
Revisiting Deep Learning Parallelism:
Fine-Grained Inference Engine Utilizing Online Arithmetic

Ameer M.S. Abdelhadi
Department of Electrical and Electronic Engineering

Imperial College London
London SW7 2AZ, United Kingdom

a.abdelhadi@imperial.ac.uk

Lesley Shannon
School of Engineering Science

Simon Fraser University
Burnaby BC V5A 1S6, Canada

lshannon@ensc.sfu.ca

Abstract—Modern Deep Neural Networks (DNNs) exhibit
incredible performance on a variety of complex tasks, such
as recognition, classification, and natural language processing.
Adapting to ever-increasing workloads, deep learning algorithms
have become extremely compute- and memory-intensive, making
them infeasible for deployment on compact, embedded platforms
with power and cost budget limitation. Common methods to min-
imize and accelerate deep learning involve pruning, quantization
and compression of the neural model. While these techniques
show a dramatic model reduction, in several cases they incur
an accuracy degradation. Moreover, methods involving custom
hardware still suffer from large silicon footprint and high power
consumption due to massive computations and external memory
accesses. In this paper, we revisit the parallelism of neural
inference engines. In a departure from the conventional coarse-
grained neuron-level parallelism, we propose a synapse-level
parallelism by performing highly parallel fine-grained neural
computations. Our method employs online Most Significant Digit
(MSD) first digit-serial arithmetic to enable early termination
of the computation. Using online MSDF bit-serial arithmetic
for DNN inference (1) enables early termination of ineffectual
computations, (2) enables mixed-precision operations (3) allows
higher frequencies without compromising latency, and (4) alle-
viates the infamous weights memory bottleneck. The proposed
technique is efficiently implemented on FPGAs due to their
concurrent fine-grained nature, and the availability of on-chip
distributed SRAM blocks. compared to other bit-serial methods,
our Fine-Grained Inference Engine (FGIE) improves energy
efficiency by ×1.8 while having similar performance gains.

Index Terms—machine learning, deep learning, deep neural
networks (DNNs), deep neural networks inference engine, deep
neural networks acceleration, fixed-point deep neural networks

I. INTRODUCTION

Since the beginning of the current century, great achieve-
ments in machine learning have been possible due to sig-
nificant advancements in big data processing. In particular,
deep learning—bio-inspired artificial neural networks—has
become the de facto standard for a variety of machine learning
applications including, but not limited to, image classification
[1], [2], image detection [3], [4], video classification [5], [6],
speech recognition [7], [8], speech synthesis [9], [10], and
language modelling [11], [12].

This research has been funded by the National Sciences and Engineering
Research Council of Canada (NSERC) Chair for Women in Science and
Engineering Grant (British Columbia and Yukon) PDF Funding. This research
has also been funded by the Computing Hardware for Emerging Intelligent
Sensory Applications (COHESA) project. COHESA is financed under the
NSERC Strategic Networks grant number NETGP485577-15.

As depicted in Figure 1, Deep Neural Networks (DNNs)
consist of several layers of processing neurons where data is
transferred between layers via weighted interconnects. This
structure enables learning a higher-level abstracted feature rep-
resentation of a complex multi-dimensional data when trained
with large datasets [13]. However, modern applications compel
an ever-increasing workloads, which adversely requires more
complex neural networks with enormous parameters to better
learn high-level features of the trained dataset and improve
prediction accuracy [14]. Moreover, the majority of deep
learning applications require real-time, low-latency processing.
Due to their complexity, these applications require massive
computing, hence they are rarely found in consumers’ devices.

State-of-the-art DNNs consist of tens to hundreds of compu-
tation layers connected with hundreds of millions of weighted
synapsis. For instance, AlexNet—an image classification net-
works based on Convolutional Neural Networks (CNNs)—
requires 60 million parameters [1], Deep Residual Networks—
an image classifier from Microsoft Research— requires up to
200 million parameters [15], in addition to other attempts to
train 1 billion parameters on a cluster of High-Performance
Computing (HPC) machines [14], [16], [17].

The extreme depth of modern DNN models incurs an
increasing demand on compute- and memory- intensive pro-
cessing platforms, accommodating the extensive amount of
parameters, and performing the training or inference of the
model within a reasonable time. Using general-purpose com-
puting systems to train or merely infer a DNN model is
highly inefficient since the model is stored in an external
memory. The complete model—possibly containing hundreds
of millions of parameters—must be entirely modified in case
of training, or entirely fetched (for each input data instance)
in case of inference, then processed massively on area- and
power-hungry multiply-accumulate (MAC) units.

Training of DNN models is still the bottleneck of com-
putation due to dramatically increasing amounts of training
passes. Training can span over several days with modern
massive computing systems [14], [16], [17]. While training of
the model is required only once before deploying the model
into the target platform, the inference of the model is required
for every input data instance. The majority of applications
require real-time and low-latency processing, thus effectively
inferencing the model is the actual bottleneck.

1

Mammal?

Bird?

Fish?

INFERENCE

TRAINING

Trained Model

Untrained Model

T
ra

in
in

g
 D

a
ta

se
t

ErrorForward

Backpropagation

T
ra

in
in

g
 P

as
se

s

=?



Backward

“Bird”
“Fish”





Thousands
to Millions

“Bird”
“Fish”

“Mammal”

Real-time
Input

Fig. 1: Deep learning abstraction.

Recently, Graphics Processing Units (GPUs)—highly-
parallel processing arrays—are exploited to accelerate DNN
computation and satisfy the real-time low-latency requirement
[18]. While these highly-parallel arrays successfully accelerate
the training and the inference of DNN models [14], their inte-
gration into embedded, mobile, and robotic systems—in which
the majority of machine learning algorithms are applicable—
is power and cost-prohibitive. Alternatively, Special-purpose
hardware devices are leveraged by the leading technology
vendors (e.g., Google’s Tensor Processing Unit (TPU) [19])
to accelerate training and inference while limiting power
dissipation. Typically, these devices are designed to handle
the majority of deep learning applications, which adversely re-
duces their efficiency. Furthermore, the fabrication of special-
purpose devices requires more engineering effort and incurs
longer time-to-market and higher costs.

