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Abstract

Recommendation models are vital in delivering personalized user experiences
by leveraging the correlation between multiple input features. However, deep
learning-based recommendation models often face challenges due to evolving user
behaviour and item features, leading to covariate shifts. Effective cross-feature
learning is crucial to handle data distribution drift and adapting to changing user
behaviour. Traditional feature interaction techniques have limitations in achieving
optimal performance in this context.
This work introduces Ad-Rec, an advanced network that leverages feature in-
teraction techniques to address covariate shifts. This helps eliminate irrelevant
interactions in recommendation tasks. Ad-Rec leverages masked transformers to
enable the learning of higher-order cross-features while mitigating the impact of
data distribution drift. Our approach improves model quality, accelerates conver-
gence, and reduces training time, as measured by the Area Under Curve (AUC)
metric. We demonstrate the scalability of Ad-Rec and its ability to achieve superior
model quality through comprehensive ablation studies.

1 Introduction

Recommendation models are essential for delivering personalized recommendations in various web
services [Koren et al., 2009]. Over time, these models have evolved from conventional collaborative
filtering designs [Koren et al., 2009] to deep learning-based approaches [He et al., 2017, Naumov
et al., 2019, Zhao et al., 2019, Ishkhanov et al., 2020], leveraging their capacity to capture complex
patterns and improve recommendation quality. However, deep learning-based recommendation
models face challenges due to covariate shifts caused by dynamic user behaviour and evolving item
features [Naumov et al., 2019, Ishkhanov et al., 2020, Guo et al., 2017]. These shifts lead to a
misalignment between the training and testing data distributions, resulting in degraded performance
and limited generalization. This paper aims to address these challenges.

Deep learning-based recommendation models, shown in Figure 1a, comprise neural networks, embed-
ding lookup, and, most importantly, feature interactions. While neural networks capture continuous
user-related inputs such as timestamps and age to model temporal dynamics, the critical aspect lies in
feature interactions. Feature interactions integrate latent representations from both continuous and
categorical inputs, allowing the models to generate personalized recommendations. Non-sequential
recommendation models focus solely on user activity to generate personalized recommendations,
while sequential and session-based models, shown in Figure 1b, leverage users’ historical interactions.
Sequential and session-based models gain valuable insights into user preferences by considering the
order and context of past actions, thereby enhancing recommendation accuracy.

ar
X

iv
:2

30
8.

14
90

2v
1 

 [
cs

.I
R

] 
 2

8 
A

ug
 2

02
3



Feature Interaction

Embedding 
Lookup

Embedding 
Lookup

Dense
Features

Sparse
Features

Sparse
Features

Bottom
MLP

Top
MLP

ydense

y1
sparse yN

sparse

CTRCTR
Pairwise Dot Product

Masked Transformers

DLRM

Ad-Rec

Feature Interaction

Inner ProductDeepFM

Deep and Cross NetworkDCN
Multi-Head Self-AttentionAutoInt

(a) Non-Sequential Recommendation Model
User’s Activity (εt )    Ɐ  t = 1...Ⴀ

z1 zႠ

MLP

Sequential Layer

CTR

Non-Sequential
Recommendation 
Model (Figure 1a)

Non-Sequential
Recommendation 
Model (Figure 1a)

TSL
(Ishkhanov et al. 2020)

RNN
(Hidasi et al. 2015)

MHA
(Zhang et al. 2019)

Transformers 
(de Souza Pereira et al. 2021)

TSL
(Ishkhanov et al. 2020)

RNN
(Hidasi et al. 2015)

MHA
(Zhang et al. 2019)

Transformers 
(de Souza Pereira et al. 2021)

(b) Sequential Recommendation Model

Figure 1: (a) Non-Sequential Deep Learning based Recommendation Model with multiple feature
interaction techniques. (b) Sequential recommendation model with multiple sequential layers.

The feature interaction layer plays a crucial role in recommendation tasks by augmenting non-
sequential and sequential models with valuable information beyond individual sparse and dense
features [Naumov et al., 2019, Ishkhanov et al., 2020, Guo et al., 2017]. However, covariate shifts
pose significant challenges for deep learning-based recommendation models. Manually identifying
cross-features becomes impractical when dealing with a large number of features. This hinders model
generalization. To overcome these challenges, deep neural network (DNN) based feature interaction
techniques have emerged [Cheng et al., 2016, Guo et al., 2017, Lian et al., 2018, Shan et al., 2016,
Song et al., 2019, Chen et al., 2019, Li et al., 2019]. These techniques allow for the extraction of
higher-order features and effective generalization. However, including irrelevant feature interactions
can introduce noise and lead to overfitting [Xiao et al., 2017, Zhu et al., 2021, Khawar et al., 2020,
Liu et al., 2020, Su et al., 2021]. Moreover, modelling all feature interactions in the same space limits
generality. Such an approach also fails to capture diverse patterns.

This paper proposes Ad-Rec, a masked transformer-based approach to address covariate shifts,
eliminate irrelevant cross-features, and encompass various feature interaction patterns. Ad-Rec incor-
porates three key elements. First, it uses LayerNorm for mitigating internal covariate shifts. Second,
it incorporates Multi-head Attention for modelling feature interactions in multiple subspaces, thereby
enhancing generalization. Lastly, it employs Attention Masks to eliminate irrelevant cross-features
in different subspaces. By stacking multiple transformer encoders, Ad-Rec effectively captures
feature interactions at several (higher and lower) orders, enabling successful recommendations in the
presence of covariate shifts.

We conduct experiments across various non-sequential and sequential models to evaluate Ad-Rec.
On average, Ad-Rec achieves the desired AUC target in 58% training iterations compared to state-of-
the-art DCN-v2 [Wang et al., 2021] model. This translates to training speedup of 1.4× across seven
different models and four real-world publically available datasets [CriteoLabs, a,b, Kaggle, Alibaba].

2 Related Work

1. Enhanced Models: Recommendation models are essential for delivering personalized user
experiences by suggesting items based on the correlation between multiple input features. Approaches
such as collaborative filtering (CF)[He et al., 2017] and matrix factorization (MF)[Koren et al., 2009,
Weimer et al., 2007, Hidasi and Tikk, 2012] decompose user-item interactions into latent features.
However, they have limitations in capturing complex feature interactions due to their reliance on
linear combinations of latent features. Item-based neighbourhood methods offer an alternative for
recommendation tasks [Sarwar et al., 2001, Koren, 2008].

