Correctness Discussion of a SIMT-induced Deadlock Elimination Algorithm
Draft v1.0 Updated 13 August 2016

Ahmed ElTantawy, Tor M. Aamodt
University of British Columbia

1. Introduction

Current GPUs adapt the Single Instruction Multiple Threads
(SIMT) execution model. In SIMT model, logically indepen-
dent threads are divided into groups (or warps) that operate in
lockstep in a Single Instruction Multiple Data (SIMD) fash-
ion. To enable divergence within a warp, current SIMT im-
plementations serialize execution of divergent threads while
forcing reconvergence at postdominator points. This imposes
restrictions to thread scheduling that may conflict with the for-
ward progress requirements of divergent, yet communicating
threads. This makes a Multiple Input Multiple Data (MIMD)
synchronization between divergent threads not always possible
on current SIMT implementations. Therefore, programmers
currently have to consider these thread scheduling constraints
when synchronizing divergent threads on GPUs. In particular,
with no explicit control on thread scheduling, they need to
restructure their control flow graphs to force the hardware to
schedule divergent synchronizing threads in a manner that
guarantees their forward progress. In our paper "MIMD Syn-
chronization on SIMT Architectures”, we propose compiler
algorithms that enables MIMD synchronization on SIMT hard-
ware without the need of programmers’ intervention [4]. The
purpose of this technical report is to provide correctness proofs
for the elimination algorithm proposed in this paper. In this
technical report, we start by providing some definition for the
terms used in this report. Also, we state the baseline assump-
tions that are assumed to be true in both the parallel kernels
and the SIMT machine under study. Next, we present our
proof outlines.

2. Definitions

This section defines basic terms we use in both the paper and
this report.

Parallel kernel: a kernel that are executed in parallel by mul-
tiple threads.

MIMD Machine: a machine that guarantees loose fairness in
thread scheduling (i.e., there is no thread (or group of threads)
that may not be scheduled indefinitely.).

SIMT Machine: a machine that divides threads into one or
more groups (or warps) that operate in lockstep when there is
no divergence. We assume the warp scheduling on the SIMT
machine guarantees loose fairness (i.e., there is no warp that
may not be scheduled indefinitely), however, there are con-
straints on scheduling divergent threads within each warp. In

particular, upon divergence, the machine serializes divergent
threads such that: if a warp or (a warp split [1 1]) W encounters
a divergent branch BRt N1 R, and diverges into two splits;
Wp,, . and Wp_, ., where Wp, . is the split that contains
threads that diverges to the taken path, and Wpy, . is the
split that contains threads that diverges to the not-taken path.
Both splits are required to reconverge (i.e., restore the lockstep
synchronous execution) at the BRt TR reconvergence point
R. The following scheduling constraints are applied:
Constraint-1 Warp split Wp,, . starts executing the not-
taken path iff Wp_, , reaches R (or vice versa according to
the order in which divergent paths are pushed into the stack').
This constraint is a side effect of the stack forcing divergent
paths to be serialized up to their reconvergence point.
Constraint-2 When warp split Wp,_, reaches R, it remains
blocked until warp split Wp,. .. reaches R as well (or vice
versa). This constraint is a side effect of forcing reconver-
gence for diverged splits.
We briefly refer to these two constraints as the reconver-
gence scheduling constraints.
SIMT-induced deadlock: is a situation in which at least one
thread in a diverged warp is indefinitely blocked (i.e., not
scheduled) due to cyclic dependencies between the require-
ments of the forward progress of diverged threads within this
warp to their reconvergence point, and at least one of these
dependencies involves a reconvergence scheduling constraint.

