
Synthesizable Synchronization FIFOs Utilizing the
Asynchronous Pulse-Based Handshake Protocol

Ameer M.S. Abdelhadi
Department of Electrical and Computer Engineering

University of Toronto
Toronto ON M5S 3G4, Canada
ameer.abdelhadi@utoronto.ca

Abstract—We present a family of synthesizable standard-cell-
based synchronization FIFOs for crossing between asynchronous
and synchronous timing domains. These FIFOs are composed
of modular mix-and-match components. The input and output
interfaces are interchangeable for edge-triggered synchronous
communication and for the asP* asynchronous pulse-based hand-
shake protocol. The FIFO capacity, data width, synchronizer
latency, and interface protocols are independent design param-
eters, allowing the FIFO to be easily configured for different
requirements. The modular design makes the FIFO ideal for
use in system-on-chip applications, where clock-domain crossing
is required, or multiple clock domains communicate using an
asynchronous network-on-chip. Our designs demonstrate high-
throughput communication and hide most of the synchronization
latency. The FIFOs are fully synthesizable using widely available
standard-cell libraries and a standard ASIC design flow. We gen-
erate layouts for several different synchronous and asynchronous
FIFOs. All instances can operate at speeds greater than 1.92
GHz under worst-case conditions when implemented in a 45nm
CMOS process. The design flow and a fully parameterized Verilog
implementation are released as an open-source library.

Index Terms—networks-on-chip (NoC), synchronizing FIFO,
synchronization, clock-domain crossing (CDC), globally asyn-
chronous locally synchronous (GALS), asP* handshake protocol

I. INTRODUCTION

Modern chip designs can consist of several billion tran-
sistors. Because of the difficulties of distributing high-speed
clocks with low skew and jitter, such chips are invariably or-
ganized as hundreds of relatively independent timing domains.
This approach leverages the mature, commercially supported,
design flows for building synchronous modules with millions
of gates, while providing a timing independence between
these modules. This simplifies timing closure, supports design
reuse, and enables independent voltage-frequency scaling to
be used in separate modules to maximize energy efficiency.
Globally, large chips are asynchronous. Therefore, optimiz-
ing the asynchronous interfaces between timing domains is
essential for achieving efficient, high-performance systems.
Current Systems-on-chip designs are partitioned into multiple
clock domains and can involve large numbers of clock-domain
crossings. This motivates the Globally asynchronous Locally
Synchronous (GALS) design style, creating an asynchronous

Many thanks to the anonymous reviewers for their feedback and sugges-
tions. An earlier version of this work appeared in the 2020 13th International
Workshop on Network on Chip Architectures (NoCArc) [1].

network-on-chip (ANoC). Synchronizing FIFOs are critical
components to interface between the ANoC and the functional
domains as depicted in Figure 1 (left).

As an example, Figure 1 (right) shows a simplified view
of a modern multi-core CPU. In this figure, each core has
its own L1 and L2 (level-1 and level-2) caches, and an on-
chip network connects the cores to a shared L3 cache and
accelerator. The CDC (clock-domain crossing) boxes provide
the interfaces between different timing domains. If the cores,
NoC (network-on-chip), L3 caches, and accelerator each oper-
ate with their own clocks, then each CDC module must include
a synchronizer, and the synchronization latency is added to
the total latency of the data transfer. The example in Figure 1
(right) shows that four such clock-domain crossings are used
to handle an L2 cache miss. With core-clock frequencies of
3GHz or more, three-flip-flop synchronizers are common, and
the synchronization alone can contribute twelve cycles to the
total miss-processing time. Architects are always asking for
higher NoC bandwidth with lower latency, and a 12 cycle
synchronization penalty is a significant performance issue.

For these problems, asynchronous solutions offer several
advantages. First, no synchronization is needed when entering
the asynchronous time-domain. For the example of the multi-
core CPU, by simply using an ANoC [2]–[6], the twelve cycle
synchronization penalty of the all-synchronous example design
can be alleviated to half that, i.e., six cycles.

It may also be advantageous that CPUs or accelerators
be asynchronous. There are several asynchronous design
languages that support the design of asynchronous blocks
from scratch [7]–[11]. Alternatively, desynchronization is an
attractive approach that leverages existing synchronous RTL
specifications, commercial synthesis tools, and cell libraries

sync. sync. sync.

Network-on-Chip

ti
m
in
g

ti
m
in
g

ti
m
in
g
1 2 n

C
o
re

C
o
re

N
e
tw

o
rk
-o
n
-C
h
ip

C
o
re

L3

L3

L3

Fig. 1: (left) A Network-on-Chip accessing multiple timing domains. (right)
An example of a multi-core CPU crossing clock domains to access caches.

978-1-7281-9226-0/20/$31.00 © 2020 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on July 15,2021 at 06:31:19 UTC from IEEE Xplore. Restrictions apply.

to generate asynchronous bundled-data pipelines [12], [13].
These pipelines use local clocks generated via asynchronous
control, thus they are resilient to process, voltage, and tem-
perature (PVT) variations [14], [15] and benefit from dynamic
voltage scaling. As in ANoCs, the integration with low-latency
synchronizers is critical for making these systems usable.

