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ABSTRACT 

Multi-ported RAMs are essential for high-performance parallel 

computation systems. VLIW and vector processors, CGRAs, DSPs, 

CMPs and other processing systems often rely upon multi-ported 

memories for parallel access, hence higher performance. Although 

memories with a large number of read and write ports are important, 

their high implementation cost means they are used sparingly in 

designs. As a result, FPGA vendors only provide dual-ported block 

RAMs to handle the majority of usage patterns. In this paper, a novel 

and modular approach is proposed to construct multi-ported memories 

out of basic dual-ported RAM blocks. Like other multi-ported RAM 

designs, each write port uses a different RAM bank and each read port 

uses bank replication. The main contribution of this work is an 

optimization that merges the previous live-value-table (LVT) and 

XOR approaches into a common design that uses a generalized, 

simpler structure we call an invalidation-based live-value-table (I-

LVT). Like a regular LVT, the I-LVT determines the correct bank to 

read from, but it differs in how updates to the table are made; the LVT 

approach requires multiple write ports, often leading to an area-

intensive register-based implementation, while the XOR approach 

uses wider memories to accommodate the XOR-ed data and suffers 

from lower clock speeds. Two specific I-LVT implementations are 

proposed and evaluated, binary and one-hot coding. The I-LVT 

approach is especially suitable for larger multi-ported RAMs because 

the table is implemented only in SRAM cells. The I-LVT method 

gives higher performance while occupying less block RAMs than 

earlier approaches: for several configurations, the suggested method 

reduces the block RAM usage by over 44% and improves clock speed 

by over 76%. To assist others, we are releasing our fully 

parameterized Verilog implementation as an open source hardware 

library. The library has been extensively tested using ModelSim and 

Altera’s Quartus tools.1 

Categories and Subject Descriptors 

B.3.2 [MEMORY STRUCTURES]: Design Styles – Cache 

memories, Shared memory; C.1.2 [PROCESSOR 

ARCHITECTURES]: Multiple Data Stream Architectures 

(Multiprocessors) – Interconnection architectures, Parallel 

processors (e.g. common bus, multiport memory, crossbar switch) 

Keywords 
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1. INTRODUCTION 
Multi-ported memories are the cornerstone of all high-performance 

CPU designs. They are often used in the register files, but also in other 

shared-memory structures such as caches and coherence tags. Hence, 

high-bandwidth memories with multiple parallel reading and writing 

ports are required. In particular, multi-ported RAMs are often used by 

wide superscalar processors  [1], VLIW processors  [1] [2], multi-core 

processors  [3] [4], vector processors, coarse-grain reconfigurable 

arrays (CGRAs), and digital signal processors (DSPs). For example, 

the second generation of the Itanium processor architecture employs a 

20-port register file constructed from SRAM bit cells with 12 read 

ports and 8 write ports  [3]. The key requirement for all of these 

designs is fast, single-cycle access from multiple requesters. These 

multiple requesters require concurrent access for performance 

reasons. 

One way of synthesizing a multi-ported RAM is to build it from 

registers and logic. However, this is only feasible for very small 

memories. Another way is to alter the basic SRAM bit cell to provide 

extra access ports, but area growth is quadratic with the number of 

ports, so this requires a custom design for each unique set of 

parameters (number of ports, width and depth of RAM). Since 

FPGAs must fix their RAM block designs for generic designs, it is too 

costly to provide highly specialized RAMs with a large number of 

ports. A multi-ported RAM can also be emulated through banking or 

multi-pumping. Banking uses hashing and arbitration to provide 

access, but it leads to unpredictable (multi-cycle) access latencies 

under collisions; this complicates system design and compromises 

performance. Multi-pumping provides a few extra ports, but it is 

limited by the amount of overclocking. Hence, a method of 

composing arbitrary, multi-ported RAMs from simpler RAM blocks 

is required.1 

In this paper, a modular and parametric multi-ported RAM is 

constructed out of basic dual-ported RAM blocks while keeping 

minimal area and performance overhead. The suggested method 

significantly reduces SRAM use and improves performance 

compared to previous attempts. To verify correctness, the proposed 

architecture is fully implemented in Verilog, simulated using Altera’s 

ModelSim, and compiled using Quartus II. A large variety of different 

memory architectures and parameters, e.g. bypassing, memory depth, 

data width, number of reading or writing ports are simulated in batch, 

each with over million random memory access cycles. Stratix V, 

Altera’s high-end performance-oriented FPGA, is used to implement 

and compare the proposed architecture with previous approaches. 

Major contributions of this paper are: 

 A novel I-lVT architecture to produce modular multi-ported 

SRAM-based memories. It is built out of dual-ported SRAM 

blocks only, without any register-based memories. To the 

authors’ best knowledge, compared to other multi-ported 

approaches, the I-LVT consumes the fewest possible SRAM 

cells. It also provides improved overall performance. 

                                                                 

1 http://www.ece.ubc.ca/~lemieux/downloads/ 
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 A fully parameterized Verilog implementation of the 

suggested methods, together with previous approaches. A 

flow manager to simulate and synthesize various designs 

with various parameters in batch using Altera’s ModelSim 

and Quartus II is also provided. The Verilog modules and 

the flow manager are available online  [5]. 