3. Baseline Assumptions

This section states our baseline assumptions for the parallel
kernel under study. We assume a single kernel function K with
no function calls and with a single exit. We assume that K is
guaranteed to terminate (i.e., is a deadlock and livelock free)
if executed on any MIMD machine. We also assume that K
is barrier divergence-free [1] (i.e., for all barriers within the
kernel, if a barrier is encountered by a warp, the execution
predicate evaluates true across all threads within this warp 2.).
Finally, for purposes of clarity and simplicity, we assume that
the kernel has structured CFG. Finally, we assume that there
are only two instructions in the Instruction Set Architecture
(ISA) that may conflict with the forward progress of threads
after being executed; barriers and backward branches. For
the sake of brevity, we refer to all memory spaces capable

I'Nvidia’s GPUs executes the taken path first [3].

2In current GPU programming models, barriers are used to synchronize
all threads within a number of warps. However, within the scope of this paper,
we are only concerned about barriers synchronizing all threads within a warp.

Listing 1 Definitions and Prerequisites for Algorithms 1, 2, 3

Algorithm 2 Safe Reconvergence Points

-BB(I): basicblock which contains instruction (i.e., I € BB(I)).

-Pgp1-8B2 : union set of basicblocks in execution paths that connect BB1 to BB2.
-IPDom(I) : immediate postdominator of an instruction I. For non-branch instruc-
tions, IPDom(I) is the instruction immediately follows I. For branch instructions,
IPDom(I) is defined as the immediate common postdominator for the basicblocks
at the branch targets BBt and BBy (i.e., the common postdominator that strictly
postdominate both BBy and BBxy and does not postdominate any of their other
common postdominators.).

-IPDom(argl,arg2) is the immediate common postdominator for argl and arg2;
argl and arg2 could be either basicblocks or instructions.

-LSet: the set of loops in the kernel, where V L. € LSet:

-BBs(L): the set of basicblocks within loop L body.

-ExitConds(L): the set of branch Instructions at loop L exits.

-Exits(L): the set of basicblocks outside the loop that are immediate successors
to a basicblock in the loop.

-Latch(L): loop L backward edge, Latch(L).src and Latch(L).dst are the edge
source and destination basicblocks respectively.

-Basicblock BB is reachable from loop L, iff there is a non-null path(s)
connecting the reconvergence point of Exits(L) with basicblock BB without
going through a barrier.

ReachBrSet(L,BB) is a union set of conditional branch instructions in all
execution paths that connects the reconvergence point of Exits(L) with BB.
-Basicblock BB is parallel to loop L, iff there is one or more conditional branch
instructions where BBs(L)) C Pr._,r and BB € Pny,r or vice versa, where R is
the reconvergence point of the branch instruction. ParaBrSet(L,BB) is a union
set that includes all branch instructions that satisfy this condition.

Algorithm 1 SIMT-Induced Deadlock Detection

1: for eachloop L € LSet do
2: Shrdgeags (L) = 0, Shrdwyies(L) = 0, Redefyyiges(L) = 0
3: for each instruction I, where BB(I) € BBs(L) do
4: if I is a shared memory read A ExitConds(L) depends on I then
5: Shrdgeags = Shrdgeags U I
6: end if
7: end for
8: for each instruction I do
9: if BB(I) is parallel to or reachable from L then
10: if Iis a shared memory write then
11: Shrdwrites ()= Shrdyyrites(L) U T
12: end if
13: end if
14: end for
15: for each pair (Ig,Iw), where Ig € Shrdgeaas(L) and Iy € Shrdwyiges(L) do
16: if Iw does/may alias with Ig then
17: Redefyyrites (L)= Redefwriges(L) U Iw
18: end if
19: end for

20: if Redefwrites(L) # 0 then Label L as a potential SIMT-induced deadlock.
21: endif
22: end for

of holding synchronization variables as shared memory (i.e.,
including both global and shared memory using CUDA ter-
minology). Next, we list the main algorithms and definitions
used in the paper and referenced to in this technical report.
Please refer to the paper for full explanation to the Algorithms.

4. Formal Proof

This section presents the outlines of a proof that the transfor-
mation T provided by Algorithm 3 is correct. Next theorem
defines correctness.