This paper thus focuses on a family of interfaces for
crossing between synchronous and asynchronous timing do-
mains. Our asynchronous interfaces assume the Asynchronous
Symmetric Persistent Pulse Protocol (asP*) [16] because wire-
delay is a key performance limiter for large blocks or blocks
that span a large portion of a chip (e.g., a NoC). Using the asP*
protocol, each data transfer requires a minimal pulse width to
travel a round-trip between the sender and receiver: first, data
and a request minimum pulse are sent from the sender to the
receiver; in response, the receiver sends an acknowledgement
minimum pulse back to the sender. The throughput of the
network is limited by this round-trip time. While a two-
phase protocol doesn’t require a return-to-zero transition, it’s
implementation is more complicated. On the other hand, if
a four-phase protocol is used, two round-trips are required
for each data transfer, achieving roughly half the throughput
of a two-phase design. The asP* protocol benefits from the
simplicity of return-to-zero protocols, while achieving high
speeds due to minimum-pulse communication.

By providing a synthesizable library of high-throughput,
low-latency timing-domain crossing interfaces, we provide
designers with a disciplined way to incorporate the use of
ANoCs and asynchronous modules into designs where some
or many modules are designed and synthesized using a tra-
ditional, synchronous design flow. We believe these interfaces
greatly lower the barrier to entry for exploiting the advantages
of asynchronous designs in a heterogeneous design framework.
Our timing-domain crossing FIFOs are fully synthesizable
using standard-cell-based libraries, highly configurable, and
support any combination of synchronous and asynchronous
interfaces. The designs are highly parameterized and synthe-
sizable using standard, commercial cell libraries and design
flows. The complete design framework is public and open-
source, including a Verilog description of the FIFOs, support
for simulation, static timing analysis, a testbench for regression
tests of the design, and a run-in-batch flow manager [17].

The remainder of this paper is organized as follows. Sec-
tion II reviews related work. Section Section III presents our
proposed synchronizing FIFOs. In Section IV our experimental
framework is presented and experimental results are discussed.
Throughput, latency, and other FIFO metrics are generated
with our open-source Verilog and standard design tools using
FreePDK45 [18], [19], a cell library for a 45nm process. Our
FIFOs achieve throughputs that exceed typical clock frequen-
cies for ASIC design flows. Finally, Section V concludes the
paper with future suggestions.

II. BACKGROUND, PRELIMINARIES AND RELATED WORK

With the rapid progress of silicon technology, modern
devices comprise an increasing number of on-chip design

modules, incorporate multiple clock domains running at higher
frequencies. As these design challenges hinder system inte-
gration and timing closure, FIFOs become a more attractive
solution for decoupling and transferring data between different
domains because they offer high throughput and simple flow
control. Synchronizing FIFOs are largely distinguished by the
design of the interface control logic, the data storage, and the
synchronization mechanisms between the interfaces.

Gray-code FIFOs. The most common synchronizing FIFOs
are based on Gray-code counters [20], [21]. The advantage of
a Gray-code is that on a clock transition, exactly one bit of
the counter makes a transition. If the put-controller uses a
Gray-code for its write pointer, then the bits of the pointer
can be synchronized to the get-controller using a separate
synchronizer for each bit. Because at most one bit will be
changing at the receiver (get) interface clock edge, at most one
synchronizer will enter metastability. When that bit resolves,
the synchronizer outputs either the “before” or “after” value
of the write-pointer. Either is valid. The disadvantage of Gray-
codes is the difficulty of comparing two Gray-code values to
determine which is greater. Typical designs convert the Gray-
code value to binary, and then perform the comparison. The
conversion requires a chain of XOR gates whose length is the
number of bits in the pointer (minus one). This tends to be a
slow operation that limits FIFO performance.

Unary-code FIFOs. An alternative to Gray code pointers is
to use some kind of unary encoding. Like several other designs
[22]–[25], our approach uses a unary encoding of the FIFO
pointers. These FIFOs offer very high throughputs because
ring counters are fast, and comparing unary values is easy. Of
these, our design is standard-cell-based. The main disadvan-
tage of unary control is the larger flip-flop count, especially
for the synchronizers. For desynchonization applications, FIFO
depths tend to be small whereas the word-width tends to be
fairly high. Both of these properties mitigate the overhead of
using unary control.

Pausible clock FIFOs. In addition to Gray code and unary
counters, many other designs have been proposed. Keller
[26] presents a novel implementation for GALS applications
based on “pointer-increment” signals. Keller’s design uses
mutex elements to arbitrate between communication and clock
generation; because metastability is rare and usually resolves
quickly, Keller’s design, like most pausible clock designs,
achieves very low latency for cross-domain communication.
While we note a growing interest in pausible clock GALS
(e.g., [20], [26]), the most common clock-domain-crossing
designs remain synchronous-to-synchronous.

Ripple FIFOs. Another approach to synchronization is to
use a ripple FIFO instead of a pointer based design. Seizovic
[27] showed synchronization can be incorporated into the
control path of a ripple FIFO. More recently, Jackson and
Manohar [28] showed a generalization of Seizovic’s scheme
where a pipeline processing can be done along the datapath of
the FIFO while the control path accomplishes synchronization.
These are clever designs, but they use special handshaking
cells that are not amenable for standard synthesis flows.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on July 15,2021 at 06:31:19 UTC from IEEE Xplore. Restrictions apply.

Mesochronous FIFOs. Finally, there has been extensive
work on mesochronous designs where the sender and receiver
operate at identical clock frequency with an unknown phase re-
lationship [29]–[33]. When the communicating clock domains
have a common source, these methods offer excellent perfor-
mance and efficiency. We are addressing the more general, and
common case, where either there is no common source to the
clocks, or where it is impractical to bound the variation in the
skew under operation. We note that [33] provides an excellent
survey of prior work in clock-domain crossing that transcends
the space limitations of this paper.

