we
mix unary and binary codes to implement a simple-to-decode vari-
able length encoding scheme referred to as UBu,b coding. A UBu,b
code represents a UB code with unary variable-length codes of
maximum u-bits length, and a binary fixed-length code of b-bits
length. For example, for B = 7500 (max binned value BEff = 250) we
use a UB4,8 encoding. That is, values up to 3 are encoded in unary,
whereas larger values are encoded with a prefix of 1111b followed
by the actual value v . This encoding uses 12b in total for all values
above 3. There are many other possible encoding methods that
are worthwhile exploring. However, they would need to carefully
balance the area, complexity, energy, and compression ratio. This
is left for future work.

Fig. 7a illustrates our implementation for an example UB4,5 for
clarity. To allow a single code decoding per cycle, we arrange the
compression data in lines of u + b = 4 + 5 bits width. We read a
single line every cycle and store the previously read line to allow
processing the remaining bits from the previous line. The previous
line and the current line are packed as a double-width line. The
core of the decompression engine is a barrel shifter that allows
reading the data from a specific starting position. After shifting
the data, we know that the first u + b bits are the current code.
The first u-bits are the unary part and are processed using a u-bits
priority encoder to receive the index of leading zero. If all u-bits
are 1’s, the current code is binary; we read the next b-bits from the
binary code portion then add u to generate the decompressed data.
Otherwise, the current code is unary; the output of the priority
encoder (index of leading zero) is actually the decompressed data.
The rest of the circuity computes the starting index of the next code
and the generates the enable signal that enables reading the next
line from the memory once the remainder of the combined current
and previous lines is less than u + b bits. We use one decompressor
unit per template memory column.

3.6 Scaling
Templates: Fig. 7b shows how it can scale to support multiple
templates. Fortunately, sums S2 and S3 are functions of the input
stream solely. Accordingly, we need to replicate only the S1 and the
post processing units.
Neurons: The first parameter available to scale up the number of
neurons that Noema can process is its operating frequency. Since
the units perform their computation at the same rate as the data is
received, the frequency needs to beN×KHz for the design as shown
to process N . To surpass the limitations of the frequency. we can

scale to even more neurons by partitioning the input stream cou-
pled with replication of the compute components as Fig. 7c shows.
The example shows scaling up to 4× more neurons by partitioning
the input stream into four sub-streams, where each sub-stream is
assigned its own set of sum units. The post processing unit is scaled
up accordingly. The costs would be linear for the replicated sum
units, whereas they are logarithmic for the post-processing unit.
Fortunately, we can also simply partition the template memory, as
with the input neurons. The overall area of the template memory
will be mostly unaffected by the required partitioning. As the eval-
uation section shows, the relative cost of the processing logic in
Noema is negligible compared to the template memory.
Tuning Frequency and Power:We can further reduce frequency
and improve power efficiency by purposely partitioning the input
stream while using more processing units. The low area needed by
the compute portion of the design makes this an effective approach.
Of course, care must be taken to ensure that latency remains within
real-time limits. Fortunately, for the most demanding configuration
we studied, the latency for producing the correlation output per
window is only 700 cycles where even at a reduced clock frequency
of 140KHz, Noema would still meet the 5ms requirement. Finally,
by delaying the incoming streamw in Fig. 4 by one cycle, Noema
avoids accessing the template memory when the indicator is 0. This
improves energy consumption by nearly 7X for themost demanding
configuration studied as the indicator stream is sparse.

4 RELATEDWORK
There has been no prior work on hardware accelerated PCC for
processing neuronal signals for pattern matching in real time. Small
scale prototype implementations of PCC routinely use commodity
platforms and are computed offline.The development and implemen-
tation of new algorithms for neural decoding has been continuously
expanding since 2002, when a monkey was able to move a com-
puter cursor, directed from neural signals alone [65]. While motor
prosthetics often use Kalman filters in real time, and combine them
with of PCC template matching to identity events corresponding to
motor memory. [21]. Accordingly, various algorithmic approaches
need to be tailored to particular brain regions and the type of brain
activity being detected.

In general, prior techniques for accelerating PCC can be classified
along two axes. The first is the type of platform used, (1) CPUs [67],
(2) GPUs [22, 38, 44], and (3) hardware-oriented techniques on FP-
GAs [61]. The second is the target application, where the only work
on PCC acceleration has been directed at offline analysis of con-
nectivity maps based on fMRI (blood flow) image data [61]. Thus
methods for acceleration of high-resolution (i.e. neuronal signal)
pattern matching remains to be investigated. Previous research on
template matching in populations of neurons with the Pearson’s
Correlation Coefficient [23, 46, 62, 74, 75, 79, 81] has been performed
with PCC and executed on commodity CPUs and GPUs operating
offline, with no explicit latency constraints or focus on accelera-
tion. Data parallelism within and across windows and batching
across multiple input traces are used to maximize throughput. For
real-time applications, and as Subsection 5.4 confirms, optimized
GPU implementations can meet latency constraints only for the
less demanding configurations necessitating energy and latency
optimized solutions such as Noema.

Noema: Hardware-Efficient Template Matching for Neural Population Pattern Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

P
ri

o
ri

ty
E

n
co

d
er

+ Decompressed
Data

u+b=9

+

Left Shifter

(a)

w

Control

ready1

P
os

t
P

ro
ce

ss
in

g

Template y

Template y

Template y

P
os

t
P

ro
ce

ss
in

g

P
os

t
P

ro
ce

ss
in

g

ready2

ready3

(b)

+

+
+

S1 PE

S1 PE

S1 PE

S1 PE

Control

Template RAM

+

+
+

+

+
+

S2 PE

S2 PE

S2 PE

S2 PE

S3 PE

S3 PE

S3 PE

S3 PE

w1

PCC2

P
o

st
 P

ro
ce

ss
in

g

w2

w3

w4

(c)

Figure 7: (a) Example UB4,5 decompression circuit. Scaling: (b) template count T , and (c) neurons N .

