
Modular Multi-ported SRAM-based Memories

Ameer M.S. Abdelhadi and Guy G.F. Lemieux
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, B.C., V6T 1Z4, Canada

{ameer,lemieux}@ece.ubc.ca

ABSTRACT

Multi-ported RAMs are essential for high-performance parallel

computation systems. VLIW and vector processors, CGRAs, DSPs,

CMPs and other processing systems often rely upon multi-ported

memories for parallel access, hence higher performance. Although

memories with a large number of read and write ports are important,

their high implementation cost means they are used sparingly in

designs. As a result, FPGA vendors only provide dual-ported block

RAMs to handle the majority of usage patterns. In this paper, a novel

and modular approach is proposed to construct multi-ported memories

out of basic dual-ported RAM blocks. Like other multi-ported RAM

designs, each write port uses a different RAM bank and each read port

uses bank replication. The main contribution of this work is an

optimization that merges the previous live-value-table (LVT) and

XOR approaches into a common design that uses a generalized,

simpler structure we call an invalidation-based live-value-table (I-

LVT). Like a regular LVT, the I-LVT determines the correct bank to

read from, but it differs in how updates to the table are made; the LVT

approach requires multiple write ports, often leading to an area-

intensive register-based implementation, while the XOR approach

uses wider memories to accommodate the XOR-ed data and suffers

from lower clock speeds. Two specific I-LVT implementations are

proposed and evaluated, binary and one-hot coding. The I-LVT

approach is especially suitable for larger multi-ported RAMs because

the table is implemented only in SRAM cells. The I-LVT method

gives higher performance while occupying less block RAMs than

earlier approaches: for several configurations, the suggested method

reduces the block RAM usage by over 44% and improves clock speed

by over 76%. To assist others, we are releasing our fully

parameterized Verilog implementation as an open source hardware

library. The library has been extensively tested using ModelSim and

Altera’s Quartus tools.1

Categories and Subject Descriptors

B.3.2 [MEMORY STRUCTURES]: Design Styles – Cache

memories, Shared memory; C.1.2 [PROCESSOR

ARCHITECTURES]: Multiple Data Stream Architectures

(Multiprocessors) – Interconnection architectures, Parallel

processors (e.g. common bus, multiport memory, crossbar switch)

Keywords

Embedded memory; block RAM; multi-ported memory; shared

memory; cache memory; register-file; parallel memory access

1. INTRODUCTION
Multi-ported memories are the cornerstone of all high-performance

CPU designs. They are often used in the register files, but also in other

shared-memory structures such as caches and coherence tags. Hence,

high-bandwidth memories with multiple parallel reading and writing

ports are required. In particular, multi-ported RAMs are often used by

wide superscalar processors [1], VLIW processors [1] [2], multi-core

processors [3] [4], vector processors, coarse-grain reconfigurable

arrays (CGRAs), and digital signal processors (DSPs). For example,

the second generation of the Itanium processor architecture employs a

20-port register file constructed from SRAM bit cells with 12 read

ports and 8 write ports [3]. The key requirement for all of these

designs is fast, single-cycle access from multiple requesters. These

multiple requesters require concurrent access for performance

reasons.

One way of synthesizing a multi-ported RAM is to build it from

registers and logic. However, this is only feasible for very small

memories. Another way is to alter the basic SRAM bit cell to provide

extra access ports, but area growth is quadratic with the number of

ports, so this requires a custom design for each unique set of

parameters (number of ports, width and depth of RAM). Since

FPGAs must fix their RAM block designs for generic designs, it is too

costly to provide highly specialized RAMs with a large number of

ports. A multi-ported RAM can also be emulated through banking or

multi-pumping. Banking uses hashing and arbitration to provide

access, but it leads to unpredictable (multi-cycle) access latencies

under collisions; this complicates system design and compromises

performance. Multi-pumping provides a few extra ports, but it is

limited by the amount of overclocking. Hence, a method of

composing arbitrary, multi-ported RAMs from simpler RAM blocks

is required.1

In this paper, a modular and parametric multi-ported RAM is

constructed out of basic dual-ported RAM blocks while keeping

minimal area and performance overhead. The suggested method

significantly reduces SRAM use and improves performance

compared to previous attempts. To verify correctness, the proposed

architecture is fully implemented in Verilog, simulated using Altera’s

ModelSim, and compiled using Quartus II. A large variety of different

memory architectures and parameters, e.g. bypassing, memory depth,

data width, number of reading or writing ports are simulated in batch,

each with over million random memory access cycles. Stratix V,

Altera’s high-end performance-oriented FPGA, is used to implement

and compare the proposed architecture with previous approaches.

Major contributions of this paper are:

 A novel I-lVT architecture to produce modular multi-ported

SRAM-based memories. It is built out of dual-ported SRAM

blocks only, without any register-based memories. To the

authors’ best knowledge, compared to other multi-ported

approaches, the I-LVT consumes the fewest possible SRAM

cells. It also provides improved overall performance.

1 http://www.ece.ubc.ca/~lemieux/downloads/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

FPGA'14, February 26 - 28 2014, Monterey, CA, USA

Copyright 2014 ACM 978-1-4503-2671-1/14/02…$15.00.

http://dx.doi.org/10.1145/2554688.2554773

http://www.ece.ubc.ca/~lemieux/downloads/
http://dx.doi.org/10.1145/2554688.2554773

 A fully parameterized Verilog implementation of the

suggested methods, together with previous approaches. A

flow manager to simulate and synthesize various designs

with various parameters in batch using Altera’s ModelSim

and Quartus II is also provided. The Verilog modules and

the flow manager are available online [5].

