
Safe Overclocking of Tightly Coupled CGRAs
and Processor Arrays using Razor

Alexander Brant, Ameer Abdelhadi, Douglas H.H. Sim, Shao Lin Tang, Michael Xi Yue, and Guy G.F. Lemieux
Dept. of ECE, University of British Columbia, Vancouver, Canada

Email: alexb|ameer|dsim|sltang|xiy|lemieux@ece.ubc.ca

Abstract—Overclocking a CPU is a common practice among
home-built PC enthusiasts where the CPU is operated at a
higher frequency than its speed rating. This practice is unsafe
because timing errors cannot be detected by modern CPUs and
they can be practically undetectable by the end user. Using a
timing speculation technique such as Razor, it is possible to
detect timing errors in CPUs. To date, Razor has been shown
to correct only unidirectional, feed-forward processor pipelines.
In this paper, we safely overclock 2D arrays by extending
Razor correction to cover bidirectional communication in a
tightly coupled or lockstep fashion. To recover from an error,
stall wavefronts are produced which propagate across the
device. Multiple errors may arise in close proximity in time
and space; if the corresponding stall wavefronts collide, they
merge to produce a single unified wavefront, allowing recovery
from multiple errors with one stall cycle. We demonstrate the
correctness and viability of our approach by constructing a
proof-of-concept prototype which runs on a traditional Altera
FPGA. Our approach can be applied to custom computing
arrays, systolic arrays, CGRAs, and also time-multiplexed
FPGAs such as those produced by Tabula. As a result, these
devices can be overclocked and safely tolerate dynamic, data-
dependent timing errors. Alternatively, instead of overclocking,
this same technique can be used to ‘undervolt’ the power
supply and save energy.

I. INTRODUCTION

Tempted by the promise of a faster computer, many
PC enthusiasts attempt to ‘overclock’ their processor. The
amount of overclocking can be significant, up to 50% or
more, so it often requires boosting the supply voltage as
well. To support these enthusiasts, special motherboards and
processors exist to give control over clock rates and power
supply levels, and success stories fill many user forums.

Two characteristics allow a processor to be overclocked:
transistors operate faster than nominally predicted by speed
binning, and data-dependent calculations do not exercise the
worst-case critical path(s). In both cases, the main problem
with operating close to the edge is detecting the first signs
of errors in the computation.

Obvious signs of failure are when the processor fails
power-on self-test (POST), spontaneously reboots, or
presents a corrupt screen. After lowering the clock rate to
eliminate these obvious problems, how can one guarantee
execution is now perfectly correct?

Safe overclocking requires run-time detection and correc-
tion of timing errors. One way to detect timing errors at

Shadow
Latch

Logic
Stage L1

Ø+Δ1

Ø

error

Main
FF

Logic
Stage L2

Figure 1. Razor shadow register and error detection

the circuit level is called Razor [1]–[3]. Shown in Figure 1,
Razor augments the critical pipeline registers in a processor
with shadow registers. The shadow register captures the data
using a delayed clock edge. When the circuit is overclocked,
the pipeline register captures data before it is stable, but the
shadow register is clocked late enough to capture the correct
value. A mismatch between these registers indicates a timing
error. Error recovery involves stalling the pipeline to inject
the correct data.

Until now, Razor has only been applied to unidirectional
pipelines found in a typical processor. In this paper, we
extend the Razor error recovery mechanism to include a 2D
array of tightly coupled processing elements with bidirec-
tional communication. By tightly coupled, we mean lock-
step, deterministic, prescheduled communication that must
guarantee data delivery by a specific clock cycle number, not
by elastic methods with data-presence indicators. As a result,
this technique can be applied to systolic arrays, CGRAs, and
time-multiplexed FPGAs by Tabula.

In extending Razor to bidirectional pipelines, we learn
that it can merge stall cycles that are created by multiple
errors located in close proximity in time and space. This
produces fewer stall cycles than errors. In other words, an
overclocked 2D array can scale efficiently, since the number
of stall cycles required will grow slower than the number of
processing elements.

As a proof-of-concept, we have implemented a system
that can be safely overclocked with 63% higher throughput
than what is predicted by static timing analysis tools. Our
system is a time-multiplexed CGRA implemented on top
of an Altera FPGA. We have augmented the processor-
to-processor communication paths with Razor timing error
detection, and added our own correction mechanism.