5 EVALUATION
Experimental Setup and Framework: We use actual neuron
indicator streams collected over 2400 seconds from 6446 neurons
of three mice, Waksman, Robbins, and Krebs [71]. For experiments
requiring inputs from more neurons, we augment these traces by
sampling per neuron activity from the existing trace while main-
taining the overall activity factor. We perform synthesis and layout
of all designs using Synopsys’ Design Compiler [73] with a TSMC
65nm technology library. We constrain the target frequency to be
only as high as necessary to meet the timing requirements of each
specific configuration. Layout placement and routing is performed
using Cadence Innovus [14], and we estimate the power consump-
tion in Innovus using the post-layout netlist with an activity factor
of Ff ,avд/Fs = 1/1500. This is the ratio between the average neu-
ron firing rate and the sampling rate, which represents the typical
neural activity factor as validated by the input datasets we use.
The area and power estimation of the on-chip SRAM blocks were
modeled in CACTI [31].
Optimized Baseline Implementation: Given the data paral-
lelism, and the specific computation and dataflow patterns of PCC,
we also consider PCCBASE as an alternate to Noema. PCCBASE com-
putes the Pearson’s Correlation Coefficient on binned values as
it was originally proposed and implemented in highly optimized
GPU implementations. PCCBASE utilizes a vector-unit-based archi-
tecture where the units have been carefully customized in count
and type to perform only the various computations PCC needs and
to localize communication. PCCBASE’s memory and datapath were
customized to scale to the more realistic configurations avoiding
centralized memory blocks, off-chip accesses and long data busses
for maximum energy efficiency. We also equip PCCBASE with the
same template compression method as Noema.

As Fig. 8 shows, a Binning unit converts the serialized inputw
into the corresponding bin values per neuron. After NB cycles, the
binning memory will include the value of the current bin for all N
neurons. As the last N indicators are received, the bin values are
finalized one per neuron per cycle. At that time, they are transferred
one by one to the corresponding column in the sliding matrix unit.
The sliding matrix unit contains NM̂ elements each of lд(Beff) bits.
Each NB cycles we choose the next column of sliding matrix and
write to the corresponding segment. This will implement a sliding
window of the binned spike indicators.

A set of vector processing elements (VPEs) perform the bulk of
the computations needed by the correlation. For this purpose we
split the correlation computation into components that can be per-
formed over binned columns of the input (intra-column operations),
and a final step that combines the per column operations to produce
the final output (cross-column). The intra-column operations are
computed by the VPEs. A Scalar processing element (SPE) performs
the cross-column computations. Rather than allocating a VPE per
template column, we split the sliding matrix column-wise into p
columns where p is tuned to achieve the required acceleration.

A template unit contains T templates which it matches against
the incoming stream. There are NM̂T elements in the template unit
each having lд(Beff) bits. For our evaluation we use the template
encoding method of Subsection 3.5 which is directly compatible
with this design also. Each column of the template matrix is thereby
NM̂T /p.

w

+

B i n n i n g
S

li
d

in
g

 M
a

tr
ix

T
e

m
p

la
t

e

p

V
e

c
to

r
E

n
g

in
e

Ac cumulate
& Combine

wb

wb wb wb

wb wb wb
p

+-, ,+-, ,*+-, , *+ /, , √ ,

bank selection

V
P

E
p

Scalar PE (SPE)

V
P

E
2

V
P

E
1

Figure 8: A bit-parallel pattern matching baseline model.
Control signals are omitted for clarity.wb = lд(BEff)

The VPEs and the SPE contain each 4x32b register files for stor-
ing their intermediate results reducing overall energy vs. using a
common register file across multiple lanes. The VPE register-files
are chained together to form a shift-register. This allows accumu-
lating column data and to move the data for processing by the
SPE. As a result, we have NB cycles to process the sliding matrix
and to generate the PCC before the next binned column arrives
and contaminates the sliding matrix content. The VPEs and the

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Ameer M. S. Abdelhadi, Eugene Sha, Ciaran Bannon, Hendrik Steenland, and Andreas Moshovos

SPE implement floating-point arithmetic, as all operations with the
incoming binned data as per Equation (1) entail an average. For the
most demanding configuration CFG4 single-precision is needed as
the individual sums in Equation (1) involve the accumulation and
multiplication of 30, 000 × 18, 000 8b inputs.

We configure the number of lanes p to the minimum required
to meet the 5msec latency requirement. Considering the latency in
cycles per stage, we arrive at the following constraint (derivation
ommitted due to space limitations):

5T (
2N M̂
p
+ p)/Fmax < min(

B
30000

, 0.005). (9)

An implementation using a TSMC 65nm process and Synopsys
optimized FP32 units achieves a maximum frequency of Fmax =
270MHz. Accordingly for the evaluation configurations CFG1· · ·4
from Table 1, the number of lanes used p is 1, 201, 22, and 2,263,
respectively.

The data range and hence datatype needs for accurate PCC cal-
culation depend on configuration and input data distribution which
in turns depend on the complexity of the spike-sorting front-end
chosen and the subject/application. Our experiments show that the
baseline architecture based on Equation (1) should use a single-
precision FP format to avoid loss of accuracy due to accumulator
saturation. Were baseline to implement the modified PCC equation
Equation (2), int32 or higher could be used since the arithmetic
means of the samples are not required. The scalar PE would need
to still be in FP32. Compared to using a single-precision FP format
to compute Equation (1), using int32 reduces the area of the vector
engine by 37% and its power 43%. Taking the most intensive config-
uration CFG4, for example, the int32 baseline would use 12× more
power, that is an order of magnitude more power than Noema for
two reasons (see Subsection 5.2): a) the power used by the Noema
PEs is 6.6× less, and b) the baseline’s template memory and buffers
dominate power consuming 15.5× more than that of Noema. In our
baseline architecture we use a floating-point format since unlike
integers, it won’t fail for higher problem dimensions avoiding the
introduction of additional complexity in applications.

5.1 On-Chip Memory
Templatememory dominates area for the higher-end configurations.
Recall, that without template compression, the capacity needed
is a function of M̂ , N , and BEff . As this section shows however,
compression can greatly reduce template footprints and thus the
on-chip memory needed. Accordingly, before we can evaluate the
ASIC and FPGA implementations, we first determine the size of the
on-chip Subsection 5.1 template memory each configuration would
need.

Table 3: Register and On-ChipMemory Configurations after
Template Compression.

Noema PCCBASE

S1 PE S2 PE S3 PE PP Template RAM

Re
g Tmpl

Re
g Col.

Re
g Col. Idx.

Re
g

Sl
id
in
g

RA
M Uncom- Comp-

RAM RAM RAM RAM pressed ressed
(Kb) (Mb) (b) (Kb) (b) (Kb) (Kb) (Kb) (Mb) (Mb) (Mb)

CFG1 0.6 0.08 77 0.35 108 0.51 7.81 1.7 0.15 0.15 0.08
CFG2 27.3 31.10 73 15.63 82 17.58 29.30 2.0 57.22 57.22 31.10
CFG3 1.3 5.89 95 0.81 127 1.09 156.25 2.2 16.48 16.48 5.89
CFG4 53.3 220.70 80 31.64 89 35.16 87.89 2.2 617.98 617.98 220.70

Table 4: Throughput and Latency of Noema and PCCBASE.