On the other hand, reconfigurable devices—such as Field-
Programmable Gate Array (FPGAs)— exhibit a balance of
cost, flexibility, performance, and power consumption. Com-
pared to GPUs, reconfigurable devices offer higher opera-
tions/Watts, more efficiently implement irregular structures
(e.g., pruned networks), and fine-grained computations (e.g.,
quantized networks) [20]. As oppose to custom-design special-
purpose hardware, reconfigurable devices can be recompiled
with different deep learning architectures and optimizations,
hence they offer a balance between the flexibility of GPUs
and the efficiency of custom-hardware.

In this paper, we develop an efficient non-conventional deep
learning inference engine, especially applicable for FPGA de-
vices. Whereas traditional inference methods evaluate a single
synapse of several neurons in parallel coarse-grained com-
putations, the proposed approach evaluates several synapses
each within several neurons in parallel fine-grained computa-
tion. We call the former technique coarse-grained bit-parallel

TABLE I: List of Notations and Abbreviations

l Number of layers
ni Number of neurons in layer i
ai Input activation vector of the i-th layer
aij The j-th element of the previous vector

bi Bias vector of the i-th layer
W i Weights matrix of the i-th layer
wi

j,k The weight of the k-th synapse in the j-th neuron in the i-th layer

x 〈i〉 Single bit selection: the i-th bit of a binary vector b
si Synapse parallelism. The number of synapses that can be processed in

parallel by a single FGIE tile in the i-th layer
pi Neuron parallelism. The number of neurons that can be processed in

parallel by FGIE tiles in the i-th layer.
qi Width of the fixed-point representation (in bits) of the i-th layer.
Bi The number of BRAMs required for the i-th layer.

neuron-level parallelism, while we call the latter fine-grained
bit-serial synapse-level parallelism.

In a departure for conventional bit-serial inference methods,
our Fine-Grained Inference Engine (FGIE), exploits online
Most Significant Digit First (MDSF) arithmetic. To the best
of our knowledge, this is the first attempt to utilize online
arithmetic for neural computation. Thanks to online arith-
metic, FGIE achieves ×1.8 improvement in energy efficiency
compared to the best of other bit-serial approaches. These
efficiency gains were possible since online MSDF arithmetic
process most significant data first and allows to terminate
the computation once the processed data is sufficient to
determine the computation outcome. FGIE also supports layer-
wise mixed-precision operations, which reduces the number of
computations without reducing the model accuracy. FGIE also
allows high frequencies without compromising latency, due to
the fine-grained operations. Also, the memory bandwidth is
dramatically reduced since weights are read serially.

Notation and abbreviations used for the rest of the paper are
listed in Table I. The paper is organized as follows. Section II
reviews deep neural networks, optimization methods, bit-serial
inference, and online arithmetic. Section III describes our
fine-grained synapse-level-parallel inference approach. In Sec-
tion IV our experimental framework is presented, results are
discussed, and other state-of-the-art approaches are compared.
Finally, Section V concludes the paper with future suggestions.

II. BACKGROUND AND PRELIMINARIES

This section reviews the basics of DNN inference and
online arithmetic. A formalization of multilayer perceptrons
is given in Subsection II-A. Optimizing deep learning models
is discussed in Subsection II-B Bit-serial inference is reviewed
in Subsection II-C. Finally, preliminaries of online arithmetic
and redundant number system are provided in Subsection II-D.

A. Deep Neural Networks

Figure 2 shows a multilayer perceptron (MLP). MLP is
a feedforward fully-connected (FC) artificial neural network.
Computation of a single layer is described as the following
matrix-vector multiplication (MxV)

ai+1 = σ
(
W iai + bi

)
, (1)

2

+ =

Input
layer

Output
layer

Hidden
Layer

Hidden
Layer

Fig. 2: A single layer of fully-connected network shown as MxV operation.

and element-wise for index k as

ai+1
k = σ

ni−1∑
j=0

wik,ja
i
j + bij

 , (2)

where ai is the input activation vector of layer i, ai+1 is the
output activation vector of layer i, which is also fed as the
input activation of the next layer i+1, bi is the bias vector of
layer i, W i is the weights matrix of layer i, and σ is a non-
linear activation function. The Rectified Linear Unit (ReLU)
is typically used for more efficient computation and better
training via backpropagation [21],

ReLU(x) := x+ = max(0, x). (3)

Fully-connected layers typically incur massive computation
and storage requirements. The growth of the weights matrix is
quadratic to the activation vector size. For instance, AlexNet
consists of two fully-connected layers, FC6 and FC7, each
with activation vectors of 4k elements [1]. Their associated
weights matrix is therefore 4k×4k=16M weights. A single-
precision floating-point representation of the weights thus
requires a storage of 512Mb.

B. Optimizing Deep Learning Models

Although oversized and over-parametrized DNN models
yield higher accuracy while training large datasets, compact
models can be efficiently used for inference without substantial
degradation of the model accuracy.

Since the majority of power in DNNs is dissipated on
memory accesses [22], reducing the number of parameters
by pruning the network will result in a reduced model with
less storage requirement, accelerated computation, and less
power consumption [23]. Quantization is another approach
used to compress the network by reducing the accuracy of
the parameters [23]–[25]. In extreme cases, binary or ternary
synaptic weights are used [26].

While these methods successfully reduce the complexity of
DNN models, it’s challenging to map these irregular struc-
tures to GPUs, the current mainstream DNN platforms [20].
Special-purpose hardware has been developed to implement
the aforementioned compression schemes [22], [23], [27]–
[29]. However, this special-purpose hardware is tailored to a
specific compression scheme and is only suitable for limited

TABLE II: Example of Inference Architectures and Their Classification.

Architecture Granularity Activations Weights Arithmetic Platform

DaDianNao [30] coarse parallel parallel parallel ASIC
NeuFlow [31] coarse parallel parallel parallel ASIC\FPGA
Stripes [34] mixed serial parallel LSB first ASIC
Pragmatic [35] mixed serial parallel LSB first ASIC
Loom [36] fine serial serial LSB first ASIC
BISMO [37] fine serial serial LSB first FPGA
Moss et al. [38] fine mixed mixed LSB first FPGA

FGIE (proposed) fine serial serial MSB first FPGA

DNN models. Furthermore, these accelerators still suffer from
common drawbacks of special-purpose hardware, namely, high
fabrication cost, engineering effort, and long time-to-market.