III. THE FIFO ARCHITECTURE

Our goal is to support the design of asynchronous drop-in
replacements for synchronous blocks with latency-insensitive
interfaces. This enables incremental incorporation of asyn-
chronous blocks for functions where they provide advan-
tages as well as an interface to chip-wide asynchronous
NoCs. From the synchronous designer’s perspective, the asyn-
chronous module(s) communicate through latency-insensitive
interfaces; and no special considerations are needed to account
for the asynchronous implementation on the other side of
these interfaces. The two key interfaces are a synchronous-to-
asynchronous converter that transfers data from the clocked,
synchronous domain to an asynchronous module using the
asP* protocol. The asynchronous-to-synchronous converter is
the inverse: it transfers data, with proper synchronization,
from the asynchronous timing domain back to the clocked
domain. The modular design of our interfaces naturally pro-
vides synchronous-to-synchronous converters that transfer data
between two synchronous domains with independent clocks.
While the same modularity also allows the construction of an
asynchronous-to-asynchronous interface, such interfaces are
rarely, if ever, needed. Unlike synchronous designs, asyn-
chronous modules are naturally composable without imposing
timing-closure headaches on their interfaces.

The FIFO rings. Figure 2 shows the structure of our syn-
chronizing FIFO. A Sender in timing domain A communicates
with the Receiver in timing domain B through the FIFO. The
FIFO is composed of two round-robin rings of n stages, the
put ring and the get ring. Each stage has a put interface cell,
a get interface cell and a full-empty control. In addition, each
FIFO stage might include a data store. Alternatively, a separate
two-ported memory array may be used, with control signals
coming from the put and get interface cells.

The FIFO uses tokens to mark the location of the next write
and read operation. Initially, the put and get tokens are in the
put and get interface cells of stage 1. Each time a data value
is written to the FIFO, the put token is advanced to the next
stage. Similarly, the get interface cells advance the get token
on a read operation. The structure of a FIFO stage is shown
in Figure 3. For simplicity, only some signals are shown. Next
sections give a more detailed account of all signals involved in
the operation. Signals put_token_in and get_token_in
come from the previous stage, while put_token_out and
get_token_out go to the next stage. Initially the stage is

empty and signal stage full is low and stage empty is high.
If signal put_token_in is high, an incoming req_put
causes signal write to go high, which in turn causes the full-
empty control to raise stage full and lower stage empty.
After a successful write operation, the token is transferred
from this stage to the next by lowering put_token_in
and raising put_token_out. Likewise, a req_get request
causes signal read to go high and subsequently stage full
to drop and stage empty to go high. In the data store, signal
write causes the input data datain to be stored, while
signal read causes the output data bus dataout to be driven
with the data value for this stage. This will be explained in
more detail in next sections. There are two types of put and get
interface cells, clocked and clockless. Similarly, the full-empty
control can be clocked or clockless.

A. Full-Empty Control

Each FIFO stage has one full-empty control block. Fig-
ure 4 shows the full-empty control block, consisting of three
portions. The put interface (left side), the synchronization
block (middle), and the get interface (right side). The put/get
interface can be either clocked or clockless. Synchronization
is only required when crossing between clocked interfaces.
Clocked and clockless interfaces can be combined in all
possible mix-and-match ways, such as two clocked interfaces
(upper left case), or two clockless interface (lower right case).
In the clockless put interface, the write signal causes the
toggling of flop fap, while in the clocked get interface the
flop fsg toggles on a rising read clock edge, when signal
read is high. The two flip-flops fap and fsg encode the
state of the FIFO stage: if the outputs of the flip-flops are
the same, then the FIFO stage is empty; if they are different,
then the FIFO is full. The clocked put/get interface requires
a synchronizer to minimize metastability-related failure. The
synchronizer can consist of any number of half-cycle and full-
cycle synchronization stages. Note that only the signal from
the other clock domain needs to pass through the synchronizer.
Thus, a state change due to a read operation causes the stage
empty signal to go high without incurring the synchronization
latency penalty, and similarly for write operations and stage
full. As a result, the FIFO won’t overflow or underflow.

Distributed synchronization. As described above, our FIFO
has a one-bit synchronizer in each clocked full-empty inter-
face. This is in contrast to traditional synchronizing FIFO

Se
n

d
e

r
d

o
m

ai
n

 A
(c

lo
ck

ed
/a

sP
*)

put

put

put

get

get

get

 d
o

m
ain

 B
(clo

cked
/asP

*)

Fig. 2: Architecture overview.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on July 15,2021 at 06:31:19 UTC from IEEE Xplore. Restrictions apply.

designs that have a top-level synchronizer. We chose to use
a distributed synchronization scheme to make our design
more modular. If the synchronized full signal is asserted in
the receiver’s domain, then the stage is guaranteed to hold
data and therefore that a read is safe. Likewise, assertion of
the synchronize empty signal in a clocked sender’s domain
guarantees that the stage is empty and that a write to the stage
is safe. This design prevents invalid states from being sampled,
since it is acceptable for any changing bit to have its old or
new value sampled.

B. A Simplified asP* FIFO

The Asynchronous Symmetric Persistent Pulse Protocol
(asP*) [16] is used to implement our asynchronous interfaces
because it offers major benefits compared to other asyn-
chronous protocols. First, asP* exhibits high speeds, enabling
low latencies and high performance. Also, the asP* can be
implemented using common standard-cell-libraries and doesn’t
require special cells such as C-elements.