II. BACKGROUND AND PREVIOUS WORK

Razor was introduced as a system to save power in
pipelined processors by lowering the supply voltage until
timing errors occur [1]. A timing-error detection circuit was
introduced to determine when the system was being clocked
faster than the supply voltage would support. In 2011, an
ARM microprocessor was developed with Razor pipelin-
ing [2]. In 2013, Bubble-Razor was introduced to simplify
the practical steps of integrating with a real processor design
and switching from edge-triggered flip-flops to transparent
latches with two-phase clocking [3].

The shadow register, shown in Figure 1, is fed by a
delayed clock. To ensure the shadow register holds the
correct value, the clock period plus the shadow register delay
should be greater than the worst-case critical path delay.
Similarly, minimum path constraints to the shadow register
must prevent ‘double-clocking’, where data in the upstream
flip-flops arrive too early and are clocked into the shadow
register on the current cycle rather than the next cycle.

To correct a timing error, the input to the next pipeline
stage can be switched to the output of the shadow register.
Since there is not enough time left in the clock cycle to
accept the shadow value and then compute the required
result for the downstream flip-flop, a stall cycle is required.
Forward progress is ensured, since the worst-case perfor-
mance loss is 50% due to a stall occurring every other cycle.

To investigate our Razor extension to 2D arrays, we have
implemented a CGRA based upon the MALIBU architec-
ture [4] shown in Figure 2. Each PE contains a full 32-
bit integer ALU, including a single-cycle multiplier. ALU
results for local re-use by the PE are stored in a 32-bit
wide ‘R’ memory. Results destined for the four neighbouring
PEs are written to memories labelled N, S, E, and W; by
symmetry, this gives rise to bidirectional 2D communication.
The CGRA follows a deterministic schedule of operations.
Communication is tighly coupled in that writes to a memory
in cycle t can be picked up in the next clock cycle, t+ 1.

III. RAZOR EXTENSION FOR 2D ARRAYS

This section details the design of our Razor system for
detecting and correcting timing errors in a 2D array.

A. Error Detection and Correction in the 2D Array

Due to the long delay of the multiplier, the critical path
in the MALIBU CGRA starts at a memory read port (one of
R, N, S, E, or W), goes through the multiplier, and ends at
a memory write port. To detect timing errors, Razor shadow
registers are placed on the write ports of each memory. Other
paths in the system are not critical and left unprotected.1

To add Razor-style error detection, the RAMs must be
augmented with a shadow register as shown in Figure 3.
The RAM is written using the main clock, while the shadow

1Given our final speed-up results, we should re-check this assumption.

R
N

S

E

W

32

3232

ALU

32

Instruction ROM
& Decode

W

E

S

N
XBAR

Figure 2. The tiled MALIBU architecture with PE detail.

register is clocked after a slight delay from the main clock.
To determine if there is a timing error during cycle t, the
value to the shadow register is compared to the value written
to the RAM. A mismatch, detected in cycle t+1, indicates
that erroneous data was written to the RAM.

Hence, cycle t+1 is used to correct the error that occurred
during cycle t. This involves taking the correct value from
the shadow register and writing it to the correct location in
the RAM. The correct location from cycle t, the previous
cycle, is simply taken from an address register.

In the PE with the detected error, the operation that should
have occurred in cycle t+1 is instead executed in t+2. At the
same time during cycle t+1, the detected error is propagated
in the form of a stall signal to the four neighbours.

During cycle t + 2, the four neighbours will repeat the
operation they were to have executed during cycle t + 1.

Shadow
Latch

address

data

write_
enable

Ø+Δ1

Ø

load_shadow_reg

write_
data

address

clk

R
A
M

write_
enable

read_
data

W
ri
te

P
o
rt

mem_err

!=

Figure 3. Shadow register applied to Stratix III memory

At the same time, they will also inform their outward
neighbours for the next cycle, t+3. Ultimately, this produces
a stall wavefront that propagates outward each cycle until
the boundary of the chip is reached.

