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Abstract

As the number of transistors that can be integrated onto a
single chip continues to increase exponentially, a growing
challenge is modeling performance with reasonable accuracy
in the early stages of processor design. While methodolo-
gies for execution driven simulations are well understood,
comparatively little is known about how to develop accurate
analytical models. Processor architects in industry have oc-
castonally employed ad hoc analytical modeling techniques in
an attempt to rapidly focus the search for higher performance
designs. Moreover, analytical models can provide insights
that a detailed performance simulator may not. This pa-
per proposes techniques to accurately model the performance
impact of long latency data cache misses in a superscalar
microprocessor. A pending data cache hit results from a
memory reference to a cache block for which a request has
already been initiated by another instruction but has not yet
completed (i.e., the requested block is still on its way from
memory). These pending cache hits have a non-negligible
influence on accuracy of analytical models when analyzing
memory intensive benchmarks. We propose a technique to
quickly identify pending data cache hits and account for their
effect on performance by analyzing memory reference pat-
terns without performing detailed performance simulations.
We also propose a novel profiling method to take account of
the mazimum number of outstanding cache misses supported
by the memory system. QOverall, these approaches improve
performance prediction accuracy by a factor of 3.9 on av-
erage (error decreases from 39.7% to 10.3%) for a set of
memory intensive benchmarks when the mazimum number
of outstanding misses supported is unlimited. Moreover, on
average our model achieves 151 and 170 times speedup over
detailed simulations with less than 10% error, when the maz-
imum number of outstanding misses supported is sixzteen and
eight, respectively.

1. INTRODUCTION

The traditional way to evaluate a microprocessor design is
to create a cycle-accurate simulator modeling the micropro-
cessor and then to run numerous simulations to quantify
its performance. Not only is the task of creating such a
simulator a time-consuming process, running performance
simulations itself can be slow. Both are significant compo-
nents of overall design-to-market time. As microprocessor
design cycles stretch, architects effectively start each new

project earlier and consequently with less accurate informa-
tion about the eventual process technology that will be used,
leading to designs that may not achieve the full potential of
a given process technology node.

An orthogonal approach to obtain performance estimates
for a proposed design is analytical modeling [7, 28]. An an-
alytical model employs mathematical formulas that approx-
imate the performance of the microprocessor being designed
based upon program characteristics and microarchitectural
parameters. One of the potential advantages of analytical
modeling is that it can require much less time than crafting a
performance simulator. Thus, when an architect has analyt-
ical models available to evaluate a given design, the models
can significantly shorten the design cycle. While perfor-
mance simulator infrastructures exist that leverage re-use of
modular building blocks [8, 26], and workload sampling [23,
27] can reduce simulation time, another key advantage of
analytical modeling is its ability to provide insights that a
cycle-accurate simulator may not.
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Figure 1: Comparison of actual CPI component due to
long latency data cache misses versus modeled CPI com-
ponent for mcf with different memory access latencies

Several analytical models have been proposed before [13,
17, 18, 19, 20, 21] and Karkhanis and Smith’s first-order
model [13] is the most recent one. Their first-order model
separately estimates the cycles per instruction (CPI) com-
ponent due to branch mispredictions, instruction and data
cache misses, then adds each CPI component to an esti-
mated CPI under ideal conditions (i.e., in the absence of
the above-mentioned miss-events) to arrive at a final model
for the performance of a superscalar processor. Although
such a model ignores the interaction between different miss-
events, previous work [12, 13] has shown that the model can
be fairly accurate and is thus a good starting point. How-
ever, little prior work has focused on analytically modeling
the performance impact of a limited (i.e., realistic) number
of outstanding long latency data cache misses. In this paper
we explore how to accurately and analytically model this



important aspect of modern microprocessor designs.

One significant aspect of long latency memory systems is
the large effect of pending data cache hits on overall per-
formance. Here the term pending data cache hit refers to a
memory reference to a cache block for which a request has
already been initiated by another instruction but has not
yet completed (i.e., the requested block is still on its way
from memory). Figure 1 compares the actual CPI compo-
nent due to long latency data cache misses to the modeled
CPI component due to long latency data cache misses for
mcf as memory latency increases. The first bar (actual)
shows the result from a cycle-accurate simulator whose con-
figuration is described in Section 4. The second bar (first-
order) shows the result from a careful re-implementation of
a previously described first-order model [13]'. The third bar
(SWAM w/ PH) illustrates the result from a new technique
that we propose in this paper (see Section 3.4.1). In this pa-
per, the modeled CPI due to long latency data cache misses
(CPIpgmiss) is always derived by dividing the modeled to-
tal extra cycles due to long latency data cache misses by the
total number of instructions committed. From the data in
Figure 1 we observe that the error becomes increasingly sig-
nificant as memory latency grows. Therefore, to accurately
model the performance of future superscalar microproces-
sors, it is necessary to appropriately model pending data
cache hits.