Throughput (PCC/sec) Detection Latency (msec)

CFG 1 2 3 4 1 2 3 4
PCCBASE 4 400 12 800 0.74 4.98 4.71 5.00
Noema 4 400 12 800 0.0239 0.0028 0.0015 0.001

Fig. 9 reports the memory footprint for the four configurations
of Table 1 and different templates with and without template com-
pression. All footprints are normalized to the footprint of the un-
compressed template per configuration. We show results for three
different templates per input sample trace; a worst case which is the
frame from the neuron recording with the least sparsity, and two
templates which are randomly selected windows. The worst case
template dictates the compression ratio used to size the on-chip
template memory.

Figure 9: Normalized template memory footprints.

As expected, uncompressed footprint templates vary consider-
ably, from 150Kb for CFG1 to more than 600Mb for CFG4. Our
lightweight lossless compression method is effective in reducing
footprints, and more so where it matters the most. That is forCFG2
(B = 150, M̂ = 1000) and CGF4 (B = 150, M̂ = 1800) configurations
where footprints are reduced by at least 2.79× for all templates.
We size our on-chip memories for the worst case across the three
templates per configuration. The resulting template memory sizes
are shown in Table 3. The table also reports the number of bits
used by the various registers per unit in Noema and the total on-
chip memory needed by PCCBASE. While PCCBASE can benefit from
template compression for its own template memory, it still needs a
window memory for the incoming indicator streams. As we show,
the ASIC implementation of Noema meets real-time requirements
for all configurations and, as expected, requires considerably less
power than the FPGA implementation.
5.2 Performance, Power, and Area
Table 4 shows the performance of Noema and PCCBASE in terms
of throughput (number of correlations computed per second) and
latency (time from arrival of last data bit to complete computation)
for the four configurations. All designs are configured to meet the
throughput and latency requirements. For CFG2 through CFG4 we
use three partitions, each processing 1/3 of the neurons as per Sub-
section 3.6. Noema far exceeds the real-time latency requirements,
as it requires just 700 cycles to produce its output once the last
indicator for a window is received.

Table 5 shows the power usage of Noema and PCCBASE for the
four configurations, including a breakdown in memory and com-
pute. Noema’s power is considerably lower than that of PCCBASE

Noema: Hardware-Efficient Template Matching for Neural Population Pattern Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 5: Power: Breakdown of power in mW consumed by
memory and compute in Noema and PCCBASE.

PCCBASE Noema

Memory Compute Total Memory Compute Total

CFG1 7.87 17.34 25.22 0.30 0.43 0.73
CFG2 1236.74 607.29 1844.03 89.78 84.28 174.06
CFG3 198.94 81.12 280.06 18.55 9.68 28.23
CFG4 10718.07 6550.65 17268.72 682.70 522.76 1205.46

Table 6: Silicon area inmm2 for Noema and PCCBASE.

PCCBASE Noema

Memory Compute Total Memory Compute Total

CFG1 0.38 0.15 0.53 0.10 0.02 0.11
CFG2 81.50 5.87 87.37 28.46 1.35 29.81
CFG3 15.60 0.77 16.37 6.26 0.09 6.25
CFG4 469.42 63.48 532.90 202.00 3.42 205.42

for all configurations for three reasons: 1) Noema does not need
a sliding window memory, 2) the compute units are much more
energy efficient, and 3) Noema can avoid accessing the template
memory when a bit indicator is 0 (most will be 0 due to the nature of
brain activity). PCCBASE can only exploit sparsity of binned values
instead. In PCCBASE compute units are responsible for a significant
fraction of overall power for all configurations, This is not the case
for Noema where memory dominates total power.

Table 6 reports the area inmm2 forNoema and PCCBASE as config-
ured to meet the real-time requirements of the four configurations.
The table also shows a breakdown in the area used for memory and
compute component. Noema is considerably smaller than PCCBASE.
Since that all designs use our template compression, the savings
with Noema are due to: 1) eliminating the sliding window memory,
and 2) from using much smaller bit-serial compute units. For the
CFG4 configuration, Noema is nearly 2.6× smaller than PCCBASE.
Using a more recent technology node would significantly reduce
overall area. SRAM cells in a 14nm process can be 6× to 8× smaller
compared to 65nm [11, 55, 64, 68].

5.3 FPGA Implementation
We implement Noema on a Stratix 10 FPGA
(1SG280LN2F43E1VG) [4] using Intel’s Quartus compiler [3]. To
minimize power, the target frequency is constrained to be only
as high as necessary to meet the performance requirements per
configuration. Table 7 reports the resulting power, the Fmax
achieved, and the minimum Fmax (Target) required to meet
the real-time requirements of each configuration. The achieved
latency passes real-time constraints for CFG1&2, but fails for
CFG3&4. Furthermore, since the dynamic power consumed is
highly correlated with the size of a template, CFG2&4 demonstrate
drastic increases.

Table 7: Noema implemented on a Stratix 10 FPGA.

Fmax (MHz) Power (mW)

Achieved Target Static Dynamic Total

CFG1 467.51 30 5850.08 54.04 5904.12
CFG2 318.47 300 5860.47 1016.38 6876.85
CFG3 324.78 600 5851.42 495.03 6346.45
CFG4 258.53 900 5889.82 12014.81 17904.63

Table 8: Pattern detection latency inms onCPU&GPU.Real-
time latency is 5ms. I/O time of transferring and binning the
bitstreams is excluded. * CFG did not fit on device.

Device CFG1 CFG2 CFG3 CFG4

PCC Decomposition of Sections 3.1- 3.2

RPi3B 613 1455 12240 112952
i5 7000 63 257 1260 8605
GTX1080 - Manual 0.28 26.67 5.36 274.1
Jetson Nano - Manual 4.4 77.2 * *

Original PCC Formulation

GTX1080 - Thrust 1.20 4.27 3.96 20.6
Jetson Nano - Thrust 2.26 196 * *
GTX1080 - Fast-GPU-PCC [22] 167.2 619.9 522.2 11395

5.4 Commodity Platforms: CPU and GPU
Software implementations of the PCC algorithm were implemented
on a Raspberry Pi 3 Model B [8], an 8th generation Intel i5 laptop
CPU [2] with 8 GB RAM, and NVIDIA’s Jetson Nano and GTX1080
GPUs [5, 7]. The CPU implementation uses a software pipeline to
perform the binning and PCC calculations as per Subsection 3.1.
Multiple configurations of data arrangements were tested with
compiler flags set to infer SIMD operations where possible, and the
best performing configuration was selected. Runtime and power
usage are measured using an in-application timer and external
power meter, respectively.