B. Altera RAM Output

To implement Razor error detection, we exploit a docu-
mented feature of the Stratix III block RAMs [5]. Under
read-during-write conditions to the same location from the
same access port, the block RAM can be configured to
output the new data being stored onto the data-out pins right
after the clock edge. For this to work correctly, the read-
enable signal must also be asserted along with the write-
enable signal when a write occurs. This allows us to ensure
data is stored correctly with low hardware overhead.

Note that Stratix III cannot output this new data to a
different access port if it is attempting to read the same
location on the same clock edge as the write. However,
the MALIBU CGRA requires this capability to minimize
latency. To emulate this, we can augment the RAM shown
in Figure 3 with a bypass register [6]. We have implemented
this bypass path for MALIBU, but details have been omitted
from Figure 3 for clarity.

C. 2D Stall Propagation

The original Razor only corrects timing errors in a unidi-
rectional, feed-forward processor pipeline. In such a system,
it is possible for multiple timing errors to arise nearly
simultaneously. The errors may occur in the same pipeline
stage in nearby clock cycles, or they may occur in nearby
pipeline stages at the same clock cycle or similar cycles.
To correct these timing errors, the error always propagates
forward as a stall; each error creates a stall.

Sy
st

em
 C

lo
ck

 C
yc

le

Manhattan Distance

2 Cycle Stall

1 Cycle Stall

Timing Error

Figure 4. Conceptual graph demonstrating how 2 separate errors join to
form one stall region, and how a later error creates a second stall.

In contrast, a bidirectional 1D pipeline must translate a
timing error into a stall that propagates in both directions
away from the source. For example, consider Figure 4, where
a position in the pipeline is represented on the horizontal
axis, and the clock cycle number is on the vertical axis.
When the first error occurs, a corrective stall wavefront
begins propagating in both directions away from the source
of the error. When a second error occurs, at a different
location but nearby in time, it will create its own two
wavefronts. In between the two errors, these wavefronts will
meet up and cancel each other out because there is no need
to propagate either stall any further. That is, all points in
between the two error sources will have stalled for one
cycle, which is sufficient to resynchronize with both errors.
However, the outer wavefronts continue to expand outwards
until they reach the edge of the pipeline.

If a third error occurs at any PE after the first or second
error has already reached that location, it creates a new stall
wavefront that will cause all pipeline stages to execute two
cycles behind the original schedule. That new region will
expand until it spans the entire pipeline.

In a bidirectional 2D pipeline, two PEs can also stall
at nearly the same time and create their own two stall
wavefronts. These stalls propagate one block at a time to the
four immediate neighbours, creating an expanding diamond-
shaped wavefront, as shown in Figure 5. Like the 1D array,
two independent errors that occur closely in time may collide
and merge. This occurs if the second error occurs before the
first error propagates all the way to source of the second
error. In this case, only one stall cycle is needed at each
stage, so the overall array is stalled only one cycle.

For the MALIBU CGRA, care must be taken to ensure
that all memories in a PE hold the correct operands before
executing the next operation. When an error is propagating,
data entering into the wavefront from the opposite direction
must be delayed, also using the shadow register, to prevent
that new data from overwriting existing data before the PE
is finished using it. This case is explained below.

Consider adjacent PEs A, B and C shown in Figure 6.

11

1

1

11

1

12

2

2

2

2

2

2

11

1

12

2

2

2

2

2

2

3 3

3

3

3

3

3

3

11

1

12

2

2

2

2

2

2

3 3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

11

1

12

2

2

2

2

2

2

3 3

3

3

3

3

3

3

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

11

1

12

2

2

2

2

2

2

3 3

3

3

3

3

3

3

4

4

4

4

4

4

4

5

5

5

5

5

5

5

6

6

6

66

11

1

12

2

2

2

2

2

2

3 3

3

3

3

3

3

3

4

4

4

4

4

4

4

5

5

5

5

5

66

4

4

4

4 4

4

4

4

5

5

5

5 5

5

5

5

5 4

4

4

5

6

6

4

5

5

4

5

5

4

6

6

6

6

5 6

6

6

5

5

4

4

4

5 6

5

5

4

5

5

4

6

6

5

5

6

6

6

7

7

7

7

11

1

12

2

2

2

2

2

2

3 3

3

3

3

3

3

3

4

4

4

4

4

4

4

5

5

5

5

5

66

5 6

6

6

5

5

4

4

4

5 6

5

5

4

5

5

4

6

6

5

5

6

6

6

7

7

7

7 8

a) error #1 occurs in cycle 0 b) stall wavefront propagates c) stall wavefront propagates

d) error #2 occurs in cycle 3 e) two stall wavefronts in cycle 4 f) two stall wavefronts in cycle 5

g) four stalls merge in cycle 6 h) two stalls merge in cycle 7 i) fully propagated in cycle 8