C. Bit-serial Inference Engines

As shown in Table II, DNN inference engines can be
categorized into three classes based on the granularity of the
computation: coarse-grained bit-parallel, mixed-granularity,
and fine-grained bit-serial. Bit-parallel ASIC-based DNN in-
ference engines, such as Google’s Tensor Processing Unit [19],
DaDianNao [30], and NeuFlow [31] are designed to support
a specific number format with constant precision across all
network layers. However, parallel processing of may introduce
a redundancy in the computation model for two reasons. First,
parallel arithmetic compels specifying the number format at
design-time, whereas the optimal number precision may be
different for each network layer [32]. Second, The number
values may have ineffectual computations, such as multiplying
by zero. Cnvlutin [33] for instance, is an attempt to eliminate
ineffectual computation and enhance the computation model.
Conversely, bit-serial inference engines inherently support
dynamic precision computation, allowing a run-time dynamic
mixed-precision configuration. Stripes [34] and Pragmatic [35]
adopt a mixed-granularity architecture. While the activations
are received in bit-serial manner, the weights are read as a
bit-parallel data. Unlike Stripes, Pragmatic allows skipping
ineffectual zero bits of the weights. Loom [36], on the other
hand, processes both weights and activations in a bit-serial
manner. BISMO [37] and the work of Moss et al.provide a
multiply–accumulate (MAC) for reconfigurable devices. While
BISMO is bit-serial, the work of Moss et al. dynamically
switch granularity and precision in run-time.

D. Online Arithmetic and Redundant Number System

Online arithmetic is an unconventional approach widely
used in digital signal processing [39]. Online arithmetic al-
gorithms perform a digit-serial Most Significant Digit First
(MSDF) computation. The result is generating serially, Most
Significant Digit (MSD) first, while consuming the inputs,
also starting from the most significant digits. Generating the
output’s MSD based on partial knowledge of the inputs is
achieved by employing a Redundant Number System (RNS).

Given an N -digit radix r number in the range (−1, 1),
X =

∑N
i=1 xir

−i, a conventional number representation
allows only r possible values for each digit, namely, xi ∈
{0, 1, . . . , r−1}. This is the smallest digit set to represent radix
r where each number will have a unique representation, thus

3

Fig. 3: (left) Timing of the online digit-serial MSDF arithmetic. Outputs are
generated starting from the MSD while consuming inputs starting from the
MSD. (right) An example with N = 4 and δ = 2

this representation is non-redundant. Conversely, a redundant
number system allows more than r possible values in the digit
set, creating several representations for a single value. The
redundancy allows fixing the result of previously computed
digits by revising the subsequent digits. For instance, while the
conventional (non-redundant) addition operation propagates
carry from LSD to MSD, using a redundant number system
can absorb the carry and eliminate the curry propagation.

Major redundant representation systems are signed-digit
(SD) [40] and carry-save (CS) [41]. While in a conven-
tional non-redundant number system of radix r the digit set
{0, 1, · · · , r−1} is used, the SD representation represents each
digit with the symmetric redundant set {−a, . . . , 0, . . . , a},
where a ∈ {dr/2e, . . . r − 1}.

As described in Figure 3, outputs and inputs are processed
both in MSDF manner. Generating the MSD digit of the output
requires receiving δ MSD digits of the inputs. In general,
generating an output digit of significance i, where the MSD
is of significance 1, requires seeing i+ δ digits of the inputs.
δ ∈ N+ is the online delay; a precision-independent constant.
Assuming N -digits radix r fixed-point representation in the
range (-1,1), the inputs and outputs in Figure 3 at cycle
c ∈ {1, . . . , N + δ} are

X[c] =

c∑
i=1

xir
−i; Y [c] =

c∑
i=1

yir
−i; Z[c] =

c−δ∑
i=1

zir
−i. (4)

III. FGIE: FINE-GRAINED INFERENCE ENGINE VIA
SYNAPSE-LEVEL PARALLELISM

We now present the proposed architecture. Subsection III-A
motivates and explains the key idea for this work. A detailed
classification of bit-serial inference is provided in Subsec-
tion III-B. The functionality and design consideration of our
method is described in Subsection III-C.

A. Motivation and Key Idea

Modern DNN architectures are compute- and memory-
intensive, however, these models are typically over-
parameterized, which adversely incurs massive redundancy.
As described earlier in Subsection II-B, this redundancy can
be alleviated by reducing the number of synapses via pruning
[23] or by reducing the model precision via quantization
[23]–[26], however, both of these techniques reduce the
model accuracy and yield an irregular computation structure.
Compression schemes are applied to reduce storage [22],
[23], [27]–[29], nevertheless, the overhead of decompression

TABLE III: Percentage of Silenta Neurons and the Average Number of Bits
Required to Determine if a Neuron is Silent.

Network Precision Size Silent Determine if
bit/layer neuron/layer neurons silent [bit/layer]

AlexNet [1] 10-9-9 4096×4096×1000 52.5% 4.67-4.34-4.33
GoogLeNet [45] 7 1024 58.7% 3.39
VGGS [46] 10-9-9 4096×4096×1000 56.4% 4.62-4.27-4.25
VGGM [46] 10-8-8 4096×4096×1000 57.0% 4.61-3.83-3.85
VGG19 [46] 10-9-9 4096×4096×1000 56.8% 4.61-4.27-4.26
a Silent: Not firing. Not passing activation threshold.

is cost-prohibitive. DNNs with bit-serial arithmetic [34]–[36],
[38], [42] is another way to reduce computation redundancy.
These methods break parallel operations (e.g., multiply-add)
into fine-grained bit-serial operations, which enables the
elimination of neutral computations.

On the other hand, this work is inspired by the low rate
of firing neurons in biological systems, namely these systems
are sparsely active where the majority of neurons are “silent”
[43]. An attempt to apply this biological finding on artificial
DNNs also reveals that the majority of neurons are not firing,
namely, not passing the activation threshold where a neuron
transfers its output to the next level. For instance, Table III
reveals that 56.3% of the fully-connected layer neurons are
silent when deploying the ImageNet dataset [44] on several
CNN models. These silent neurons do not transfer their output
to the next level. If these silent neurons can be early detected,
the computation can be stopped, and consequently less power
will be consumed.