Notation and abbreviations used for the rest of the paper are listed 

in Table 1. The rest of this paper is organized as follows. In 

section 2, conventional RAM multi-porting techniques in 

embedded systems are reviewed. Previous attempts to provide 

multi-ported memories are reviewed in section 3. The proposed 

invalidation-based live-value-table method is described in detail 

and compared to previous methods in section 4. The experimental 

framework, including simulation and synthesis and results, are 

discussed in section 5, and conclusions are drawn in section 6.  

 

2. RAM MULTI-PORTING TECHNIQUES 

IN EMBEDDED SYSTEMS 
This section provides a review of current methods of creating 

multi-ported RAMs in embedded systems. Creating multi-ported 

access to register-based and SRAM-based memories is described 

in subsection 2.1. Multi-pumping is described in subsection 2.2. 

Replicating a memory bank to increase the number of read and 

write ports is described in subsections 2.3 and 2.4, respectively. 

2.1 Register-based RAM 
Multi-ported RAM arrays can be constructed using basic flip-flop 

cells and logic. As depicted in Figure 1, each writing port uses a 

decoder to steer the relevant written data into the addressed row. 

Each read port uses a mux to choose the relevant register output. 

This method is not practical for large memories due to area 

inflation, fan-out increase, performance degradation, and a decline 

in routability. 

 

2.2 RAM Multi-pumping 
A time-multiplexing approach can be applied to a single dual-

ported SRAM block to reuse access ports and share them among 

several clients, each during a different time slot. As depicted in 

Figure 2, addresses and data from several clients are latched then 

given round-robin access to a dual-ported RAM. The RAM must 

operate at a higher frequency than the rest of the circuit. If the 

maximum RAM frequency is similar to the pipe frequency, or a 

large number of access ports are required, then multi-pumping 

cannot be used. A number of designs utilize multi-pumping to 

gain additional access ports while keeping area overhead 

minimal  [6] [7]. The 2.3GHz Wire-Speed POWER processor uses 

double-pumping to double the writing ports  [8]. 

 

2.3 Multi-read RAM: Bank Replication 
To provide more reading ports, the whole memory bank can be 

replicated while keeping common write address and data as shown 

in Figure 3. Any data will be written to all bank replicas at the 

same address, hence reading from any bank is equivalent. This 

method incurs high SRAM area and consumes more power. 

However, the replication approach has two strong advantages over 

other multi-porting approaches. The first is the simplicity and 

modularity of bank replication. The second is that read access 

time is unaffected as the number of ports increases; only write 

delays increase due to fan-out, but this can be hidden via 

pipelining and bypassing. The bank replication technique is 

commonly used in state-of-the-art processing architectures to 

increase parallelism. The 2.3GHz Wire-Speed POWER processor 

replicates a 2-read SRAM bank to achieve 4 read ports  [8]. Each 

of the two integer clusters of the Alpha 21264 microprocessor has 

a replicated 80-entry register file, thus doubling the number of 

read ports to support two concurrent integer execution units. 

Similarly, the 72-entry floating-point register file is duplicated, 

supporting two concurrent floating-point units  [9]. 

 

2.4 Multi-write RAM: Emulation via multi-

banking 
Multi-ported memories are very expensive in terms of area, delay, 

and power for a large number of ports. The overhead of multi-

porting can be reduced by multi-banking if one relaxes the 

guaranteed access delay constraint. As depicted in Figure 4, the 

total RAM capacity can be divided into several banks, each with 

few ports (e.g. dual-port). A fixed hashing scheme is used to 

match each access to a single bank; often, the address MSBs are 

Table 1.  List of notations and abbreviations 

𝑛𝑊 Write ports number  WAddr Write address 

𝑛𝑅 Read ports number  RAddr Read address 

𝑤 Data width  WData Write data 

𝑑 Memory depth  RData Read data 

𝑛𝑀20𝐾 Number of M20K blocks  RBankSel Read bank selector 

𝑛𝐵𝑦𝑝𝑅𝑒𝑔 Number of bypass registers  LVT Live-value-table 

𝑓𝑓𝑏,𝑓𝑜𝑢𝑡  LVT feedback/out functions  I-LVT Invalidation LVT 

 

 

Figure 1. Register-based multi-ported RAM. 

 

Figure 2. Multi-pumping: RAM is clocked faster than the 

pipeline in the periphery, allowing multiple accesses during 

one pipeline cycle. 

 

  

Figure 3. (left) Replicated dual-ported banks with a common 

write port. (right) Symbol used in this paper equivalent to a 

multi-read RAM block. 



used. Arbitration logic steers access from multiple ports to each 

bank. Since two ports can request access to data in the same bank 

at the same time, a conflict resolving circuit determines which 

port grants access to a specific bank. The other port will miss the 

arbitration and is required to request access again. Not only does 

the multi-banking approach provide unpredictable access latency 

due to the arbitration miss, but it also degrades delay due to the 

additional access circuitry. Several approaches have been 

proposed to improve multi-banking  [10] [1] [11] [12]. State-of-the-

art memory controllers and processor caches are based on multi-

banking due to area and power efficiency. For example, the 

Pentium 5 has a data cache with 8 interleaved banks and two 

access ports  [13]. 

 

3. MODULAR MULTI-PORTED SRAM-

BASED MEMORIES: PREVIOUS WORK 
In this section a review of two previous modular designs of multi-

ported SRAM-based memories are provided. The first approach is 

based on multi-banking with a live-value-table (LVT)  [14] and is 

described in subsection 3.1. The second approach retrieves the 

latest written data by utilizing logical XOR properties  [15] and is 

described in subsection 3.2. 