This paper makes the following contributions:

e [t shows that the impact of pending data cache hits on
the performance of microprocessors with long memory
latency is non-negligible for several memory intensive
benchmarks. Therefore, their impact should be taken
into account when analytically modeling future pro-
cessor performance (Section 3.1).

e [t proposes a way to identify potential pending data
cache hits when profiling a dynamic instruction trace
created by a cache simulator (not requiring any infor-
mation from a performance simulator). It also shows
how to analytically model the effects of those pending
data cache hits (Section 3.1).

e [t presents a novel technique to more accurately com-
pensate for the potential overestimation of the mod-
eled penalty per miss in earlier models, which incor-
porates an analysis of program characteristics. We
find this approach significantly more accurate than the
baseline approach we compare against (Section 3.2).

e It describes (in Section 3.3) a technique to analytically
model the impact of a limited number of outstanding

1Our analysis indicates that pending data cache hits are very impor-
tant to model accuracy. However, we note that the CPI errors we re-
port for our baseline modeling technique (described in Section 2, and
labeled “plain” in Section 5) are in some cases large relative to those
reported in [13]. Our baseline modeling technique is our best attempt
to implement the analytical model described in [13] based upon the
details described in that paper and the follow-on work [12, 14]. We
believe the discrepancy is partly due to our use of a smaller L2 cache
size of 128 KB versus 512 KB used in [13] (we model smaller caches
to stress the effects of long latency cache misses). We observed the
difference for mcf drops from 79% to 66% when we model a similar
sized cache. We speculate there are some features of their analyti-
cal model that were not fully documented in [12, 13, 14] (reportedly,
pending hits were modeled, but the details were omitted due to space
limitations [16]).

cache misses supported by a memory system on perfor-
mance, thus increasing the realism (and hence appli-
cability) of analytical models for processor designers.
As the instruction window of future microprocessors
becomes larger [6], a limited number of Miss Status
Holding Registers (MSHRs) can have a dramatic im-
pact on the performance of the whole system [25]. To
the best of our knowledge, this is the first work describ-
ing how to analytically quantify the impact of support
for a limited number of outstanding cache misses. The
arithmetic mean of the absolute value of error® of a
model that does not take account of a limited number
of MSHRs is 32.6% and 32.4%, when the maximum
number of outstanding misses supported is sixteen and
eight, respectively; the arithmetic mean of the abso-
lute value of the error of our model is 9.3% and 9.2%,
respectively. (The geometric mean is 6.5% and 6.7%.
The harmonic mean is 4.6% and 5.2%.)

e It also proposes two novel profiling techniques to bet-
ter analyze data cache misses that are overlapped (Sec-
tion 3.4).

Furthermore, we found these benefits accrue with no dis-
cernable increase in benchmark profile or analysis time. On
average our analytical model is 156 and 170 times faster
than detailed simulation, when the maximum number of
outstanding misses supported is sixteen and eight, respec-
tively.

The rest of this paper is organized as follows. Section 2
briefly reviews details of the first-order model required to
understand our contributions. Section 3 describes how to
accurately model the effects of pending data cache hits and a
limited number of outstanding data cache misses supported.
Section 4 describes the experimental methodology and Sec-
tion 5 presents and analyzes our results. Section 6 reviews
related work and Section 7 concludes the paper.

2. BACKGROUND: FIRST-ORDER MODEL

Before explaining the details of our techniques introduced in
Section 3, it is necessary to be familiar with the basics of the
first-order model of superscalar microprocessors. Karkhanis
and Smith’s first-order model [13] leverages the observation
that the overall performance of a superscalar microprocessor
can be estimated reasonably well by subtracting the perfor-
mance losses due to different types of miss-events from the
processor’s sustained performance under the absence of miss
events. The miss events considered include long latency data
cache misses (e.g., L2 cache misses for a memory system
with two-level cache hierarchy), instruction cache misses,
and branch mispredictions.

2In this paper, we use arithmetic mean of the absolute value of error
to validate the accuracy of an analytical model, which we argue is
the correct measure since it always reports the largest error numbers
and is thus conservative in not overstating the case for improved ac-
curacy. Note that we are interested in averaging the error of the CPI
prediction on different benchmarks, not the average CPI predicted
for an entire benchmark suite which often allows errors on individual
benchmarks to “cancel out” in a way that suggests the modeling tech-
nique is more accurate than it really is. We also report the geometric
mean and harmonic mean of the absolute error to allay any concerns
these numbers might lead to different conclusions. In all case the im-
provements resulting from applying our new modeling techniques are
robust enough that the selection of averaging technique does not (in
our opinion) impact our conclusions.
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Figure 2: Useful instructions issued per cycle (IPC) over
time used in the first-order model [13]

Figure 2 illustrates this approach. When there are no miss-
events, the performance of the superscalar microprocessor
is approximated by a stable IPC?, expressed through a con-
stant useful instructions issued per cycle (IPC) over time.
When a miss-event occurs, the performance of the proces-
sor falls and the IPC gradually decreases to zero. After the
miss-event is resolved (i.e., a mispredicted branch is resolved
or a load missing in the data cache gets the data from mem-
ory), the decreased IPC ramps up to the stable value under
ideal conditions. A careful analysis of this behavior leads to
the first-order model [13].

While Figure 2 shows that a miss-event occurs only after the
previous miss-events have been resolved, in a real processor
it is possible for different types of miss-events to overlap.
For example, a load instruction can miss in the data cache a
few cycles after a branch is mispredicted, or a load instruc-
tion can miss in the data cache and an instruction fetch
could miss in the instruction cache around the same time.
However, it has been observed (and we confirmed) that over-
lapping between different types of miss-events is rare enough
that ignoring it results in negligible error in typical applica-
tions [9, 10, 12, 13].
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Figure 3: Comparison of the actual CPI to the CPI
modeled by accumulating CPI components due to each
miss-event in addition to the ideal CPI

Figure 3 compares the cycles per instruction (CPI) obtained
from our performance simulator to the modeled CPI formed
by adding the isolated CPI due to each miss-event to the
base CPI (i.e., ideal CPI assuming perfect branch prediction
and no penalty cycles for cache misses). The modeled CPI
can be estimated as the sum of the base CPI and the CPI
due to each miss-event [13]. Equation 1, below, expresses the
modeled CPI as the sum of four CPI components. In this
equation, CPIpgse represents the ideal CPI and CPIgmsp
is the CPI due to branch mispredictions. CPIpgm;ss and
CPlIgm;iss represents the CPI due to long latency data cache
misses and instruction cache misses, respectively.