A simplified asP* FIFO that is the base of our design
is shown in Figure 5. This FIFO consists of a control and
datapath portions. The datapath is a chain of D-latches that
shifts the data from datain towards dataout. This datapath
is controlled by an SR-latch-based control circuit. Each SR-
latches in the controller indicated that its corresponding stage
is full, namely the D-latch in the same stage holds a valid data.
For each stage, the AND gate indicated that the data should
be moved to the current stage if the previous stage is full
AND the current stage is empty. For stage i, if the previous
stage is full, Q(SRLi−1) = ‘1′, and the current stage is empty
Q̄(SRLi−1) = ‘1′, DLi will be enabled and data will move
from stage i−1 to stage i. Also, the reset signal (R) of SRLi−1
will be asserted indicating that stage i− 1 is now empty, and
the set signal (S) of SRLi will be asserted, indicating that
stage i is now full.

Timing constraints of the simplified asP* FIFO. As the asP*
is pulse-based, it is not delay-insensitive. Once a D-latch DLi

is enabled, the same enable signal (AND’s output) will reset
SRLi−1 and set SRLi concurrently. This will lower the output

full

write

enb_put

wrt_enb read

enb_get

read_enb

en

D Q
datain

get_token_in

get_token_out

put_token_in

put_token_out

clk_put clk_get
Data

Storage

latch

full

write

enb_put

wrt_enb read

req_get

ack_get

en

D Q
datain

get_token_in

get_token_out

put_token_in

put_token_out

clk_put
Data

Storage

latch

full

write

req_put

ack_put read

enb_get

read_enb

D Q
datain

get_token_in

get_token_out

put_token_in

put_token_out

clk_get
Data

Storage

latch

full

write

req_put

ack_put read

req_get

ack_get

D Q
datain

get_token_in

get_token_out

put_token_in

put_token_out

Data
Storage

latch

 f
u

ll/
e

m
p

ty
co

n
tr

o
lle

r

fu
ll/

e
m

p
ty

co

n
tr

o
lle

r

cl
kd

 p
u

t

fu
ll/

e
m

p
ty

co

n
tr

o
lle

r

as
P

*
p

u
t

fu
ll/

e
m

p
ty

co

n
tr

o
lle

r

as
P

*
ge

t

as
P

*
ge

t

cl
kd

 p
u

t

cl
kd

 g
e

t

as
P

*
p

u
t

cl
kd

 g
e

t

Clocked (Synchronous) Clockless (asP*)

C
lo

ck
le

ss
 (

as
P

*)

Fig. 3: A single FIFO stage for all mixed-timing combinations.

of the same AND gate and de-assert the enable signal of DLi,
creating a pulse on the enable. This pulse is supposed to be
longer than minimum pulse constraint of a D-latch, namely,

min

{
minDelay(SRL.R→Q),
minDelay(SRL.S→Q̄)

}
≥minPulseWidth(DL.EN). (1)

Another difficulty presented by the asP* FIFO shown in Fig-
ure 5 is the use of SR-latches as state-holding elements. Many
standard-cell libraries do not include SR latches. Although SR
latches can be effected by using cross-coupled NAND or NOR
gates or by using flip-flops with asynchronous set and reset
inputs, such designs are not amenable to static timing analysis
by standard CAD tools that assume timing paths start and end
according to the clock inputs of flip-flops. The FIFO that we
present in the remainder of this section implements the asP*
FIFO, but does so with a design that avoids these problems.

C. The FIFO Interface

The FIFO’s top-level signals and stage connectivity are
shown Figure 6. A put request from the sender is broadcast
to all FIFO stages. In the clocked version the put request will
be broadcasted if there is an available space, thus it will be
masked with the space_avail signal. The put acknowledge
signals ack_put from all FIFO stages are combined in an OR
tree to the acknowledge signal back to the sender. Similarly,
the clocked version is the space_avail signal where all
wrt_enb signals from all stages are OR’ed. At any time
a maximum of one stage will raise its ack_put/wrt_enb
signal. A clockless received will acknowledge a get request,
req_get, by raising the signal ack_get, if any one of the
stages acknowledges the get by raising its ack_get signal.
On the clocked receiver side, the FIFO tells the receiver that
it has valid data at its dataout output by raising signal
data_v, which is the OR’ed read_enb signals.

empty

full

clk_put

clk_get

read

empty

full

clk_put

write

empty

full

clk_get

Put→Get Sync.

write

empty

full

read

Clocked (Synchronous) Clockless (asP*)

C
Lo

ck
ed

 (
Sy

n
ch

ro
n

o
u

s)
C

lo
ck

le
ss

 (
as

P
*)

Put→Get Sync.

Get→Put Sync.