3.1 LVT-based Multi-ported RAM 
For each RAM address, the LVT stores the ID of the bank replica 

that holds the latest data. As depicted in Figure 5 (left), an LVT-

based multi-ported RAM uses a different bank replica for each 

writing port, while each bank has several reading ports. All banks 

are accessed by all read addresses in parallel; the LVT helps to 

steer the read data out of the correct bank since it holds the ID of 

last accessed (written) bank for each address. 

Actually, the LVT itself is a multi-ported RAM with the same 

memory depth and number of writing ports as the implemented 

multi-ported memory. However, since the LVT stores only bank 

IDs, the data (line) width of the LVT table is only ⌈   2⌉ of the 

number of banks, which is equal to the number of writing ports. 

Furthermore, the LVT doesn’t have write data, instead it writes a 

fixed bank ID for each port as described in Figure 5 (right). 

 

Since an LVT is a narrow, multi-port memory, it is implemented 

as a registered-based, multi-ported RAM. As explained in 

subsection 2.1, register-based RAM is not suitable for building 

large memories. While the LVT width is only log2 of the number 

of writing ports, the depth of the LVT is still similar to the depth 

of the original RAM. This is the main cause of the area overhead. 

In this paper, to reduce this area overhead, two methods of 

constructing SRAM-based LVTs are described. The methodology 

of constructing SRAM-based LVTs is also generalized. To the 

authors’ best knowledge this is the first attempt to build an LVT 

out of SRAM blocks only. 

Assuming that bank IDs are binary encoded, the total number of 

registers required to implement the LVT is 

   ⌈   2   ⌉. (1) 

For deep memories, the large number of registers and huge read 

multiplexers make register-based LVTs impractical. For example, 

on a Stratix V GX A5 device (185k ALMs), Quartus II failed to 

synthesize a 16k-deep memory with two write ports. 

A register-based LVT with SRAM banks requires    multi-read 

banks for each write port. Each multi-read bank supports    

reading ports, allowing the LVT to select the required data block. 

The total number of SRAM cells is 

          . (2) 

Using Altera’s Stratix V M20K block RAMs, the total number of 

required M20K blocks is 

   20 ( ,  )       . (3) 

Where   20 ( ,  ) is the number of M20K Blocks required to 

construct a RAM with a specific depth and data width. This value, 

described by equation (4), is derived from Figure 6, which shows 

how Altera’s M20K blocks can be configured into several RAM 

depth and data width configurations  [16]. The total amount of 

utilized SRAM bits can be either 16Kbits, or 20Kbits. Assuming 

that the RAM packing process minimizes the number of blocks 

cascaded in depth to avoid additional address decoding, each 16K 

lines will be packed into single bit-wide blocks, and the remainder 

will be packed into the minimal required configuration as follows 

  20 ( ,  )  ⌊
 

   
⌋    

{
 
 

 
 
                          
           ⌈  ⁄  ⌉

           ⌈   ⁄ ⌉

             ⌈   ⁄ ⌉

              ⌈   ⁄ ⌉

                   ⌈   ⁄ ⌉

. (4) 

 

3.2 XOR-based Multi-ported RAM 
While the LVT-based multi-port RAM just shown implements its 

LVT as a register-based multi-ported RAM, the XOR-based 

multi-ported RAM is implemented using SRAM blocks  [15]. This 

makes it more efficient for deep memories. However, as will be 

shown, it is inefficient for wide memories. 

 

Figure 4. Multi-banking: RAM capacity is divided into several 

banks. Ports access a RAM bank with a fixed hashing scheme. 

 

  

Figure 5. (left) LVT-based multi-ported RAM. (right) An LVT 

implemented using multi-ported RAM. 

 

  

Figure 6. Altera’s M20K BRAM configurations (left) 16Kbit 

(right) 20Kbit. 



The XOR-based method utilizes the special properties of the XOR 

function to retain the latest written data for each write port. XOR 

is commutative        , associative (   )     
(   ), zero is the identity      , and the inverse of each 

element is itself      . 

As illustrated in Figure 7, each write port has a bank with multi-

read and a single write. Part of the read ports are used as a 

feedback to generate new data and rewrite a specific bank, while 

the other read ports generate the data outputs. To perform a write, 

the new data is XOR’ed together with all the old data from the 

other banks; the result is rewritten to the corresponding bank. 

Hence if an address   is written through write port   with data 

      ,       will be rewritten with 

     [ ]      0[ ]       [ ]     

                   [ ].  (5) 

A read is performed by XOR’ing all the data for the 

corresponding read address from all the banks, hence, 

       [ ]      0[ ]      [ ]          [ ]. (6) 

Substituting      [ ] from (5) into (6) and applying 

commutative and associative properties of the XOR shows that 

each bank appears twice in the XOR equation, hence will be 

cancelled since XORing similar elements is 0. The only remaining 

item will be       , the required data. 

The XOR-based multi-ported RAM requires    multi-read banks 

for each write port. Each multi-read bank supports      read 

ports to feedback the other ports via XORs, and    read ports. 