CP[Modeled = CPIBase+CPIB7nsp+CPID$miss+CPII$miss
1
3While IPC often fluctuates even in the absence of miss events, the

stable IPC value can be viewed as a long term average IPC in the
absence of miss events.

As noted by Karkhanis and Smith, the interactions between
microarchitectural events of the same type cannot simply be
ignored. Although (demand) instruction cache misses will
never overlap with each other, the overlapping of data cache
misses must be appropriately modeled to achieve reasonable
accuracy.

It has been observed that the number of instructions that
can be issued per cycle is roughly proportional to the square
root of the instructions in the window [17, 22], providing a
simple way to approximate the ideal CPI. It has also been
observed that for most benchmarks the ideal CPI can be
approximated by the reciprocal of issue width when the in-
struction window is made large enough [13] (we employ this
approximation in novel ways in Section 3.2).

Performance loss due to branch mispredictions is estimated
by analyzing the transient IPC curve created based upon
the IW characteristics of a program, where the IW char-
acteristic is a function determining the average number of
instructions that can issue per cycle (denoted as I) when
given the number of instructions in the instruction window
(denoted as W) [9, 11, 12, 13]. Since instruction cache
misses never overlap with each other, the performance loss
due to an instruction cache miss is simply modeled as the
memory latency if the instruction fetch misses in the L2
cache or the L2 cache latency if the instruction fetch hits in
the L2 cache [12, 13].

Short data cache misses (i.e., L1 data cache misses in this pa-
per) are not regarded as miss-events in prior first-order mod-
els [12, 13] and they are modeled as long-execution-latency
instructions when modeling CPIpgse. The term CPIpgiss
represents the CPI component due only to long latency data
cache misses. In the rest of this paper, we use the term
“cache misses” to represent long latency data cache misses.

Our baseline technique for modeling data cache misses, based
upon Karkhanis and Smith’s first-order model [13], analyzes
dynamic instruction traces created by a cache simulator. In
each profile step, a RO Bgs;.. number of consecutive instruc-
tions in the trace are put into the profiling window and an-
alyzed, where ROBg;.. is the size of the re-order buffer.
In other words, an instruction trace is divided into many
blocks, each consisting of ROBg;z. number of consecutive
instructions, then each block of instructions is analyzed. In
each profile step, if all of the loads missing in the data cache
are data independent with each other, they are considered
overlapped (i.e., the overlapped misses have the same per-
formance impact as a single miss). When data dependencies
exist between misses, the maximum number of misses in the
same data dependency chain is recorded and the execution
of all the other misses are hidden under the chain.

In the rest of this paper, num_serialized_D$miss will repre-
sent the sum of the maximum number of misses measured in
any single data dependency chain in a block of instructions,
accumulated over all blocks making up the entire instruc-
tion trace. When all instructions in the trace have been
analyzed, the C'PIpgm;ss can be estimated as

num_serialized_D$miss x mem_lat
CP-ID$miss =

(2)

total_num_instructions
where mem_lat stands for the main memory latency.



The CPIpgmiss modeled in Equation 2 often overestimates
the actual CPIpgm;ss and a simple solution proposed by
Karkhanis and Smith [13] is to subtract a fixed number of
cycles per serialized data cache miss based upon ROB size to
compensate. The need for this compensation is that, when
a load issues and accesses the cache, it can be the oldest in-
struction in the ROB, the youngest instruction in the ROB,
or somewhere in between. If the instruction is the oldest or
nearly the oldest, the performance loss (penalty of the in-
struction) is the main memory latency. On the other hand,
for example, if the instruction is the youngest or nearly the
youngest one in the ROB and the ROB is full, its penalty
can be partially hidden by the cycles required to drain all in-
structions before it, and can be approximated as mem_lat —
% [13]. It has been observed that loads missing in
the cache are relatively old when they issue [13]; and thus,
perhaps the simplest (though not most accurate) approach
is to use no compensation at all [13]. The mid-point of the
two extremes mentioned above can also be used (i.e., a load
missing in the cache is assumed to be in the middle of ROB
when it issues), and the numerator in Equation 2 becomes

iali 1 _ __ROBsjze
num_serialized_D8miss x (mem_lat — go——=izeo) [12].

3. MODELING LONG LATENCY MEMORY
SYSTEMS

In this section, we describe how to accurately account for
many aspects of long latency memory systems. First, we
propose a way to accurately model pending data cache hits
in Section 3.1 and explain the major sources of error that oc-
cur when not modeling them. Then we present an approach
to adjust for the overestimation of the modeled penalty per
miss in Section 3.2 that takes account of application be-
haviour. In Section 3.3 we describe how to accurately model
the impact of a limited number of outstanding misses on
performance thus extending the model’s utility. Finally, we
present two novel profiling techniques to further increase the
model’s accuracy in Section 3.4.

3.1 Modeling Pending Data Cache Hits

The method of modeling long latency data cache misses de-
scribed in Section 2 is based upon profiling dynamic instruc-
tion traces that are generated by a cache simulator [13].
Since a cache simulator provides no information about tim-
ing, it simply classifies the load or store first bringing a block
from memory into the cache as a miss and all subsequent in-
structions accessing the block before the block is evicted as
hits.

However, for many instructions classified as a hit by a cache
simulator, their actual latency is much longer than the cache
hit latency. For example, if there are two close load instruc-
tions accessing data in the same block that is not currently
in the cache, the first load will be classified as a miss by the
cache simulator and the second load as a hit, even though
the data would still be on its way from memory in a real
processor implementation. Therefore, since the second load
is classified as a hit in the dynamic instruction trace, it is
ignored in the process of modeling C'PIpg,,;ss using the ap-
proach as described in Section 2.