Figure 5. Error propagation in the 2D array, where two errors merge into a single stall cycle. Numbers indicate the clock cycle # of the stall.

All PEs initially perform their own part of instruction Y at
cycle t. Suppose A detects an error in cycle t and must re-
run Y on cycle t+1. During cycle t+1, if instruction Y+1
at B is writing to A, it could overwrite a memory location
currently in use by A. Instead, A informs B to hold back any
writes using ‘load shadow reg’ (abbreviated to load reg in
the figure). When B receives the stall signal at cycle t+ 2,
it re-runs instruction Y+1, which involves completing the
write back to A. Likewise, C may have written to B during
cycle t + 1 in instruction Y+1 and then write to the same
location in B during cycle t+2. To ensure the first value is
not overwritten before it is used, B sends ‘load shadow reg’
to C, causing C to hold back the write to B during cycle
t+ 2. These will be completed in cycle t+ 3.

At cycle t + 2, B has the correct data from both A and
C produced by instruction Y, A is executing the instruction
Y+1 and the new data C computed from instruction Y+1 is
now being written from the shadow register to B. B can then
execute instruction Y+1 normally. As C is stalling in cycle
t+ 3, it is unable to write more data to B. Hence, the data

t
A B C
run Y

t+1
A B C
(stalled)

t+2
A B C

t+3
A B C

(stalled)

(error)
run Y run Y

rerun Y run Y+1 run Y+1

run Y+1

run Y+2

rerun Y+1

(stalled)
run Y+2 rerun Y+2

run Y+2

load_reg

stall_out

stall_out

wr A
(held back)

wr A wr B
(held back)

wr B

load_reg

load_reg

load_reg

load_reg

wr B

Figure 6. Proper stalling of writes into the wavefront.

in C’s shadow register can be safely written back to B. The
stall propagation will continue on until it reaches the edges
of the array with each PE having stalled one cycle.

mem_err[N]
mem_err[S]
mem_err[E]
mem_err[W]
mem_err[R]

stall_in[E]

stall_out[E]

load_shadow_reg[E]stall

stall_in[N]

stall_out[N]

load_shadow_reg[N]

stall_in[S]

stall_out[S]

load_shadow_reg[S]

stall_in[W]

stall_out[W]

load_shadow_reg[W]

stall

stall

stall

Figure 7. Control logic used to produce the stall signals in each PE.

D. Stall Propagation Logic

The stall propagation logic for each PE is shown in
Figure 7. When a memory that belongs to a PE encounters
an error, the PE initiates a stall that will spread through the
array. The stall will affect the operation of the PE for two
cycles: one while it is stalling, and one while its neighbours
stall. We first detail the signals used in the stall logic. This
is followed by an explanation of how the stalling occurs in
the PE that detects the error, and on PEs that stall due to
an error from elsewhere. Finally, the merging of separately
occurring stall wavefronts is discussed.

The circuit monitors ‘mem err’ signals that are asserted
when an error is detected at a local memory. It also
monitors the ‘stall in’ signals that are asserted by the four
neighbouring PEs. In response, the circuit provides three
outputs: ‘stall out’ which are ‘stall in’ requests sent to ad-
jacent neighbors, ‘load shadow reg’ which triggers adjacent
memories to load their shadow register values, and a local
‘stall’ signal that holds the instruction counter and inhibits
writes from the PE to memories.

A stall begins with an error being detected. Suppose an
error occurs on cycle t, so an incorrect value is written to
memory. After the shadow register delay, partially into cycle
t+1, the correct value is latched into the shadow register and
compared to the memory contents. Since the values differ,
an error has occurred, and the ‘mem err’ signal is asserted.
Several possible ‘mem err’ signals from within the PE (for
each of the five different memories – RNSEW for short).
are ORed together to create the PE’s ‘stall’ signal.