Each feedback read port is of width  , to match the write data, so 

these feedback memories can be quite large. The number of 

required SRAM cells is 

        (       ). (7) 

Using Altera’s Stratix V M20K block RAMs, the total number of 

required M20K blocks is 

   20 ( ,  )     (       ). (8) 

Since FPGA block RAM is synchronous, data feedbacks are read 

with a one-cycle read delay. Hence, the written data, their 

addresses and write-enables must be retimed to match the 

feedback data. This requires the following number of registers 

    (  ⌈   2  ⌉    ). (9) 

 

4. INVALIDATION TABLE 
As described in the previous section, the XOR-based multi-ported 

memories requires    (       ) manipulated copies of the 

RAM content, while the LVT approach requires another register-

based multi-ported memory with the same number of read and 

write ports for bank IDs. 

This work proposes to implement LVTs using SRAM blocks only, 

which has a major advantage over register-based LVTs and a 

lower SRAM area compared to the XOR-based approach. Instead 

of requiring multiple write ports to each multi-read bank in 

regular LVT method, we suggest a design with a single write port 

each like the XOR method. This makes it feasible to implement 

the LVT using standard dual-ported RAMs. However, writing an 

ID to one bank requires also invalidating the IDs in the other 

banks, which produces the need for the multiple write ports. 

Instead, we suggest writing an ID to only one specific bank and 

invalidating all the other IDs with a single write by using an 

invalidation table. Since the invalidation table has the same 

functional behavior as an LVT, we call it an invalidation-based 

LVT, or I-LVT. 

The I-LVT doesn’t require multiple writes to indicate the last-

written bank. Instead, as described in Figure 8, the I-LVT reads all 

other bank IDs as feedback, embeds the new bank ID into the 

other values through a feedback function    , then rewrites the 

specific bank. To extract back the latest written bank ID, all banks 

are read and data is processed with the output function      to 

regenerate the required ID. Selection of these two functions,     

and     , is what distinguishes different I-LVT implementations. 

The I-LTV requires    multi-read banks, each with    read ports 

for output extraction. Furthermore, an additional      read 

ports are required in each bank for feedback rewriting. The data 

width of these read ports varies depending on the feedback 

method and the bank ID encoding. In this paper, two bank ID 

encoding methods are presented, binary and one-hot. The binary 

method employs exclusive-OR functions to embed the bank IDs, 

while the second uses mutual-exclusive conditions to invalidate 

table entries and generate one-hot-coded bank selectors. The two 

methods are described in subsections 4.1 and 4.2, respectively. 

 

 

Figure 7. XOR-based multi-ported RAM. 

 

Figure 8. Generalized approach for building the I-LVT. 



4.1 Bank ID Embedding: Binary-coded 

selectors 
This approach attempts to reduce the SRAM cell count in the I-

LVT by employing binary-coded bank IDs. The special properties 

of the exclusive-OR function are utilized to embed the latest 

written bank ID, hence invalidating all other IDs. The current 

written bank ID is XOR’ed with the content of all the other banks 

from the same write address as described in the following 

feedback function, 

    ,    0     
   

     [      ], (10) 

where   is the ID of the currently written bank. 

Similar to the XOR-based method described in subsection 3.2, the 

last written bank ID is extracted by XOR’ing the content of all the 

banks from the same read address as described in the following 

output extraction function 

     ,   0          [      ]. (11) 

Without loss of generality, if address   in bank   is written with 

the feedback function from Equation (10), then 

      [ ]    0               [ ]. (12) 

If one of the read ports, say read port  , is trying to read from the 

same address, namely         , then the read bank selector 

will be generated using the same output extraction function from 

(11), hence 

            0          [ ]. (13) 

Due to XOR operation associativity,           from (13) can be 

expressed as 

                [ ] 0               [ ], (14) 

Substituting      [ ] from (12) into (14) provides 

           

   0               [ ] 0               [ ]. (15) 

The last two series in (15) can be reduced revealing that 

           , the ID of the latest writing bank into address  , 

as required. 

Figure 9 provides an example of 2W/2R binary-coded I-LVT. (As 

will become apparent in the next section, when there are only 2 

write ports, the binary-coded and one-hot-coded I-LVTs are 

identical.) Figure 10 shows a 3W/2R binary-coded I-LVT. 

 

The required data width of the I-LVT SRAM blocks is ⌈   2   ⌉. 
Also,    multi-read banks are required each with    output ports 

for ID extraction and      feedback ports for ID rewriting. 

Hence, the number of required SRAM cells is 

   ⌈   2   ⌉     (       ). (16) 

Respectively, the number of required M20k block RAMs is 

   20 ( , ⌈   2   ⌉)     (       ). (17) 

Similarly, the number of registers required for retiming is 

    (⌈   2  ⌉   ). (18) 

 

4.2 Mutual-exclusive Conditions: One-hot-

coded Selectors 
The previous binary-coded I-LVT incurs a long path delay 

through the feedback and output extraction functions, which 

causes a performance reduction in structures with more ports. 

Employing a one-hot thermometer ID encoding reduces the 

feedback paths to just a few inverters, from the   -wide XOR 

used earlier. 

Mutual-exclusive conditions are used to rewrite the RAM 

contents. A specific bank is written data that contradicts all the 

other banks, hence only this specific bank will be valid and all the 

others are invalid. By checking the appropriate mutual-exclusive 

condition for each bank, only the latest written bank will hold the 

valid data. 

Equations (19), (20), and (21) describe mutual-exclusive feedback 

functions for    values 1, 2, and 3, respectively. The angle 

brackets in theses equations are used for bit selection and 

concatenation, while the square brackets in other equations are 

used for RAM addressing. As can be seen from these equations, 

writing to one bank will invalidate all the other banks at the same 

address since one mutual negated bit is shared between each two 

 

Figure 9. A 2W/2R SRAM-based I-LVT; identical for binary-

coded or one-hot-coded bank selectors. 