Table III shows that an average of 4.6 MSBs (from each
10-bit synapse) are sufficient to detect if a neuron is firing.
If ReLU is used as an activation function, firing neurons
will have positive values. To perform early detection of silent
neurons, MSBs of the neural outputs should be generated
and processed first. Thus, an MSDF online arithmetic is
required for neural computation. Benefits of using online logic
arithmetic are four-fold. First, the computation can be stopped
as early as we detect that the neuron is not passing the
activation threshold, thus more computations per Watts can
be performed. Second, online fine-grained operations allow
higher frequencies without compromising latency. Third, bit-
serial operations allow layer-wise mixed-precision operations.
Finally, bit-serial communication demands less bandwidth of
the synaptic weight memory. While other bit-serial methods
perform traditional LSB first arithmetic [34]–[36], [38], [42],
to the best of our knowledge, our technique is the first to
utilize MSDF online arithmetic for DNN inference.

B. A classification of of DNN inference parallelism

A classification of DNN inference parallelism is given in
Figure 4. This figure is a high-level overview of three inference
architectures, based on the computation granularity. For each
architecture, we also describe the parallelism of the MxV
operation—the core computation of DNN inference. As de-
picted in Figure 4 (a), a traditional bit-parallel inference engine
evaluate a single synapse of several neurons in parallel coarse-
grained computations. The MxV parallelism map shows that
each activation input is processed for all neurons in parallel.

4

Address
Counter

wm-1,n-1

wm-1,1w0,1 w1,1

w1,n-1w0,n-1

wm-1,0w1,0w0,0

a
m
-1

w0,0

wm-1,n-1

w1,0

wm-1,0

w0,1

w1,1

wm-1,1

w0,n-1

w1,n-1

a0
a1

am-1

a
0

a
1

a
0

a
1

a
m
-1

× + ReLU

× +
× +

ReLU

ReLU

+ ReLU

<<+

a
m
-1

a
0

a
1

a
0

a
1

a
m
-1

a
m
-1

a
0

a
1

w
0,0

w
1,0

w
m
-1,0

a
m
-1

a
0

a
1

w
0,1

w
1,1

w
m
-1,1

a
m
-1

a
0

a
1

w
0,n-1

w
1,n-1

w
m
-1,n-1

Controller

+1

+1

+ ReLU

<<+
+ ReLU

<<+

Address
Counter

a0

a1

a2

w0,0

w2,n-1

w1,0

w2,0

w0,1

w1,1

w2,1

w0,n-1

w1,n-1

a0

a1

am-1

w0,0

wm-1,n-1

w1,0

wm-1,0

w0,1

w1,1

wm-1,1

w0,n-1

w1,n-1
msb

a0

a1

am-1

w0,0

wm-1,n-1

w1,0

wm-1,0

w0,1

w1,1

wm-1,1

w0,n-1

w1,n-1
msbmsb

 Online ReLU

: 1st cycle, : 2nd cycle, : 3rd cycle ...Parallelism Legend:

Online
Adder Tree

Online
Adder Tree

Online
Adder Tree

al+10

al+11

al+1n-1

al+10 al+11 al+1n-1

al+10

al+11

al+1n-1

l

l

l

l l

ll

l

l

l l l

l l l

ll l

l l l

l l l ll l l l l

l l l

l l l

Accumulators

T

T

T

 Online ReLU Online ReLU

(a)

(b)

(c)

Fig. 4: Classification of neural inference parallelism: (a) Coarse-grained
neuron-level parallelism (e.g., DaDianNao [30]), (b) mixed-granularity par-
allelism (e.g., Stripes [34] and Pragmatic [35], and (c) the proposed Fine-
Grained Inference Engine (FGIE) with synapse-level parallelism.

A mixed-granularity bit-serial architecture is shown in
Figure 4 (b). This class of inference breaks a multiply-add
operation into a series of add-shift operations. The parallelism
map of this model shows that several same-significance bits,
one bit from each activation input, are processed together.
These bits are AND’ed with the corresponding weights, then
added together with the shifted and accumulated output. This
operation yields the dot product of the input activations and
the corresponding weights. This model requires high memory
bandwidth to fetch and process synaptic weights in parallel.
Conversely, the proposed approach evaluates several synapses,
each within several neurons in parallel fine-grained computa-
tion as illustrated in Figure 4 (c).

In a departure from the conventional coarse-grained neuron-
level parallelism, we propose a synapse-level parallelism
by performing highly parallel time-multiplexed fine-grained
neural computations. As depicted in the parallelism map of
this approach, most significant bits are processed first, and
most significant bits of the output are generated consequently.
The fine-grained operations are performed online (MSB-first),
which allows detecting at early computation stages if the
neuron is firing. In case the neuron output is not firing, the
computation can be stopped for energy saving. More detail on
the functionality of this approach is provided next.

C. The Functionality of our Fine-Grained Inference Engine

A high-level overview of our proposed architecture is
illustrated in Figure 4 (c). The multiply-add operation is
fragmented into fine-grained operations. Both weights and
activations are stored vertically in the BRAMs and are received
as a bit-serial stream. The multiply-add operation of multiple
synapses is described in Figure 5. Weight and activation bits
that generate the MSB of the sum are read and processed first.
The example given in Figure 5 describes a multiply operation
with 4-bit operands. In this specific example, the third bit is the
MSB that we want to generate first. All weight and activation
bits that contribute to this summation are bits with indices that
sum up to 3, thus the index pairs {(0, 3), (1, 2), (2, 1), (3, 0)}.
For each synapse, these bits are serially AND’ed and the result
is accumulated. Figure 5 shows the temporal order of the
fine-grained operations that are required to generate the sum,
starting from the MSB. Register “S” accumulates all values
of same significance and passes the result to an online adder
tree, followed by an online ReLU. Since the online ReLU is
fed with MSBs first, it can detect early if the output passes
the activation threshold.