Notation and abbreviations used for the rest of the paper are listed

in Table 1. The rest of this paper is organized as follows. In

section 2, conventional RAM multi-porting techniques in

embedded systems are reviewed. Previous attempts to provide

multi-ported memories are reviewed in section 3. The proposed

invalidation-based live-value-table method is described in detail

and compared to previous methods in section 4. The experimental

framework, including simulation and synthesis and results, are

discussed in section 5, and conclusions are drawn in section 6.

2. RAM MULTI-PORTING TECHNIQUES

IN EMBEDDED SYSTEMS
This section provides a review of current methods of creating

multi-ported RAMs in embedded systems. Creating multi-ported

access to register-based and SRAM-based memories is described

in subsection 2.1. Multi-pumping is described in subsection 2.2.

Replicating a memory bank to increase the number of read and

write ports is described in subsections 2.3 and 2.4, respectively.

2.1 Register-based RAM
Multi-ported RAM arrays can be constructed using basic flip-flop

cells and logic. As depicted in Figure 1, each writing port uses a

decoder to steer the relevant written data into the addressed row.

Each read port uses a mux to choose the relevant register output.

This method is not practical for large memories due to area

inflation, fan-out increase, performance degradation, and a decline

in routability.

2.2 RAM Multi-pumping
A time-multiplexing approach can be applied to a single dual-

ported SRAM block to reuse access ports and share them among

several clients, each during a different time slot. As depicted in

Figure 2, addresses and data from several clients are latched then

given round-robin access to a dual-ported RAM. The RAM must

operate at a higher frequency than the rest of the circuit. If the

maximum RAM frequency is similar to the pipe frequency, or a

large number of access ports are required, then multi-pumping

cannot be used. A number of designs utilize multi-pumping to

gain additional access ports while keeping area overhead

minimal [6] [7]. The 2.3GHz Wire-Speed POWER processor uses

double-pumping to double the writing ports [8].

2.3 Multi-read RAM: Bank Replication
To provide more reading ports, the whole memory bank can be

replicated while keeping common write address and data as shown

in Figure 3. Any data will be written to all bank replicas at the

same address, hence reading from any bank is equivalent. This

method incurs high SRAM area and consumes more power.

However, the replication approach has two strong advantages over

other multi-porting approaches. The first is the simplicity and

modularity of bank replication. The second is that read access

time is unaffected as the number of ports increases; only write

delays increase due to fan-out, but this can be hidden via

pipelining and bypassing. The bank replication technique is

commonly used in state-of-the-art processing architectures to

increase parallelism. The 2.3GHz Wire-Speed POWER processor

replicates a 2-read SRAM bank to achieve 4 read ports [8]. Each

of the two integer clusters of the Alpha 21264 microprocessor has

a replicated 80-entry register file, thus doubling the number of

read ports to support two concurrent integer execution units.

Similarly, the 72-entry floating-point register file is duplicated,

supporting two concurrent floating-point units [9].

2.4 Multi-write RAM: Emulation via multi-

banking
Multi-ported memories are very expensive in terms of area, delay,

and power for a large number of ports. The overhead of multi-

porting can be reduced by multi-banking if one relaxes the

guaranteed access delay constraint. As depicted in Figure 4, the

total RAM capacity can be divided into several banks, each with

few ports (e.g. dual-port). A fixed hashing scheme is used to

match each access to a single bank; often, the address MSBs are

Table 1. List of notations and abbreviations

𝑛𝑊 Write ports number WAddr Write address

𝑛𝑅 Read ports number RAddr Read address

𝑤 Data width WData Write data

𝑑 Memory depth RData Read data

𝑛𝑀20𝐾 Number of M20K blocks RBankSel Read bank selector

𝑛𝐵𝑦𝑝𝑅𝑒𝑔 Number of bypass registers LVT Live-value-table

𝑓𝑓𝑏,𝑓𝑜𝑢𝑡 LVT feedback/out functions I-LVT Invalidation LVT

Figure 1. Register-based multi-ported RAM.

Figure 2. Multi-pumping: RAM is clocked faster than the

pipeline in the periphery, allowing multiple accesses during

one pipeline cycle.

Figure 3. (left) Replicated dual-ported banks with a common

write port. (right) Symbol used in this paper equivalent to a

multi-read RAM block.

used. Arbitration logic steers access from multiple ports to each

bank. Since two ports can request access to data in the same bank

at the same time, a conflict resolving circuit determines which

port grants access to a specific bank. The other port will miss the

arbitration and is required to request access again. Not only does

the multi-banking approach provide unpredictable access latency

due to the arbitration miss, but it also degrades delay due to the

additional access circuitry. Several approaches have been

proposed to improve multi-banking [10] [1] [11] [12]. State-of-the-

art memory controllers and processor caches are based on multi-

banking due to area and power efficiency. For example, the

Pentium 5 has a data cache with 8 interleaved banks and two

access ports [13].

3. MODULAR MULTI-PORTED SRAM-

BASED MEMORIES: PREVIOUS WORK
In this section a review of two previous modular designs of multi-

ported SRAM-based memories are provided. The first approach is

based on multi-banking with a live-value-table (LVT) [14] and is

described in subsection 3.1. The second approach retrieves the

latest written data by utilizing logical XOR properties [15] and is

described in subsection 3.2.

3.1 LVT-based Multi-ported RAM
For each RAM address, the LVT stores the ID of the bank replica

that holds the latest data. As depicted in Figure 5 (left), an LVT-

based multi-ported RAM uses a different bank replica for each

writing port, while each bank has several reading ports. All banks

are accessed by all read addresses in parallel; the LVT helps to

steer the read data out of the correct bank since it holds the ID of

last accessed (written) bank for each address.