Deep learning has revolutionized recommendation models, enabling more accurate capturing of
intricate feature interactions. Models like Multi-Layer Perceptron (MLP)[Cheng et al., 2016, Zhao
et al., 2019] and neural networks[Naumov et al., 2019] have shown promise in capturing and
modelling complex feature relationships. Additionally, techniques such as autoencoders [Sedhain
et al., 2015] and Gated Recurrent Units (GRU)[Hidasi et al., 2015] have been employed to account
for temporal dependencies in user interactions. To address the temporal nature of user behaviour,
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sequential recommendation models[Ishkhanov et al., 2020, Chen et al., 2019, Sun et al., 2019] have
been developed, while session-based recommendation models focus on utilizing the user’s current
session history [de Souza Pereira Moreira et al., 2021]. These existing methods still face challenges
in effectively capturing and modelling the intricate relationships between features.

2. Learning Feature Interactions: Recommendation models have been extensively studied in
the machine-learning community. Traditional approaches, such as collaborative filtering [He et al.,
2017] and matrix factorization [Koren et al., 2009, Weimer et al., 2007, Hidasi and Tikk, 2012], have
been widely used to decompose user-item interactions into latent features. Item-based neighbourhood
methods [Sarwar et al., 2001, Koren, 2008] have also been employed for recommendation tasks. With
the advent of deep learning, various models, including Multi-Layer Perceptron (MLP) [Cheng et al.,
2016, Zhao et al., 2019], neural networks [Naumov et al., 2019], autoencoders [Sedhain et al., 2015],
and Gated Recurrent Units (GRU) [Hidasi et al., 2015], have been proposed to capture more complex
feature interactions and temporal dependencies in user interactions. Sequential recommendation
models [Ishkhanov et al., 2020, Chen et al., 2019, Sun et al., 2019] and session-based recommendation
models [de Souza Pereira Moreira et al., 2021] have also gained attention in capturing the temporal
sequence of user behaviour. While these existing methods have made significant contributions
to feature interaction modelling in recommendation systems, they primarily focus on lower-order
interactions. They often struggle to capture higher-order feature interactions.

3. Eliminating Useless Features: Several existing methods have attempted to enhance feature
interaction modelling in recommendation systems. AFM [Xiao et al., 2017] introduces the concept of
distinguishing between different feature interactions, but it falls short in eliminating cross-features.
AIM [Xiao et al., 2017] and AutoFIS [Liu et al., 2020] take a different approach by employing
selection gating to prune irrelevant feature interactions. AutoFeature [Khawar et al., 2020] introduces
a NAS-based approach to identify essential feature interactions. Unfortunately, these methods often
focus on specific aspects of feature interactions and fail to provide a comprehensive solution.

3 Proposed Architecture: Ad-Rec

Ad-Rec utilizes a masked transformers-based approach (Figure 2a) to handle data drift, minimize noise
from irrelevant cross-features, and capture diverse patterns for higher-order interactions. Transformers
are renowned for their ability to learn sequential correlations and encode word sequences using token
embeddings and positional encoding.

In addition, Ad-Rec incorporates a Bottom MLP (MLPbot) to process dense inputs xdense, generating
ydense (Equation 1). Sparse inputs xsparse undergo an embedding lookup using the embedding table
E ∈ RM×D, producing ysparse (Equation 2). Here, M represents the number of items in the feature
embedding E, and D denotes the sparse feature size.

ydense = MLPbot(xdense) (1)

ysparse = xsparseE E ∈ RM×D (2)

The outputs of dense and sparse features are concatenated to form the feature sequence z0 ∈
R(N+1)×D (Equations 3 and 4). The feature sequence z0 captures joint embeddings of N + 1 input
features, where each feature is associated with a latent vector of size D.

z0 = [MLPbot(xdense);x
1
sparseE

1; . . . ;xN
sparseE

N] (3)

z0 = [ydense;y
1
sparse; . . . ;y

N
sparse] (4)

This design empowers Ad-Rec to model feature interactions across multiple dimensions, addressing
the challenge of capturing diverse patterns for higher-order cross-features. In deep learning-based
recommender systems, the feature sequence z0 is either used directly or dot-product-based feature
interactions are computed as lower triangle( z0 × zT0 ) to extract second-order cross-features.

3.1 Masked Attention

The core component of Ad-Rec is the masked multi-head attention block, which enables explicit
cross-feature creation in multiple subspaces while eliminating irrelevant ones. Figure 2b visually
demonstrates the masking process for removing irrelevant cross-features.
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Figure 2: (a) The masked transformer-based feature interaction enables efficient higher-order cross-
features by using embedding tables and masking to eliminate irrelevant cross-features. LayerNorm
further enhances cross-feature quality. (b) In the masked multi-head self-attention mechanism, scalar
masks are assigned to each head to eliminate irrelevant cross-features, allowing for diverse cross-
feature patterns in multiple subspaces. LayerNorm reduces internal covariate shift, leading to faster
convergence and improved learning.

Each input feature zi has query and key-value pairs learned in h subspaces, corresponding to the
number of attention heads. This allows for capturing diverse cross-features in multiple subspaces. This
is achieved through linear projection using matrices Wh

Q, Wh
K, and Wh

V ∈ RD×D′
, where D′ = D

h .
Specifically, the projected query, key, and value vectors for feature i in subspace h are denoted as
zhqi = ziW

h
Q, zhki = ziW

h
K, and zhvi = ziW

h
V, respectively. The correlation between feature i and

feature j under a specific subspace h is represented by the attention head αh
i,j (Equation 5), where ⟨·⟩

denotes the inner product.

αh
i,j =

exp⟨zhqi · zhkj⟩∑N+1
m=1 exp⟨zhqi · zhkm⟩

(5)

Masking: Ad-Rec uses a masking technique to eliminate irrelevant feature interactions. Each head
h has a mask θ. The masked attention score ⟨zhqi · zhkj⟩ is calculated as follows (Equation 6):

⟨zhqi · zhkj⟩ =
{
⟨zhqi · zhkj⟩, ifαh

i,j > θh

−∞, otherwise
(6)

The recalculated attention head αh
i,j (Equation 7) is obtained by applying the softmax function to the

masked attention scores:

αh
i,j =

exp ⟨zhqi · zhkj⟩∑N+1
m=1 exp ⟨zhqi · zhkm⟩

(7)

Finally, the cross-feature of feature i in subspace h is updated by combining the relevant feature
attentions αh

i,j with the corresponding values zhv (Equation 8):

fhi =

N+1∑
m=1

αh
i,m · zhvm (8)
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θh is a head-specific mask that is fixed before training. In this work, a geometric sequence of
decreasing values, such as 1

101 ,
1

102 , . . . ,
1

10h
, was used for the masks of multiple heads. This choice

eliminates irrelevant features. While a single mask could be used for all heads, different masks per
head allow for generalization. Appendix A.3 presents an ablation study on different mask values.