MSDF online neural arithmetic A redundant number
system is used to prevent any carry propagation. This is in con-
trary to ripple-carry arithmetic, where carry digits flow from
the least-significant digits up to the most significant digits. Our
architecture employs the Signed-Digit (SD) redundant num-
ber representation [40]. While in a common non-redundant
number system of radix r the digit set {0, 1, · · · , r − 1} is
used, the redundant SD number system uses the digit set
{−a, · · · ,−1, 0, 1, · · · , a}, where a ∈ {dr/2e, · · · , r − 1}.
Due to this redundancy, the output MSD can be calculated

5

a2w0a2w1

‹2›

t0

1

2

3

6 7

9

85

4

Synapses
Weights & activations width

 Reset accumulator S

Add to accumulator S:

‹3› ‹1› ‹0›

‹2› ‹3› ‹1› ‹0›

‹0›
‹3›

‹0›
‹2›

‹0›
‹1›

‹0›
‹0›

‹1›
‹3›

‹1›
‹2›

‹1›
‹1›

‹1›
‹0›

‹2›
‹3›

‹2›
‹2›

‹2›
‹1›

‹2›
‹0›

‹3›
‹3›

‹3›
‹2›

‹3›
‹1›

‹3›
‹0›

 Enable online adder: Pa
rt

ia
l P

ro
du

ct
s

Fig. 5: Scheduling of digit-serial MSD-first multiply-add.

using partial digits of the inputs. Since each number can be
represented in multiple ways, the value of the output can be
revised when calculating the less-significant digits.

The MSDF online adder. The online adder is depicted
is Figure 6. A digit-parallel online adder is shown in Fig-
ure 6 (middle). The core of this online adder is the re-
dundant half-adder (rHA) unit. The rHA unit receives two
number, x and y, of radix r and SD representation of
{−a, · · · ,−1, 0, 1, · · · , a}, and computes the sum, s and the
curry out c using the same representation, namely,

(c,s)=


(1, x+ y − r) if x+ y ≥ a

(−1, x+ y + r) if x+ y ≤ −a
(0, x+ y) otherwise

. (5)

The main purpose of the rHA unit is to return the sum into
the same redundant representation if the sum overflows the
representation range. A bit-parallel redundant adder is depicted
in Figure 6 (middle). This adder is implemented using the rHA
unit and two-digit redundant adder. The indices of the inputs,
x and y, and the output sum, z, represents the arrival time
of the serial bits, namely, bits with lower indices are received
first, thus are more significant. The online bit-serial adder is
illustrated in Figure 6 (middle) and is designed by temporarily
folding the bit-parallel redundant adder. The online adder is
used to construct an online addition tree as depicted in Figure 4
(c), to sum the accumulated same-significant digits of all
synapses (most significant first).

The MSDF online ReLU. As shown in (3), a bit-parallel
ReLU passes positive inputs only. If the input is negative, the
ReLU produces zero. a bit-parallel ReLU simply checks the
sign bit of the inputs and generates the output accordingly. On
the other hand, an MSDF bit-serial ReLU detects early (before
seeing all input digits) if the input is negative and subsequently
outputs zero, sends a “stop compute” signal backwards. The
input of our bit-serial online ReLU is represented using the
same SD redundant number system as of the online address.
This representation allows our online ReLU to detect if its
input is negative as soon as a non-zero digit is received.

The online ReLU receives its input serially. The digits are
accumulated as they received to convert the redundant SD

rHA

+
rHArHA

++
rHA

+
≥? ≤?

+

rHA +
MSD

LSD

Fig. 6: (left) Redundant half-adder. (middle) Parallel redundant adder. (left)
Online MSD-first adder.

representation into binary. The online ReLU detects that the
output activation is zero if the current digit is negative while
all previously received digits are zeros. If this condition is
satisfied, the ReLU signals the neuron to stop computation
and resets the accumulator, which consequently outputs zero to
the next layer, otherwise the ReLU will pass the accumulated
value to the next layer.

Scalability of the FGIE architecture. Massively parallel
architectures as in Figure 4 support payloads of a limited
size since processing resources are limited. To enable scal-
able architectures where any payload can be deployed, time-
multiplexing of the processing resources is required. Although
FGIE is designed as a synapse-parallel architecture, we limit
the number of parallel synapses that are processed by a single
FGIE tile, and time-multiplex each tile to enable scalability.

As depicted in Figure 8 (top), an FGIE tile is a basic
Processing Element (PE), that is able to process s synapses
of a single neuron in parallel. The FGIE tile receives s same-
significant weight bits, and s same-significant activation bits,
scheduled as in Figure 5. These bits are AND’ed to generate
a single entry in the partial products, then all bits in the
same column of the Partial products are accumulated. The
scheduler generates the MSBs of the multiply result first
(leftmost column of the partial products in Figure 5). The
generated digits are then fed serially to an online adder tree
(Figure 6), followed by an online ReLU (Figure 7).

As illustrated in Figure 8 (bottom), the FGIE tile is repli-
cated pi in layer i. This is the neural parallelism, namely
the number of neurons that are computed simultaneously.
Following the neural model, all FGIE tiles in the same layer
are connected to the same activation memory, whereas each
FGIE tile is connected to a dedicated weights memory.

Memory packing. While bit-parallel coarse-grained archi-
tectures arrange batches of weights and activations each in
a memory line, our FGIE architecture packs weights and
activations differently. The FGIE engine processes data serially
based on bit significance, accordingly, bits of same signifi-
cance from multiple synapses are stored in a single memory
line. This allows for all bits of the same significance to be
fetched in a single cycle. Figure 9 describes the packing of

All previous digits = 0

x

≠ 0

<0

Stop compute

Stop

+ rst
<<

Redundant to bin
Fig. 7: Online ReLU. Detects negative inputs, stops compute and resets output.

6

FGIE Tile
FGIE Tile

FGIE Tile

A N D P l a n e

+
+

+

O
nl

in
e

+

 O
nl

in
e

R

eL
U

O
nl

in
e

+ O
nl

in
e

+

Serial weights

 synapses FGIE Tile

Incrementor

Fig. 8: (top) An FGIE tile. Processes s synapses in parallel. (bottom) An
FGIE layer. Computes p neurons with s synapses each.

weights and activations in BRAMs. Bits of same significance
are stored in blocks, each block contains ni−1/si lines, where
each line packs si bits. This is because an FGIE tile in layer i
can process si bits simultaneously. Given that the fixed-points
representation has qi bits in layer i, the memory depth is
thereby qi(ni−1/si). Since an FGIE layer is time-multiplexed
ni/pi times, it requires ni/pi times deeper memory.