Actually, the LVT itself is a multi-ported RAM with the same

memory depth and number of writing ports as the implemented

multi-ported memory. However, since the LVT stores only bank

IDs, the data (line) width of the LVT table is only ⌈ 2⌉ of the

number of banks, which is equal to the number of writing ports.

Furthermore, the LVT doesn’t have write data, instead it writes a

fixed bank ID for each port as described in Figure 5 (right).

Since an LVT is a narrow, multi-port memory, it is implemented

as a registered-based, multi-ported RAM. As explained in

subsection 2.1, register-based RAM is not suitable for building

large memories. While the LVT width is only log2 of the number

of writing ports, the depth of the LVT is still similar to the depth

of the original RAM. This is the main cause of the area overhead.

In this paper, to reduce this area overhead, two methods of

constructing SRAM-based LVTs are described. The methodology

of constructing SRAM-based LVTs is also generalized. To the

authors’ best knowledge this is the first attempt to build an LVT

out of SRAM blocks only.

Assuming that bank IDs are binary encoded, the total number of

registers required to implement the LVT is

 ⌈ 2 ⌉. (1)

For deep memories, the large number of registers and huge read

multiplexers make register-based LVTs impractical. For example,

on a Stratix V GX A5 device (185k ALMs), Quartus II failed to

synthesize a 16k-deep memory with two write ports.

A register-based LVT with SRAM banks requires multi-read

banks for each write port. Each multi-read bank supports

reading ports, allowing the LVT to select the required data block.

The total number of SRAM cells is

 . (2)

Using Altera’s Stratix V M20K block RAMs, the total number of

required M20K blocks is

 20 (,) . (3)

Where 20 (,) is the number of M20K Blocks required to

construct a RAM with a specific depth and data width. This value,

described by equation (4), is derived from Figure 6, which shows

how Altera’s M20K blocks can be configured into several RAM

depth and data width configurations [16]. The total amount of

utilized SRAM bits can be either 16Kbits, or 20Kbits. Assuming

that the RAM packing process minimizes the number of blocks

cascaded in depth to avoid additional address decoding, each 16K

lines will be packed into single bit-wide blocks, and the remainder

will be packed into the minimal required configuration as follows

 20 (,) ⌊

⌋

{

 ⌈ ⁄ ⌉

 ⌈ ⁄ ⌉

 ⌈ ⁄ ⌉

 ⌈ ⁄ ⌉

 ⌈ ⁄ ⌉

. (4)

3.2 XOR-based Multi-ported RAM
While the LVT-based multi-port RAM just shown implements its

LVT as a register-based multi-ported RAM, the XOR-based

multi-ported RAM is implemented using SRAM blocks [15]. This

makes it more efficient for deep memories. However, as will be

shown, it is inefficient for wide memories.

Figure 4. Multi-banking: RAM capacity is divided into several

banks. Ports access a RAM bank with a fixed hashing scheme.

Figure 5. (left) LVT-based multi-ported RAM. (right) An LVT

implemented using multi-ported RAM.

Figure 6. Altera’s M20K BRAM configurations (left) 16Kbit

(right) 20Kbit.

The XOR-based method utilizes the special properties of the XOR

function to retain the latest written data for each write port. XOR

is commutative , associative ()
(), zero is the identity , and the inverse of each

element is itself .

As illustrated in Figure 7, each write port has a bank with multi-

read and a single write. Part of the read ports are used as a

feedback to generate new data and rewrite a specific bank, while

the other read ports generate the data outputs. To perform a write,

the new data is XOR’ed together with all the old data from the

other banks; the result is rewritten to the corresponding bank.

Hence if an address is written through write port with data

 , will be rewritten with

 [] 0[] []

 []. (5)

A read is performed by XOR’ing all the data for the

corresponding read address from all the banks, hence,

 [] 0[] [] []. (6)

Substituting [] from (5) into (6) and applying

commutative and associative properties of the XOR shows that

each bank appears twice in the XOR equation, hence will be

cancelled since XORing similar elements is 0. The only remaining

item will be , the required data.

The XOR-based multi-ported RAM requires multi-read banks

for each write port. Each multi-read bank supports read

ports to feedback the other ports via XORs, and read ports.

Each feedback read port is of width , to match the write data, so

these feedback memories can be quite large. The number of

required SRAM cells is

 (). (7)

Using Altera’s Stratix V M20K block RAMs, the total number of

required M20K blocks is

 20 (,) (). (8)

Since FPGA block RAM is synchronous, data feedbacks are read

with a one-cycle read delay. Hence, the written data, their

addresses and write-enables must be retimed to match the

feedback data. This requires the following number of registers

 (⌈ 2 ⌉). (9)

4. INVALIDATION TABLE
As described in the previous section, the XOR-based multi-ported

memories requires () manipulated copies of the

RAM content, while the LVT approach requires another register-

based multi-ported memory with the same number of read and

write ports for bank IDs.

This work proposes to implement LVTs using SRAM blocks only,

which has a major advantage over register-based LVTs and a

lower SRAM area compared to the XOR-based approach. Instead

of requiring multiple write ports to each multi-read bank in

regular LVT method, we suggest a design with a single write port

each like the XOR method. This makes it feasible to implement

the LVT using standard dual-ported RAMs. However, writing an

ID to one bank requires also invalidating the IDs in the other

banks, which produces the need for the multiple write ports.