Multiple GPU implementations were evaluated on the Jetson
Nano and GTX1080. The first was a hand-tuned implementation
utilizing the same PCC decomposition and optimizations as in the
CPU implementation. This performed the best for small config-
urations (e.g., CFG1) reflective of current use cases. The second
implementation follows the original formulation of PCC. It utilizes
the Thrust (v1.8.3) library [12]. On the GTX1080, it outperforms
the hand-tuned version in larger configurations (CFG2−4) but still
fails to meet real-time expectations for CFG4. However, given the
GPU’s size and power consumption (10W/180W, respectively) [5, 6],
an embedded solution would still be impractical. The last solution
used the Fast-GPU-PCC algorithm [22] which converts PCC com-
putation into a matrix multiplication problem. The parameters are
emulated by substituting the number of voxels for neurons, and
the length of time for the number of bins. The algorithm performs
poorly even on the GTX1080, likely due to the differences in the
problem setup. For all GPU solutions, we optimistically exclude the
time needed to perform binning.

Table 8 summarizes the results. Both CPUs fail real-time latency
needs forCFG1−4, as does Fast-GPU-PCC. Raspberry Pi power was
consistently measured at 2.4W, varying by <0.1 W. Achieving real-
time latency of 5ms would require an improvement of 123× for
CFG1 and of 22, 590× for CFG4. The laptop CPU performs signifi-
cantly better, but still fails to meet latency requirements by a large
margin. The desktop GPU can meet real-time requirements for
CFG1−3, but ultimately fails for CFG4 by 4×. More recent GPUs
would improve latency, however: a) energy would remain prohibi-
tive, and b) PCCBASE is a highly optimized GPU-like design which
is more efficient for the particular application.

ACKNOWLEDGMENTS
This work was supported by an NSERC Discovery Grant and the
NSERC COHESA Strategic Research Network. The University of
Toronto maintains all rights to the technologies described.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Ameer M. S. Abdelhadi, Eugene Sha, Ciaran Bannon, Hendrik Steenland, and Andreas Moshovos

REFERENCES
[1] [n. d.]. Intan Technologies LLC, RHD2000 Series Digital Electrophysiology

Interface Chips. http://intantech.com/files/Intan_RHD2000_series_datasheet.pdfl.
Accessed: 2020-11-17.

[2] [n. d.]. Intel Intel®Core™i5-8265U Processor. https://ark.intel.com/content/
www/us/en/ark/products/149088/intel-core-i5-8265u-processor-6m-cache-up-
to-3-90-ghz.html. Accessed: 2020-6-18.

[3] [n. d.]. Intel Quartus Prime Overview. https://www.intel.ca/content/www/ca/
en/software/programmable/quartus-prime/overview.html. Accessed: 2020-4-17.

[4] [n. d.]. Intel Stratix 10 Product Table. https://www.intel.ca/content/dam/www/
programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf. Accessed:
2020-4-17.

[5] [n. d.]. NVIDIA GEFORCE GTX 1080. https://www.nvidia.com/en-sg/geforce/
products/10series/geforce-gtx-1080/. Accessed: 2020-4-16.

[6] [n. d.]. NVIDIA Jetson Linux Developer Guide (32.5 Release). https://docs.
nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%
20Development%20Guide/power_management_nano.html#wwpID0E0FL0HA.
Accessed: 2021-6-20.

[7] [n. d.]. NVIDIA Jetson Nano. https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-nano/education-projects/. Accessed: 2021-
6-20.

[8] [n. d.]. RaspberryPi.org Raspberry Pi 3 Model B. https://www.raspberrypi.org/
products/raspberry-pi-3-model-b/. Accessed: 2020-4-15.

[9] Dayo O. Adewole, Laura A. Struzyna, Justin C. Burrell, James P. Harris, Ash-
ley D. Nemes, Dmitriy Petrov, Reuben H. Kraft, H. Isaac Chen, Mijail D. Serruya,
John A. Wolf, and D. Kacy Cullen. 2021. Development of optically controlled
“living electrodes” with long-projecting axon tracts for a synaptic brain-machine
interface. Science Advances 7, 4 (2021). https://doi.org/10.1126/sciadv.aay5347
arXiv:https://advances.sciencemag.org/content/7/4/eaay5347.full.pdf

[10] Amos Arieli, Amiram Grinvald, and Hamutal Slovin. 2002. Dural substitute
for long-term imaging of cortical activity in behaving monkeys and its clinical
implications. Journal of Neuroscience Methods 114, 2 (2002), 119–133. https:
//doi.org/10.1016/S0165-0270(01)00507-6

[11] F. Arnaud, F. Boeuf, F. Salvetti, D. Lenoble, F. Wacquant, C. Regnier, P. Morin, N.
Emonet, E. Denis, J. C. Oberlin, D. Ceccarelli, P. Vannier, G. Imbert, A. Sicard, C.
Perrot, O. Belmont, I. Guilmeau, P. O. Sassoulas, S. Delmedico, R. Palla, F. Leverd,
A. Beverina, V. DeJonghe, M. Broekaart, L. Pain, J. Todeschini, M. Charpin, Y.
Laplanche, D. Neira, V. Vachellerie, B. Borot, T. Devoivre, N. Bicais, B. Hin-
schberger, R. Pantel, N. Revil, C. Parthasarathy, N. Planes, H. Brut, J. Farkas,
J. Uginet, P. Stolk, and M. Woo. 2003. A functional 0.69 /spl mu/m/sup 2/ em-
bedded 6T-SRAM bit cell for 65 nm CMOS platform. In 2003 Symposium on
VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407). 65–66.
https://doi.org/10.1109/VLSIT.2003.1221088

[12] Nathan Bell and Jared Hoberock. 2012. Thrust. 359–371. https://doi.org/10.1016/
B978-0-12-385963-1.00026-5

[13] Edgar J. BermudezContreras, Andrea Gomez Palacio Schjetnan, Arif Muhammad,
Peter Bartho, Bruce L. McNaughton, Bryan Kolb, Aaron J. Gruber, and Artur
Luczak. 2013. Formation and reverberation of sequential neural activity patterns
evoked by sensory stimulation are enhanced during cortical desynchronization.
Neuron (2013). https://doi.org/10.1016/j.neuron.2013.06.013

[14] Cadence. [n. d.]. Innovus Implementation System. https://www.cadence.com/
content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/
hierarchical-design-and-floorplanning/innovus-implementation-system.html.