LayerNorm: Ad-Rec utilizes Layer Normalization (LayerNorm) to normalize the output of the
masked attention layer and feedforward network, ensuring stable and efficient training.

LayerNorm (LN ), when applied to fhi of the masked attention layer, is defined using Equation 9.

fhi = LN(fhi ) =
fhi − µh

i√
σ2
i + ϵ

⊙ γh + βh (9)

Here, µh
i and σ2

i are the mean and variance of fhi across feature dimensions, respectively. The ⊙
operator represents element-wise multiplication. The learnable parameters γh and βh scale and shift
the normalized values. The term ϵ ensures numerical stability.

LayerNorm normalizes the output of the masked attention layer, fhi , to have zero mean and unit
variance across feature dimensions. This mitigates covariate shifts and provides a stable distribution
for subsequent layers. The scale and shift parameters, γh and βh, enable the model to capture
appropriate representations for the recommendation task.

LayerNorm also has a similar effect on the output of the feedforward network. By reducing reliance
on the scale and distribution of the training dataset, it facilitates faster convergence, offers modest
regularization, and improves the efficiency of parameter updates in the recommendation model.

Positional Embedding: While positional embeddings are commonly used in language tasks to
preserve word order, they are not utilized in Ad-Rec for recommender systems. Despite this,
we evaluated 1-D positional embeddings to encode spatial information of features. The findings in
Appendix A.4 indicate that including positional embedding adversely affects the model’s performance.

Ad-Rec employs masked multi-head attention (MSA) to learn explicit higher-order cross-features in
multiple subspaces, and the feedforward network (FFN ) handles implicit interactions. By stacking
multiple Ad-Rec layers, up to L (Equations 10 and 11), higher-order interactions can be captured more
effectively (see Appendix A.5.1). It also improves performance for larger input feature sequences.

z
′

ℓ = Masked MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1, . . . ,L (10)

zℓ = FFN(LN(z
′

ℓ)) + zℓ, ℓ = 1, . . . ,L (11)

The last layer’s output is concatenated with processed dense inputs, resulting in z (Equation 12).

z = [ydense; zℓ] (12)

The final click-through rate (CTR) is obtained by applying the top MLP (MLPtop) to z (Equation 13).
Thus, the problem is modelled as binary classification using binary cross-entropy (BCE) loss to
predict whether a user will click the target item.

CTR = MLPtop(z) (13)

3.2 Application to Sequential Recommendation Models

For sequential recommendation models, we apply Ad-Rec by generating an embedding vector zt for
each event εt using the non-sequential recommendation model. Here, εt represents the event at time
step t, such as a user click or purchase. These embeddings capture event characteristics, including
explicit timing as a dense feature. The width of the last layer in the non-sequential model is adjusted
to match the user-interaction vector’s width, which is then fed into the sequential layer. This produces
a sequence of embedding vectors Z (Equation 15).

zt = AdRec(εt) t = 1, . . . , τ (14)
Z = [z1, z2, . . . , zτ−1] (15)
c = SequentialLayer(zτ , Z) (16)
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Ad-Rec generates an embedding zt for each event, capturing relevant information about the user-item
interaction. These embeddings are used as input to the sequential layer, which considers the context
and temporal order of earlier events to predict the next event ετ at time step τ (Equation 16). By
leveraging the Ad-Rec embeddings, the model effectively captures user-item interactions within the
sequence, leading to improved recommendation performance.

4 Ad-Rec Analysis

To analyze the feature interaction of DLRM and Ad-Rec, we randomly sampled a test input from the
real-world Taobao user behaviour dataset [Alibaba]. This input consists of sequential user activity
with a length of 21, a timestamp as a dense feature, and sparse features for user, item, and category.
Notably, the ground truth of the sampled input indicates that it is a negative sample.

Figure 3 presents the cosine similarity heat map, comparing the feature interaction of DLRM and
Ad-Rec. In DLRM, the feature interaction is based on dot product calculations, while Ad-Rec
employs masked attention. The features involved in the interaction include the user’s activity
timestamp (feature 1), user ID (feature 2), item ID (feature 3), and item category (feature 4).
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Figure 3: Cosine similarity of feature interaction
in the real-world Taobao dataset: one dense and
three sparse features for a single user.

Examining the sequential interaction at times-
tamp t = 2 in Figure 3, we observe contrasting
behaviour between DLRM and Ad-Rec. We
observe that DLRM’s dot product-based fea-
ture interaction provides close similarity across
all pairs. Contrary to this, Ad-Rec’s masked
attention-based feature interaction considers
Query (Q) and Key (K) projections. Applying
a mask with 1

103 value reveals no features be-
ing masked (note that the mappings of attention
heads can be found in Appendix A.6).

The highest weight is assigned to feature pair
(2, 3), indicating a strong correlation between
user ID and item ID. In contrast, other pairs such
as (1, 2), (1, 4), (2, 4), and (3, 4) show weak
alignment, implying a primarily negative sam-
ple. Unlike DLRM’s dot product-based feature
interaction, Ad-Rec captures this information.

5 Experiments and Results

5.1 Evaluation Setup

Recommendation Models: We train recommendation models with varying sizes to represent
different classes of at-scale models [Gupta et al., 2020, Adnan et al., 2022a,b]. The architecture of
these models is presented in Table 1 [Wu et al., 2019, Zhao et al., 2019].

These models are selected based on their diverse characteristics and parameter sizes. The sparse
parameter count ranges from 5.2M (RM4) to 266M (RM2), indicating different model complexity
and capacity levels. It is worth noting that RM1 and RM2 are embedding-dominated models. On the
other hand, RM3 is an average-sized model with a balanced mix of dense and sparse features.

To further explore the impact of sequential information, we consider models RM4, RM5, RM6, and
RM7, which share a common base model for generating embedding vectors per event. However, they
differ in the choice of the sequential layer to process the temporal sequence. RM4 employs a single
time series layer (TSL), RM5 utilizes multi-head attention with eight heads, RM6 consists of 5 RNN
layers, and RM7 employs a single transformer layer to predict the probability of the next event.