Theorem 1 Let P, be a program that is an input to trans-
formation T and P, = T(P;) be a program that results from
applying T on P, then any observable behaviour of P, on
a SIMT machine is also an observable behaviour of P, on a
MIMD machine (i.e., a machine that guarantees loose fairness

1: SafePDom(L) = IPDom(Exits(L)) V L € LSet
2: for each loop L € LSet do
3. for each Iy € Redefyyis(L) do
4: SafePDom(L) = IPDom(SafePDom(L), Iyw)
5: if BB(Iy) is reachable from L then
6: for each branch instruction Igg € ReachBrSet(L,BB(Iy)) do
7: SafePDom(L) = IPDom(SafePDom(L), Iggr)
8: end for
9: end if
10: if BB(Iy) is parallel to L then
11: for each branch instruction Iggr € ParaBrSet(L,BB(Iy)) do
12: SafePDom(L) = IPDom(SafePDom(L), Iggr)
13: end for
14: end if
15: end for
16: end for
17: resolve_SafePDom_conflicts()

Algorithm 3 SIMT-Induced Deadlock Elimination

1: SwitchBBs = 0

2: for each loop L € LSet do

3 if L causes potential SIMT-induced deadlock then

4 if SafePDom(L) ¢ SwitchBBs then

5: SwitchBBs = SwitchBBs U SafePDom(L)

6 if SafePDom(L) is the first instruction of a basicblock BB then
7 Add a new basicblock BBg before the BB.

8 Incoming edges to BBg are from BB predecessors.

9: Outgoing edge from BBg is to BB.
10: else
11: Split BB into two blocks BB and BBg.
12: BB, contains instructions up to but not including SafePDom(L).
13: BBg contains remaining instructions including SafePDom(L).
14: BBg inserted in the middle, BB, as predecessor, BBy as successor.
15: end if
16: Insert a PHI node to compute a value cond in BBg, where:
17: for each predecessor Pred to BBg
18: cond.addIncomingEdge(0,Pred)
19: end for
20: Insert Switch branch swlnst on the value cond at the end of BBg, where:
21: swilnst.addDefaultTarget(BBg successor)
22: end if
23: BBg is the basicblock immediately preceding SafePDom(L)
24: Update PHI node cond in BBg as follows:
25: cond.addIncomingEdge(UniqueVal,Latch(L).src) -unique to this edge
26: Update Switch branh swlnst at the end of BBg as follows:
27: swinst.addCase(Unique Val,Latch(L).dst)
28: Set Latch(L).dst = BBg.
29: endif
30: end for

in thread scheduling)?.
4.1. Proof Sketch

This definition of correctness has been used as a correctness
criteria for both program transformations [6, 8—10] and
execution models [2, 5]. We define observable behavior as
the shared memory state, the return value of the program -if
any- and the termination properties. We divide the proof of
Theorem 1 into two steps that need to be proven:

1. Any observable behaviour of P, is also an observable
behaviour of P, when both are executed on a MIMD machine.
2. Any observable behaviour of P, on a SIMT machine is also
an observable behaviour of P, on a MIMD machine.

A. Semantics across transformations: To prove this

3We assume that in both SIMT and MIMD machines, the number of
launched threads do not exceed the number of threads that can reside simulta-
neously on the hardware.

part we use the same methodology used in TRANS [7, 10]. A
program P is modeled as a labeled directed flow graph Gp
formed from the program nodes. Each node represents an
instruction. The execution trace of the program is modeled by
a sequence of state transitions, where each state is represented
by the current instruction(s), shared memory state and
individual thread(s) local state. In a single thread context, the
transformation correctness is proven by finding a simulation
relation that can express how the output program simulates
the same behaviour of the input program in a number of
finite transitions assuming we start from the same initial state.
This simulation relation is found by observation and then
proven to always hold true using induction over the number
of the length of the execution trace of P;. This single-thread
simulation relation is then lifted to parallel execution using
the principles provided in [9, 10].