[15] John K. Chapin, Karen A. Moxon, Ronald S. Markowitz, and Miguel A.L. Nicolelis.
1999. Real-time control of a robot arm using simultaneously recorded neurons in
the motor cortex. Nature Neuroscience (1999). https://doi.org/10.1038/10223

[16] Sen Cheng and Loren M. Frank. 2008. New Experiences Enhance Coordinated
Neural Activity in the Hippocampus. Neuron (2008). https://doi.org/10.1016/j.
neuron.2007.11.035

[17] Davide Ciliberti, Frédéric Michon, and Fabian Kloosterman. 2018. Real-time
classification of experience-related ensemble spiking patterns for closed-loop
applications. eLife (2018). https://doi.org/10.7554/eLife.36275

[18] Davide Ciliberti, Frédéric Michon, and Fabian Kloosterman. 2018. Real-time
classification of experience-related ensemble spiking patterns for closed-loop
applications. eLife (Oct 2018). https://doi.org/10.7554/eLife.36275

[19] Kelly Clancy, Aaron Koralek, Rui Costa, Daniel Feldman, and Jose Carmena. 2014.
Volitional modulation of optically recorded calcium signals during neuropros-
thetic learning. Nature neuroscience 17 (04 2014). https://doi.org/10.1038/nn.3712

[20] Kamran Diba and György Buzsáki. 2007. Forward and reverse hippocampal
place-cell sequences during ripples. Nature Neuroscience (2007). https://doi.org/
10.1038/nn1961

[21] Jean-Baptiste Eichenlaub, Beata Jarosiewicz, Jad Saab, Brian Franco, Jessica Kele-
men, Eric Halgren, Leigh R. Hochberg, and Sydney S. Cash. 2020. Replay of
Learned Neural Firing Sequences during Rest in Human Motor Cortex. Cell
Reports 31, 5 (2020), 107581. https://doi.org/10.1016/j.celrep.2020.107581

[22] Taban Eslami and Fahad Saeed. 2018. Fast-GPU-PCC: A GPU-Based Technique
to Compute Pairwise Pearson’s Correlation Coefficients for Time Series Data –

fMRI Study. High-Throughput 7, 2 (2018). https://doi.org/10.3390/ht7020011
[23] David R. Euston, Masami Tatsuno, and Bruce L. McNaughton. 2007. Fast-forward

playback of recent memory sequences in prefrontal cortex during sleep. Science
(2007). https://doi.org/10.1126/science.1148979

[24] David J. Foster and Matthew A. Wilson. 2006. Reverse replay of behavioural
sequences in hippocampal place cells during the awake state. Nature (2006).
https://doi.org/10.1038/nature04587

[25] Luigi Galvani. 1791. Aloysii Galvani De viribus electricitatis in motu musculari
commentarius. https://doi.org/10.5479/sil.324681.39088000932442

[26] Yasser Ghanbari, Panos Papamichalis, and Larry Spence. 2009. Robustness of
neural spike sorting to sampling rate and quantization bit depth. 2009 16th
International Conference on Digital Signal Processing (Jul 2009), 1–6. https://doi.
org/10.1109/ICDSP.2009.5201163

[27] R. Gnanasekaran. 1985. A Fast Serial-Parallel Binary Multiplier. IEEE Trans.
Comput. 34, 08 (aug 1985), 741–744. https://doi.org/10.1109/TC.1985.1676620

[28] S. Golomb. 1966. Run-length encodings (Corresp.). IEEE Transactions on Informa-
tion Theory 12, 3 (1966), 399–401. https://doi.org/10.1109/TIT.1966.1053907

[29] Igor Gridchyn, Philipp Schoenenberger, Joseph O’Neill, and Jozsef Csicsvari. 2020.
Assembly-Specific Disruption of Hippocampal Replay Leads to Selective Memory
Deficit. Neuron (2020). https://doi.org/10.1016/j.neuron.2020.01.021

[30] Reid R Harrison. 2008. The design of integrated circuits to observe brain activity.
Proc. IEEE 96, 7 (2008), 1203–1216.

[31] HewlettPackard. [n. d.]. CACTI. https://github.com/HewlettPackard/cacti.
[32] A. L. Hodgkin and A. F. Huxley. 1939. Action potentials recorded from inside a

nerve fibre [8]. Nature (1939). https://doi.org/10.1038/144710a0
[33] Sile Hu, Davide Ciliberti, Andres D. Grosmark, FrÃľdÃľric Michon, Daoyun Ji,

Hector Penagos, GyÃűrgy BuzsÃąki, Matthew A. Wilson, Fabian Kloosterman,
and Zhe Chen. 2018. Real-Time Readout of Large-Scale Unsorted Neural Ensemble
Place Codes. Cell Reports 25, 10 (2018), 2635 – 2642.e5. https://doi.org/10.1016/j.
celrep.2018.11.033

[34] David H. Hubel. 1957. Tungsten microelectrode for recording from single units.
Science (1957). https://doi.org/10.1126/science.125.3247.549

[35] Daoyun Ji and Matthew A. Wilson. 2007. Coordinated memory replay in the
visual cortex and hippocampus during sleep. Nature Neuroscience (2007). https:
//doi.org/10.1038/nn1825

[36] James J. Jun, Nicholas A. Steinmetz, Joshua H. Siegle, Daniel J. Denman, Marius
Bauza, Brian Barbarits, Albert K. Lee, Costas A. Anastassiou, Alexandru Andrei,
Çağatay Aydin, Mladen Barbic, Timothy J. Blanche, Vincent Bonin, JoÃčo Couto,
Barundeb Dutta, Sergey L. Gratiy, Diego A. Gutnisky, Michael HÃďusser, Bill
Karsh, Peter Ledochowitsch, Carolina Mora Lopez, Catalin Mitelut, Silke Musa,
Michael Okun, Marius Pachitariu, Jan Putzeys, P. Dylan Rich, Cyrille Rossant,
Wei Lung Sun, Karel Svoboda, Matteo Carandini, Kenneth D. Harris, Christof
Koch, John O’Keefe, and Timothy D. Harris. 2017. Fully integrated silicon probes
for high-density recording of neural activity. Nature 551, 7679 (2017), 232–236.
https://doi.org/10.1038/nature24636

[37] Mattias P. Karlsson and LorenM. Frank. 2009. Awake replay of remote experiences
in the hippocampus. Nature Neuroscience (2009). https://doi.org/10.1038/nn.2344

[38] E. Kijsipongse, S. U-ruekolan, C. Ngamphiw, and S. Tongsima. 2011. Efficient large
Pearson correlation matrix computing using hybrid MPI/CUDA. In 2011 Eighth
International Joint Conference on Computer Science and Software Engineering
(JCSSE). 237–241.