Datasets: We investigate Ad-Rec’s performance using various real-world datasets for both non-
sequential and sequential recommendation tasks. For non-sequential tasks, we employ three datasets:
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Table 1: Recommendation Models Architecture and Ad-Rec Configuration (# layers = 1)

Model Dataset
Features Parameters Neural Network Configuration Ad-Rec Configuration Sequential Layer

Dense Sparse Dense Sparse Sparse Bottom Top Num Hidden FFN Type Layers/
Dim MLP MLP Heads Size Config. Heads

RM1 Criteo Kaggle 13 26 287.5k 33.8M 16 13-512-256-64-16 512-256-1 2 16 128
N/A N/ARM2 Criteo Terabyte 13 26 549.1k 266M 64 13-512-256-64 512-512-256-1 8 64 512

RM3 Avazu 1 21 281.4k 9.3M 16 1-512-256-64-16 512-256-1 2 16 128
RM4

Taobao Alibaba 1 3 7.3k 5.1M 16 1-16 22-15-15 2 16 128

TSL 1
RM5 MHA 8
RM6 RNN 5
RM7 Transformer 1
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Figure 4: Comparison of Ad-Rec’s convergence with baseline feature interaction techniques. The
dotted vertical line represents the training iteration where Ad-Rec reaches the target AUC and stops
training. On average, Ad-Rec achieves target AUC in 50%, 42%, 45%, and 58% lower iterations, as
compared to the DLRM, DeepFM, AutoInt, and DCN-v2 baselines.

Criteo Kaggle [CriteoLabs, a], Criteo Terabyte [CriteoLabs, b], and Avazu [Kaggle]. The Criteo
Kaggle dataset, derived from the Display Advertising Challenge, predicts click-through rates (CTR)
and captures user preferences. Criteo Terabyte, the largest publicly available click-log dataset, is
commonly used to train non-sequential DLRM models. The Avazu dataset, obtained from a CTR
prediction competition on Kaggle, provides insights into users’ ad click behaviours for mobile ads.

For sequential recommendation models, we turn to the Taobao User Behavior dataset [Alibaba],
encompassing a vast array of 4 million items, 10,000 categories, and 1 million users. Within this
dataset, each user’s time series comprises triplets (i, c, t), representing the interactions where a user u
engages with an item i from category c at time t. With an average of 21 sequential interaction events
per user, the Taobao User Behavior dataset offers a rich environment to evaluate Ad-Rec.

Baselines: We compare Ad-Rec against four state-of-the-art techniques. DLRM [Naumov et al.,
2019] and DeepFM [Guo et al., 2017] are 2nd order feature interaction while AutoInt [Song et al.,
2019] and DCN-v2 [Wang et al., 2021] are higher-order feature interaction techniques.

Training Details: We conducted our experiments using PyTorch-1.9 and built upon the widely
adopted Deep Learning Recommendation Model (DLRM) [Naumov et al., 2019] for non-sequential
recommendations and Time-Based Sequence Model (TBSM) [Ishkhanov et al., 2020] for the se-
quential counterpart. All models were implemented identically to ensure a fair comparison, with the
feature interaction component being the only point of distinction.

For non-sequential models (RM1, RM2, and RM3), we employed the Stochastic Gradient Descent
(SGD) [Bottou, 2012] optimizer. RM1 and RM3 were trained with a batch size of 128, while RM2
utilized a batch size of 1024. The learning rates were set to 0.01 for RM1, 0.1 for RM2, and 0.2 for
RM3. In the case of sequential models (RM4, RM5, RM6, and RM7), we employed the Adagrad
[Duchi et al., 2011] optimizer with a learning rate of 0.05 and a batch size of 128.

We performed five independent runs and presented the mean and standard deviation of the results.
All models, except RM2, were trained on a single NVIDIA Tesla-V100 GPU. Due to the size of its
embedding tables, RM2 was trained on 4 NVIDIA Tesla-V100 GPUs to ensure proper fitting.

Evaluation Metrics: For evaluating the performance of our recommendation models, we use the
Area Under Curve (AUC) metric, as established by the MLPerf community [MLCommons]. The
AUC metric measures the probability that a randomly selected positive sample will be ranked higher
than a randomly chosen negative sample. A higher AUC score indicates better performance. Each
model is trained to achieve a specific target AUC score. Even a slight improvement in AUC, such as
0.001, is considered significant for click-through rate (CTR) prediction [Cheng et al., 2016, Guo
et al., 2017, Li et al., 2019]. We also track testing accuracy and BCE loss along with the AUC metric.
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5.2 Convergence Analysis

We compare the convergence of Ad-Rec with the baseline models (RM1, RM2, RM3, and RM4)
by setting a target AUC for each model based on prior work Naumov et al. [2019], Ishkhanov et al.
[2020]. The baseline models and Ad-Rec are trained with early stopping to achieve the target AUC.
Figure 4 demonstrates that Ad-Rec achieves the target AUC in fewer training iterations, thanks
to its masked attention-based feature interaction. The transformer encoder in Ad-Rec captures the
relationships between input features, resulting in deeper feature representations and improved learning
and prediction. On average, Ad-Rec achieves the target AUC in 50%, 42%, 45%, and 58% iterations,
surpassing the DLRM, DeepFM, AutoInt, and DCN-v2 baselines.

Table 2 compares evaluation metrics for a single training epoch. Across all models and datasets,
Ad-Rec consistently outperforms the baselines regarding AUC. On average, Ad-Rec improves
the AUC metric by 0.012, 0.008, 0.006, and 0.001 compared to the DLRM, DeepFM, AutoInt,
and DCN-v2 baselines. Although higher-order feature interaction techniques may exhibit lower
performance in certain models and datasets, Ad-Rec showcases superior generalization capabilities.
It consistently outperforms other feature interaction techniques. For a comprehensive analysis of
Ad-Rec’s hyperparameters, please refer to the ablation study in Appendix A.5.

Table 2: Evaluation Metric Comparison with Single Epoch Training - Mean (stddev)

Model AUC BCE Loss
DLRM DeepFM AutoInt DCN-v2 Ad-Rec DLRM DeepFM AutoInt DCN-v2 Ad-Rec