Get→Put Sync.

fsp

fsp fap

fap

fsg fsg

fag fag

Fig. 4: Full/empty controller for all mixed-timing combinations.

d a t a i n

req_put req_get

dataoutD Q

en

S R

Q Q

D Q

en

S R

Q Q

D Q

en

S R

Q Q

D Q

en

S R

Q Q

stage1 stage2 stage3 stagen

Datapath
Control

Fig. 5: Asynchronous Symmetric Persistent Pulse Protocol (asP*) pipeline.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on July 15,2021 at 06:31:19 UTC from IEEE Xplore. Restrictions apply.

enb_put

datain

clk_put

enb_get req_get

clk_get

data_v

dataout

wrt_enb(i) read_enb(i)

put/get tokens

enb_put

datain

space
_avail

clk_put

req_get

ack_get

dataout

wrt_enb(i) ack_get(i)

put/get tokens

datain

ack_put

req_put enb_get req_get

clk_get

data_v

dataout

ack_put(i) read_enb(i)

put/get tokens

dataout(i)

datain

ack_put

req_put req_get

ack_get

dataout

ack_put(i) ack_get(i)

put/get tokens

dataout(i)

dataout(i)dataout(i)

req_
put

req_
put

space
_avail

Clocked (Synchronous) Clockless (asP*)
C

lo
ck

le
ss

 (
as

P
*)

Fig. 6: The FIFO structure for all mixed-timing combinations.

enb

D
Q

clk

rst/set

full

wrtwrt_enb

enb_put

clk_put

reset

put_token_in

put_token_out

SE
T

if
 1

st
 s

ta
ge

R
ST

 o
th

e
rw

is
e

enb

D
Q

clk

rst/set

empty

read

read
_enb

enb
_get

clk_get

reset

get_token_in

get_token_out

SE
T

if
 1

st
 s

ta
ge

R
ST

 o
th

e
rw

is
e

D
Q

clk

rst/set

full

wrt
ack_put

req_put

reset

put_token_in

put_token_out

SE
T

if
 1

st
 s

ta
ge

R
ST

 o
th

e
rw

is
e

D
Q

clk

rst/set

empty

read

ack_
get

req_
get

reset

get_token_in

get_token_out

SE
T

if
 1

st
 s

ta
ge

R
ST

 o
th

e
rw

is
e

ge
t

(r
ec

ei
ve

r)

Clockless (asP*)

Fig. 7: Interface components.

The FIFO interface units (within each stage) are shown
in Figure 7. The get and put rings are part of the get and
put interfaces, respectively. Each ring is composed of a shift
register (one flip-flop per stage) holding a one-hot value.
Initially, the token is located in the first stage, thus the first flip-
flop stores 1, while all other flip-flops are zero. For the clocked
interface, the token ring moves forward on the clock edge, and
is enabled by enb_put/enb_get, for the put/get interfaces,
respectively. The clockless ring, on the other hand, moves on
the rising edge of req_put/req_get, for the put and get
interfaces, respectively. Other signals are generated based on
the token ring, which indicated the current active stage for
get and put interfaces. In the clocked interfaces, wrt/read
signals are asserted if the current stage is active, and there
is a put/get request, respectively. wrt_enb/read_enb are
asserted if the current stage is active, and the current stage is
not full/empty, respectively. The clockless interface behaves
similarly, however, req_put/req_get signals are incorpo-
rated in the generation of wrt/read signals, respectively.

Minimum pule-width timing constraints. To ensure the cor-
rect functionality of the asP* FIFO, the following minimum-
pulse width must be satisfied by the asP* interface user.
req_put/req_get signals are used to trigger the put/get
token ring flip-flop, and the fap/fag flip-flops in the full-empty
control, respectively, thus,

minPulseWidth(req put/getLO) ≥ minPulseWidth(DFF.CLKHI). (2)

All FFs are triggered simultaneously to pass on the put and
get tokens, and the propagation delay from one flip-flop to
the next has to be greater than the hold time of the flip-flop;
otherwise additional delay needs to be inserted into the token
wires to ensure that the hold time constraints on the flip-flops
are met. Standard timing tools can be used to check and fix
these timing constraints as described in Section IV.

D. Data Store
To reduce storage area, latches are used to store data instead

of registers as described in Figure 3. Each FIFO stage has
a latch array for the data; the latch enable is controlled by
the stage’s write signal. Incoming data is broadcast to each
FIFO stage, and data latches in stage i are transparent when
stage i’s write signal is high. At any given time, only one
stage will have a high write signal and only one stage will
store the incoming data. For FIFO read operations, the get
token determines which FIFO stage drives the output data.
The selection can be done with pass-gates, tri-state buffers, or
multiplexers. For example, the design described in Figure 6
uses gate-based multiplexers for ease of implementation with
a standard CAD design flow. The writing and reading with
clocked interfaces is straightforward. The write signal is
used to enable the storage latches. Note that write is only
high during the clock low phase, such that the write clock
high phase can be used to drive the data onto the bit lines,
whenever enb_put is asserted. A read operation is performed
when enb_get is asserted. Signal read is only high for half
the cycle, leaving the first half of the read clock cycle for
precharge. The data can be gated using the get token.

IV. EXPERIMENTAL RESULTS

Platform Settings. In order to verify and simulate the
suggested approach, we wrote a fully parameterized Verilog
module. To simulate and synthesize the proposed designs with
various parameters in batch using Synopsys Synthesis tools
[34]–[38], we also provide a run-in-batch flow manager. The
Verilog modules and the flow manager are available online
[17]. The design package is composed of a Verilog description
of the proposed FIFO, a Verilog testbench, tool configuration
scripts, and a run-in-batch manager. The Verilog description
of the proposed FIFO is parameterized and can be instantiated
in other Verilog projects as a stand-alone IP.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on July 15,2021 at 06:31:19 UTC from IEEE Xplore. Restrictions apply.