In the same cycle in which the error is detected (t + 1),
the logic triggers a number of events within the PE. The
‘stall’ signal prevents the instruction counter from being
incremented, and deasserts write enables to any memory
from that PE. The ‘load shadow reg’ signal is sent to all
memories, which loads the correct data from the previous
cycle into the memory, correcting any errors. It also prevents
memory writes from the neighbours. These writes must be

prevented as they might overwrite data needed by the next
instruction. The data from the neighbours is not lost; it will
be stored in the shadow registers and written next cycle.

In the cycle after the stall is detected (t+2), the PE writes
the results of the instruction it tried to execute at t+1. The
execution happens normally, but the load shadow reg is still
asserted to the RNSEW memories. This writes any data that
neighbouring PEs tried to write previously. No write will
be performed to these memories from the neighbours this
cycle, as they will be stalled.

PEs that do not encounter an error also need to stall to
synchronize with the ones that did encounter an error. On the
cycle after an error is detected, the PE with the error asserts
a ‘stall out’ signal to its immediate neighbours. When a PE
receives a valid stall signal, it behaves similarly to a PE
that detects a memory error: the instruction counter is not
incremented, and no values are written to any memory from
that PE. Any writes to the PEs memories from neighbours
are also delayed, being stored in the shadow register and
performed the following cycle, except from any neighbour(s)
that requested the stall. These memories are not loaded from
the shadow register, as the neighbour(s) who triggered a stall
may need to write a result from the instruction it is catching
up on. The ‘load shadow reg’ is also used to trigger the
‘stall out’, as the signal is not being sent back to any of the
originating PE(s).

When multiple errors occur in the array independently and
must be merged, the logic must ensure correct operation.
Depending on the distance and timing of the errors, one of
two situations will occur: the stalls reach the same tile at
once, or two neighbouring tiles stall simultaneously. If the
stalls reach the same tiles at once, the tile will stall, but will
only propagate the stall forward to tiles that did not send it a
stall, so the regions will merge and be synchronized. If two
neighbours stall simultaneously, on the cycle following the
stall each will receive the ‘stall in’ signal from the other,
but it can be ignored as they are already synchronized.

E. Performance Tradeoffs

The overall system performance is increased by over-
clocking, but stall cycles will reduce the effective through-
put. The higher the overclocking frequency, the greater the
error rate; at one point, the increase in error rate will exceed
the clock frequency boost, and throughput will decrease. The
error rate will depend on the timing variations in the circuit,
the clock frequency, and data-dependent circuit behavior.

Also, any decrease to the clock period must be accompa-
nied by an equal increase in delay to the shadow register. To
avoid fast path problems and ‘double-clocking’, the shortest
path delay in the pipeline stage, tmin, cannot be longer than
the delay to the shadow register. Likewise, the clock period
cannot be less than tmin. These short path delays are ensured
by adding constraints to the Quartus fitter.

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

Error Rate (%)

St
al

l R
at

e

N=2
N=3
N=5
N=10
N=20

Figure 8. Fraction of performance stalled due to errors (N ×N array).

As tmin is increased, the nominal Fmax of the circuit
decreases, so the value must be carefully selected to achieve
optimal performance. With a shadow register delay of tmin,
which is the longest possible without double-clocking, the
fastest resulting safe clock period is Tsafe. Hence, Tsafe +
tmin = Tinit, where Tinit is the initial clock period. Since
Tsafe ≥ tmin, the minimum overclocking period is Tsafe ≥
Tinit/2. For a given tmin, the maximum safe frequency is:

Fsafe =
1

Tinit − tmin
=

Finit

1− Finit × tmin
≤ 2× Finit.

IV. ERROR TOLERANCE

When multiple errors occur in close proximity, their stall
signals propagate until they collide and merge. This allows
multiple errors to be tolerated by a single stall cycle. As a
result, more errors can be tolerated than the number of stall
cycles that are added to tolerate them. This section analyzes
how many errors can be tolerated using a Monte Carlo
simulation approach. The array size, N × N , determines
the number of PEs that are working together. For each
clock cycle, we check for an error with the instruction
being executed at each PE by comparing a uniform random
value [0,1) to e, the error rate. For each error, we track
the propagation of stall wavefronts and merges through
simulation.