RM1 0.798 (1.9e-4) 0.796 (1.6e-4) 0.795 (8.12e-5) 0.796 (2.9e-4) 0.801 (1e-4) 0.459 (1.5e-3) 0.461 (1.6e-3) 0.461 (1.4e-3) 0.460 (1.3e-3) 0.455 (1.4e-3)
RM2 0.788 (1.8e-4) 0.783 (1.5e-4) 0.785 (1.5e-4) 0.786 (8.29e-5) 0.790 (1.8e-4) 0.424 (1.4e-4) 0.428 (1.5e-4) 0.426 (7.25e-5) 0.426 (5.14e-5) 0.423 (9.4e-5)
RM3 0.768 (9.5e-4) 0.763 (3.4e-3) 0.763 (7.8e-4) 0.772 (1e-3) 0.775 (3.2e-4) 0.386 (3.8e-4) 0.390 (2.6e-4) 0.390 (3.6e-4) 0.384 (5e-4) 0.382 (1.2e-4)
RM4 0.933 (1.3e-4) 0.939 (6.6e-4) 0.942 (1.5e-3) 0.947 (5.8e-3) 0.949 (1.9e-3) 0.267 (3.4e-3) 0.257 (1.3e-3) 0.254 (3.8e-3) 0.237 (1.5e-2) 0.232 (8.3e-3)
RM5 0.869 (4.2e-4) 0.881 (1.1e-4) 0.893 (5.5e-3) 0.894 (1.5e-3) 0.895 (2.1e-3) 0.378 (1.8e-4) 0.360 (6.3e-3) 0.363 (1.9e-3) 0.361 (3.2e-3) 0.361 (2e-3)
RM6 0.840 (7.1e-3) 0.850 (1e-3) 0.849 (2.8e-3) 0.855 (1.3e-3) 0.852 (2.6e-3) 0.385 (1.4e-3) 0.388 (3.7e-3) 0.388 (7.2e-3) 0.375 (1.1e-3) 0.380 (4.2e-3)
RM7 0.920 (1.8e-3) 0.934 (1.3e-3) 0.932 (6e-3) 0.940 (5.2e-3) 0.940 (1.8e-3) 0.299 (1.1e-3) 0.269 (2.8e-3) 0.279 (1.2e-3) 0.255 (1.3e-3) 0.254 (5.6e-3)

RM1 RM2 RM3 RM4 Average
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Figure 5: Absolute training time over multiple runs.
Ad-Rec converges to target AUC in less time, which
translates to a speedup of 1.5×, 2×, 2.1× and 1.4×
over DLRM, DeepFM, AutoInt, and DCN-v2 baselines.

Performance Comparison: Ad-Rec’s
transformer-based feature interaction is
computationally expensive compared to
baselines. The wall clock time is mea-
sured to compare the runtime of training
the recommendation model. As Figure 5
shows, as expected, a single training itera-
tion of Ad-Rec-based training takes more
time. Still, it converges in less number of
training iterations that provides a speedup
of 1.5×, 2×, 2.1× and 1.4× over DLRM,
DeepFM, AutoInt, and DCN-v2 baselines.

Computational Cost Analysis: To compare the computational cost of Ad-Rec-based feature
interaction, we trained DLRM and Ad-Rec using a fixed computational budget and compared the
training quality metric (AUC). Figure 6 shows that Ad-Rec dominates DLRM on this performance-
compute trade-off. Similar trends are observed for other remaining models (RM2 and RM4).
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Figure 6: Model quality versus computational cost for different models. Ad-Rec outperforms state-
of-the-art DLRM with the same computational budget.
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5.3 Ablation Study for Covariate Shift

Table 3: Ablation study comparing the impact of LayerNorm
(LN ) in Ad-Rec to handle covariate shift.

Model AUC BCE Loss
Ad-Rec w/ LN Ad-Rec w/o LN Ad-Rec w/ LN Ad-Rec w/o LN

RM1 0.801 (1e-4) 0.795 (2.4e-4) 0.455 (1.4e-3) 0.460 (1.4e-3)
RM2 0.790 (1.8e-4) 0.785 (2.2e-4) 0.423 (9.4e-5) 0.426 (1.4e-4)
RM3 0.775 (3.2e-4) 0.771 (1.8e-4) 0.382 (1.2e-4) 0.385 (1.4e-4)
RM4 0.949 (1.9e-3) 0.944 (2.8e-3) 0.232 (8.3e-3) 0.247 (7.4e-3)
RM5 0.895 (2.1e-3) 0.890 (2.8e-3) 0.361 (2e-3) 0.366 (5.9e-3)
RM6 0.852 (2.6e-3) 0.823 (7.3e-3) 0.400 (4.2e-4) 0.427 (6.3e-3)
RM7 0.940 (1.8e-3) 0.930 (2e-3) 0.272 (5.6e-3) 0.284 (4.8e-3)

We evaluate the importance of Lay-
erNorm in Ad-Rec with an ablation
study that removes the LayerNorm
layer while keeping the rest of the ar-
chitecture unchanged. Table 3 shows
a decrease in the AUC metric and an
increase in the BCE Loss when Lay-
erNorm is omitted. Thus LayerNorm
is critical to handling data distribution
drift and promoting faster and more
stable convergence in Ad-Rec.

5.4 Scaling the Recommendation Models

We conducted scaling ablation studies on DLRM-style recommendation models. Scaling the embed-
ding dimension had the most significant improvement, while scaling the model size had minimal
effect on model quality. More details can be found in Appendix A.7. In the ablation studies with Ad-
Rec, we evaluated model quality using masked-attention-based feature interaction while keeping the
model size and computational budget fixed. Figure 7 shows that Ad-Rec consistently outperformed
other models across parameters, such as embeddings, embedding dimension, and neural network size.
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Figure 7: Scaling laws of recommendation models were studied to understand the impact of compo-
nent scaling on model quality. Despite a small training dataset, Ad-Rec outperformed scaled models.

6 Limitations and Future Work

While Ad-Rec exhibits promising results, two key areas warrant further investigation. First, the
masked attention-based feature interaction in Ad-Rec enhances model performance but may compro-
mise interpretability compared to other techniques. Future work can focus on developing approaches
to improve inter-operability. Second, recent higher-order feature interaction techniques, including
Ad-Rec and AutoInt [Song et al., 2019], exhibit increased inference time due to their higher computa-
tional complexity for attention-based operations. Meeting strict Service Level Agreements (SLAs)
becomes challenging with such higher-order techniques. Future research could explore leveraging
the learned features from Ad-Rec and applying less computationally expensive feature interaction
techniques.

7 Conclusion

Recommendation models are pivotal in improving recommendation quality and user experience,
attracting considerable attention from industry and academia. In this study, we tackled the challenges
of covariate shifts and sought to enhance cross-feature learning while accounting for data drift. Our
findings underscored the significance of normalizing explicit cross-features and eliminating noisy
ones to enhance recommendations in unfamiliar data distributions. To address these challenges,
we introduced Ad-Rec, a masked-attention-based feature interaction technique. Through rigorous
experimentation, Ad-Rec consistently outperformed state-of-the-art baselines, exhibiting superior
quality and convergence speed. It achieved higher AUC scores and accelerated the training process,
delivering compelling results across commercial models and publicly available datasets.
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A Appendix

A.1 High-Level Overview: Deep Learning-based Recommendations with Ad-Rec

Figure 1a illustrates the model architecture of Ad-Rec, a non-sequential deep learning-based recom-
mendation model inspired by DLRM [Naumov et al., 2019]. The model takes two types of inputs:
dense and sparse features. Dense inputs consist of continuous features such as the user’s age or the
time of day. In contrast, sparse inputs include categorical features like the user’s location or liked
videos.