The complete design framework is illustrated in Figure 8.
A run-in-batch manager allows synthesizing and simulating a
number of FIFOs in batch. A list of design parameters (e.g., in-
terface protocols,stages, data width, and synchronizers’ depth)
can be provided to the run-in-batch manager, together with the
required flow stages. The design stages are implemented using
Synopsys tools and ordered as follows. (1) Logic synthesis
using Design Compiler [34]. (2) Placement and routing using
IC Compiler [35]; this include delay and parasitic extraction
[36]. (3) Static timing analysis using PrimeTime [37]. (4) Gate-
level-Simulation using VCS [38] with the placed and routed
netlist, delays and parasitics data, and the Verilog testbench.
The testbench generates input vectors, checks the outputs,
and compares them against a generic FIFO. The simulation
also generates the activity data for power analysis. (5) Power
analysis using PrimeTime PX [39] to estimate both dynamic
and leakage power.

Experimental Results. Our FIFOs are implemented using
FreePDK45, an open-source 45nm CMOS standard-cell library
[18], [19]. The performance of each FIFO configuration is
shown in Table I. For the clocked FIFOs, this is the maximum
clock rate at which the circuits can operate, while for the
asynchronous FIFOs this is the fastest rate at which requests
can be serviced. The worst-case timing library was used for all
measurements. The data in Table I shows that the throughput
of the FIFO scales relatively well as the number of stages
is increased from 8 to 32. Both clocked and asynchronous
FIFOs are able to run at over 1.92 GHz with 32 stages. All
FIFOs have a data throughput equivalent to the maximum
clock/request frequency.

The minimum latency through the FIFOs is also listed in
Table I. These were measured from timing-annotated simula-
tions using values automatically extracted from the placed and
routed design. All numbers assume worst-case process, voltage
and temperature. For the synchronous FIFOs we assumed both

FIFO VERILOG
Modules

Gates Synthesis
(Synopsys Design Compiler)

Pre-layout gates
netlist

Place & Route
(Cadence SoC Encounter)

Back-annotated
 Gate-level-simulation (GLS)

(Cadence nc-Verilog)

Performance
 /Latency

Power Dissipation
(Dynamic & Static)

Power Estimates
(Synopsys PrimeTime)

Area/cell#/wire
length

Equiv-
alence

CAD Tools
Setup

Cell-based
PDK

User’s Design Requirements:
Protocols, Stage#, Data width, Sync#, Performance...

Design
Constraints

Verilog
Testbench

RC ExtractionPost-layout
gates netlist

Delays
 (sdf)

 (VCD)

Design Generator (shell/tcl/perl scripts)

Fig. 8: Design framework.

TABLE I: Resources Consumption of Multiple FIFO Instances.

FIFO Configuration Throughput Latency Area Data Power
Put Get Stages Gtransfers/s [ns] [µm2] % [µW]

clkd clkd 8 2.19 2.96 2513.82 46.74 66.48
clkd clkd 16 2.14 3.23 3760.59 50.33 91.20
clkd clkd 32 1.97 3.55 8490.22 54.55 127.68

asP* clkd 8 2.27 2.86 1674.59 60.62 65.78
asP* clkd 16 2.23 3.02 3117.22 61.43 126.50
asP* clkd 32 1.93 3.20 6001.06 68.21 199.85

clkd asP* 8 2.35 2.89 1733.51 63.03 48.51
clkd asP* 16 2.2 2.98 3004.55 64.26 90.95
clkd asP* 32 1.92 3.25 6953.87 67.41 212.76

asP* asP* 8 2.29 0.35 1247.34 80.14 38.08
asP* asP* 16 2.32 0.43 2586.88 81.26 133.25
asP* asP* 32 2.03 0.48 5908.89 83.32 213.56

clocks had the maximum clock frequency and were in phase;
then the minimum latency is simply 5 clock cycles.

The asynchronous FIFO uses significantly less area than
the synchronous FIFO, owing to the fact the asynchronous
implementation does not require synchronizing flip-flops. Over
80% of the asynchronous FIFO area is taken up by the latch-
based data store, while for the clocked FIFOs the data uses as
little as 46% and as much as 54% of the total area.

The power analysis was based on a simulation with 100k
random transactions, which on average generated a new trans-
action for 50% of the available slots. Each simulation was done
with the same 100k random transactions and with the same
operating frequency. The power numbers appear to reflect that
the place and route tools are not optimizing for power. Once
the critical paths are optimized for speed, other cells can be
placed nearly arbitrarily due to the small size of the FIFO.
However, this creates a large variation on the internal wire
loads that are driven by the different FIFOs.

V. CONCLUSIONS AND FUTURE WORK

This paper presents modular, high-performance synthesiz-
able interfaces for crossing between asynchronous and syn-
chronous timing domain. Our FIFO is available as an open-
source, highly parameterized design [17]. We provide scripts
for an industry standard design flow based on Synopsis tools.
This includes synthesis, layout generation, extraction, timing
analysis, simulation, and power estimation. We include a
simulation testbench, and scripts for batching sweeping design
parameters to enable exploration of the design space. Our
design should be both useful to designers and provide a
repeatable reference case for other researchers.

Our design exclusively uses cells that are available in a
typical standard-cell library, making it well-suited for use in an
ASIC design flow. In particular, we presented implementations
of this design using the FreePDK, an open-source 45nm
CMOS standard-cell library [18], [19] and a standard ASIC
CAD flow. Even without the use of full-custom logic, all of
our FIFOs achieve throughput exceeding 1.92 giga-transfer per
second for both synchronous and asynchronous version.

As a future work, we are planning to support SRAM-
based storage instead of latch-based storage to increase area
efficiency [40]–[42]. Intentional clock skew can be utilized
to increase the performance of the SRAM blocks [43], [44].
Furthermore, the two-phase protocol can be supported.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on July 15,2021 at 06:31:19 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. M. S. Abdelhadi, “High-Throughput Synthesizable Synchronization
FIFOs for Mixed-Timing NoCs,” in Proceedings of the 13th Interna-
tional Workshop on Network on Chip Architectures (NoCArc), Oct. 2020.