 

Figure 10. A 3W/2R SRAM-based I-LVT with binary-coded 

selectors. 



lines. For example, writing to bank 2 when      (Equation 

(20)) will write      〈 〉      0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  which will invalidate 

bank 0, and      〈 〉      2〈 〉 which will invalidate bank 2. 

      {
   ,0     0〈 〉       〈 〉

   ,       〈 〉      0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (19) 

      {

   ,0     0〈   〉  〈    2〈 〉,      〈 〉〉

   ,       〈   〉  〈    2〈 〉,     0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉

   ,2     2〈   〉  〈     〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,     0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉

 (20) 

      

{
 
 

 
 
   ,0     0〈   〉  〈     〈 〉,    2〈 〉,      〈 〉〉

   ,       〈   〉  〈     〈 〉,     2〈 〉,     0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉

   ,2     2〈   〉  〈     〈 〉,     〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,     0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉

   ,       〈   〉  〈    2〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,      〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,     0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉

 (21) 

Equation (22) generalizes the feedback function to 

   , 〈 〉|0       
  

      [      ]〈 〉  {
        [      ]〈   〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

           [      ]〈 〉
}. (22) 

This equation shows that each bank is using bits from all other 

banks to write its own content. To prove that each two banks are 

mutually exclusive, one bit of these banks should be mutually 

negated. Suppose    0       a bank ID, and  

   0       a bit index. From Equation (22) if  0   0 then 

another bank ID    and bit index    exist such that  

      〈 0〉        〈  〉,     0   , and     0. Hence, 

      and from (22)       〈  〉        〈 0〉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  as required.  

The proof in case of  0   0 is identical. 

The output extraction function checks for each one-hot output 

selector if the read data from a specific bank matches the mutual-

exclusive case. Hence, only one case will match due to 

exclusivity. The output extraction function consists of an      

bit wide comparator for each one-hot selector. 

An example of a 2W/2R one-hot-coded I-LVT is shown in Figure 

9, while a 3W/2R one-hot I-LVT is depicted in Figure 11. 

 

The one-hot-coded I-LVT requires      SRAM bits to save the 

mutually exclusive cases. However, the feedback read ports 

requires only one bit, since only one bit is used by the feedback 

function from each bank.    multi-read banks are required each 

with    output ports for one-hot selectors extraction and      

feedback ports for mutually exclusive cases rewriting. Hence, the 

number of required SRAM cells is 

   (    )             (    ). (23) 

Respectively, the number of required M20k block RAMs is 

      ( ,     )             ( ,  )     (    ). (24) 

Similarly, the number of registers required for retiming is equal to 

the binary-coded case and is described by (18). 

4.3 Data Dependencies and Bypassing 
The new I-LVT structure and the previous XOR-based multi-

ported RAMs incur some data dependencies due to feedback 

functions and the latency of reading the I-LVT to decide about the 

last written bank. Data dependencies can be handled by 

employing bypassing, also known as forwarding.  

Figure 12 illustrated two types of bypassing based on write data 

and address pipelining. Bypassing is necessary because Altera 

dual-port block RAMs cannot internally forward new data when 

one port reads and the other port writes the same address on the 

same clock edge, constituting a read-during-write (RDW) hazard. 

Both bypassing techniques are functionally equivalent, allowing 

reading of the data that is being written on the same clock edge, 

similar to single register functionality. However, the fully-

pipelined two-stages bypassing shown in Figure 12 (right) can 

overcome additional cycle latency. This capability is required if a 

block RAM has pipelined inputs (e.g., cascaded from another 

block RAM) that need to be bypassed. 

 

The single-stage and the two-stage bypass circuitry for a   bits 

data width and   lines depth block RAM requires   registers for 

data bypassing, two ⌈   2  ⌉ wide address registers and one 

enable register, for a total of 

        ( ,  )     ⌈   2  ⌉   . (25) 

The most severe data dependency that I-LVT design suffers from 

is write-after-write (WAW), namely, writing to the same address 

that has been written before in the previous cycle. This 

dependency occurs because of the feedback reading and writing 

latency. A single-stage bypassing for the feedback banks should 

solve this dependency. 

Two types of reading hazards are introduced by the proposed I-

LVT design, read-after-write (RAW) and read-during-write 

(RDW). RAW occurs when the same data that have been written 

in the previous clock edge are read in the current clock edge. 

RDW occurs when the same data are written and read on the same 

clock edge. 

 

Figure 11. A 3W/2R SRAM-based I-LVT with one-hot-coded 

selectors. 

 

  

Figure 12. RAM bypassing (left) single-stage (right) 2-stages 

fully pipelined. 



Due to the latency of the I-LVT, reading from the same address on 

the next clock edge after writing (RAW) will provide the old data. 

To read the new data instead, the output banks of the I-LVT 

should be bypassed by a single-stage bypass to overcome the I-

LVT latency. 

The deepest bypassing stage is reading new data on the same 

writing clock edge (RDW), which is similar to single register 

stage latency. This can be achieved by 2-stage bypassing on the 

output extract ports of the I-LVT or the XOR-based design to 

allow reading on the same clock edge. The data banks, which are 

working in parallel with the I-LVT should also be bypassed by a 

single-stage bypass to provide new data. Table 2 summarizes the 

required bypassing for data banks, feedback banks and output 

banks for each type of bypassing of the XOR-based, binary-coded 

and one-hot-coded I-LVT designs. 