B. Semantics across execution models: In this part we
rely on prior work [2, 5] that proves that the execution of an
arbitrary program P on a SIMT machine can be simulated by
some schedule of the traditional interleaved thread execution
(i.e., MIMD execution) of the same program. Thus, terminat-
ing kernels on a SIMT machine produce a valid observable
behaviour compared with MIMD execution. However, it is
still possible that a program that always (i.e., under any loosely
fair scheduling) terminate on MIMD not to terminate on SIMT.
Therefore, it is sufficient for us to prove that P,, an output of T,
always terminate on a SIMT machine if P, (or equivalently P;)
always terminate on a MIMD machine (i.e., with any arbitrary
loosely fair schedule). Termination is trivially proven if we
can prove that all threads executing any arbitrary branch in
P, eventually reach to the branch reconvergence point. The
essence of the proof is that we find that the hypothesis that
threads divergent at a certain branch in P, may not eventually
reach their reconvergence point contradicts with either one of
the following premises: (1) that P, terminates under any arbi-
trary fair scheduling, (2) the valuation of the exit conditions in
any loop in P, is independent of the valuation of paths paral-
lel or reachable from the loop (see the definitions in Listing
1). Accordingly, we conclude that the P, should terminate on
SIMT.

4.2. Detailed Proof

A. Semantics across transformations: To prove this part we
use the same methodology used in TRANS [7, 10].
Let a program P has form:

P Entry; Iy; I; -+ 5 Ln—1; Exit
Inst > I:=nop|X:=E|M]ifE goton
M.Inst > M:=X:=m(E)|m(E):=X
Mem. > M := shared memory
Expr > E:=X|O(E)|C
Op > O :=various unspecified operators
Var > Xu=x|yl|z]..
Const > Cu=bool |integer| float| ... value
Label 5> nz=0]1]...|m

Program P can be represented as a labeled directed flow
graph Gp formed from the program nodes (N = {0, 1,...,m}.
Each node r has at least one sequential edge to another node
seq(n); and possibly another branch edge to a node brn(n).
Thus, an edge in the flow graph is defined by two nodes and
an edge type. I, refers to the instruction labeled by node n.
Hence, Gp can be represented by the tuple (N,E C N xX N X
EdgeType,I : N — Instr). Finally, a valuation function o is
used to map a pattern of meta variables to a (sub)object in G
(i.e., node, edge, instr, expr, ..).

In concurrent MIMD execution, a set of thread traverse
through Gp such that at any time the execution state of P
can be represented by a tuple (nodes, states, m); where nodes
is a vector of the labels representing the current location of
each thread in Gp, states is a vector of the local state of each
thread, and m is the current state of the externally observ-
able shared memory. Thus, the execution trace of a pro-
gram can be modeled by state transitions: st; — sti+1, where
st; = (nodes, states,m);. The state of an individual thread is
represented as st(z) = (n,s,m) = (nodes,, states;,m). A state
transition happens when a thread executes the instruction la-
beled by its current node. Next, we present the state transition
relations for an instructions 7, at node n:

(s,n,m) — (s,seq(n),m); I, =nop

(s,n,m) — (s®x+>eval(e,s)),seq(n),m); I, =x:=e
(s,n,m) — (s@®x+—> m(eval(e,s)),seq(n),m); I, =x:=
(s,n,m) — (s,seq(n),m®dmeval(e,s)); I, =m(e) :=x
(s,n,m) — (s,seq(n),m); I, =if e goto brn(n), eval(e,s)
(s,n,m) — (s,brn(n),m); I, =if e goto brn(n), eval(e,s)

Next, we describe the transformation in Algorithm 3 using
the TRANS transformation language. For clarity, the trans-
formation is simplified to handle transformation of a single
structured loop (Lg). However, both the algorithm description

()

F
T

Figure 1: Visualization of T

and the proof can be extended in a straightforward manner
to handle the transformation of multiple (un)structured loops.
In TRANS, a transformation is specified as a set of actions
performed on a flow graph G under certain conditions. We
describe our transformation 7" as follows:

[replace r with r — & (nop); rn— I,](0,G) (al)
[move_edge(t,h,r)](0,G) (a2)
[add_cond_edge(r,h,1)](0,G) = (a3)
[replace d with d — o (c :=0); dn— 1;](0,G) (a3.1)
if d = EX(node(r)) Nd #t NA=E(true U use(c))
[replace t witht — o(c:=1); tn— L](0,G) (a3.2)
if A—E(true U use(c))
[replace s with s — o (if (c) goto h)](0,G) (a3.3)
if
loop(p,h,b,t) = Ly (cl)
r = SafePDOM(Lo) (c2)

A program P is modeled as a labeled directed flow graph
Gp formed from the program nodes. Each node n has at least
one sequential edge to another node seq(n); and possibly an-
other branch edge to a node brn(n). The execution trace of a
program can be modeled by a sequence of state transitions:
st; — stiy1, where st; = (nodes,states,m);. The state of an
individual thread is represented as st(¢) = (n,s,m) where n is
a label to current location of ¢, s represents the local state of
t and m represents shared memory state. State transitions are
triggered by threads executing instructions. Figure 1 visual-
ize the application of T on a loop Ly = loop(p,h,b,t) using
TRANS notation of nodes. We omit formal description of T
with TRANS for space limitations. Next, we prove the cor-
rectness of transformation T when applies to Ly assuming a
MIMD execution model.

Single-Thread Equivalence: We prove that there exists a
relation R that relates the execution states of the original pro-
gram with that of the transformed program for a thread ¢ with

the assumption that other threads u # ¢ remain at the same
initial execution state. We then prove that if this relation R
holds then then it implies that the two programs have the same
observable behavior as defined earlier.

The set of actions are performed on a loop Ly with pre-
header p, header h, break (exit) b and tail z. Node r is the
SafePDOM(Ly). Actional adds a nop instruction at node r.
The backward edge from the loop tail ¢ to the loop header i
is moved from 4 to r by Action a2. Finally, Action a3 adds
an edge from r to & that would be only taken if node r is
entered from ¢. This replaces the nop instruction in » with a
conditional branch instruction that diverges to 4 if a variable
c had a value of 0’ (i.e., if the thread is reaching r from any
predecessor d other than ¢) and to /% if the ¢ had a value of ’1”
(i.e., if the thread is reaching r from). Thus, node r acts as
a switch that redirects the flow of the execution to an output
node according to the input node. Conditions on actions a3.1
and a3.2 assures that c is not used by any node that follows ¢ or
d other than the new added branch instruction at r. According
to these actions the following properties are satisfied:

L)p = Io)p,; seq(n)p, = seq(n)p, forn & {d,r1} (p1)

ILi)p, =0(c:=0), seq(d)p, = dn (p2)
Lan)e, = Ia)p,, seq(dn)p, = seq(d)p, (p3)
I)p, = o(if(c) goto h), seq(r)p =rn (p4)
Ln)p, =1I)p, seq(rn)p, = seq(r)p, (p5)
I)p, = o(c:=1), seq(t)p, =tn, Im)p, = I)p, (p6)
seq(t)p, = h, seq(tn)p, =r (7)

Assume the following state transitions for a thread ¢:

sto(t) = sty (t) — ... sti(t) = (n,s,m) ... — sty (¢) from P; and

sty(t) — s () — ... st

()= @',s',m) ... = st/(¢) from P,

also assume that for all other threads u # ¢ sfo(u) = st,(u) Then, the
following relation R holds

Rl s . =sc R my=m R3. I =I
node(n;) node(ny) ¢ {d,r,h}
dn node(ny) =d
R4. node(n)) = (me)
rn node(ny) =r
tn node(ny) =t

;for l = k+u-+v+w+y where:

u = no. of nodes n; where i < k such that node(n;) = d,

v = no. of nodes n; where i < k such that node(n;) =r,

w = no. of nodes n; where i < k such that node(n;) =t,

y = no. of transitions node(n;) — node(n;y1) =t — h where i < k;

R simply states that P, simulates the behavior of P, but in
potentially more execution state transitions according to the
specific execution path that was taken *. These extra transi-
tions account for the execution of the added nodes during the