[39] Tony Hyun Kim, Yanping Zhang, JÃľrÃťme Lecoq, Juergen C. Jung, Jane Li,
Hongkui Zeng, Cristopher M. Niell, and Mark J. Schnitzer. 2016. Long-Term
Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex.
Cell Reports (2016). https://doi.org/10.1016/j.celrep.2016.12.004

[40] Tony Hyun Kim, Yanping Zhang, Jérôme Lecoq, Juergen C. Jung, Jane Li, Hongkui
Zeng, Cristopher M. Niell, and Mark J. Schnitzer. 2016. Long-Term Optical Access
to an Estimated One Million Neurons in the Live Mouse Cortex. Cell Rep. 17, 12
(Dec 2016), 3385–3394. https://doi.org/10.1016/j.celrep.2016.12.004

[41] Hemant S. Kudrimoti, Carol A. Barnes, and Bruce L. McNaughton. 1999. Reacti-
vation of hippocampal cell assemblies: Effects of behavioral state, experience, and
EEG dynamics. Journal of Neuroscience (1999). https://doi.org/10.1523/jneurosci.
19-10-04090.1999

[42] M A Lebedev, J M Carmena, and M A Nicolelis. 2003. Directional tuning of frontal
and parietal neurons during operation of brain - machine interface. Society for
Neuroscience Abstract Viewer and Itinerary Planner (2003).

[43] Albert K. Lee and Matthew A. Wilson. 2002. Memory of sequential experience
in the hippocampus during slow wave sleep. Neuron (2002). https://doi.org/10.
1016/S0896-6273(02)01096-6

[44] Meimei Liang, Futao Zhang, Gulei Jin, and Jun Zhu. 2015. FastGCN: A GPU
Accelerated Tool for Fast Gene Co-Expression Networks. PLOS ONE 10, 1 (01
2015), 1–11.

[45] Bengt Ljungquist, Per Petersson, Anders J. Johansson, Jens Schouenborg, and
Martin Garwicz. 2018. A Bit-Encoding Based New Data Structure for Time and
Memory Efficient Handling of Spike Times in an Electrophysiological Setup.
Neuroinformatics 16, 2 (Apr 2018), 217–229. https://doi.org/10.1007/s12021-018-
9367-z arXiv:29508123

http://intantech.com/files/Intan_RHD2000_series_datasheet.pdfl
https://ark.intel.com/content/www/us/en/ark/products/149088/intel-core-i5-8265u-processor-6m-cache-up-to-3-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/149088/intel-core-i5-8265u-processor-6m-cache-up-to-3-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/149088/intel-core-i5-8265u-processor-6m-cache-up-to-3-90-ghz.html
https://www.intel.ca/content/www/ca/en/software/programmable/quartus-prime/overview.html
https://www.intel.ca/content/www/ca/en/software/programmable/quartus-prime/overview.html
https://www.intel.ca/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.intel.ca/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.nvidia.com/en-sg/geforce/products/10series/geforce-gtx-1080/
https://www.nvidia.com/en-sg/geforce/products/10series/geforce-gtx-1080/
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_nano.html#wwpID0E0FL0HA
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_nano.html#wwpID0E0FL0HA
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_nano.html#wwpID0E0FL0HA
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/education-projects/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/education-projects/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://doi.org/10.1126/sciadv.aay5347
https://arxiv.org/abs/https://advances.sciencemag.org/content/7/4/eaay5347.full.pdf
https://doi.org/10.1016/S0165-0270(01)00507-6
https://doi.org/10.1016/S0165-0270(01)00507-6
https://doi.org/10.1109/VLSIT.2003.1221088
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/10.1016/j.neuron.2013.06.013
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://doi.org/10.1038/10223
https://doi.org/10.1016/j.neuron.2007.11.035
https://doi.org/10.1016/j.neuron.2007.11.035
https://doi.org/10.7554/eLife.36275
https://doi.org/10.7554/eLife.36275
https://doi.org/10.1038/nn.3712
https://doi.org/10.1038/nn1961
https://doi.org/10.1038/nn1961
https://doi.org/10.1016/j.celrep.2020.107581
https://doi.org/10.3390/ht7020011
https://doi.org/10.1126/science.1148979
https://doi.org/10.1038/nature04587
https://doi.org/10.5479/sil.324681.39088000932442
https://doi.org/10.1109/ICDSP.2009.5201163
https://doi.org/10.1109/ICDSP.2009.5201163
https://doi.org/10.1109/TC.1985.1676620
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.1016/j.neuron.2020.01.021
https://github.com/HewlettPackard/cacti
https://doi.org/10.1038/144710a0
https://doi.org/10.1016/j.celrep.2018.11.033
https://doi.org/10.1016/j.celrep.2018.11.033
https://doi.org/10.1126/science.125.3247.549
https://doi.org/10.1038/nn1825
https://doi.org/10.1038/nn1825
https://doi.org/10.1038/nature24636
https://doi.org/10.1038/nn.2344
https://doi.org/10.1016/j.celrep.2016.12.004
https://doi.org/10.1016/j.celrep.2016.12.004
https://doi.org/10.1523/jneurosci.19-10-04090.1999
https://doi.org/10.1523/jneurosci.19-10-04090.1999
https://doi.org/10.1016/S0896-6273(02)01096-6
https://doi.org/10.1016/S0896-6273(02)01096-6
https://doi.org/10.1007/s12021-018-9367-z
https://doi.org/10.1007/s12021-018-9367-z
https://arxiv.org/abs/29508123

Noema: Hardware-Efficient Template Matching for Neural Population Pattern Detection MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[46] Kenway Louie and Matthew A. Wilson. 2001. Temporally structured replay of
awake hippocampal ensemble activity during rapid eye movement sleep. Neuron
(2001). https://doi.org/10.1016/S0896-6273(01)00186-6

[47] Song Luan, Ian Williams, Michal Maslik, Yan Liu, Felipe de Carvalho, An-
drew Jackson, Rodrigo Quian Quiroga, and Timothy G. Constandinou. 2017.
Compact Standalone Platform for Neural Recording with Real-Time Spike
Sorting and Data Logging. bioRxiv (2017). https://doi.org/10.1101/186627
arXiv:https://www.biorxiv.org/content/early/2017/09/22/186627.1.full.pdf

[48] Artur Luczak, Peter Barthó, and Kenneth D. Harris. 2009. Spontaneous Events
Outline the Realm of Possible Sensory Responses in Neocortical Populations.
Neuron (2009). https://doi.org/10.1016/j.neuron.2009.03.014

[49] Jason N. MacLean, Brendon O. Watson, Gloster B. Aaron, and Rafael Yuste.
2005. Internal dynamics determine the cortical response to thalamic stimulation.
Neuron (2005). https://doi.org/10.1016/j.neuron.2005.09.035

[50] E. M. Maynard, N. G. Hatsopoulos, C. L. Ojakangas, B. D. Acuna, J. N. Sanes,
R. A. Normann, and J. P. Donoghue. 1999. Neuronal interactions improve cortical
population coding of movement direction. Journal of Neuroscience (1999). https:
//doi.org/10.1523/jneurosci.19-18-08083.1999

[51] Ethan M Meyers, Mia Borzello, Winrich A Freiwald, and Doris Tsao. 2015. In-
telligent information loss: the coding of facial identity, head pose, and non-face
information in the macaque face patch system. Journal of Neuroscience 35, 18
(2015), 7069–7081.