More importantly, our detailed investigations uncovered that
a significant source of errors results when two or more load

fictitious dependence we model to account for the effect of spatial locality

il | LD, RL,0(R2) | spata miss
i2: .77 LD, R3,4(R2) locality  hending hit
i3:  ""==LD, R4, 0(R3) miss

Figure 4: An example showing how two data indepen-
dent misses (i1, i3) are connected by a pending hit (i2)

instructions that miss in the data cache are connected by
a third pending data cache hit. We elaborate what “con-
nected” means using the simple example in Figure 4. In
this example, il and i3 are two loads classified as misses and
they are data independent of each other, while i2 is a pend-
ing hit since it accesses the data in the same cache block
as i1. The model described in Section 2 classifies il and
i3 as overlapped and the performance penalty due to each
miss using that approach is estimated as half of the mem-
ory access latency (total penalty is the same as if there is a
single miss). However, this approximation is invalid since i3
is data dependent on the pending data cache hit i2; and i2
gets its data when il obtains its data from memory (i.e., il
and i2 are waiting for the data in the same block). There-
fore, in reality i3 can only start execution after il gets its
data from memory (i.e., their execution should be serialized)
although there is no true data dependence between il and
i3 (or between il and i2). This scenario is very common
since most programs contain significant spatial locality [1].
The appropriate way to model this situation is to consider
il and i3 to be non-overlapped in our analytical model, sim-
ilar to modeling a true data dependence between them. In
general, two data independent loads (e.g., il and i3 in Fig-
ure 4) are “connected” by a pending data cache hit (e.g., i2
in Figure 4) when the pending hit accesses data in the same
cache block as one load (e.g., il in Figure 4), and the other
load (e.g., i3 in Figure 4) is data dependent on the pending
hit. Although there are no data dependencies of any kind
between the two loads (e.g., il and i3 in Figure 4), they have
to execute serially due to microarchitectural effects.
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Figure 5: Impact of pending data cache hit latency on
the CPI due to long latency cache misses (measured over
all instructions committed)

Figure 5 shows the significant impact that pending data
cache hits combined with spatial locality have on overall per-
formance for processors with long memory latencies. The
first bar (w/PH) illustrates measured C'PIpgy,;ss for each
benchmark on the detailed performance simulator described
in Section 4, and the second bar (w/o PH) shows the mea-
sured C'PIpgmiss when all the pending data cache hits are
simulated as having a latency equal to the L1 data cache hit
latency. From the figure we observe that the difference is
significant for eqk, mcf, em, hth, and prm.



To model the effects of pending data cache hits analytically,
we first need to identify them without a performance sim-
ulation. At first this may seem impossible as there is no
information about timing from the cache simulator. We
tackle this by assigning each instruction in the dynamic in-
struction trace a sequence number in program order and
labeling each memory access instruction in the trace with
the sequence number of the instruction that first brings the
memory block into the cache. Then, when we profile the
instruction trace, if a hit consumes data from a cache block
that is first brought into the cache by an instruction that
is still in the profiling window, it is regarded as a pending
data cache hit.

For every pending hit identified using this approach (e.g.,
i2 in Figure 4), there is a unique instruction earlier in the
profiling window that first brings in the cache block accessed
by that pending hit (e.g., il in Figure 4). When we notice a
data dependence between a later cache miss (e.g., i3 in Fig-
ure 4) and the pending hit (e.g., i2), we model a dependence
between the early miss (e.g., i1) and the instruction that is
data dependent on the pending hit (e.g., i3) since the two
instructions (e.g., il and i3) have to execute serially due to
the constraints of the microarchitecture.

Next we will discuss how to make our model more accurate
by better estimating the performance loss (penalty) due to
a load that misses in the cache rather than using fixed com-
pensation based upon ROB size.

3.2 Accurate Miss Penalty Compensation
While the model described in Section 2 uses a fixed number
of cycles to adjust the modeled CPIpg,ss (in Equation 2),
we found that compensation with a fixed number of cycles
(a constant ratio of the reorder buffer size) does not provide
consistently accurate compensation for all the benchmarks
that we studied, resulting in large modeling errors (see Fig-
ure 9 on page ). To capture the distinct distribution of long
latency data cache misses of each benchmark, we propose a
novel compensation method. The new method is motivated
by our observation that the number of cycles hidden for
a load missing in the cache is roughly proportional to the
distance between the load and the immediately preceding
load that misses in the cache*. This happens because, we
observe that, when a load instruction misses in the cache,
most of the instructions between that load and its imme-
diately preceding miss are independent of that load (i.e.,
these instructions are earlier than the load in program or-
der). Therefore, we approximate the latency of the later
load that can be hidden as the time used to drain those in-
termediate instructions from the instruction window, which
we estimate as the distance between the two loads divided
by the issue width. When we profile an instruction trace,
the average distance between two consecutive loads missing
in the cache is also collected and used to adjust the modeled
cpP ID$'miss5~

4VVe define the distance between two instructions to be the difference
between their instruction sequence number.

5Note if the distance between two misses exceeds the instruction win-
dow size of the processor being modeled, the distance is counted as
the window size since the latency of a miss can be hidden by at most
ROBg;.. — 1 instructions.