Instead, we suggest writing an ID to only one specific bank and

invalidating all the other IDs with a single write by using an

invalidation table. Since the invalidation table has the same

functional behavior as an LVT, we call it an invalidation-based

LVT, or I-LVT.

The I-LVT doesn’t require multiple writes to indicate the last-

written bank. Instead, as described in Figure 8, the I-LVT reads all

other bank IDs as feedback, embeds the new bank ID into the

other values through a feedback function , then rewrites the

specific bank. To extract back the latest written bank ID, all banks

are read and data is processed with the output function to

regenerate the required ID. Selection of these two functions,

and , is what distinguishes different I-LVT implementations.

The I-LTV requires multi-read banks, each with read ports

for output extraction. Furthermore, an additional read

ports are required in each bank for feedback rewriting. The data

width of these read ports varies depending on the feedback

method and the bank ID encoding. In this paper, two bank ID

encoding methods are presented, binary and one-hot. The binary

method employs exclusive-OR functions to embed the bank IDs,

while the second uses mutual-exclusive conditions to invalidate

table entries and generate one-hot-coded bank selectors. The two

methods are described in subsections 4.1 and 4.2, respectively.

Figure 7. XOR-based multi-ported RAM.

Figure 8. Generalized approach for building the I-LVT.

4.1 Bank ID Embedding: Binary-coded

selectors
This approach attempts to reduce the SRAM cell count in the I-

LVT by employing binary-coded bank IDs. The special properties

of the exclusive-OR function are utilized to embed the latest

written bank ID, hence invalidating all other IDs. The current

written bank ID is XOR’ed with the content of all the other banks

from the same write address as described in the following

feedback function,

 , 0

 [], (10)

where is the ID of the currently written bank.

Similar to the XOR-based method described in subsection 3.2, the

last written bank ID is extracted by XOR’ing the content of all the

banks from the same read address as described in the following

output extraction function

 , 0 []. (11)

Without loss of generality, if address in bank is written with

the feedback function from Equation (10), then

 [] 0 []. (12)

If one of the read ports, say read port , is trying to read from the

same address, namely , then the read bank selector

will be generated using the same output extraction function from

(11), hence

 0 []. (13)

Due to XOR operation associativity, from (13) can be

expressed as

 [] 0 [], (14)

Substituting [] from (12) into (14) provides

 0 [] 0 []. (15)

The last two series in (15) can be reduced revealing that

 , the ID of the latest writing bank into address ,

as required.

Figure 9 provides an example of 2W/2R binary-coded I-LVT. (As

will become apparent in the next section, when there are only 2

write ports, the binary-coded and one-hot-coded I-LVTs are

identical.) Figure 10 shows a 3W/2R binary-coded I-LVT.

The required data width of the I-LVT SRAM blocks is ⌈ 2 ⌉.
Also, multi-read banks are required each with output ports

for ID extraction and feedback ports for ID rewriting.

Hence, the number of required SRAM cells is

 ⌈ 2 ⌉ (). (16)

Respectively, the number of required M20k block RAMs is

 20 (, ⌈ 2 ⌉) (). (17)

Similarly, the number of registers required for retiming is

 (⌈ 2 ⌉). (18)

4.2 Mutual-exclusive Conditions: One-hot-

coded Selectors
The previous binary-coded I-LVT incurs a long path delay

through the feedback and output extraction functions, which

causes a performance reduction in structures with more ports.

Employing a one-hot thermometer ID encoding reduces the

feedback paths to just a few inverters, from the -wide XOR

used earlier.

Mutual-exclusive conditions are used to rewrite the RAM

contents. A specific bank is written data that contradicts all the

other banks, hence only this specific bank will be valid and all the

others are invalid. By checking the appropriate mutual-exclusive

condition for each bank, only the latest written bank will hold the

valid data.

Equations (19), (20), and (21) describe mutual-exclusive feedback

functions for values 1, 2, and 3, respectively. The angle

brackets in theses equations are used for bit selection and

concatenation, while the square brackets in other equations are

used for RAM addressing. As can be seen from these equations,

writing to one bank will invalidate all the other banks at the same

address since one mutual negated bit is shared between each two

Figure 9. A 2W/2R SRAM-based I-LVT; identical for binary-

coded or one-hot-coded bank selectors.

Figure 10. A 3W/2R SRAM-based I-LVT with binary-coded

selectors.

lines. For example, writing to bank 2 when (Equation

(20)) will write 〈 〉 0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ which will invalidate

bank 0, and 〈 〉 2〈 〉 which will invalidate bank 2.

 {
 ,0 0〈 〉 〈 〉

 , 〈 〉 0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (19)

 {

 ,0 0〈 〉 〈 2〈 〉, 〈 〉〉

 , 〈 〉 〈 2〈 〉, 0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉

 ,2 2〈 〉 〈 〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉

 (20)

{

 ,0 0〈 〉 〈 〈 〉, 2〈 〉, 〈 〉〉

 , 〈 〉 〈 〈 〉, 2〈 〉, 0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉

 ,2 2〈 〉 〈 〈 〉, 〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉

 , 〈 〉 〈 2〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 0〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〉

 (21)

Equation (22) generalizes the feedback function to

 , 〈 〉|0

 []〈 〉 {
 []〈 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 []〈 〉
}. (22)

This equation shows that each bank is using bits from all other

banks to write its own content. To prove that each two banks are

mutually exclusive, one bit of these banks should be mutually

negated. Suppose 0 a bank ID, and

 0 a bit index. From Equation (22) if 0 0 then

another bank ID and bit index exist such that

 〈 0〉 〈 〉, 0 , and 0. Hence,

 and from (22) 〈 〉 〈 0〉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ as required.