[2] D. Lattard et al., “A Reconfigurable Baseband Platform Based on
an Asynchronous Network-on-Chip,” IEEE J. of Solid-State Circuits
(JSSC), vol. 43, no. 1, pp. 223–235, Jan. 2008.

[3] D. Gebhardt, J. You, and K. S. Stevens, “Design of an Energy-Efficient
Asynchronous NoC and Its Optimization Tools for Heterogeneous
SoCs,” IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Syst. (TCAD), vol. 30, no. 9, pp. 1387–1399, Sept. 2011.

[4] T. Bjerregaard and J. Sparso, “Implementation of Guaranteed Services
in the MANGO Clockless Network-on-Chip,” IEE Proceedings - Com-
puters and Digital Techniques, vol. 153, no. 4, pp. 217–229, July 2006.

[5] R. Dobkin, R. Ginosar, and I. Cidon, “QNoC Asynchronous Router with
Dynamic Virtual Channel Allocation,” in Proc. of the IEEE/ACM Int.
Symp. on Networks-on-Chip (NOCS), May 2007, pp. 218–218.

[6] J. Bainbridge and S. Furber, “Chain: A Delay-Insensitive Chip Area
Interconnect,” IEEE Micro, vol. 22, no. 5, pp. 16–23, Sept. 2002.

[7] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij,
“The VLSI-Programming Language Tangram and Its Translation Into
Handshake Circuits,” in Proc. of the European Conf. on Design Autom.,
1991, pp. 384–389.

[8] D. Edwards and A. Bardsley, “Balsa: An Asynchronous Hardware
Synthesis Language,” The Computer Journal, vol. 45, no. 1, pp. 12–
18, 2002.

[9] S. F. Nielsen, J. Sparsø, J. B. Jensen, and J. S. R. Nielsen, “A behavioral
synthesis frontend to the haste/tide design flow,” in Proc. of the IEEE
Int. Symp. on Asynchronous Circuits and Syst. (ASYNC), May 2009, pp.
185–194.

[10] A. Bardsley, L. Tarazona, and D. Edwards, “Teak: A Token-Flow
Implementation for the Balsa Language,” in Proc. of the Int. Conf. on
the Appl. of Concurrency to Syst. Design (ACSD), July 2009, pp. 23–31.

[11] M. Renaudin and A. Fonkoua, “Tiempo Asynchronous Circuits System
Verilog Modeling Language,” in Proc. of the IEEE Int. Symp. on
Asynchronous Circuits and Syst. (ASYNC), May 2012, pp. 105–112.

[12] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Desyn-
chronization: Synthesis of Asynchronous Circuits From Synchronous
Specifications,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Syst. (TCAD), vol. 25, no. 10, pp. 1904–1921, Oct. 2006.

[13] N. Andrikos, L. Lavagno, D. Pandini, and C. P. Sotiriou, “A Fully-
Automated Desynchronization Flow for Synchronous Circuits,” in Proc.
of the Annu. Design Autom. Conf., June 2007, pp. 982–985.

[14] J. Cortadella, M. Lupon, A. Moreno, A. Roca, and S. S. Sapatnekar,
“Ring Oscillator Clocks and Margins,” in Proc. of the IEEE Int. Symp.
on Asynchronous Circuits and Syst. (ASYNC), May 2016.

[15] Y. Zhang, H. Zha, V. Sahir, H. Cheng, and P. Beerel, “Test Margin and
Yield in Bundled Data and Ring-Oscillator Based Designs,” in Proc. of
the IEEE Int. Symp. on Asynchronous Circuits and Syst. (ASYNC), May
2017, pp. 85–93.

[16] C. E. Molnar, I. W. Jones, W. S. Coates, J. K. Lexau, S. M. Fairbanks,
and I. E. Sutherland, “Two FIFO Ring Performance Experiments,”
Proceedings of the IEEE, vol. 87, no. 2, pp. 297–307, 1999.

[17] A. M. S. Abdelhadi, GitHub Open-Source Repository. [Online]. Avail-
able: https://github.com/AmeerAbdelhadi/cell-based mixed fifo.flow

[18] J. E. Stine et al., “FreePDK: An Open-Source Variation-Aware Design
Kit,” in Proc. of the IEEE Int. Conf. on Microelectronic Systems
Education (MSE), June 2007, pp. 173–174.

[19] J. E. Stine et al., “FreePDK v2.0: Transitioning VLSI Education Towards
Nanometer Variation-Aware Designs,” in Proc. of the IEEE Int. Conf.
on Microelectronic Systems Education (MSE), Sept. 2009, pp. 100–103.

[20] R. W. Apperson, Z. Yu, M. J. Meeuwsen, T. Mohsenin, and B. M. Baas,
“A Scalable Dual-Clock FIFO for Data Transfers Between Arbitrary and
Haltable Clock Domains,” IEEE Trans. on Very Large Scale Integration
Syst. (TVLSI), vol. 15, no. 10, pp. 1125–1134, Oct. 2007.

[21] C. Cummings and P. Alfke, “Simulation and Synthesis Techniques for
Asynchronous FIFO Design with Asynchronous Pointer Comparisons,”
in Synopsys Users Group Conference (SNUG), Jan. 2002.