Equation 3 shows how the CPIpg,,:ss is adjusted by sub-
tracting a compensation term, ——9t x num_D$miss,
from the numerator in Equation 2. Here dist is the aver-
age distance between two consecutive loads that miss in the
cache and the term mﬁ% represents the average num-
ber of cycles hidden for each cache miss, and the product of
this term and the total number of loads missing in the cache
(num_D$miss) becomes the total number of cycles used to
compensate for the overestimation of the baseline profiling
method.

nume_serialized_D$miss x mem_lat — com,
CPIDSB'miss = P

total_num_instructions
dist

comp=(——
P (issue,width

X num_D$miss)

Next we will propose a technique to model the performance
impact of a limited number of outstanding cache misses sup-
ported by a realistic memory system.

3.3 Modeling a Limited Number of MSHRs

The method of analytically modeling the CPI due to long la-
tency data cache misses described in Section 2 assumes that
at most RO Bg;.. cache misses can be overlapped. However,
this assumption is unreasonable for most modern processors
where the maximum number of outstanding cache misses
the system supports is limited by the number of Miss Status
Holding Registers (MSHRs) [15] in the processor. In a real
processor the issue stage has to stall when available MSHRs
run out. To extend the existing model and increase its flex-
ibility, we next show how to analytically model the impact
of a limited number of MSHRs on overall performance.

Based upon the technique described in Section 2, the profil-
ing window with the same size as the instruction window is
always assumed to be full when modeling C'PIpg,,55- In or-
der to model a limited number of outstanding cache misses,
we need to refine this assumption. During a profile step, we
stop putting instructions into the profiling window when the
number of instructions that miss in the data cache and that
have been analyzed is equal to Nyrsmr (number of MSHRs),
and then update num_serialized_D$miss only based upon
those instructions that have been analyzed in this profile
step6.

next profile step
starts here

Profiling Window

RAREANN

i1 2 i3 4 5 i6: i7 i8 19 il0
j——ROB Size————)
Figure 6: An example showing profiling with ROBg;,. =
8 and Ny;sgr = 4. Each arrow corresponds to a dynamic
instruction in the trace.
with patterns. Corresponding data dependency graph is
shown to the right.

Data cache misses are filled

Figure 6 illustrates a simplified example demonstrating how
the profiling technique works when the number of outstand-
ing cache misses supported is limited to four. Once we

51n real execution, cache misses that are regarded as not present in
the profiling window simultaneously due to lack of available MSHRs
could actually be in the instruction window simultaneously. The pro-
filing window only approximates the performance loss due to a limited
number of MSHRs. We leverage this observation in Section 3.4.2.



encounter Narsugr (four) cache misses in the instruction
trace (i.e., il, 42, 74, and 6), the profile step stops and
num_serialized_D$miss is updated (i.e., the profiling win-
dow is made shorter). In the example, the four misses are
data independent of each other (and not connected with
each other via a pending hit as described in Section 3.1),
thus num_serialized_D$miss will be incremented by one.
Although 7 also misses in the cache, it is included in the
next profile step since all four MSHRs have been used.

This enhancement leads us to the next two methods we pro-
pose to refine the selection of each profiling window’s bound-
aries and thereby significantly increase the accuracy of our
analytical model.

3.4 Profiling Window Selection

The profiling technique described in Section 2 (which we
will refer to hereafter as plain profiling) partitions an in-
struction trace into blocks of instructions, the size of which
is equal to the size of the instruction window. Then, each
block of instructions is analyzed to model the performance
loss due to data cache misses. In this section, we present
two important refinements that we find better model the
overlapping between cache misses. While applying the tech-
niques described in previous sections (i.e., modeling pending
hits, compensating based upon the average distance between
two consecutive misses, and modeling a limited number of
MSHRSs), the two profiling techniques described below re-
duce average absolute error of plain profiling from 29.3% to
10.3%, from 26.0% to 9.3%, and from 23.9% to 9.2%, when
the maximum number of MSHRs is unlimited, sixteen, and
eight, respectively.

3.4.1 Start-with-a-miss (SWAM) Profiling

We observe that often the plain profiling described in Sec-
tion 2 does not include all the cache misses that can be over-
lapped, due to the simple way it partitions an instruction
trace. Figure 7(a) shows a simple example. In this exam-
ple, we assume that all the cache misses (shaded arrows) are
data independent of each other for simplicity. Using the pro-
filing approach described in Section 2, a profile step starts
at pre-determined instructions (for example, i1, 9, i17...,
when ROBg;.e is eight). Therefore, although the latency
of i5, i7, 19, and 11 can be overlapped, the plain profiling
technique does not account for this.

1st profile step 2 profile step

IR L I

il i2 i3 i4 i5 i6 i7 i8 i9 il0 i1l i12 i13 i14
(a) Plain Profiling

A profile step starts with a miss

rerotototerony

il i2 i3 i4 _i5 6 i7 i8 i9 il0 ill il2 i13 i14
(b) SWAM Profiling
Figure 7: An example comparing plain profiling and
SWAM profiling with ROBg;,. = 8. Each arrow corre-

sponds to a dynamic instruction. Data cache misses are
shaded.

By making each profile step start with a cache miss, we find

that the accuracy of the model improves significantly. Fig-
ure 7(b) illustrates the idea. Rather than starting a profile
step with i1, we start a profile step with 45, and the profil-
ing window will include i5 to i12. Then the next profile step
will seek the first cache miss after i12 and start with it. We
call this technique start-with-a-miss (SWAM) profiling and
(in Section 5.1) we will show that SWAM profiling decreases
the error of plain profiling from 29.3% to 10.3% when the
number of MSHRs is not limited.