Since XOR-based multi-ported RAM requires bypassing for all 

the    (       ) banks to read new data when RAW or 

RDW, the additional registers required for the bypassing are 

    (       )         ( ,  ). (26) 

RAW for binary-coded method requires bypassing the I-LVT 

only. Since the I-LVT is built out of  

   (       ) blocks, each with ⌈   2   ⌉ bits width data, 

the following amount of additional registers is required 

    (       )         ( , ⌈   2   ⌉). (27) 

RAW for one-hot-coded method requires bypassing the whole I-

LVT,    (    ) feedback banks with 1 bit width and       

output banks with      bits width, hence a total registers of 

    (    )         ( ,  )               ( ,     ). (28) 

RDW for both binary and one-hot-coded methods require 

bypassing the       data banks in addition to the I-LVT, hence 

the following amount of registers is added to the previous count in 

(27) and (28) 

              ( , ). (29) 

 

4.4 Initializing Multi-ported RAM Content 
Due to the special structure of the proposed I-LVT-based multi-

ported memories and the previously proposed XOR-based 

method, RAM data may have replicas in several banks. Hence, 

initializing the multi-ported RAM with a specific content requires 

special handling. 

For the XOR-based multi-ported RAM, the first multi-read bank 

should be initialized to the required initial content; all the other 

multi-read banks should be initialized to zero. 

The binary/one-hot-coded I-LVT-based multi-ported RAM 

requires initializing all the I-LVT banks with zeros. The binary-

coded I-LVT will generate a selector to the first data bank 

(indexed zero), since XOR’ing all the initial values (zeros) will 

generate zero. Similarly, the one-hot-coded I-LVT will be 

initialized to the first mutually exclusive case, hence the first bank 

will be selected. Only the first data bank should hold the initial 

data; the remaining banks can be left uninitialized. The initial 

values for each bank in the binary/one-hot-coded I-LVT-based 

and XOR-based designs are shown in Figure 13. 

 

4.5 Comparison and Discussion 
In this section, we compare the previous LVT and XOR 

approaches to the new I-LVT approaches for building multi-port 

memories. Using the equations provided, we will illustrate why 

the I-LVT approach is superior in terms of number of BRAMs 

required, and number of registers required. Also, between the two 

I-LVT methods proposed, we will inspect the number of BRAMs 

and registers used by each bypassing method.  

Table 3 summarizes SRAM resource usage for each of the three 

multi-ported RAM approaches: the XOR-based and the 

binary/one-hot-coded I-LVT. Both the general SRAM cell count 

and the number of Altera’s M20K blocks are described. 

Comparing the SRAM cell counts, the XOR-based approach 

consumes fewer SRAM cells than the one-hot I-LVT if 

       . (30) 

This inequality is unlikely to be satisfied, since even if the data 

width is only one byte, the number of reading ports    would 

need to be larger than 8, which is very rare. Hence, for most of the 

common cases, the one-hot-coded I-LVT approach will consume 

fewer SRAM cells. 

Comparing the XOR-based approach to the binary-coded 

approach, the XOR-based approach consumes fewer SRAM cells 

only if 

   
⌈    (  )⌉ (       )

(    )
|
    

. (31) 

Both (30) and (31) show that the XOR-based approach will 

consume less SRAM cells only for a very narrow data widths 

which are uncommonly used. Hence, the I-LVT approach will be 

the choice for most applications. Comparing the two I-LVT 

approaches, Table 3 shows that the one-hot-coded I-LVT 

consumes fewer SRAM cells than the binary-coded I-LVT if 

                
(    ) (⌈    (  )⌉  )

(    ) ⌈    (  )⌉
|
    

. (32) 

Table 4 summarizes register usage for all multi-ported RAM 

architectures and bypassing. Only the register-based LVT 

architecture is directly proportional to memory depth. As a 

consequence, it consumes much more registers than other 

architectures, making register-based LVTs impractical for deep 

memories. 

Table 2. Bypassing for XOR-based and binary/one-hot-coded 

I-LVT multi-ported memories 

 XOR-based I-LVT based 

 Feedback 

banks 

Output 

banks 

Data 

banks 

Feedback 

banks 

Output 

banks 

Allow WAW 1-stage None None 1-stage None 

New data RAW 1-stage 1-stage None 1-stage 1-stage 

New data RDW 1-stage 2-stage 1-stage 1-stage 2-stage 

 

 

  

Figure 13. Initial value for each bank (left) I-LVT-based 

(right) XOR-based. Initial values are 0: zeros, I: initial 

content, and U: uninitialized. 



With a single-stage bypassing, the XOR-based design consumes 

fewer registers than the binary-coded if 

   ⌈   
2
(  )⌉. (33) 

Equation (33) is unlikely to be satisfied. Even if the data width is 

just one byte (   ), the number of write ports    would need 

to be larger than 256, which is impractical.  

On the other hand, with a single-stage bypass, the XOR-based 

design consumes fewer registers than the one-hot-coded I-LVT 

design if 

   
    

  
  

    

|
    

. (34) 

In a typical compute-oriented designs,        . Assuming 

that      (    ) requires that         ; even for a 

one byte data width, this requires       to satisfy (34), which 

is impractical. Therefore, for a single-stage bypass, the I-LVT 

based designs will consume fewer registers than the XOR-based 

design. 