The proof in case of 0 0 is identical.

The output extraction function checks for each one-hot output

selector if the read data from a specific bank matches the mutual-

exclusive case. Hence, only one case will match due to

exclusivity. The output extraction function consists of an

bit wide comparator for each one-hot selector.

An example of a 2W/2R one-hot-coded I-LVT is shown in Figure

9, while a 3W/2R one-hot I-LVT is depicted in Figure 11.

The one-hot-coded I-LVT requires SRAM bits to save the

mutually exclusive cases. However, the feedback read ports

requires only one bit, since only one bit is used by the feedback

function from each bank. multi-read banks are required each

with output ports for one-hot selectors extraction and

feedback ports for mutually exclusive cases rewriting. Hence, the

number of required SRAM cells is

 () (). (23)

Respectively, the number of required M20k block RAMs is

 (,) (,) (). (24)

Similarly, the number of registers required for retiming is equal to

the binary-coded case and is described by (18).

4.3 Data Dependencies and Bypassing
The new I-LVT structure and the previous XOR-based multi-

ported RAMs incur some data dependencies due to feedback

functions and the latency of reading the I-LVT to decide about the

last written bank. Data dependencies can be handled by

employing bypassing, also known as forwarding.

Figure 12 illustrated two types of bypassing based on write data

and address pipelining. Bypassing is necessary because Altera

dual-port block RAMs cannot internally forward new data when

one port reads and the other port writes the same address on the

same clock edge, constituting a read-during-write (RDW) hazard.

Both bypassing techniques are functionally equivalent, allowing

reading of the data that is being written on the same clock edge,

similar to single register functionality. However, the fully-

pipelined two-stages bypassing shown in Figure 12 (right) can

overcome additional cycle latency. This capability is required if a

block RAM has pipelined inputs (e.g., cascaded from another

block RAM) that need to be bypassed.

The single-stage and the two-stage bypass circuitry for a bits

data width and lines depth block RAM requires registers for

data bypassing, two ⌈ 2 ⌉ wide address registers and one

enable register, for a total of

 (,) ⌈ 2 ⌉ . (25)

The most severe data dependency that I-LVT design suffers from

is write-after-write (WAW), namely, writing to the same address

that has been written before in the previous cycle. This

dependency occurs because of the feedback reading and writing

latency. A single-stage bypassing for the feedback banks should

solve this dependency.

Two types of reading hazards are introduced by the proposed I-

LVT design, read-after-write (RAW) and read-during-write

(RDW). RAW occurs when the same data that have been written

in the previous clock edge are read in the current clock edge.

RDW occurs when the same data are written and read on the same

clock edge.

Figure 11. A 3W/2R SRAM-based I-LVT with one-hot-coded

selectors.

Figure 12. RAM bypassing (left) single-stage (right) 2-stages

fully pipelined.

Due to the latency of the I-LVT, reading from the same address on

the next clock edge after writing (RAW) will provide the old data.

To read the new data instead, the output banks of the I-LVT

should be bypassed by a single-stage bypass to overcome the I-

LVT latency.

The deepest bypassing stage is reading new data on the same

writing clock edge (RDW), which is similar to single register

stage latency. This can be achieved by 2-stage bypassing on the

output extract ports of the I-LVT or the XOR-based design to

allow reading on the same clock edge. The data banks, which are

working in parallel with the I-LVT should also be bypassed by a

single-stage bypass to provide new data. Table 2 summarizes the

required bypassing for data banks, feedback banks and output

banks for each type of bypassing of the XOR-based, binary-coded

and one-hot-coded I-LVT designs.

Since XOR-based multi-ported RAM requires bypassing for all

the () banks to read new data when RAW or

RDW, the additional registers required for the bypassing are

 () (,). (26)

RAW for binary-coded method requires bypassing the I-LVT

only. Since the I-LVT is built out of

 () blocks, each with ⌈ 2 ⌉ bits width data,

the following amount of additional registers is required

 () (, ⌈ 2 ⌉). (27)

RAW for one-hot-coded method requires bypassing the whole I-

LVT, () feedback banks with 1 bit width and

output banks with bits width, hence a total registers of

 () (,) (,). (28)

RDW for both binary and one-hot-coded methods require

bypassing the data banks in addition to the I-LVT, hence

the following amount of registers is added to the previous count in

(27) and (28)

 (,). (29)

4.4 Initializing Multi-ported RAM Content
Due to the special structure of the proposed I-LVT-based multi-

ported memories and the previously proposed XOR-based

method, RAM data may have replicas in several banks. Hence,

initializing the multi-ported RAM with a specific content requires

special handling.

For the XOR-based multi-ported RAM, the first multi-read bank

should be initialized to the required initial content; all the other

multi-read banks should be initialized to zero.

The binary/one-hot-coded I-LVT-based multi-ported RAM

requires initializing all the I-LVT banks with zeros. The binary-

coded I-LVT will generate a selector to the first data bank

(indexed zero), since XOR’ing all the initial values (zeros) will

generate zero. Similarly, the one-hot-coded I-LVT will be

initialized to the first mutually exclusive case, hence the first bank

will be selected. Only the first data bank should hold the initial

data; the remaining banks can be left uninitialized. The initial

values for each bank in the binary/one-hot-coded I-LVT-based

and XOR-based designs are shown in Figure 13.

4.5 Comparison and Discussion
In this section, we compare the previous LVT and XOR

approaches to the new I-LVT approaches for building multi-port

memories. Using the equations provided, we will illustrate why

the I-LVT approach is superior in terms of number of BRAMs

required, and number of registers required. Also, between the two

I-LVT methods proposed, we will inspect the number of BRAMs

and registers used by each bypassing method.