In Figure 8, we measure stall rate, or the fraction of all
possible execution time slots lost to stalls; the worst possible
stall rate is 0.5. Stall rates are kept low for small arrays less
than 5× 5, or error rates less than 1%.

In Figure 9, we measure utilization benefit, or the increase
in utilization as a result of merging stall wavefronts; the best
possible benefit is less than 0.5, where half of all execution
cycles are errors that can be merged into a single stall cycle.
Maximum benefit is derived from merging wavefronts at low
error rates, but less benefit is realized at high error rates.
Virtually no benefit is gained when the error rate approaches
zero, because there are no stalls from which to recover.

0246810
2345 7 10 15 20

0

0.1

0.2

0.3

0.4

Error Rate (%)N

U
til

iz
at

io
n

Be
ne

fit

Figure 9. Gain in utilization due to merging of errors (N ×N array).

V. RESULTS

The implementation area and performance of the base
MALIBU CGRA (CGRA) and CGRA with timing error
detection and correction due to Razor (CGRA-Razor) is
presented in this section. Both cases use Verilog and are
compiled into an Altera DE3 evaluation board with a Stratix
III EP3SL150 FPGA. For CGRA-Razor, one of the FPGA
PLL outputs produces the stable, delayed clock needed by
the shadow registers.

A. Area

Logic, memory, DSP block, and register usage are re-
ported for both implementations in Table I. The ALM and
register usage goes up slightly to implement Razor, but RAM
and DSP block usage are identical for both. Note that we
have only added Razor protection to the memory-to-memory
compute paths. With this area footprint, a 6 × 7 array of
PEs can fit into the largest Stratix III, which has 135,000
ALMs. In particular, the addition of Razor does not reduce
the maximum size array that will fit in the device.

B. Experimental Results

The correctness of the Razor stall logic was initially tested
using ModelSim. Various benchmarks were compiled to
arrays from 1x1 to 4x4 in size. During simulation, errors
are introduced randomly during writes to the CGRA-Razor
memories. The results compared successfully to a CGRA
simulation run without errors.

To keep our place and route times low, we decided to
physically implement a 2×2 CGRA array size. Both designs
were compiled using Quartus II, and the maximum clock
frequency reported by the static timing analyzer (STA) was
recorded.

The STA reports a maximum clock speed of 90 MHz for
the base CGRA, and 88 MHz for the CGRA-Razor. The
2 MHz speed loss for CGRA-Razor is due to the extra
multiplexer in the write path of the memories. Notice the
STA result is independent of which benchmark is being run
on the CGRA, because it always assumes the worst-case

Table I
RESOURCE USAGE OF CGRA IMPLEMENTATION, PER TILE.

Area ALMs Registers Block Memory Bits DSP 18-bit Elements
CGRA Tile 2,958 304 15,688 4

CGRA-Razor Tile 3,082 517 15,688 4

Table II
MAXIMUM CLOCK RATE OF EACH CIRCUIT (MHZ) WITH STATIC TIMING ANALYSIS (STA) AND TESTED ON BOARD.

CGRA Overclocked CGRA- Overclocked Effective CGRA-Razor
(STA, CGRA Razor CGRA-Razor CGRA-Razor CGRA-Razor vs. CGRA

Benchmark safe) (tested, unsafe) (STA, safe) (tested, safe) Stall Rate Throughput Speedup
Random 90 135 88 163 5.0% 155 1.72×

Mean 90 121 88 144 1.3% 142 1.58×
Wang 90 131 88 147 0.71% 146 1.62×

PR 90 136 88 145 1.7% 143 1.59×
average 90.0 130.4 88.0 149.4 2.0% 146.5 1.63×

critical path. Normally, the STA result is the rate at which
a system would be clocked.

Since the base CGRA has no way to detect errors when
being overclocked, we use a test jig that includes a Nios II
processor. The jig can apply random input data to the CGRA
and capture the outputs. An initial run at very low speed is
done to capture the expected output; to detect errors, this is
compared against data captured during a high-speed run.