3.4.2 Improved SWAM for Modeling a Limited Num-

ber of MSHRs (SWAM-MLP)

The technique for modeling MSHRs proposed in Section 3.3
can be combined with SWAM to better model the perfor-
mance when the number of outstanding cache misses sup-
ported by the memory system is limited. We refine this fur-
ther to model a limited number of outstanding cache misses
using SWAM by having each profile step start with a miss
and finish either when the number of instructions that have
been analyzed equals the size of the instruction window, or
when the number of cache misses that have been analyzed
equals the total number of MSHRs. However, choosing a
profiling window independent of whether a cache miss is data
dependent on other misses (or connected to other misses via
pending hits as described in Section 3.1) leads to inaccuracy
because data dependent cache misses cannot simultaneously
occupy an MSHR entry.

To improve accuracy further, we stop a profile step when the
number of cache misses that are data independent of misses
that have been analyzed in the same profile step (rather than
the number of cache misses being analyzed) equals the total
number of MSHRs. In the rest of this paper we call this
improved technique SWAM-MLP since it improves SWAM
by better modeling memory level parallelism. SWAM-MLP
improves model accuracy because, when a miss depends on
an earlier miss in the same profiling window, the later miss
cannot issue until the earlier one completes and the out-
of-order execution allows another independent miss that is
younger than both of the above misses to issue. Therefore,
the number of instructions that miss in the data cache and
that should be analyzed in a profile step should, in this case,
be more than the total number of MSHRs. In Section 5.2,
we show that SWAM-MLP further decreases modeling er-
ror of SWAM from 9.8% to 9.3% and from 12.8% to 9.2%,
when the maximum number of MSHRs is sixteen and eight,
respectively.

4. METHODOLOGY

To evaluate our analytical model, we have modified Sim-
pleScalar [4] to simulate the CPI due to long latency data
cache misses when accounting for a limited number of MSHRs.
Table 1 describes the microarchitectural parameters used in
this study. Note that the parameters for branch predictor
and instruction cache are only used for collecting data shown
in Figure 3. In the rest of this paper we focus on how to
accurately predict C PIpgiss, which is the CPI due to long
latency data cache misses when both branch predictor and
instruction cache are ideal (this is the same methodology
applied to model CPIpg,iss described in [13]).

To stress our model, we simulate a relatively small L2 cache



Table 1: Microarchitectural Parameters

Machine Width 4
ROB Size 256
LSQ Size 256
Branch Predictor 4KB gShare
L1 I-Cache 16KB, 32B/line, 4-way, 1-cycle latency
L1 D-Cache 16KB, 32B/line, 4-way, 2-cycle latency
L2 Cache 128KB, 64B/line, 8-way, 10-cycle latency
Memory Latency 200 cycles

Table 2: Benchmarks

Benchmark | Label Miss rate Suite
173.applu app 31.1MPKI SPEC 2000
179.art art 117.1MPKI | SPEC 2000
183.equake eqk 15.9MPKI SPEC 2000
189.lucas luc 13.1MPKI SPEC 2000
171.swim swm 23.5MPKI SPEC 2000
181.mcf mecf 90.1MPKI SPEC 2000
em3d em 74.7TMPKI Olden
health hth 45.7TMPKI Olden
perimeter prm 18.7MPKI Olden
470.1bm Ibm 17.5MPKI SPEC 2006

compared to contemporary microprocessors. We note that
most of the benchmarks we used are relatively old and the
size of the L2 cache we simulated is close in size to those em-
ployed in microprocessors shipping at the time when those
benchmarks were released”. The benchmarks we choose are
the ones from SPEC 2000 [24] and OLDEN [5] for which
there are at least 10 long latency data cache misses every
1000 instructions simulated (10MPKI). Table 2 illustrates
miss rates of these benchmarks and labels used to repre-
sent them in figures. For each benchmark, we select 100M
representative instructions to simulate using the Sim-Point
toolkit [23].

5. RESULTS

In this section, we first show (in Section 5.1) that SWAM
profiling decreases modeling error from 39.7% to 10.3% while
taking account of pending hits and using the compensation
technique proposed in Section 3.2. Then in Section 5.2 we
evaluate the techniques proposed in Section 3.3 and Sec-
tion 3.4 to model the effects of a limited number of MSHRs
and show that the error of our model is less than 10%
when the maximum number of MSHRs varies from sixteen
to eight. In Section 5.3 we illustrate that on average our an-
alytical model is two orders of magnitude times faster than
detailed simulations.

5.1 Modeling Pending Data Cache Hits

Figure 8(a) compares the modeled penalty cycles per miss to
the actual penalty per miss® obtained from our performance
simulator, and Figure 8(b) compares modeled CPIpgpss
(i.e., modeled total extra execution cycles due to long la-
tency cache misses divided by the total number of instruc-
tions committed) to its simulated counterpart, in both cases
assuming unlimited MSHRs. For each benchmark, the first
bar (modeled w/o PH) is the result modeled by plain pro-
filing technique without taking pending data cache hits into

"We do not simulate SPEC 2006 since few SPEC 2006 applications
compile with the current compilation infrastructure available for Sim-
pleScalar.