Table 3 summarizes SRAM resource usage for each of the three

multi-ported RAM approaches: the XOR-based and the

binary/one-hot-coded I-LVT. Both the general SRAM cell count

and the number of Altera’s M20K blocks are described.

Comparing the SRAM cell counts, the XOR-based approach

consumes fewer SRAM cells than the one-hot I-LVT if

 . (30)

This inequality is unlikely to be satisfied, since even if the data

width is only one byte, the number of reading ports would

need to be larger than 8, which is very rare. Hence, for most of the

common cases, the one-hot-coded I-LVT approach will consume

fewer SRAM cells.

Comparing the XOR-based approach to the binary-coded

approach, the XOR-based approach consumes fewer SRAM cells

only if

⌈ ()⌉ ()

()
|

. (31)

Both (30) and (31) show that the XOR-based approach will

consume less SRAM cells only for a very narrow data widths

which are uncommonly used. Hence, the I-LVT approach will be

the choice for most applications. Comparing the two I-LVT

approaches, Table 3 shows that the one-hot-coded I-LVT

consumes fewer SRAM cells than the binary-coded I-LVT if

() (⌈ ()⌉)

() ⌈ ()⌉
|

. (32)

Table 4 summarizes register usage for all multi-ported RAM

architectures and bypassing. Only the register-based LVT

architecture is directly proportional to memory depth. As a

consequence, it consumes much more registers than other

architectures, making register-based LVTs impractical for deep

memories.

Table 2. Bypassing for XOR-based and binary/one-hot-coded

I-LVT multi-ported memories

 XOR-based I-LVT based

 Feedback

banks

Output

banks

Data

banks

Feedback

banks

Output

banks

Allow WAW 1-stage None None 1-stage None

New data RAW 1-stage 1-stage None 1-stage 1-stage

New data RDW 1-stage 2-stage 1-stage 1-stage 2-stage

Figure 13. Initial value for each bank (left) I-LVT-based

(right) XOR-based. Initial values are 0: zeros, I: initial

content, and U: uninitialized.

With a single-stage bypassing, the XOR-based design consumes

fewer registers than the binary-coded if

 ⌈
2
()⌉. (33)

Equation (33) is unlikely to be satisfied. Even if the data width is

just one byte (), the number of write ports would need

to be larger than 256, which is impractical.

On the other hand, with a single-stage bypass, the XOR-based

design consumes fewer registers than the one-hot-coded I-LVT

design if

|

. (34)

In a typical compute-oriented designs, . Assuming

that () requires that ; even for a

one byte data width, this requires to satisfy (34), which

is impractical. Therefore, for a single-stage bypass, the I-LVT

based designs will consume fewer registers than the XOR-based

design.

Considering two-stage bypassing, I-LVT based designs will

consume (,) more registers, as described

in (29). In this case, XOR-based design consumes fewer registers

than the binary-coded I-LVT design only if

 ⌈ 2()⌉ (

). (35)

On the other hand, XOR-based design consumes fewer registers

than the one-hot-coded I-LVT design only if

 . (36)

Similar to (30), which is equal to (36), this is unlikely to be

satisfied in practical designs. Hence, in the case of two-stage

bypassing, the I-LVT-based design will consume fewer bypassing

registers than the XOR-based method.

In the next section, we will show these analytical results are in

agreement with experimental results.

5. EXPERIMENTAL RESULTS
In order to verify and simulate the suggested approach and

compare to previous attempts, fully parameterized Verilog

modules have been developed. Both the previous XOR-based

multi-ported RAM method, and the proposed I-LVT method have

been implemented. To simulate and synthesize these designs with

various parameters in batch using Altera’s ModelSim and Quartus

II, a run-in-batch flow manager has also been developed. The

Verilog modules and the flow manager are available online [5].

To verify correctness, the proposed architecture is simulated using

Altera’s ModelSim. A large variety of different memory

architectures and parameters are swept, e.g. bypassing, memory

depth, data width, number of reading or writing ports, and

simulated in batch, each with over million random memory access

cycles.

All different multi-ported design modules were implemented

using Altera’s Quartus II on Altera’s Stratix V

5SGXMA5N1F45C1 device. This is a high-performance device

with 185k ALMs, 370k ALUTs, 2304 M20K blocks and 1064 I/O

pins.

We performed a general sweep and tested all combinations of

configurations of the following parameters:

 Writing ports (): 2, 3 and 4 writing ports.

 Reading ports (): 3, 4, 5 and 6 reading ports.

 Memory depth (): 16 and 32 K-lines.

 Data width (): 8, 16, and 32 bits.

 Bypassing: No bypassing, single-stage and two-stages.

Following this, we analyzed the full set of results. In this paper,

we omit many of the in-between settings because they behaved as

one might expect to see via interpolation of the endpoints.

Figure 14 plots the maximum frequency derived from Altera’s

Quartus II STA at 0.9V and temperature of 0 °C. The results show

a higher Fmax for binary/one-hot coded I-LVT compared to

XOR-based approach for all design cases. With 3 or more writing

ports, the one-hot-coded I-LVT supports a higher frequency

compared to all other design styles. Compared to the XOR-based

approach, the one-hot-coded I-LVT improves Fmax by 38% on

average for all tested design configurations, while the maximum

Fmax improvement is 76%.