Multi-layer perceptrons (MLPs) are employed to process the dense inputs, while large embedding
tables handle the sparse inputs, each representing a specific categorical feature. These embeddings,
along with the dense features, are then passed through a feature interaction layer, enabling the
generation of cross-features that capture complex relationships between different features. Next, the
cross-features and dense features are fed into an MLP layer, which predicts the click-through rate
(CTR). The CTR indicates the likelihood of a user clicking on an item, serving as a key metric for
recommendation models. By leveraging the power of deep learning and effective feature interaction,
Ad-Rec enhances the accuracy and performance of recommendation systems.

Figure 1b provides an overview of sequential recommendation models within the context of Ad-Rec.
These models explicitly incorporate the temporal aspect of user-item interactions through a set of
events denoted as ε. Each event ε represents a user u interacting with an item i at a specific time t.

User behaviour is captured as a sequence of events ε spanning multiple time steps, denoted as
t = {1, . . . , τ − 1}. The sequential recommendation model is then trained to predict the next event at
time step τ , based on the previous event sequence. This shift towards sequential modelling transforms
the organization of the training dataset, as it now represents a sequence of user activities rather than
a simple collection of user interactions with features, as seen in non-sequential recommendation
models. By incorporating temporal dynamics, Ad-Rec enables more accurate and personalized
recommendations in dynamic user environments.

A.2 Multihead Self-Attention

The standard self-attention mechanism, commonly used in Natural Language Processing (NLP) tasks,
forms a fundamental building block. Given an input sequence z ∈ RN×D, it computes a weighted
sum over all values v in the sequence. The attention weights Aij reflect the pairwise similarity
between query qi and key vj representations of the input tokens.

q,k,v = zUqkv Uqkv ∈ RD×3D (17)

A = softmax(
qkT

√
D

) A ∈ RN×N (18)

SA = Av (19)

Multihead self-attention (MSA) extends the self-attention mechanism by performing H parallel
self-attention operations, where each self-attention is referred to as a “head”. The parameter H is a
hyper-parameter that determines the number of heads. To ensure constant computation and parameter
count with respect to H , the dimension D (Eq. 17) is set to D

H .

MSA(z) = [SA1(z) ; SA2(z) ; . . . ; SAn(z)]Umsa Umsa ∈ RHD×D (20)

A.3 Mask Analysis

In our ablation study, we examined the impact of masking and the choice between a fixed mask value
or different mask values for each attention head. Three scenarios were considered: no mask, a fixed
mask value for all heads, and different mask values for each head. Table 4 illustrates the advantages
of employing distinct mask values for each head, highlighting the superiority over using a fixed mask
value or no masking.

Models trained with masking generally demonstrate improved AUC compared to models without
masking, as masking effectively eliminates irrelevant cross-features that can degrade prediction
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Table 4: Ablation Study. Mask (θ) Analysis with Single Epoch Training - AUC Mean (std deviation).
The ‘No Mask’ entry indicates a scenario containing no masking. The numbers in other entries show
fixed mask values across all heads, and Ad-Rec employs different mask values across each head.

Model Mask Value (θ)
No Mask 0.1 0.01 0.05 0.001 0.005 Ad-Rec

RM1 0.801095 (3.17e-4) 0.801269 (3.74e-4) 0.801357 (2.2e-4) 0.801055 (4.33e-4) 0.801112 (4.82e-4) 0.801199 (1.14e-4) 0.80153 (1.09e-4)
RM2 0.790164 (2.44e-4) 0.790222 (1.84e-4) 0.790214 (1.92e-4) 0.790176 (8.07e-5) 0.790185 (4.56e-4) 0.790179 (1.71e-4) 0.790224 (1.56e-4)
RM3 0.775091 (4.85e-4) 0.775081 (7.9e-4) 0.775044 (4.08e-4) 0.775344 (9.2e-4) 0.775637 (2.1e-4) 0.77587 (3.21e-4) 0.775971 (4.3e-4)
RM4 0.9453581 (2.88e-3) 0.9421871 (6.46e-3) 0.9465051 (2.57e-3) 0.9430625 (3.67e-3) 0.9434243 (4.54e-3) 0.9406334 (1.45e-3) 0.9494345 (1.9e-3)
RM5 0.8940437 (2.87e-4) 0.8938943 (2.93e-4) 0.89249 (2.04e-3) 0.8866167 (9.16e-3) 0.8882817 (5.43e-3) 0.8892716 (4.01e-3) 0.8955358 (7.65e-3)
RM6 0.8500284 (1.73e-3) 0.840935 (8.25e-3) 0.8453409 (6.09e-3) 0.8424109 (6.67e-3) 0.8491047 (5.64e-3) 0.8374637 (4.19e-3) 0.8520705 (2.61e-3)
RM7 0.9323605 (1.45e-3) 0.9319719 (5.68e-3) 0.9326281 (1.05e-3) 0.9337075 (1.84e-3) 0.9317426 (8.62e-3) 0.9327804 (1.45e-3) 0.9404412 (1.82e-3)

quality. However, determining the optimal mask threshold presents a challenge. Different models
require different mask thresholds (θ), and selecting an unsuitable mask can harm prediction quality
by eliminating important features. Prior approaches [Liu et al., 2020, Khawar et al., 2020, Zhu
et al., 2021] tackle this issue by training models specifically to learn such features, but this approach
incurs computational costs and lacks generalizability across models or even the same model with
different sizes. In contrast, Ad-Rec addresses this challenge by utilizing different mask values for
each attention head, facilitating better generalization. If an important feature is eliminated in one
head, it can be compensated for by other attention heads, resulting in a higher-quality model.

A.4 Positional Embedding

In our sensitivity study, we explored different ways of encoding the spatial information of features
using positional embeddings inspired by NLP models. We considered two cases:

• No positional information: This case involved using only feature embeddings and providing
them as-is to the transformer encoder. This approach was the default across all other
experiments in the paper.

• 1-dimensional positional embedding: We treated the input features as a sequence of
features, assigning each sparse feature and dense feature vector a position based on the
embedding table position for language models. We added position embeddings to the feature
inputs just before feeding them to the Transformer encoder. The dimension of the position
embedding was kept similar to the sparse feature dimension, and the number of position
embeddings was equal to the number of features.

Equation 21 demonstrates the incorporation of positional embeddings into the input features. The
feature inputs and their respective embeddings were summed with the position embeddings.

z0 = [MLP(xdense);x
1
sparseE

1; . . . . ; xN
sparseE

N ] +Epos E ∈ RM×D, Epos ∈ R(N+1)×D

(21)

Table 5 presents the evaluation results comparing the models with and without positional embeddings.
Our hypothesis was that since the Multi-Head Attention block exhibits permutation-equivariance,
the position of a feature in the input sequence does not encode useful information. Therefore, the
models that directly input the raw features to the masked transformer encoder, facilitating higher-order
feature interaction, performed the best. Incorporating 1-dimensional positional embeddings led to a
degradation in model performance, even worse than the DLRM baseline. Notably, in certain models
like RM3, incorporating 1-dimensional positional embeddings prevented the model from converging.