[22] T. Chelcea and S. M. Nowick, “Robust Interfaces for Mixed-Timing
Systems,” IEEE Trans. on Very Large Scale Integration Syst. (TVLSI),
vol. 12, no. 8, pp. 857–873, Aug. 2004.

[23] I. M. Panades and A. Greiner, “Bi-Synchronous FIFO for Synchronous
Circuit Communication Well Suited for Network-on-Chip in GALS
Architectures,” in Proc. of the IEEE/ACM Int. Symp. on Networks-on-
Chip (NOCS), May 2007, pp. 83–94.

[24] T. Ono and M. Greenstreet, “A Modular Synchronizing FIFO for NoCs,”
in Proc. of the IEEE/ACM Int. Symp. on Networks-on-Chip (NOCS),
May 2009, pp. 224–233.

[25] A. M. S. Abdelhadi and M. R. Greenstreet, “Interleaved Architectures
for High-Throughput Synthesizable Synchronization FIFOs,” in Proc. of
the IEEE Int. Symp. on Asynchronous Circuits and Syst. (ASYNC), May
2017, pp. 41–48.

[26] B. Keller, M. Fojtik, and B. Khailany, “A Pausible Bisynchronous FIFO
for GALS Systems,” in Proc. of the IEEE Int. Symp. on Asynchronous
Circuits and Syst. (ASYNC), May 2015, pp. 1–8.

[27] J. N. Seizovic, “Pipeline Synchronization,” in Proc. of the IEEE Int.
Symp. on Asynchronous Circuits and Syst. (ASYNC), Nov. 1994, pp.
87–96.

[28] S. Jackson and R. Manohar, “Gradual Synchronization,” in Proc. of the
IEEE Int. Symp. on Asynchronous Circuits and Syst. (ASYNC), May
2016, pp. 29–36.

[29] D. G. Messerschmitt, “Synchronization in Digital System Design,” IEEE
J. Sel. Areas Commun (J-SAC), vol. 8, no. 8, pp. 1404–1419, Oct. 1990.

[30] M. R. Greenstreet, “STARI: A Technique for High-Bandwidth Commu-
nication,” Ph.D. dissertation, Department of Computer Science, Prince-
ton University, Jan. 1993.

[31] A. Chakraborty and M. R. Greenstreet, “Efficient Self-Timed Interfaces
for Crossing Clock Domains,” in Proc. of the IEEE Int. Symp. on
Asynchronous Circuits and Syst. (ASYNC), May 2003, pp. 78–88.

[32] W. J. Dally and S. G. Tell, “The Even/Odd Synchronizer: A Fast, All-
Digital, Periodic Synchronizer,” in Proc. of the IEEE Int. Symp. on
Asynchronous Circuits and Syst. (ASYNC), May 2010, pp. 75–84.

[33] D. Verbitsky, R. R. Dobkin, R. Ginosar, and S. Beer, “StarSync: An
Extendable Standard-cell Mesochronous Synchronizer,” Integr. VLSI J.,
vol. 47, no. 2, pp. 250–260, Mar. 2014.

[34] Design Compiler User Guide, Synopsys Inc., Mar. 2016, ver. L-2016.03-
SP1.

[35] IC Compiler Implementation User Guide, Synopsys Inc., Mar. 2016, ver.
L-2016.03-SP4.

[36] StarRC User Guide and Command Reference, Synopsys Inc., Dec. 2015,
ver. K–2015.12.

[37] PrimeTime User Guide, Synopsys Inc., Dec. 2015, ver. K–2015.12.
[38] VCS MX/VCS MXi User Guide, Synopsys Inc., May 2016, ver.

L–2016.06.
[39] PrimeTime PX User Guide, Synopsys Inc., Dec. 2016, ver. M–2016.12.
[40] A. M. S. Abdelhadi and G. G. F. Lemieux, “A Multi-ported Memory

Compiler Utilizing True Dual-Port BRAMs,” in Proc. of the IEEE Annu.
Int. Symp. on Field-Programmable Custom Comput. Mach. (FCCM),
Aug. 2016, pp. 140–147.

[41] A. M. S. Abdelhadi and G. G. F. Lemieux, “Deep and Narrow Binary
Content-Addressable Memories Using FPGA-Based BRAMs,” in Proc.
of the Int. Conf. on Field-Programmable Technol. (FPT), Dec. 2014, pp.
318–321.

[42] A. M. S. Abdelhadi, G. G. F. Lemieux, and L. Shannon, “Modular
Block-RAM-Based Longest-Prefix Match Ternary Content-Addressable
Memories,” in Proc. of the Int. Conf. on Field Programmable Logic and
Applications (FPL), Aug. 2018, pp. 243–2437.

[43] A. Brant, A. Abdelhadi, A. Severance, and G. G. F. Lemieux, “Pipeline
Frequency Boosting: Hiding Dual-Ported Block RAM Latency Using In-
tentional Clock Skew,” in Proc. of the Int. Conf. on Field-Programmable
Technol. (FPT), Dec. 2012, pp. 235–238.

[44] A. Brant, A. Abdelhadi, D. H. H. Sim, S. L. Tang, M. X. Yue, and
G. G. F. Lemieux, “Safe Overclocking of Tightly Coupled CGRAs and
Processor Arrays using Razor,” in Proc. of the IEEE Annu. Int. Symp.
on Field-Programmable Custom Comput. Mach. (FCCM), June 2013,
pp. 37–44.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on July 15,2021 at 06:31:19 UTC from IEEE Xplore. Restrictions apply.