Considering two-stage bypassing, I-LVT based designs will 

consume                ( ,  ) more registers, as described 

in (29). In this case, XOR-based design consumes fewer registers 

than the binary-coded I-LVT design only if 

   ⌈   2(  )⌉  (  
  

    
). (35) 

On the other hand, XOR-based design consumes fewer registers 

than the one-hot-coded I-LVT design only if 

       . (36) 

Similar to (30), which is equal to (36), this is unlikely to be 

satisfied in practical designs. Hence, in the case of two-stage 

bypassing, the I-LVT-based design will consume fewer bypassing 

registers than the XOR-based method. 

In the next section, we will show these analytical results are in 

agreement with experimental results.  

5. EXPERIMENTAL RESULTS 
In order to verify and simulate the suggested approach and 

compare to previous attempts, fully parameterized Verilog 

modules have been developed. Both the previous XOR-based 

multi-ported RAM method, and the proposed I-LVT method have 

been implemented. To simulate and synthesize these designs with 

various parameters in batch using Altera’s ModelSim and Quartus 

II, a run-in-batch flow manager has also been developed. The 

Verilog modules and the flow manager are available online  [5]. 

To verify correctness, the proposed architecture is simulated using 

Altera’s ModelSim. A large variety of different memory 

architectures and parameters are swept, e.g. bypassing, memory 

depth, data width, number of reading or writing ports, and 

simulated in batch, each with over million random memory access 

cycles. 

All different multi-ported design modules were implemented 

using Altera’s Quartus II on Altera’s Stratix V 

5SGXMA5N1F45C1 device. This is a high-performance device 

with 185k ALMs, 370k ALUTs, 2304 M20K blocks and 1064 I/O 

pins. 

We performed a general sweep and tested all combinations of 

configurations of the following parameters: 

 Writing ports (  ): 2, 3 and 4 writing ports. 

 Reading ports (  ): 3, 4, 5 and 6 reading ports. 

 Memory depth ( ): 16 and 32 K-lines. 

 Data width ( ): 8, 16, and 32 bits. 

 Bypassing: No bypassing, single-stage and two-stages. 

Following this, we analyzed the full set of results. In this paper, 

we omit many of the in-between settings because they behaved as 

one might expect to see via interpolation of the endpoints. 

Figure 14 plots the maximum frequency derived from Altera’s 

Quartus II STA at 0.9V and temperature of 0 °C. The results show 

a higher Fmax for binary/one-hot coded I-LVT compared to 

XOR-based approach for all design cases. With 3 or more writing 

ports, the one-hot-coded I-LVT supports a higher frequency 

compared to all other design styles. Compared to the XOR-based 

approach, the one-hot-coded I-LVT improves Fmax by 38% on 

average for all tested design configurations, while the maximum 

Fmax improvement is 76%. 

Figure 15 (top) plots the number of Altera’s M20K blocks used to 

implement each multi-ported RAM configuration. The proposed 

binary/one-hot-coded I-LVT consumes the least BRAM blocks in 

all cases. The average reduction of the best of binary/one-hot-

coded I-LVT compared to XOR-based approach is 19% for all 

tested design configurations, while it can reach 44% for specific 

configurations. The difference of consumed Altera’s M20Ks 

between binary-coded I-LVT and one-hot-coded I-LVT is less 

than 6%. Both I-LVT methods make a significant improvement in 

BRAM consumption, but binary-coded I-LVT consumes the least 

BRAMs for more than 3 writing ports. To clarify the difference in 

Table 3. Summary of SRAM-based memory usage 

 SRAM bits M20K blocks1 

Register-based LVT 𝑑  𝑤  𝑛𝑊  𝑛𝑅 𝑛𝑀20𝐾(𝑑,𝑤)  𝑛𝑊  𝑛𝑅 

XOR-based 𝑑  𝑤  𝑛𝑊  𝑛𝑅  𝑑  𝑤               𝑛𝑊  (𝑛𝑊   ) 𝑛𝑀20𝐾(𝑑,𝑤)  𝑛𝑊  𝑛𝑅  𝑛𝑀20𝐾(𝑑,𝑤              )  𝑛𝑊  (𝑛𝑊   ) 

Binary-coded I-LVT 𝑑  𝑤  𝑛𝑊  𝑛𝑅  𝑑  ⌈   2 𝑛𝑊⌉  𝑛𝑊  (𝑛𝑊   )  𝑑  ⌈   2 𝑛𝑊⌉  𝑛𝑊  𝑛𝑅 𝑛𝑀20𝐾(𝑑,𝑤)  𝑛𝑊  𝑛𝑅  𝑛𝑀20𝐾(𝑑, ⌈   2 𝑛𝑊⌉)  𝑛𝑊  (𝑛𝑊   )   𝑛𝑀20𝐾(𝑑, ⌈   2 𝑛𝑊⌉)  𝑛𝑊  𝑛𝑅 

One-hot-coded I-LVT 𝑑  𝑤  𝑛𝑊  𝑛𝑅  𝑑                      𝑛𝑊  (𝑛𝑊   )  𝑑  (𝑛𝑊   )  𝑛𝑊  𝑛𝑅 𝑛𝑀20𝐾(𝑑,𝑤)  𝑛𝑊  𝑛𝑅  𝑛𝑀20𝐾(𝑑,                  )  𝑛𝑊  (𝑛𝑊   )   𝑛𝑀20𝐾(𝑑, 𝑛𝑊       )  𝑛𝑊  𝑛𝑅 