The test jig is used for both the base CGRA and CGRA-
Razor. The clock frequency and Razor shadow register delay
are both increased manually until the circuit fails to produce
the correct result. Failure is determined by comparison to
original results obtained at a lower clock speed. For CGRA-
Razor, we continue increasing the clock frequency, and
obtain increasing error rates, until we are satisfied that we
have exceeded the maximum throughput, and report the
maximum throughput result.

In CGRA-Razor, the minimum short path between
pipeline stages is the limiting factor for increasing the
operating frequency with reliable error detection. We
observed a minimum short path delay of 2.5 ns and a
maximum clock frequency of 88 MHz reported by STA.
This should result in a maximum reliable overclock rate
of 112 MHz, or a gain of 25%. At this frequency, no
errors are actually observed when running our tests. We
can achieve further speedup than the predicted 112 MHz
by lengthening the minimum short path. This is done using
fitter constraints.

Four benchmarks, which are CGRA configurations, are
used to gauge overclocking performance. The first bench-
mark is composed of a chain of Random operations on
input data. The next benchmark calculates the Mean of
256 different input values. The final two benchmarks are
the DSP-oriented circuits Wang and PR [7]. The CGRA is
loaded into the FPGA, and then each of the four benchmark
designs are then loaded into the CGRA and run.

Thousands of iterations of each benchmark were run until
the maximum throughput (ie, clock rate for CGRA, clock
rate degraded by the stall rate for CGRA-Razor) is deter-

mined. The base CGRA frequency is swept initially from the
STA result, ending at the point where incorrect outputs are
produced. The CGRA-Razor frequency is similarly swept,
but when failure occurs the delay to the shadow register is
increased. Increases in frequency and shadow register delay
are performed until the design will not run successfully
regardless of the shadow register delay. Only the result with
the maximum throughput is recorded.

Results for this experiment are presented in Table II. The
results show the base CGRA can be overclocked to roughly
130 MHz, and CGRA-Razor can be overclocked to roughly
150 MHz. Not shown in the table are the shadow register
delays, which range from 0.5ns to 2ns for these benchmarks.

The base CGRA achieves a lower overclock rate than
CGRA-Razor because the base CGRA has no way to recover
from timing errors; the first error determines the overclock-
ing limit. More importantly, overclocking the base CGRA
by any amount is unsafe and should never be relied upon.
(Our test jig is performing error detection, but it cannot be
used in a real on-line system.)

In contrast, the CGRA-Razor design is able to run at a
higher clock rate because it does not fail on the first error.
Instead, it corrects each error by introducing a stall. The
table shows not only the overclocked frequency, but also the
overall stall rate. The stall rate is used to degrade the clock
frequency, producing the actual throughput. For example,
after applying the average 2% stall rate to 149.4 MHz
performance, the average effective throughput is 146.5 MHz.
The CGRA-Razor overclocked throughput is, on average,
1.62 times higher than the base CGRA (STA), 1.66 times
higher than CGRA-Razor (STA), and 1.12 times higher than
the unreliable overclocked CGRA.

C. Error Probability Observations

We’ve made a number of observations regarding the
frequency of errors arising in CGRA-Razor.

From analysis of the Quartus II Static Timing Analyzer,
it is clear that a few instructions will often go through the
critical path, as the longest register-to-register delays run

through the multiplier. The probability of the path failing is
also determined by the data values, as higher bits of data
often take longer to propagate to the registers. This was
observed in our tests; when inputs vectors were set to all
ones, the worst case error count was often observed.

The Random benchmark is composed of several random
operations, using most possible paths through the ALU. This
leads to a wide range of delays to the shadow register,
including a number of high delays. Accordingly, this allows
the frequency to be increased a significant amount before a
large number of errors are detected.

Both Wang and PR use a number of multiplication and
addition operations. Since most operations occur on the same
paths, the frequency can only be increased by a small amount
before many errors are noticed.

The Mean benchmark contains a large number of addi-
tions ending with a final shift. The shift goes through the
multiplier, so it is much slower than the additions. Typically
it was this single shift that produces the timing errors.

VI. CONCLUSIONS

We have presented an extension to the Razor system
which can be applied to detecting and correcting timing
errors in tightly coupled 2D processor arrays. In addition, the
error recovery process can merge multiple stalls created by
multiple errors into just a single stall cycle if they occur in
close proximity. This provides promise of scalability, since
the number of stalls will grow more slowly than the number
of timing errors detected in large arrays.