8The actual penalty per miss is obtained by dividing the simulated
total extra execution cycles due to long latency cache misses by the
total number of misses. Due to the fact that the execution of some
loads missing in the cache can be overlapped (memory level paral-
lelism), the penalty per miss for each benchmark in Figure 8(a) is
always less than the main memory latency (200 cycles in this study).
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(b) CPI component due to long latency data cache misses
measured over all instructions

Figure 8: Penalty cycles per miss and CPI due to long
latency cache misses for plain profiling (does not use
compensation method described in Section 3.2, and as-
sumes unlimited MSHRs)

consideration and without applying any compensation method,

and the second bar (modeled w/PH) is the result modeled
by the same profiling technique incorporating the effects
of pending data cache hits using the technique described
in Section 3.1 without applying any compensation method.
Note that we have shown the harmonic mean (HM) for all
the benchmarks in Figure 8(a) and Figure 8(b). Due to
the fact that positive errors (i.e., modeled results are larger
than actual results) and negative errors (i.e., modeled re-
sults are less than actual results) cancel out, the harmonic
mean of the modeled results without accounting for pending
hits (modeled w/o PH) is close to simulated results. How-
ever, it is important to recognize that the accuracy of this
technique on individual benchmark is quite poor. We find
that the arithmetic mean of absolute error when not model-
ing pending hits (modeled w/o PH) is 71.2% and this error
decreases to 66.5% while pending hits are modeled (mod-
eled w/ PH). Note that the error of the model is quite large
even with pending hits modeled since we do not yet include
the compensation method described in Section 3.2. We will
show below that modeling pending hits results in a much
better accuracy than not modeling pending hits when the
compensation method described in Section 3.2 is included.

The data in Figure 8(b) shows that for some benchmarks
with heavy pointer chasing feature such as mcf, em3, and
hth, ignoring the effects of pending data cache hits results
in a dramatic underestimate for C'PIpg,,;ss. As discussed
in Section 3.1, the reason for the underestimation is that
some cache accesses classified as “hits” actually have long
latencies because they must wait for a pending cache access.

Section 2 describes prior proposals for compensating for the
overestimation of modeled penalty cycles per serialized miss
using a fized number of cycles. Figure 9(a) and Figure 9(b)
illustrate the modeled results after compensation with con-
stant cycles. In these two figures, we show results using
five different constant numbers of cycles to compensate for
the overestimation. The first bar (empty) corresponds to
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the assumption that an instruction that misses in the cache
is always the oldest one in the instruction window when
it issues (accesses the first level cache). The second bar
(1/4) corresponds to the assumption that there are always
iROBsize = 64 in-flight instructions older than a cache
miss when it issues and it is similar to next two bars (1/2)
and (3/4). The fifth bar (full) corresponds to the assump-
tion that there are always RO Bs;.. — 1 older instructions in
the window when the instruction issues (i.e., the instruction
is always the youngest one in the window when it issues).
The last bar (actual) shows the simulated penalty cycles
per cache miss. From this data we observe that there is
no one fixed cycle compensation method performing con-
sistently well for all the benchmarks we study. For exam-
ple, in Figure 9(a) we observe that error is minimized using
“full” for app, art, luc, swm, and lbm, but minimized using
“empty” for em, mcf, and hth; however, egk and prm re-
quires something in-between. The harmonic means of each
fixed cycle compensation method over all the benchmarks
are also shown and we notice that due to the fact that pos-
itive and negative errors cancel out, the harmonic mean of
some fixed cycle compensation methods is close to simulated
results. However, it is important to recognize that their ac-
curacy on individual benchmark is quite poor. By using the
fixed cycle compensation method, we find that the smallest
arithmetic mean of absolute error is 43.5% when not mod-
eling pending hits and 26.9% when modeling pending hits,
both from using “full” compensation.

To account for the distinct behavior of each benchmark,
we use the average distance between two consecutive cache
misses to compensate for the overestimation of the mod-
eled extra cycles due to long latency data cache misses as
proposed in Section 3.2. For each benchmark, this average
distance is divided by the issue width of the machine. Then
the result is multiplied by the total number of cache misses
and the product is subtracted from the modeled extra cycles
due to long latency cache misses before compensation, as de-
scribed in Equation 3. Figure 10(a) compares the modeled
CPI due to long latency data cache misses for both plain pro-
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Figure 10: CPI due to D$miss and modeling error for
different profiling techniques (Unlimited MSHRs)

filing technique described in Section 2 and the start-with-a-
miss (SWAM) profiling technique described in Section 3.4.1
to the simulated results. The first bar (Plain w/o comp) and
the third bar (SWAM w/o comp) for each benchmark cor-
respond to the modeled results without any compensation;
the second bar (Plain w/ comp) and the fourth bar (SWAM
w/ comp) are modeled results after the compensation de-
scribed in Section 3.2. As we expect, SWAM profiling is
more accurate than plain profiling since it can capture more
data cache misses that can be overlapped. Moreover, Fig-
ure 10(b) illustrates the error of each modeling technique,
after compensation. We observe from Figure 10(b) that the
arithmetic mean of the absolute error for SWAM profiling
when pending data cache hits are modeled (SWAM w/PH) is
about 3.9 times lower than plain profiling when pending hits
are not modeled (Plain w/o PH) (i.e., the arithmetic mean
of the absolute error decreases from 39.7% to 10.3%°).

5.2 Modeling Limited Number of MSHRs

All the results we have seen thus far are for modeling a
processor with an unlimited number of Miss Status Holding
Registers. This section shows modeled CPI component due
to long latency data cache misses when the number of out-
standing data cache misses supported by a memory system is
finite. Figure 11(a) and Figure 11(b) compares the modeled
CPI due to long latency data cache misses to the simulated
results when the maximum number of MSHRs is sixteen
and eight, respectively. (We show data for eight MSHRs
since we note that Prescott has only eight MSHRs [3]). For
each benchmark, the first bar (Plain w/o MSHR) represents
the modeled CPIpgm;ss from plain profiling (i.e., it is not
aware of a limited number of MSHRs and always provides
the same result for a benchmark) and the second bar (Plain
w/ MSHR) shows the modeled CPIpg,,;ss from plain pro-
filing with the technique of modeling a limited number of
MSHRs (Section 3.3) included. The third and the fourth
bar illustrates the modeled C'PIpg,:ss from SWAM (Sec-

9The geometric mean of the absolute error decreases from 26.4% to
8.2%, and the harmonic mean of the absolute error decreases from
15.3% to 6.9%.
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Figure 12: Error of the modeled CPID$miss for Nyjspr = 16 and Npyspr = 8.

tion 3.4.1) and SWAM-MLP (Section 3.4.2), respectively.
For all these profiling techniques, pending hits are modeled
using the method described in Section 3.1. Moreover, the
modeling error for each technique is shown in Figure 12(a)
and Figure 12(b), when the maximum number of MSHRs is
sixteen and eight, respectively.