To estimate the number of memory blocks needed to
accommodate weights and activations, the packing function
pack(BRAM, d, w) tells how many memory blocks of a
specific type are required to store a d × w data block. This
is a device-dependent parameter and is based on the size and
configurability of the memory block. The number of memory
blocks required by level i is therefore

Bi =

activation BRAMs for a single tile︷ ︸︸ ︷
pack(BRAM, qi

ni−1

si
, si)+

weight BRAMs for a single tile︷ ︸︸ ︷
pack(BRAM, qi

ni−1

si
ni

pi
, si) pi. (6)

For instance, Intel’s M20K blocks can be configured into
several RAM depth and data width configurations [47]. The
total amount of utilized SRAM bits can be either 16Kbits, or
20Kbits. Assuming that the RAM packing process minimizes
the number of blocks cascaded in depth to avoid additional

Synapses MSB
Synapses MSB
Synapses 2 MSB

Synapses LSB

Synapses 2 LSB
Synapses LSB

 synapses (bits)

LSBs

Fig. 9: Memory packing. Groups of s same-significance synapse bits are
packed into the same memory line. Activations block requires qini−1/si

lines, while weights block require ni/pi times more.

1
2

4

8

16

1 2 4 8 16 32

2

4

5 10 20 40 10 20

1

Fig. 10: Intel’s FPGA on-chip memory (left) M20K 20Kb configuration
(middle) M20K 16Kb configuration (right) MLAB 640-bit configuration.

address decoding, each 16K lines will be packed into single
bit-wide blocks, and the remainder will be packed into the
minimal required configuration. An estimation of the number
of packed M20K blocks required to construct a RAM with a
specific depth, d, and data width, w, is

pack(M20K, d, w)=
⌊
d

16k

⌋
w +



w d %16k > 8k

dw/2 e 8k ≥ d %16k > 4k

dw/5 e 4k ≥ d %16k > 2k

dw/10e 2k ≥ d %16k > 1k

dw/20e 1k ≥ d %16k > 1
2k

dw/40e 1
2k ≥ d %16k > 0

0 otherwise

. (7)

On the other hand, Intel’s Stratix 10 and Arria 10 devices
provides full accessibility to LUT configuration memory as
SRAM blocks with decoded addresses called MLAB [47]
(also known as LUTRAM). However, the LUT configuration
memory can be used either for LUT configuration or as part
of the MLAB. For example, each ALM of a Stratix 10 device
can accommodate a 6-input LUT, hence 64 configuration bits.
Each 10 ALM (a single LAB) creates a simple dual-ported
64 × 10 or 32 × 20 MLAB block. MLABs can be also
utilized to store activation bits. If the required memory is
shallow, MLABs provice higher memory utilization compared
to M20K. An estimation of the number of packed MLAB
blocks required to construct a RAM with a specific depth,
d, and data width, w, is

pack(MLAB, d, w)=
⌊
d
64

⌋ ⌈
w
10

⌉
+


dw/10e d %64 > 32

dw/20e 32 ≥ d %64 > 0

0 otherwise

. (8)

To avoid BRAM underutilization, the depth of the required
memory block qi n

i−1

si
ni

pi is required to be at least the shallow-
est configuration of the BRAM, this is, for instance, 512 lines
for M20K blocks, and 32 lines for MLAB blocks.

External memory support. Modern high-end FPGA devices
integrate several hard on-chip DRAM controllers together with
their configurable fabric. Although the latency and bandwidth
of external memories are inferior to on-chip SRAM memory
blocks, they are capable of storing a large amount of data, not
possible to store on-chip. In case the on-chip memory is not
sufficient to store the entire weights matrices, we propose to
store a portion of the weights matrices in the external memory.
Since the multiplication operation is fragmented, every weight
bit is reused with all q activation bits, thereby we need to fetch
a weight bit every q cycles. The wights are cached on-chip for
reuse. For every layer i, the external memory is now required

7

TABLE IV: Relative Performance/Area and OPS/Watt Compared to DaDianNao [30] (base), Stripes [34], Loom [36], BISMO [37], and Moss et al. [38].

Network Precision Size Stripes [34] Loom [36] BISMO [37] Moss et al. [38] FGIE (proposed)
bit/layer neuron/layer Perf/Area OPS/Watt Perf/Area OPS/Watt Perf/Area OPS/Watt Perf/Area OPS/Watt Perf/Area OPS/Watt

AlexNet [1] 10-9-9 4096×4096×1000 0.79 0.84 1.23 1.39 1.25 1.57 1.32 1.63 1.17 2.98
GoogLeNet [45] 7 1024 0.81 0.82 1.66 1.79 1.72 1.81 1.80 1.92 1.38 3.18
VGGS [46] 10-9-9 4096×4096×1000 0.79 0.83 1.19 1.34 1.24 1.52 1.35 1.61 1.14 2.97
VGGM [46] 10-8-8 4096×4096×1000 0.80 0.84 1.22 1.32 1.27 1.55 1.38 1.63 1.21 2.99
VGG19 [46] 10-9-9 4096×4096×1000 0.79 0.84 1.20 1.37 1.24 1.49 1.32 1.60 1.15 2.95

Geometric Mean 0.80 0.83 1.29 1.43 1.33 1.58 1.42 1.67 1.21 3.01

to transfer si bits for each one of the pi FGIE tiles every qi

cycles. A total of
l−1∑
i=0

sipi/qi bits/cycle. (9)

The weighted are packed in the same manner as described be-
fore, namely packed by bit-significance. Each external memory
transfer cycle will bring a block of bits of same-significance.

For instance, Intel Stratix 10 MX devices integrate two
HBM2 devices in a single package, enabling a memory band-
width of 512 GBps. At a typical core frequency of 500 MHz,
this interface provides 8388 bits/cycle. This bandwidth can
support an FGIE of (l, s, p, q) = (8, 128, 64, 8), for instance

IV. EXPERIMENTAL RESULTS

To evaluate our proposed FIGE architecture and compare
it to earlier techniques, fully parameterized Verilog modules
have been developed. All different FGIE instances are syn-
thesized, placed, and routed using Intel Quartus Prime 19.1
[48] targeting Intel’s Arria10 GX1150 10AX115U1F45E1SG
FPGA device [47] while enabling timing-driven synthesis,
retiming, and other optimizations. This is the highest speed
grade device with 427k ALMs and 2,713 M20K BRAMs
(53Mb). Half of the ALMs can be used as MLABs, where
each MLAB replaces 10 ALMs. This is a total of 20,774
MLAB blocks (12.68Mb). Timing and power measurements
were obtained using Intel Quartus Prime Timing Analyzer and
Power Analyzer, respectively. Power analysis is data-driven,
namely activity factors are retrieved from actual inference
instances. The network performance is obtained via Verilog
cycle-accurate simulation. The FGIE is evaluated assuming
all activations are stored on-chip, and weights are stored either
on-chip or off-chip.