[52] Robbin A. Miranda, William D. Casebeer, Amy M. Hein, Jack W. Judy, Eric P.
Krotkov, Tracy L. Laabs, Justin E. Manzo, Kent G. Pankratz, Gill A. Pratt, Justin C.
Sanchez, Douglas J. Weber, Tracey L. Wheeler, and Geoffrey S.F. Ling. 2015.
DARPA-funded efforts in the development of novel brain-computer interface
technologies. Journal of Neuroscience Methods 244 (2015), 52 – 67. https://doi.
org/10.1016/j.jneumeth.2014.07.019 Brain Computer Interfaces; Tribute to Greg
A. Gerhardt.

[53] Elon Musk and Neuralink. 2019. An integrated brain-machine interface platform
with thousands of channels. bioRxiv (2019). https://doi.org/10.1101/703801
arXiv:https://www.biorxiv.org/content/early/2019/08/02/703801.full.pdf

[54] Z Nadasdy, H Hirase, A Czurko, J Csicsvari, and G Buzsaki. 1999. Replay and
time compression of recurring spike sequences in the hippocampus [In Process
Citation]. J Neurosci (1999).

[55] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S.
Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R.
Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner,
P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo,
R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel,
R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford,
B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M.
Yang, and K. Zhang. 2014. A 14nm logic technology featuring 2nd-generation
FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588
Âţm2 SRAM cell size. In 2014 IEEE International Electron Devices Meeting. 3.7.1–
3.7.3. https://doi.org/10.1109/IEDM.2014.7046976

[56] Joaquin Navajas, Deren Y Barsakcioglu, Amir Eftekhar, Andrew Jackson, Timo-
thy G Constandinou, and Rodrigo Quian Quiroga. 2014. Minimum requirements
for accurate and efficient real-time on-chip spike sorting. Journal of neuroscience
methods 230 (2014), 51–64.

[57] Arto Nurmikko, David Borton, and Ming Yin. 2016. Wireless
Neurotechnology for Neural Prostheses. John Wiley & Sons, Ltd,
Chapter 5, 123–161. https://doi.org/10.1002/9781118816028.ch5
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118816028.ch5

[58] H. Freyja Ólafsdóttir, Francis Carpenter, and Caswell Barry. 2016. Coordinated
grid and place cell replay during rest. Nature Neuroscience (2016). https://doi.
org/10.1038/nn.4291

[59] Stefano Panzeri, Jakob H. Macke, Joachim Gross, and Christoph Kayser. 2015.
Neural population coding: Combining insights frommicroscopic andmass signals.
Trends in Cognitive Sciences (2015). https://doi.org/10.1016/j.tics.2015.01.002

[60] Alexandre Pouget, Peter Dayan, and Richard Zemel. 2000. Information processing
with population codes. Nature Reviews Neuroscience (2000). https://doi.org/10.
1038/35039062

[61] E. Reggiani, E. D’Arnese, A. Purgato, and M. D. Santambrogio. 2017. Pearson
Correlation Coefficient Acceleration for Modeling and Mapping of Neural In-
terconnections. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 223–228.

[62] Sidarta Ribeiro, Damien Gervasoni, Ernesto S. Soares, Yi Zhou, Shih Chieh Lin,
Janaina Pantoja, Michael Lavine, and Miguel A.L. Nicolelis. 2004. Long-lasting
novelty-induced neuronal reverberation during slow-wave sleep in multiple
forebrain areas. PLoS Biology (2004). https://doi.org/10.1371/journal.pbio.0020024

[63] R. Rice and J. Plaunt. 1971. Adaptive Variable-Length Coding for Efficient Com-
pression of Spacecraft Television Data. IEEE Transactions on Communication
Technology 19, 6 (1971), 889–897. https://doi.org/10.1109/TCOM.1971.1090789

[64] B. Rooseleer, S. Cosemans, and W. Dehaene. 2011. A 65 nm, 850 MHz, 256 kbit,
4.3 pJ/access, ultra low leakage power memory using dynamic cell stability and
a dual swing data link. In 2011 Proceedings of the ESSCIRC (ESSCIRC). 519–522.

https://doi.org/10.1109/ESSCIRC.2011.6044936
[65] Mijail D. Serruya, Nicholas G. Hatsopoulos, Liam Paninski, Matthew R. Fellows,

and John P. Donoghue. 2002. Instant neural control of a movement signal. Nature
416, 6877 (2002), 141âĂŞ142. https://doi.org/10.1038/416141a

[66] Robert K Shepherd. 2016. Neurobionics: The biomedical engineering of neural
prostheses. John Wiley & Sons.

[67] P. Socha, V. Miškovský, H. Kubátová, and M. Novotný. 2017. Optimization of
Pearson correlation coefficient calculation for DPA and comparison of different
approaches. In 2017 IEEE 20th International Symposium on Design and Diagnostics
of Electronic Circuits Systems (DDECS). 184–189.

[68] T. Song, W. Rim, J. Jung, G. Yang, J. Park, S. Park, K. Baek, S. Baek, S. Oh, J. Jung,
S. Kim, G. Kim, J. Kim, Y. Lee, K. S. Kim, S. Sim, J. S. Yoon, and K. Choi. 2014.
13.2 A 14nm FinFET 128Mb 6T SRAM with VMIN-enhancement techniques for
low-power applications. In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). 232–233. https://doi.org/10.1109/ISSCC.2014.
6757413

[69] Ethan Sorrell, Michael E. Rule, and Timothy O’Leary. 2021. Brain-Machine
Interfaces: Closed-Loop Control in an Adaptive System. Annual Review of Control,
Robotics, and Autonomous Systems 4, 1 (2021), null. https://doi.org/10.1146/
annurev-control-061720-012348

[70] Hendrik Steenland and Bruce L. McNaughton. 2015. Techniques for Large-Scale
Multiunit Recording. In Analysis and Modeling of Coordinated Multi-neuronal
Activity. Springer. https://doi.org/10.1007/978-1-4939-1969-7

[71] Nick Steinmetz, Marius Pachitariu, Carsen Stringer, Matteo Carandini, and Ken-
neth Harris. 2019. Eight-probe Neuropixels recordings during spontaneous
behaviors. https://doi.org/10.25378/janelia.7739750.v4

[72] Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo
Carandini, and Kenneth D. Harris. 2019. Spontaneous behaviors drivemultidimen-
sional, brainwide activity. Science (2019). https://doi.org/10.1126/science.aav7893

[73] Synopsys. [n. d.]. Design Compiler Graphical. https://www.synopsys.
com/implementation-and-signoff/rtl-synthesis-test/design-compiler-
graphical.html.