Table 5: Results of ablation study on positional embeddings with single epoch training.
Model AUC Test Accuracy (%) BCE Loss

No Pos. Emb. 1-D Pos. Emb. No Pos. Emb. 1-D Pos. Emb. No Pos. Emb. 1-D Pos. Emb.
RM1 0.801 0.796 78.70 78.34 0.455 0.461
RM2 0.790 0.786 81.22 80.94 0.423 0.426
RM3 0.775 Not Converge 83.76 Not Converge 0.382 Not Converge

Figure 8 illustrates that recommendation models achieve convergence in significantly fewer training
iterations when no spatial information is added to the input feature embeddings. Even the model with
1-dimensional positional embedding requires more training iterations than the baseline DLRM with
second-order cross-features to reach the target AUC.
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Figure 8: Model convergence with and without positional embedding.

A.5 Ad-Rec: Masked Transformer Hyper-parameters Analysis

To evaluate the robustness of our Ad-Rec model, we conducted an extensive study by varying
the hyperparameters of the transformer encoder. Table 6 provides an overview of the different
hyperparameters considered in this sensitivity analysis.

Table 6: Scaling hyper-parameters of transformer encoder.

Num Layers Num Heads Dropout Ratio Non-Linear Activation Hidden Size Linear Config.
N H D A dmodel dff
1 1 0.01 ReLU 16 128
2 2 0.05 GeLU 64 512
4 4 0.1

8 0.2
16 0.3

A.5.1 Number of Layers

We investigated the impact of the number of masked transformer layers (N) in the RM1 model while
keeping other hyperparameters constant. Figure 9 showcases the test accuracy and BCE loss for the
RM1 model. Our observations revealed that increasing the number of masked transformer layers
did not yield significant benefits due to the smaller sequence length of RM1 (27 features). However,
we anticipate that models with a larger number of features and longer sequence lengths would
demonstrate improved AUC with more masked transformer layers. This is because higher-order
feature interaction becomes more valuable when there are more features. In large-scale industrial
datasets, the number of sparse features can reach thousands. For instance, the Meta synthetic
dataset1, which cannot be used for training due to its synthetic nature, contains 856 sparse features.
Nevertheless, it highlights the scale at which Ad-Rec can significantly enhance prediction accuracy.
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Figure 9: Test Accuracy and BCE Loss with varying layers of Ad-Rec masked transformer.

1https://github.com/facebookresearch/dlrm_datasets
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Figure 10: Trends in test accuracy by varying the number of attention heads of masked transformer
for RM1, RM2, RM3, and RM4 models. Models with missing head (RM3 and RM4 with 16 heads)
means the model could not converge.

A.5.2 Number of Attention Heads

We employ masked multi-head attention to enable higher-order feature interactions across multiple
subspaces. This technique divides a single embedding vector into multiple heads of the same length,
allowing for parallel execution and feature interaction within different subspaces. The number
of attention heads (H) varies from 1 to 16 for each model (RM1, RM2, RM3, and RM4). The
relationship between the test accuracy and the number of attention heads is illustrated in Figure 10.
Notably, the computational complexity remains unchanged as all the heads are concatenated at the
end, and each head operates on a portion of the embedding vector.

Our observations indicate that models with an intermediate number of heads consistently converge and
yield higher accuracy. In contrast, the RM3 model fails to converge when using a single-head model,
emphasizing the importance of feature interaction in multiple subspaces. Furthermore, when the
number of heads equals the length of the embedding vector D (i.e., H = D), the feature interaction
becomes excessively fine-grained, leading to model divergence. For the RM3 and RM4 models, it
was observed that neither model converged when using (H = 16) and (D = 16), reinforcing the
need for an appropriate balance in the number of attention heads to achieve optimal performance.

A.5.3 Dropout Ratio

The masked transformer architecture incorporates a residual connection, depicted in Figure 2a, to
ensure effective information flow and gradient propagation. Additionally, a dropout mechanism
prevents overfitting by randomly replacing input features with random features. To investigate the
impact of the dropout ratio on model predictions, we varied the ratio across all models, ranging from
0.01 to 0.3.

Figure 11 showcases the relationship between the dropout ratio and test accuracy. Our findings
consistently demonstrate that lower dropout values (0.01 - 0.05) yield superior predictions across
all models. These smaller dropout ratios enable cross-features to incorporate with the original raw
features, facilitating improved learning of implicit interactions. As the dropout ratio increases, the
test accuracy gradually declines, eventually approaching the performance of the baseline DLRM
model when the dropout ratio reaches 0.3.
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Figure 11: Trends in test accuracy by varying dropout ratio of residual connection in masked
transformer for RM1, RM2, RM3, and RM4 model. Models with missing dropout values (RM3 with
a dropout of 0.01 and 0.05) mean the model could not converge.
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The diminishing test accuracy with higher dropout ratios can be attributed to introducing more
random features into the cross-features. These additional random features may disrupt the underlying
patterns and relationships in the data, negatively impacting model performance. This finding aligns
with previous research [Song et al., 2019], which utilizes raw features without dropout in multi-head
attention-based cross-features to learn higher-order interactions. However, in the case of Ad-Rec, a
smaller dropout ratio is employed during training to enhance generalization, while dropout is removed
during inference for optimal performance.

A.5.4 Non-Linear Activation

Figure 12 presents the investigation into the impact of non-linear activation functions on test accuracy.
Surprisingly, transitioning from the default ReLU activation to GeLU activation does not yield any
noticeable effect on the test accuracy of the models. Regardless of the chosen non-linear activation
function, all models across different datasets converge to the same point.

This finding suggests that the specific type of non-linearity employed in the activation function does
not significantly influence the extraction of cross-features. It indicates that the masked transformer
architecture is robust to different non-linearities, and the models can effectively capture and learn the
underlying interactions between features regardless of the specific activation function used.
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Figure 12: Trends in test accuracy by changing the non-linear activation of a feed-forward network of
the masked transformer. It does not have any effect on the model quality.