Table V shows different implementations of the FGIE archi-
tecture on Arria10 GX1150 device. The BRAM consumption
is in agreement with (6). Fmax measurements show that our
architecture enables the device to run at high frequencies due
to the fine-granularity nature of the computations. This is in
agreement with the 500MHz fabric operation frequency of
Arria10 GX devices, as reported by Intel [47].

Table IV reports the relative performance per area and
energy efficiency of different bit-serial methods, including
Stripes [34], Loom [36], BISMO [37], and Moss et al. [38], all
relative to DaDianNao [30]. Similar to the inference model in
Figure 4 (a), DaDianNao is a bit-parallel accelerator with 16-
bit fixed-point weight and activations. DaDianNao can process

TABLE V: Resources Consumption of Multiple FGIE Instances.

s p Precision Size ALMs M20Ks Fmax
bit/layer neuron/layer (MHz)

64 32 8-9-10 1024×1024×1024 83,811 1,784 413
64 64 8-9-10 1024×1024×1024 140,816 1,835 387
128 16 8-9-10 1024×1024×1024 77,709 1,838 425
128 32 8-9-10 1024×1024×1024 138,343 1,852 394
256 16 8-9-10 1024×1024×1024 139,641 1,671 377

several synapses of several neurons in parallel. Performance
per area is measured as the ratio of the execution time and the
consumed area. OPS/Watt is energy efficiency. All numbers
reported in Table IV are relative to DaDianNao [30].

In Table IV we evaluate the fully-connected layer of 5
popular CNN architectures: AlexNet [1], GoogLeNet [45],
VGGS, VGGM, and VGG19 [46]. The precisions profile per
layer weights and activations is derived to prevent any loss of
the top-1 accuracy. This precision varies from 7 to 10 bits.
This follows the method of Judd et al. for fair comparison.

Stripes [34] does not employ mixed-weight precisions for
fully-connected layers, thus its relative performance and en-
ergy efficiency is inferior to the other methods. The other
methods (Loom [36], BISO [37], and the work of Moss et
al. [38]), are all fine-grained bit-serial architectures. Their
relative mean performance/area is between ×1.29 and ×1.42,
and energy efficiency is between ×1.44 and ×1.67. Compared
to other bit-serial methods, the online arithmetic overhead
of FGIE incurs a minor reduction in the relative perfor-
mance/area. However, the energy efficiency of FGIE is ×1.8
the best of other bit-serial methods thanks to the online
arithmetic partial computation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel architecture of an ef-
ficient non-conventional deep learning inference engine, es-
pecially applicable for FPGA devices. Our design efficiently
utilizes online MSDF arithmetic to stop computation and
avoid ineffectual computations. This technique successfully
improves energy efficiency by ×1.8 compared to other bit-
serial methods, enables mixed-precision operations, supports
high frequencies, and alleviates the memory bottleneck.

As future work, we are planning to extend the online com-
putation to the complete network, not only inside layers. This
allows generating the network output MSD-first. If the number
of output MSD’s is enough to make output discrimination (e.g.,
classification with enough confidence) the computation will be
stopped. Furthermore, FGIE architecture can be optimized for
ASIC devices.

8

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Proc. of the Int. Conf.
on Neural Inf. Process. Syst. (NIPS), 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” in Proc. of the Int. Conf. on Learning
Representations (ICLR), May 2015.

[3] R. Girshick, “Fast R-CNN,” in Proc. of the IEEE Int. Conf. on Comput.
Vision (ICCV), 2015, pp. 1440–1448.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” IEEE Trans.
on Pattern Anal. and Mach. Intell., vol. 39, no. 6, pp. 1137–1149, June
2017.

[5] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-Scale Video Classification with Convolutional Neural
Networks,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern
Recog. (CVPR), June 2014.

[6] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
Spatiotemporal Features with 3D Convolutional Networks,” in Proc. of
the IEEE Int. Conf. on Comput. Vision (ICCV), 2015, pp. 4489–4497.

[7] G. Hinton et al., “Deep Neural Networks for Acoustic Modeling in
Speech Recognition: The Shared Views of Four Research Groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, Nov. 2012.

[8] D. Amodei et al., “Deep Speech 2: End-to-end Speech Recognition in
English and Mandarin,” in Proc. of the Int. Conf. on Mach. Learning
(ICML), 2016, pp. 173–182.

[9] A. Gibiansky et al., “Deep Voice 2: Multi-Speaker Neural Text-to-
Speech,” in Proc. of the Int. Conf. on Neural Inf. Process. Syst. (NIPS),
2017, pp. 2962–2970.

[10] A. van den Oord et al., “Parallel WaveNet: Fast high-fidelity speech
synthesis,” in Proc. of the Int. Conf. on Mach. Learning (ICML), vol. 80,
July 2018, pp. 3915–3923.

[11] E. Arisoy, T. Sainath, B. Kingsbury, and B. Ramabhadran, “Deep
Neural Network Language Models,” in Proc. of the NAACL-HLT 2012
Workshop, 2012, pp. 20–28.

[12] X. Li, T. Qin, J. Yang, and T. Liu, “LightRNN: Memory and
Computation-efficient Recurrent Neural Networks,” in Proc. of the Int.
Conf. on Neural Inf. Process. Syst. (NIPS), 2016, pp. 4392–4400.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[14] A. Coates, B. Huval, T. Wang, D. Wu, A. Ng, and B. Catanzaro, “Deep
Learning with COTS HPC Systems,” in Proc. of the Int. Conf. on Mach.
Learning (ICML), 2013, pp. 1337–1345.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep Resid-
ual Networks,” in Proc. European Conf. on Comput. Vision (ECCV),
2016, pp. 630–645.

[16] J. Dean et al., “Large Scale Distributed Deep Networks,” in Proc. of the
Int. Conf. on Neural Inf. Process. Syst. (NIPS), 2012, pp. 1223–1231.