[74] M. Tatsuno, P. Lipa, and B. L. McNaughton. 2006. Methodological Considerations
on the Use of Template Matching to Study Long-Lasting Memory Trace Replay.
Journal of Neuroscience (2006). https://doi.org/10.1523/JNEUROSCI.3317-06.2006

[75] Masami Tatsuno, Soroush Malek, LeAnna Kalvi, Adrian Ponce-Alvarez, Karim
Ali, David R. Euston, Sonja Grün, and Bruce L. McNaughton. 2020. Memory
reactivation in rat medial prefrontal cortex occurs in a subtype of cortical UP
state during slow-wave sleep. Phil. Trans. R. Soc. B 375, 1799 (May 2020). https:
//doi.org/10.1098/rstb.2019.0227

[76] Patrick Tresco and Brent Winslow. 2011. The Challenge of Integrating Devices
into the Central Nervous System. Critical reviews in biomedical engineering 39
(01 2011), 29–44. https://doi.org/10.1615/CritRevBiomedEng.v39.i1.30

[77] Bing Wang, Pengbo Yang, Yaxue Ding, Honglan Qi, Qiang Gao, and Chengxiao
Zhang. 2019. Improvement of the Biocompatibility and Potential Stability of
Chronically Implanted Electrodes Incorporating Coating Cell Membranes. ACS
Applied Materials & Interfaces 11, 9 (2019), 8807–8817. https://doi.org/10.1021/
acsami.8b20542 PMID: 30741520.

[78] Pan Ke Wang, Sio Hang Pun, Chang Hao Chen, Elizabeth A. McCullagh, Achim
Klug, Anan Li, Mang I. Vai, Peng Un Mak, and Tim C. Lei. 2019. Low-latency
single channel real-time neural spike sorting system based on template matching.
PLOS ONE 14, 11 (11 2019), 1–30. https://doi.org/10.1371/journal.pone.0225138

[79] Keita Watanabe, Tatsuya Haga, Masami Tatsuno, David R. Euston, and Tomoki
Fukai. 2019. Unsupervised Detection of Cell-Assembly Sequences by Similarity-
Based Clustering. Frontiers in Neuroinformatics 13 (2019), 39. https://doi.org/10.
3389/fninf.2019.00039

[80] Siegfried Weisenburger and Alipasha Vaziri. 2018. A Guide to Emerging Tech-
nologies for Large-Scale and Whole-Brain Optical Imaging of Neuronal Activity.
Annual Review of Neuroscience (2018). https://doi.org/10.1146/annurev-neuro-
072116-031458

[81] Aaron A. Wilber, Ivan Skelin, Wei Wu, and Bruce L. McNaughton. 2017. Laminar
Organization of Encoding and Memory Reactivation in the Parietal Cortex. Neu-
ron 95, 6 (13 Sep 2017), 1406–1419.e5. https://doi.org/10.1016/j.neuron.2017.08.
033 28910623[pmid].

[82] I.Williams, S. Luan, A. Jackson, and T. G. Constandinou. 2015. Live demonstration:
A scalable 32-channel neural recording and real-time FPGA based spike sorting
system. In 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS). 1–5.
https://doi.org/10.1109/BioCAS.2015.7348330

[83] Yaniv Ziv, Laurie D. Burns, Eric D. Cocker, Elizabeth O. Hamel, Kunal K. Ghosh,
Lacey J. Kitch, Abbas El Gamal, and Mark J. Schnitzer. 2013. Long-term dynamics
of CA1 hippocampal place codes. Nature Neuroscience 16, 3 (Mar 2013), 264–266.
https://doi.org/10.1038/nn.3329

https://doi.org/10.1016/S0896-6273(01)00186-6
https://doi.org/10.1101/186627
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2017/09/22/186627.1.full.pdf
https://doi.org/10.1016/j.neuron.2009.03.014
https://doi.org/10.1016/j.neuron.2005.09.035
https://doi.org/10.1523/jneurosci.19-18-08083.1999
https://doi.org/10.1523/jneurosci.19-18-08083.1999
https://doi.org/10.1016/j.jneumeth.2014.07.019
https://doi.org/10.1016/j.jneumeth.2014.07.019
https://doi.org/10.1101/703801
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2019/08/02/703801.full.pdf
https://doi.org/10.1109/IEDM.2014.7046976
https://doi.org/10.1002/9781118816028.ch5
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118816028.ch5
https://doi.org/10.1038/nn.4291
https://doi.org/10.1038/nn.4291
https://doi.org/10.1016/j.tics.2015.01.002
https://doi.org/10.1038/35039062
https://doi.org/10.1038/35039062
https://doi.org/10.1371/journal.pbio.0020024
https://doi.org/10.1109/TCOM.1971.1090789
https://doi.org/10.1109/ESSCIRC.2011.6044936
https://doi.org/10.1038/416141a
https://doi.org/10.1109/ISSCC.2014.6757413
https://doi.org/10.1109/ISSCC.2014.6757413
https://doi.org/10.1146/annurev-control-061720-012348
https://doi.org/10.1146/annurev-control-061720-012348
https://doi.org/10.1007/978-1-4939-1969-7
https://doi.org/10.25378/janelia.7739750.v4
https://doi.org/10.1126/science.aav7893
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://doi.org/10.1523/JNEUROSCI.3317-06.2006
https://doi.org/10.1098/rstb.2019.0227
https://doi.org/10.1098/rstb.2019.0227
https://doi.org/10.1615/CritRevBiomedEng.v39.i1.30
https://doi.org/10.1021/acsami.8b20542
https://doi.org/10.1021/acsami.8b20542
https://doi.org/10.1371/journal.pone.0225138
https://doi.org/10.3389/fninf.2019.00039
https://doi.org/10.3389/fninf.2019.00039
https://doi.org/10.1146/annurev-neuro-072116-031458
https://doi.org/10.1146/annurev-neuro-072116-031458
https://doi.org/10.1016/j.neuron.2017.08.033
https://doi.org/10.1016/j.neuron.2017.08.033
https://doi.org/10.1109/BioCAS.2015.7348330
https://doi.org/10.1038/nn.3329

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Template Matching
	2.2 Multiplexing of the Indicator Streams
	2.3 Implementation Challenges

	3 Noema
	3.1 Reformulating Pearson's Correlation
	3.2 Implementing the Pearson's Sums
	3.3 Post-Processing
	3.4 On-Chip Memory Costs
	3.5 Template Memory Compression
	3.6 Scaling

	4 Related Work
	5 Evaluation
	5.1 On-Chip Memory
	5.2 Performance, Power, and Area
	5.3 FPGA Implementation
	5.4 Commodity Platforms: CPU and GPU

	Acknowledgments
	References