Figure 15 (top) plots the number of Altera’s M20K blocks used to

implement each multi-ported RAM configuration. The proposed

binary/one-hot-coded I-LVT consumes the least BRAM blocks in

all cases. The average reduction of the best of binary/one-hot-

coded I-LVT compared to XOR-based approach is 19% for all

tested design configurations, while it can reach 44% for specific

configurations. The difference of consumed Altera’s M20Ks

between binary-coded I-LVT and one-hot-coded I-LVT is less

than 6%. Both I-LVT methods make a significant improvement in

BRAM consumption, but binary-coded I-LVT consumes the least

BRAMs for more than 3 writing ports. To clarify the difference in

Table 3. Summary of SRAM-based memory usage

 SRAM bits M20K blocks1

Register-based LVT 𝑑 𝑤 𝑛𝑊 𝑛𝑅 𝑛𝑀20𝐾(𝑑,𝑤) 𝑛𝑊 𝑛𝑅

XOR-based 𝑑 𝑤 𝑛𝑊 𝑛𝑅 𝑑 𝑤 𝑛𝑊 (𝑛𝑊) 𝑛𝑀20𝐾(𝑑,𝑤) 𝑛𝑊 𝑛𝑅 𝑛𝑀20𝐾(𝑑,𝑤) 𝑛𝑊 (𝑛𝑊)

Binary-coded I-LVT 𝑑 𝑤 𝑛𝑊 𝑛𝑅 𝑑 ⌈ 2 𝑛𝑊⌉ 𝑛𝑊 (𝑛𝑊) 𝑑 ⌈ 2 𝑛𝑊⌉ 𝑛𝑊 𝑛𝑅 𝑛𝑀20𝐾(𝑑,𝑤) 𝑛𝑊 𝑛𝑅 𝑛𝑀20𝐾(𝑑, ⌈ 2 𝑛𝑊⌉) 𝑛𝑊 (𝑛𝑊) 𝑛𝑀20𝐾(𝑑, ⌈ 2 𝑛𝑊⌉) 𝑛𝑊 𝑛𝑅

One-hot-coded I-LVT 𝑑 𝑤 𝑛𝑊 𝑛𝑅 𝑑 𝑛𝑊 (𝑛𝑊) 𝑑 (𝑛𝑊) 𝑛𝑊 𝑛𝑅 𝑛𝑀20𝐾(𝑑,𝑤) 𝑛𝑊 𝑛𝑅 𝑛𝑀20𝐾(𝑑,) 𝑛𝑊 (𝑛𝑊) 𝑛𝑀20𝐾(𝑑, 𝑛𝑊) 𝑛𝑊 𝑛𝑅

Table 4. Summary of register usage

 No bypass Additional registers for single-stage2 Additional registers for two-stage

Register-based LVT 𝑑 ⌈ 2 𝑛𝑊⌉ None None

XOR-based 𝑛𝑊 (⌈ 2 𝑑⌉) 𝑛𝑊 (𝑛𝑊) 𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑,𝑤) 𝑛𝑊 𝑛𝑅 𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑,𝑤) None

Binary-coded I-LVT 𝑛𝑊 (⌈ 2 𝑑⌉) 𝑛𝑊 (𝑛𝑊) 𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑, ⌈ 2 𝑛𝑊⌉) 𝑛𝑊 𝑛𝑅 𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑, ⌈ 2 𝑛𝑊⌉) 𝑛𝑊 𝑛𝑅 𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑,𝑤)

One-hot-coded I-LVT Same as Binary-coded 𝑛𝑊 (𝑛𝑊) 𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑,) 𝑛𝑊 𝑛𝑅 𝑛𝐵𝑦𝑝𝑅𝑒𝑔(𝑑, 𝑛𝑊) Same as Binary-coded

1 BM20K(d,w) is the number of Altera’s M20K blocks required to construct a RAM with d lines depth and w bits width and is described in (4).
2
 Regbypass(d,w) is the number of additional registers required to bypass a RAM with d lines depth and w bits width and is described in (25).

BRAM consumption, Figure 15 (bottom) shows the percentage of

BRAM overhead above the register-based LVT, which uses the

fewest possible BRAMS overall. The XOR-based design

consumes more BRAMs in all cases, up to 100% more than the

register-based LVT. On the other hand, I-LVT-based methods

consume only 12.5% more BRAMs in the case of 32-bit wide

memories.

The number of registers required for various designs and

bypassing styles is shown in Figure 16. The I-LVT-based methods

consume fewer registers compared to the XOR-based method for

no bypassing or single-stage bypass cases. For two-stage

bypassing, the I-LVT based methods must bypass the data banks,

hence the register consumption goes higher than the XOR-based

method. However, the register consumption of the register-based

LVT method is the highest overall and can be three orders of

magnitude higher since it is directly proportional to memory

depth. Furthermore, some register-based LVT configurations

failed to synthesize on our Stratix V with 185k ALMs.

Figure 17 shows the number of ALMs consumed by each design

with different bypassing methods. Single-stage bypassing

consumes more ALMs than the non-bypassed version due to

address comparators and data muxes. On the other hand, two-

stage bypassing requires an additional address comparator and a

wider mux; hence it consumes more ALMs than a single-stage

bypass. In all bypass modes, as memory data width goes higher,

the XOR-based method consumes more ALM’s than the I-LVT

methods due to wider XOR gates.

Since the register-based LVT approach is not feasible with the

provided deep memory test-cases, the register-based LVT trends

are derived analytically from Table 3 and 4 and not from

experimental results. Hence, the register-based LVT trend was

added as a reference baseline to Figure 15 and 16 only.

Figure 14. Fmax (MHz) T=0C (top) No bypass (bottom) Two-stage bypass.