By overclocking, we were able to speed up an array of
processors an average of 1.45×, from 90 MHz to 130.4
MHz, over that predicted by static timing analysis. The
speed limit is determined by occurrance of the first timing
error that is detected by our testing jig. Overclocking this
array without Razor is unsafe because it has no method of
detecting errors that might arise.

Using our Razor technique on the 2D array, we can
increase overall throughput by an additional 12% beyond
the overclocked base CGRA. The additional overclocking
is possible because Razor detects and corrects multiple
errors. As the clock rate goes up, however, the error rate
will also increase; eventually, the rate of stalls is so high
that throughput goes down. At the point where maximum
throughput is reached for each benchmark, the average
speedup in clock speed is 1.66×, or 149.4 MHz. After
accounting for stalls, the overall speedup in throughput is
1.63×. At maximum throughput, the stall rate introduced
by timing error correction is modest, in the range of 1–5%.

Most importantly, since timing errors are detected and
corrected, the proposed overclocking method safely achieves
the 63% throughput increase. Overclocking the base CGRA
achieves a lower throughput and is unsafe.

The original Razor system can be used to save power by
undervolting the device, causing the transistors to run more

slowly. This use case is also compatible with our design.
While our CGRA system is specific, tightly coupled

processor arrays or systolic arrays that rely upon similar
one-cycle communication between Manhattan neighbours,
either communicating directly through registers or through
memory, can expect to achieve similar results. Our technique
is only of benefit to tightly coupled arrays; loosely-coupled
arrays that have adaptive flow control or use data-presence
indicators do not need to propagate the error across the chip;
they can simply stall locally until the result is correct.

Also, time-multiplexed systems such as Tabula FPGAs
can benefit from this technique. Tabula supports up to 8
contexts or time-slices per user clock cycle. By reserving 1
or 2 spare contexts for error recovery (stalls), a faster system
clock can be applied. When an error is detected using a
Razor latch or flip-flop, a stall signal would be propagated to
downstream neighbouring logic. This would delay a context
to the next time-slice, and use up a spare context. As long as
these spare contexts are available for error recovery, the same
technique can be used to safely overclock Tabula FPGAs.

VII. ACKNOWLEDGMENTS

The authors would like to thank Altera for donations of
hardware and software, as well as NSERC for funding.

REFERENCES

[1] D. Ernst, N.S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge,
“Razor: a low-power pipeline based on circuit-level timing
speculation,” in IEEE/ACM International Symposium on Mi-
croarchitecture, Dec. 2003, pp. 7–18.

[2] D. Bull, S. Das, K. Shivashankar, G.S. Dasika, K. Flautner,
and D. Blaauw, “A power-efficient 32 bit ARM processor
using timing-error detection and correction for transient-error
tolerance and adaptation to PVT variation,” IEEE J. of Solid-
State Circuits, vol. 46, no. 1, pp. 18–31, Jan. 2011.

[3] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D.M. Harris, and
D. Blawww, “Bubble Razor: Eliminating timing margins in
an ARM Cortex-M3 processor in 45nm CMOS using architec-
turally independent error detection and correction,” IEEE J. of
Solid-State Circuits, vol. 48, no. 1, pp. 66–81, Jan. 2013.

[4] D. Grant, C. Wang, and G. Lemieux, “A CAD framework
for MALIBU: an FPGA with time-multiplexed coarse-grained
elements,” in International Symposium on Field-Programmable
Gate Arrays, 2011, pp. 123–132.

[5] Altera Corporation, Stratix III Device Handbook, 10.0 edition,
Mar. 2011.

[6] A. Brant, A. Abdelhadi, A. Severance, and G. Lemieux,
“Pipeline frequency boosting: Hiding dual-ported block RAM
latency using intentional clock skew,” in Field-Programmable
Technology, December 2012.

[7] M.B. Srivastava and M. Potkonjak, “Optimum and heuristic
transformation techniques for simultaneous optimization of
latency and throughput,” IEEE Transactions on VLSI Systems,
vol. 3, no. 1, pp. 2 –19, Mar. 1995.