 

Table 4. Summary of register usage  

 No bypass Additional registers for single-stage2 Additional registers for two-stage 

Register-based LVT 𝑑  ⌈   2 𝑛𝑊⌉ None None 

XOR-based 𝑛𝑊  (  ⌈   2 𝑑⌉   ) 𝑛𝑊  (𝑛𝑊   )  𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑,𝑤               )  𝑛𝑊  𝑛𝑅  𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑,𝑤              ) None 

Binary-coded I-LVT 𝑛𝑊  (         ⌈   2 𝑑⌉   ) 𝑛𝑊  (𝑛𝑊   )  𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑, ⌈   2 𝑛𝑊⌉)  𝑛𝑊  𝑛𝑅  𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑, ⌈   2 𝑛𝑊⌉) 𝑛𝑊  𝑛𝑅  𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑,𝑤) 

One-hot-coded I-LVT Same as Binary-coded 𝑛𝑊  (𝑛𝑊   )  𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑,                  )  𝑛𝑊  𝑛𝑅  𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑, 𝑛𝑊      ) Same as Binary-coded 

1 BM20K(d,w) is the number of Altera’s M20K blocks required to construct a RAM with d lines depth and w bits width and is described in (4). 
2
  Regbypass(d,w) is the number of additional registers required to bypass a RAM with d lines depth and w bits width and is described in (25). 



BRAM consumption, Figure 15 (bottom) shows the percentage of 

BRAM overhead above the register-based LVT, which uses the 

fewest possible BRAMS overall. The XOR-based design 

consumes more BRAMs in all cases, up to 100% more than the 

register-based LVT. On the other hand, I-LVT-based methods 

consume only 12.5% more BRAMs in the case of 32-bit wide 

memories. 

The number of registers required for various designs and 

bypassing styles is shown in Figure 16. The I-LVT-based methods 

consume fewer registers compared to the XOR-based method for 

no bypassing or single-stage bypass cases. For two-stage 

bypassing, the I-LVT based methods must bypass the data banks, 

hence the register consumption goes higher than the XOR-based 

method. However, the register consumption of the register-based 

LVT method is the highest overall and can be three orders of 

magnitude higher since it is directly proportional to memory 

depth. Furthermore, some register-based LVT configurations 

failed to synthesize on our Stratix V with 185k ALMs. 

Figure 17 shows the number of ALMs consumed by each design 

with different bypassing methods. Single-stage bypassing 

consumes more ALMs than the non-bypassed version due to 

address comparators and data muxes. On the other hand, two-

stage bypassing requires an additional address comparator and a 

wider mux; hence it consumes more ALMs than a single-stage 

bypass. In all bypass modes, as memory data width goes higher, 

the XOR-based method consumes more ALM’s than the I-LVT 

methods due to wider XOR gates. 

Since the register-based LVT approach is not feasible with the 

provided deep memory test-cases, the register-based LVT trends 

are derived analytically from Table 3 and 4 and not from 

experimental results. Hence, the register-based LVT trend was 

added as a reference baseline to Figure 15 and 16 only. 

 

 

 

Figure 14. Fmax (MHz) T=0C (top) No bypass (bottom) Two-stage bypass.  

 

Figure 16. Registers (top) no-bypass 

(bottom) two-stage bypass. 

 

 

 

Figure 15. M20K blocks (top) total count (bottom) overhead percentage relative to register-

based LVT. 

 

Figure 17. ALMs (top) no-bypass 

(bottom) two-stage bypass. 



6. CONCLUSIONS AND FURTHER 

DIRECTIONS 
In this paper, we have proposed the use of an invalidation-based 

live-value-table, or I-LVT, to build modular SRAM-based multi-

ported memories. The I-LVT generalizes and replaces two prior 

techniques, the LVT and XOR-based approaches. A general I-

LVT is described, along with two specific implementations: 

binary-coded and one-hot-coded. Both methods are purely SRAM 

based. A detailed analysis and comparison of resource 

consumption of the suggested methods and previous methods is 

provided. The original LVT approach can use an infeasible 

number of registers. Unlike the LVT, the I-LVT register usage is 

not directly proportional to memory depth; hence it requires 

magnitudes fewer registers. Furthermore, the proposed I-LVT 

method can reduce BRAM consumption up to 44% and improve 

Fmax by up to 76% compared to the previous XOR-based 

approach. The one-hot-coded I-LVT method exhibits the highest 

Fmax, while keeping BRAM consumption within 6% of the 

minimal required BRAM count. Meanwhile, the binary-coded I-

LVT uses fewer BRAMs than the one-hot coded when there are 

more than 3 write ports. 

A fully parameterized and generic Verilog implementation of the 

suggested methods is provided as open source hardware  [5]. As 

future work, the suggested multi-ported memories can be tested 

with various other FPGA vendors’ tools and devices. 

Furthermore, these methods can also be tested for ASIC 

implementation using dual-ported RAMs as building blocks, and 

compared against memory compiler results. Also, to improve 

Fmax, time-borrowing techniques can be utilized. The goal would 

be to recover the frequency drop due to the multi-ported RAM 

additional logic, feedback and bank selection logic. One possible 

approach uses shifted clocks to provide more reading and writing 

time  [17]. However, adapting this method to multi-ported 

memories is not trivial due to internal timing paths across the I-

LVT. 
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