Figure 16. Registers (top) no-bypass

(bottom) two-stage bypass.

Figure 15. M20K blocks (top) total count (bottom) overhead percentage relative to register-

based LVT.

Figure 17. ALMs (top) no-bypass

(bottom) two-stage bypass.

6. CONCLUSIONS AND FURTHER

DIRECTIONS
In this paper, we have proposed the use of an invalidation-based

live-value-table, or I-LVT, to build modular SRAM-based multi-

ported memories. The I-LVT generalizes and replaces two prior

techniques, the LVT and XOR-based approaches. A general I-

LVT is described, along with two specific implementations:

binary-coded and one-hot-coded. Both methods are purely SRAM

based. A detailed analysis and comparison of resource

consumption of the suggested methods and previous methods is

provided. The original LVT approach can use an infeasible

number of registers. Unlike the LVT, the I-LVT register usage is

not directly proportional to memory depth; hence it requires

magnitudes fewer registers. Furthermore, the proposed I-LVT

method can reduce BRAM consumption up to 44% and improve

Fmax by up to 76% compared to the previous XOR-based

approach. The one-hot-coded I-LVT method exhibits the highest

Fmax, while keeping BRAM consumption within 6% of the

minimal required BRAM count. Meanwhile, the binary-coded I-

LVT uses fewer BRAMs than the one-hot coded when there are

more than 3 write ports.

A fully parameterized and generic Verilog implementation of the

suggested methods is provided as open source hardware [5]. As

future work, the suggested multi-ported memories can be tested

with various other FPGA vendors’ tools and devices.

Furthermore, these methods can also be tested for ASIC

implementation using dual-ported RAMs as building blocks, and

compared against memory compiler results. Also, to improve

Fmax, time-borrowing techniques can be utilized. The goal would

be to recover the frequency drop due to the multi-ported RAM

additional logic, feedback and bank selection logic. One possible

approach uses shifted clocks to provide more reading and writing

time [17]. However, adapting this method to multi-ported

memories is not trivial due to internal timing paths across the I-

LVT.

7. ACKNOWLEDGMENTS
The authors would like to thank Altera for donations of hardware

and software, as well as NSERC for funding.

8. REFERENCES
[1] J.H. Tseng and K. Asanovic, “Banked multiported register

files for high-frequency superscalar microprocessors,” Int’l

Symp. on Computer Architecture (ISCA), May 2003, pp. 62–

71.

[2] J.A. Fisher, “Very Long Instruction Word architectures and

the ELI-512,” Int’l Sym. on Comp. Arch. (ISCA), 11(3), June

1983.

[3] E.S. Fetzer and J.T Orton, “A fully-bypassed 6-issue integer

datapath and register file on an Itanium microprocessor,”

IEEE Int’l Solid-State Circuits Conf., vol. 1, Feb. 2002, pp.

420–478.

[4] H. Bajwa and X. Chen, “Low-Power High-Performance and

Dynamically Configured Multi-Port Cache Memory

Architecture,” Int’l Conf. on Elec. Eng., Apr. 2007, pp. 1–6.

[5] http://www.ece.ubc.ca/~lemieux/downloads/

[6] B.A. Chappell, T.I Chappell, M.K. Ebcioglu, and S.E.

Schuster, “Virtual multi-port RAM employing multiple

accesses during single machine cycle,” U.S. Patent 5 542

067, Jul. 30, 1996.

[7] H. Yokota, “Multiport memory system,” US Patent 4 930

066, May 29, 1990.

[8] Ditlow et al., “A 4R2W register file for a 2.3GHz wire-speed

POWER™ processor with double-pumped write operation,”

IEEE Int’l Solid-State Circuits Conf., Feb. 2011, pp. 256–

258.

[9] R.E. Kessler, “The Alpha 21264 microprocessor,” IEEE

Micro, vol. 19, no. 2, pp. 24–36, Mar./Apr. 1999.

[10] H.J. Mattausch, “Hierarchical N-port memory architecture

based on 1-port memory cells,” European Solid-State

Circuits Conference (ESSCIRC '97), Sept. 1997, pp. 348–

351.

[11] J. Weixing, S. Feng, Q. Baojun Qiao, and S. Hong, “Multi-

port Memory Design Methodology Based on Block Read and

Write,” IEEE Int’l Conference on Control and Automation),

May 2007.

[12] Z. Wang Zuo, “An Intelligent Multi-Port Memory,” Journal

of Computers, vol. 5, no. 3, pp. 471–478, Mar 2010.

[13] D. Alpert and D. Avnon, “Architecture of the Pentium

microprocessor,” IEEE Micro, 13(3), pp. 11–21, June 1993.

[14] C.E. LaForest and J.G. Steffan, “Efficient Multi-ported

Memories for FPGAs,” ACM/SIGDA Int’l Symp. on Field-

Programmable Gate Arrays (FPGA ‘10), Feb. 2010.

[15] C.E. LaForest, M.G. Liu, E.R. Rapati, and J.G. Steffan,

“Multi-ported memories for FPGAs via XOR,” ACM Int’l

Symp. on Field-Programmable. Gate Arrays (FPGA ‘12),

Feb. 2012, pp. 209–218.

[16] Altera Corporation, Stratix V Device Handbook, June 2011.

[17] A. Brant, A. Abdelhadi, A. Severance, G. Lemieux, “Pipeline

Frequency Boosting: Hiding Dual-Ported Block RAM

Latency using Intentional Clock Skew,” IEEE International

Conference on Field-Programmable Technology (FPT),

December 2012.

http://www.ece.ubc.ca/~lemieux/downloads/