A.6 Attention Heads Masking Analysis

We randomly sampled test samples from each dataset to examine the impact of masking on each
attention head and its role in enhancing predictions by eliminating irrelevant features. We then
plotted the attention weights for each attention head with and without a mask. Figures 14,15, and16
showcase the attention weights for the RM1, RM2, and RM3 models, respectively. These plots
provide insights into how different attention heads learn feature interactions in multiple subspaces
and how attention weights vary across different attention heads. By employing different mask
values for each attention head, masking selectively masks out attention weights of irrelevant features,
redistributing the attention weight across other relevant features accordingly.

Sequential Embedding Vectors’ Feature Interaction: The quality of sequence embedding vectors
(Z) plays a crucial role in the prediction quality of sequential recommendation. To better understand
the patterns within these vectors, we utilize Principal Component Analysis (PCA) to map the
embedding vectors (with a width of 16) into a 2-dimensional space. In this space, similar interactions
are grouped closely together, while dissimilar interactions are distanced apart. The proximity of the
next item’s placement to historical item interactions indicates a higher probability of the user clicking
on that item. Figure 13 depicts the PCA plot for sequential embedding vectors generated by both
feature interaction methods, as explained in Section 4. Each method generates 21 embedding vectors,
representing the user’s historical interactions, with the next item represented by a star symbol (⋆).

In the plot, closely related interactions form clusters, and the relative Euclidean distance between
clusters signifies their correlation. For DLRM-based feature interaction, we observe that all sequential
interactions are clustered together, resulting in four closely located clusters in the Euclidean space.
On the other hand, Ad-Rec-based feature interaction generates more distinct clusters based on the
type of user interactions. The sequential layer predicts the likelihood of the user clicking on the next
item vector based on the placement of the next item embedding in relation to the user’s sequential
embedding vectors.
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Figure 13: Principal Component Analysis (PCA) to represent high-dimensional sequential user
activity in 2-dimensional space. This compares DLRM and Ad-Rec generated embedding vectors for
the RM4 model. Note that the next item (denoted by ⋆) is a negative sample. Thus, a large Euclidean
distances between the next item and sequential interaction clusters indicate a higher quality model.

Figure 14: Attention Weights for RM1 model across 2 heads. The unmasked head contains original
attention weights, while the masked head contains attention weights after masking. X and Y axes
contain 27 features with 0 as dense feature vectors while others are sparse feature vectors. Highlighted
features are the masked features that are irrelevant.

Interestingly, we notice that Ad-Rec-based feature interaction generates an embedding vector for
the next item that is situated far away from previous user interactions, indicating that the next item
does not have a strong connection to the user’s sequential interactions. Conversely, for DLRM-based
feature interaction, the next item is located within the cluster, suggesting a close relationship with
most previous interactions. The placement of Ad-Rec-generated sequence vectors and subsequent
item vectors aligns with the ground truth, as the input represents a negative sample.
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Figure 15: Attention Weights for RM2 model across 8 heads. The unmasked head contains original
attention weights, while the masked head contains attention weights after masking. X and Y axes
contain 27 features with 0 as dense feature vectors, while others are sparse feature vectors. Highlighted
features are the masked features that are irrelevant.

A.7 Scaling laws of Recommendation Models

To investigate the scaling laws of recommendation models, we conducted experiments by scaling
various model components. Table 7 provides an overview of the scaled components and their
corresponding configurations, along with the model size in terms of parameters. This analysis allows
us to assess the impact of scaling on model quality.

Previous research [Ardalani et al., 2022] has explored the scaling laws for non-sequential recommen-
dation models, particularly focusing on Click-Through Rate (CTR) in DLRM-style models. Their
findings revealed that increasing the model size did not significantly enhance accuracy, while training
on more data led to slight improvements.

In contrast, Figure 7 demonstrates the behaviour of model loss as different components, including
the Ad-Rec loss, are scaled. Interestingly, even with fewer parameters (approximately half), Ad-Rec
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Figure 16: Attention Weights for RM3 model across 2 heads. The unmasked head contains original
attention weights, while the masked head contains attention weights after masking. X and Y axes
contain 22 features with 0 as dense feature vectors, while others are sparse feature vectors. Highlighted
features are the masked features that are irrelevant.

outperforms other models regarding convergence speed. This emphasizes the significance of higher-
order feature interaction, eliminating irrelevant features, and addressing covariate shifts in improving
the representation of input features. Merely scaling existing components or increasing the size of
training datasets does not yield comparable results. The success of Ad-Rec opens up new avenues for
research in recommendation model architecture.

Table 7: Scaling Recommendation Models Components

Model Scaling Sparse Neural Network Configuration Model
Component Dimension Bottom MLP Top MLP Parameters

RM1 (N/A) DLRM 16 13-512-256-64-16 512-256-1 540.7M
RM1 (N/A) Ad-Rec 16 13-512-256-64-16 512-256-1 540.8M
RM1 Sparse Emb. Dim 32 13-512-256-64-32 512-256-1 1.08B
RM1 Top MLP 16 13-512-256-64-16 1024-768-512-256-1 542.1M
RM1 Bottom MLP 16 13-1024-768-512-256-128-64-16 512-256-1 542M
RM1 All Comp. 32 13-1024-768-512-256-128-64-32 1024-768-512-256-1 1.08B

RM2 (N/A) DLRM 64 13-512-256-64 512-512-256-1 2.7B
RM2 (N/A) Ad-Rec 64 13-512-256-64 512-512-256-1 2.701B
RM2 Sparse Emb. Dim 128 13-512-256-128 512-512-256-1 5.399B
RM2 Top MLP 64 13-512-256-64 1024-768-512-512-256-128-1 2.701B
RM2 Bottom MLP 64 13-1024-768-512-256-128-64 512-512-256-1 2.701B
RM2 All Comp. 128 13-1024-768-512-256-128 1024-768-512-512-256-128-1 5.401B

RM3 (N/A) DLRM 16 1-512-256-64-16 512-256-1 150.24M
RM3 (N/A) Ad-Rec 16 1-512-256-64-16 512-256-1 150.37M
RM3 Sparse Emb. Dim 32 1-512-256-64-32 512-256-1 300.08M
RM3 Top MLP 16 1-512-256-64-16 1024-768-512-256-128-64-1 151.59M
RM3 Bottom MLP 16 1-1024-768-512-256-128-64-16 512-256-1 151.44M
RM3 All Comp. 32 1-1024-768-512-256-128-64-32 1024-768-512-256-128-64-1 302.64M

RM4 (N/A) DLRM 16 1-16 15-15 82.55M
RM4 (N/A) Ad-Rec 16 1-16 15-15 82.57M
RM4 Sparse Emb. Dim 32 1-32 15-15 165.10M
RM4 Top MLP 16 1-16 32-15-15 82.55M
RM4 Bottom MLP 16 1-8-16 15-15 82.55M
RM4 All Comp. 32 1-16-32 32-15-15 165.10M
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