[17] Q. V. Le et al., “Building High-level Features Using Large Scale
Unsupervised Learning,” in Proc. of the Int. Conf. on Mach. Learning
(ICML), 2012, pp. 507–514.

[18] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, “NeuFlow: A runtime reconfigurable dataflow processor for
vision,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recog.
(CVPR), June 2011, pp. 109–116.

[19] N. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in Proc. Annu. Int. Symp. on Comput. Archit. (ISCA),
2017.

[20] E. Nurvitadhi et al., “Can FPGAs Beat GPUs in Accelerating Next-
Generation Deep Neural Networks?” in Proc. of the ACM/SIGDA Int.
Symp. on Field-Programmable Gate Arrays (FPGA), 2017, pp. 5–14.

[21] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. of the Int. Conf. on Artificial Intell. and Statistics
(PMLR), vol. 15, Apr. 2011, pp. 315–323.

[22] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” SIGARCH Comput. Archit. News, vol. 44, no. 3, pp.
243–254, June 2016.

[23] S. Han, H. Mao, and W. Dally, “Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding,” CoRR, vol. arXiv:abs/1510.00149, 2015.

[24] D. Lin, S. Talathi, and V. Annapureddy, “Fixed Point Quantization of
Deep Convolutional Networks,” in Proc. of the Int. Conf. on Mach.
Learning (ICML), 2016, pp. 2849–2858.

[25] B. Jacob et al., “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference,” in Proc. of the IEEE Conf.
on Comput. Vision and Pattern Recog. (CVPR), June 2018, pp. 2704–
2713.

[26] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural Net-
works with Few Multiplications,” CoRR, vol. abs/1510.03009, 2015.

[27] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in Proc. Annu. Int. Symp. on Comput. Archit. (ISCA),
2016, pp. 243–254.

[28] Y. Choi, M. El-Khamy, and J. Lee, “Universal Deep Neural Network
Compression,” CoRR, vol. arXiv:abs/1802.02271, 2018.

[29] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compress-
ing Neural Networks with the Hashing Trick,” in Proc. of the Int. Conf.
on Mach. Learning (ICML), 2015, pp. 2285–2294.

[30] Y. Chen et al., “DaDianNao: A Machine-Learning Supercomputer,” in
Proc. of the Annu. IEEE/ACM Int. Symp. on Microarchitecture (MICRO),
Dec. 2014, pp. 609–622.

[31] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, “NeuFlow: A runtime reconfigurable dataflow processor for
vision,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recog.
(CVPR), June 2011, pp. 109–116.

[32] S. Khoram and J. Li, “Adaptive quantization of neural networks,” in
Proc. of the Int. Conf. on Learning Representations (ICLR), May 2018.

[33] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” in Proc. Annu. Int. Symp. on Comput. Archit. (ISCA), June
2016.

[34] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in Proc. of the
Annu. IEEE/ACM Int. Symp. on Microarchitecture (MICRO), Oct. 2016,
pp. 1–12.

[35] J. Albericio et al., “Bit-pragmatic Deep Neural Network Computing,” in
Proc. of the Annu. IEEE/ACM Int. Symp. on Microarchitecture (MICRO),
2017, pp. 382–394.

[36] S. Sharify, A. Lascorz, K. Siu, P. Judd, and A. Moshovos, “Loom:
Exploiting Weight and Activation Precisions to Accelerate Convolutional
Neural Networks,” in dac, 2018, pp. 20:1–20:6.

[37] Y. Umuroglu, L. Rasnayake, and M. Själander, “BISMO: A Scalable Bit-
Serial Matrix Multiplication Overlay for Reconfigurable Computing,” in
Proc. of the Int. Conf. on Field Programmable Logic and Applications
(FPL), Aug. 2018, pp. 307–3077.

[38] D. Moss et al., “A Customizable Matrix Multiplication Framework for
the Intel HARPv2 Xeon+FPGA Platform: A Deep Learning Case Study,”
in Proc. of the ACM/SIGDA Int. Symp. on Field-Programmable Gate
Arrays (FPGA), 2018, pp. 107–116.

[39] M. D. Ercegovac and T. Lang, “On-line arithmetic for DSP applications,”
in Proc. of the Midwest Symp. on Circuits and Syst. (MWSCAS), Aug.
1989, pp. 365–368 vol.1.

[40] A. Avizienis, “Signed-Digit Number Representations for Fast Parallel
Arithmetic,” IRE Transactions on Electronic Computers, vol. EC-10,
no. 3, pp. 389–400, Sept. 1961.

[41] T. Kim, W. Jao, and S. Tjiang, “Circuit Optimization Using
Carry–Save–Adder Cells,” tcad, vol. 17, no. 10, pp. 974–984, Oct. 1998.

[42] D. Gudovskiy and L. Rigazio, “ShiftCNN: Generalized Low-Precision
Architecture for Inference of Convolutional Neural Networks,” CoRR,
vol. abs/1706.02393, 2017.

[43] F. Rieke, D. Warland, R. de Ruyter V., and W. Bialek, Spikes: Exploring
the Neural Code. Cambridge, MA, USA: MIT Press, 1999.

[44] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision, vol. 115, no. 3,
p. 211–252, Dec. 2015.

[45] C. Szegedy et al., “Going Deeper with Convolutions,” in Proc. of the
IEEE Conf. on Comput. Vision and Pattern Recog. (CVPR), June 2015.

[46] S. Liu and W. Deng, “Very Deep Convolutional Neural Network Based
Image Classification Using Small Training Sample Size,” in Proc. IAPR
Asian Conf. on Pattern Recog. (ACPR), Nov. 2015.

[47] Intel Arria 10 Core Fabric and General Purpose I/Os Handbook, Santa
Clara, CA, USA, May 2019.

[48] Intel Quartus Prime Pro Edition Handbook, Santa Clara, CA, USA, May
2017, version QPP5V1.

9

	Introduction
	Background and Preliminaries
	Deep Neural Networks
	Optimizing Deep Learning Models
	Bit-serial Inference Engines
	Online Arithmetic and Redundant Number System

	FGIE: Fine-Grained Inference Engine via Synapse-Level Parallelism
	Motivation and Key Idea
	A classification of of DNN inference parallelism
	The Functionality of our Fine-Grained Inference Engine

	Experimental Results
	Conclusions and Future Work
	References