4R in this case is called a simulation relation.

transformation T. The local state of a thread executing P, at /
may only be different by the new added variable ¢ that control
the branch at r. We prove R by induction over k.
Proof Logic: assuming that the relation holds for &, then
we consider one transition from k to k+ 1. We find that ac-
cording to R, P, should simulate the behaviour of P, in either
one or two transitions from /. This is determined according
to node(ny,) and node(ny,_1). Then, we proceed by proving
that this indeed holds for all possible transitions from k to
k+ 1. Given that relation R holds, it is trivial to prove program
equivalence. First, if an execution state transition terminates
for P; at k then it will terminate for P, at I=k+u+v+w+y. Fur-
ther, I = I; = ret(e), s;mepm(() = s and e does not use o (c),
then return values will be the same.

Base Case is trivially . For the same input and same initial
state R1,R2 and R3.2 holds.
Step Case Assume that R is true for k. Prove R is true for
Case-1: o(my,) ¢ {d,r,t} and o(n) — c(my1) #t — h
Given the condition on Case-1, u, = u, v, = v, w, =y, and
I, =141 (i.e., execution of P, should simulate the execution
of P, at k, in a single step from /). From R1 and R3 at k and the
state transition relations, it is trivial to prove that that s5; /o (c)
= s;/o(c)® o(l]) = sk ® o(Ix)=si,; i.e., RI holds for k.
Similarly, m;n =m; ®o(I}) = my,; i.e., R2 holds for k,. From
conditions of Case-1, ny ¢ {d,t}. In case o(ny) # r, then
o(ny)=0(n). Thus, o(n; @ I))=0(m & Iy)=0(n))=0(ny,).
Also for o(ny) = r, o(n)) = rn and seq(r)p, = seq(rn)p,.
Thus, o(n;)=0(ny,) for o(ny) = r. Therefore, R4 applies for
ky 1n all possible cases. Finally, since R4 holds and that both
executions are at the same label then from property pl we can
conclude that R3 hols at k,,.
Case-2: o(ny,) =d. Then, u, =u+1and l, =k, + 1 = kz.
This means that execution of P, should simulate the execution
of P; at k, in two steps from /. Since R holds for k, we can
prove that o(n)) = o(m,) = d. However, according to
property p2, I;)p, # Iz)p, (i.e., R3 does not hold from a single
step from /). Instead, using properties p2 and p3, we find
that R3 is satisfied after two steps. Similar to Case-1, we can
prove all other properties at [, = [+2. We can similarly prove
Case-3: o(ny,) =t.
Case-4: o(ny) — o(ng+1) =t — h. Then, y =1 and
I, = 1+2. Since R4 holds at k, we know that ¢ (n)) = tn.
According to property p7, the next node in P, is & and in P, is
r (i.e., R3 and R4 does not hold from a single step from /).
We also know that by coming from 7 that 6(¢) = 1 and that
I)p, evaluates to taken branching to 4. Thus, we can simply
find that R holds for k,, at [, = [+ 2. We can similarly prove
Case-5: o(ny,) =r.

Lifting simulation relation to parallel execution: We
need to prove that steps by threads other than t preserve the
simulation relation [9, 10]. R implies that (;m’ = m) then it is
guaranteed that both the original and the transformed program

maintains exactly the same view of shared memory for a
thread u # t. Thus, a memory read from an arbitrary location
loc by a thread u from m’ and m will yield the same values.
This conclusion is intuitive as the transformation does not
reorder memory operations (read, writes or memory barriers).
Further, we need to prove that memory updates by a thread u
can not change the memory such that the simulation relation
R no longer holds. This is evident by the proof of R that is
independent from the shared memory state. Relation R is built
on subtle changes in the CFG that is only dependent on the
new added local variable c. Note that we did not depend on a
specific memory model to prove that the simulation relation
holds for the case of parallel execution.