Similar to the situation when the number of MSHRs is un-
limited, both plain profiling and SWAM profiling can be
used to model a limited number of MSHRs and SWAM
profiling performs consistently better than plain profiling.
Moreover, with a limited number of MSHRs, the refined
SWAM-MLP is better than SWAM. We notice that as the
total number of MSHRs decreases, the advantage of SWAM-
MLP over SWAM becomes significant, especially for eqk,
mef, and em!®, for which it is more likely to have data de-
pendence among cache misses thus affecting the boundaries
of the profiling window SWAM-MLP chooses. When the
number of MSHRs is sixteen, SWAM decreases the arith-
metic mean of the absolute error from 32.6% (Plain w/o
MSHR) to 9.8%''. When the number of MSHRs is eight,
SWAM decreases the arithmetic mean of the absolute error
from 32.4% (Plain w/o MSHR) to 12.8%'%. SWAM-MLP
further decreases the error to 9.3% and 9.2%, when the num-
ber of MSHRs is sixteen and eight, respectively'?.

5.3 Speedup of the Analytical Model

One of the most important advantages of the analytical
model we present in this paper versus detailed simulations is
its fast speed of analysis. Figure 13 shows, for each bench-

10 hese are the benchmarks which have large error when not modeling
pending data cache hits as seen in Figure 8.

My reduces the geometric mean from 19.4% to 7.4% and reduces the
harmonic mean from 8.5% to 5.8%.

121t reduces the geometric mean from 21.5% to 9.7% and reduces the
harmonic mean from 14.5% to 7.0%.

BThe geometric mean of the absolute error is 6.5% and 6.7%, and
the harmonic mean of the absolute error is 4.6% and 5.2%, when the
number of MSHRs is sixteen and eight, respectively.
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mark, the speedup of our analytical model over the detailed
simulator that is described in Section 4 with different max-
imum numbers of MSHRs!*. From this figure we observe
that on average the speedup of our analytical model over the
detailed simulator increases while the maximum number of
MSHRs decreases since the total number of cycles simulated
for a fixed number of instructions increases. From Figure 13
we also notice that our analytical model is at least 91 times
faster than the simulator (i.e., the first bar of swm), and on
average the model is 150, 156, and 170 times faster than the
detailed simulator when the number of MSHRs is unlimited
(MSHR_INF), sixteen (MSHR_16), and eight (MSHR_8), re-
spectively.
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Figure 13: Speedup for different maximum numbers of
MSHRs
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6. RELATED WORK

There exist many analytical models proposed for superscalar
microprocessors [17, 18, 19, 21]. A common limitation for
early models is that they assume a perfect data cache and
cannot be used to estimate the performance loss due to long
latency data cache misses. As the gap between memory
speed and microprocessor speed increases, long latency data
cache misses must be properly modeled to provide useful
insight for microprocessor designers.

Agarwal et al. [2] present an early analytical cache model es-

e do not include the trace collection time when evaluating the
speedup of our analytical model since a trace can potentially be reused
multiple times to amortize the overhead.



timating cache miss rate when given cache parameters such
as cache size, block size, associativity, etc., and their model
also requires information from an address trace of the pro-
gram being analyzed. However, in a superscalar, out-of-
order execution microprocessor, the cache miss rate itself
sometimes is not enough to predict the real performance of
the program analyzed. Our analytical model can predict the
actual performance of a program given a set of cache param-
eters and a relative simple analysis applied to an instruction
trace.

Noonburg and Shen present a superscalar microprocessor
model using a Markov chain model [20]. However, it does
not model long memory latency. The first-order model pro-
posed by Karkhanis and Smith [13] is the first to attempt to
account for long latency data cache misses. Our analytical
model improves the accuracy of our re-implementation of
their techniques described in Section 2 (based upon details
available in the literature) by modeling pending data cache
hits, and extends it to estimate the impact of a limited num-
ber of outstanding cache misses on the overall performance.

7. CONCLUSIONS

In this paper we have proposed and evaluated several im-
provements to an existing analytical performance model for
superscalar processors. We demonstrate that “first-order”
analytical models are sensitive to the details of long latency
cache miss events such as the modeling of pending data
cache hits. We explain the importance of properly mod-
eling pending data cache hits that “connect” otherwise data
independent loads that miss in the cache for some memory
intensive benchmarks, and propose a novel profiling tech-
nique to accurately model their effects on performance, not
requiring a performance simulator. Moreover, we present a
technique to quantify the impacts of a limited number of
MSHRSs in a microprocessor. We believe that as the instruc-
tion window of future microprocessors becomes larger, more
memory level parallelism will be exposed and our model will
help designers to better understand the influence of mem-
ory level parallelism on microprocessor performance. Over-
all, the techniques we introduce in this paper can reduce
the modeling error by a factor of 3.9 for a set of memory
intensive benchmarks. The error of our model, for the set
of benchmarks we use, is 9.3% and 9.2%, when the maxi-
mum number of outstanding misses supported is sixteen and
eight, respectively.
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