B. Semantics across execution models: In this part
we rely on prior work [2, 5] that proves that the execution
of an arbitrary program P on a SIMT machine can be
simulated by some schedule of the traditional interleaved
thread execution (i.e., MIMD execution) of the same program.
Thus, terminating kernels on a SIMT machine produce a
valid observable behaviour compared with MIMD execution.
However, it is still possible that a program that always (i.e.,
under any loosely fair scheduling) terminate on MIMD to
not terminate on SIMT. Therefore, it is sufficient for us to
prove that F,, an output of T, always terminate on a SIMT
machine if P, (or equivalently F;) always terminate on a
MIMD machine (i.e., with any arbitrary loosely fair schedule).
Proof Logic Termination is trivially proven if we can prove
that all threads executing any arbitrary branch in P, eventually
reach to the branch reconvergence point (i.e., its immediate
postdominator). To construct such a proof, we rely on two
main claims:

Claim-1: P, terminates on any arbitrary loosely fair schedul-
ing.

Proof: We assume that P; terminates on any MIMD machine
(i.e., under any arbitrary loosely fair scheduling). However,
according to the proof presented earlier the transformation 7
preserves the program semantics on a MIMD machine and
that P, simulates the behaviour of P, on a MIMD machine
including the termination properties. Thus, we conclude that
P, terminates on a MIMD machine under any arbitrary fair
scheduling.

Claim-2: The valuation of the exit condition in any loop
in P, is independent of the valuation of paths parallel to
or reachable from the loop. The definitions of parallel and
reachable paths is listed in Listing 1.

Proof: This is a forced property by transformation T
presented in Algorithm 3. As shown by Algorithm 3, any
loop that has its exit dependent on the valuation of paths
parallel to or reachable from the loop is transformed such that
the backward edge of the loop is converted into a forward
edge to SafePDom and a backward edge to the original loop
header. SafePDOM postdominates the original loop exits, the
redefining writes, and all control flow paths that could lead

to redefining writes that are either reachable from the loop
(Please refer to Algorithm 2 and its explanation in the paper).

Now we proceed to prove that all threads executing any
arbitrary branch in P, eventually reach to the branch recon-
vergence point. We prove this by induction over the nesting
depth of the control flow graph. For this purpose let’s consider
an arbitrary branch I§R which is a branch with a nesting depth
of k. We define the nesting depth as the maximum number of
static branch instructions encountered in a control flow path
connecting the branch instruction with its reconvergence point
R. Note that all branches in the path between /% and its recon-
vergence point (R) either have the same reconvergence point
or a reconvergence point that is postdominated by R. Thus,
branches between IgR and its reconvergence point has a nest-
ing depth that is equal to or less than k.

Base Case-1: 9. No static branches between the branch
instruction and its reconvergence point. Since there is no barri-
ers placed in divergent code, threads diverged to either side of
the branch are guaranteed to reach the branch reconvergence
point. This follows from two facts: 1) in the absence of bar-
riers and loops (i.e., branches), nothing prevents the forward
progress of threads, 2) according to constraint-2, once threads
executing one side of the branch reach its reconvergence point,
execution switches to threads diverged to the other side. Note
that this also applies to single sided branches

Base Case-2a: [}, where I}y € Proyg V Ijp € Pyrosr. This
means that the branch itself is encountered again before reach-
ing R. Thus, the branch is part of a loop whose exit reconver-
gence point is R (in this case, I};R is actually the only exit of
this loop). Threads may never reach R if the valuation this
loop exits never leads to exit this loop. This could happen
under only two hypothesis.

(1) The valuation of the loop exit is independent of thread
scheduling (i.e., it is independent of the execution of other
paths parallel to or reachable paths to the loop. However, it
never evaluates to decision that leads to exit the loop. This con-
tradicts with Claim 1 as it implies that P, does not terminate
under fair scheduling. Thus, we exclude this hypothesis.

(2) The valuation of the loop exit is dependent on scheduling
threads at the bottom of the stack (i.e., it is dependent on the
execution of other paths parallel to or reachable paths to the
loop that contains I},). However, for these threads to get
scheduled, the looping threads need to exit and reach their
reconvergence point to be popped out of the stack allowing
for threads at bottom stack entries to get schedule. However,
this hypothesis contradicts with Claim 2 since the operation
of T forces the valuation of the loop exit condition to be
independent of parallel to or reachable from the loop. Thus,
we reject this hypothesis. From (1) and (2), we conclude that
threads divergent at a branch that follows base case 2a pattern
reach their reconvergence point.

Base Case-2b: I}, and I}, ¢ Pr.,r Aljg ¢ Pyrosk. This
means that the branch is not encountered again before reaching
R, however another branch is encountered. This other branch

could follow the pattern of base case 1 or base case 2a. How-
ever, we have just proven that threads encountering branches
that follow the pattern of base Case 1 or 2a are guaranteed to
reach their reconvergence points. Further, nothing else could
prevent the forward progress of divergent threads divergent at
a branch the follows bas case 2b pattern (i.e., no divergent bar-
riers and the branch itself is not encountered by the divergent
threads before they reach R). Thus, we conclude that threads
divergent at a branch that follows base case 2b pattern reach
their reconvergence point. From (Base case-2a) and (Base
case-2b), we conclude that in general threads divergent at I},
reach their reconvergence point.

Step Case: Assume that divergent threads at a any branch
of nested depth of k or less that belongs to P, will reach the
branch reconvergence point if executed on a SIMT machine.
Prove that this will be true for a branch of nested depth of
kn = k+ 1. The step case can be proven is a similar way to the
proof of Base Case 2.

Thus we conclude that P, which is an output of transfor-
mation T is guaranteed to terminate on a SIMT machine if it
terminates on a MIMD machine with any arbitrary loosely fair
thread scheduling.

We finally conclude that according to the proof outlines
above, Theorem 1 holds true.

References

[1] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson, “GPU-
Verify: a Verifier for GPU Kernels,” in Proc. ACM Int’l Conf. on Object
oriented programming systems languages and applications, 2012, pp.
113-132.

[2] P. Collingbourne, A. F. Donaldson, J. Ketema, and S. Qadeer, “Inter-
leaving and lock-step semantics for analysis and verification of gpu
kernels,” in Programming Languages and Systems. Springer, 2013,
pp. 270-289.

[3] B. Coon and J. Lindholm, “System and method for managing divergent
threads in a simd architecture,” Apr. 1 2008, uS Patent 7,353,369.
[Online]. Available: https://www.google.com/patents/US7353369

[4] A. ElTantawy and T. M. Aamodt, “Mimd synchronization on simt
architecture,” in Proc. IEEE/ACM Symp. on Microarch. (MICRO),
2016.

[5] A. Habermaier and A. Knapp, “On the Correctness of the SIMT Ex-
ecution Model of GPUs,” in Programming Languages and Systems.
Springer, 2012, pp. 316-335.

[6] C.A.R.Hoare, Communicating sequential processes. Springer, 1978.

[7]1 D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen, “Prov-
ing correctness of compiler optimizations by temporal logic,” ACM
SIGPLAN Notices, vol. 37, no. 1, pp. 283-294, 2002.

[8] X. Leroy, “A formally verified compiler back-end,” Journal of Auto-
mated Reasoning, vol. 43, no. 4, pp. 363—446, 2009.

[9] W. Mansky, “Specifying and verifying program transformations
with PTRANS,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2014.

[10] W. Mansky and E. L. Gunter, “Verifying optimizations for concur-
rent programs,” in OASIcs-OpenAccess Series in Informatics, vol. 40.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[11] J. Meng, D. Tarjan, and K. Skadron, “Dynamic Warp Subdivision
for Integrated Branch and Memory Divergence Tolerance,” in Proc.
IEEE/ACM Symp. on Computer Architecture (ISCA), 2010, pp. 235—
246.

https://www.google.com/patents/US7353369

	Introduction
	Definitions
	Baseline Assumptions
	Formal Proof
	Proof Sketch
	Detailed Proof

