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ABSTRACT
Many applications with regular parallelism have been shown to
benefit from using Graphics Processing Units (GPUs). However,
employing GPUs for applications with irregular parallelism tends
to be a risky process, involving significant effort from the program-
mer. One major, non-trivial effort/risk is to expose the available
parallelism in the application as 1000s of concurrent threads with-
out introducing data races or deadlocks via fine-grained data syn-
chronization. To reduce this effort, prior work has proposed sup-
porting transactional memory on GPU architectures. One hardware
proposal, Kilo TM, can scale to 1000s of concurrent transaction.
However, performance and energy overhead of Kilo TM may deter
GPU vendors from incorporating it into future designs.

In this paper, we analyze the performance and energy efficiency
of Kilo TM and propose two enhancements: (1) Warp-level transac-
tion management allows transactions within a warp to be managed
as a group. This aggregates protocol messages to reduce communi-
cation overhead and captures spatial locality from multiple transac-
tions to increase memory subsystem utility. (2) Temporal conflict
detection uses globally synchronized timers to detect conflicts in
read-only transactions with low overhead. Our evaluation shows
that combining the two enhancements in combination can improve
the overall performance and energy efficiency of Kilo TM by 65%
and 34% respectively. Kilo TM with the above two enhancements
achieves 66% of the performance of fine-grained locking with 34%
energy overhead.

Categories and Subject Descriptors
C.1.4 [Computer System Organization]: Processor Architectures—
Parallel Architectures; D.1.3 [Software]: Programming Techniques—
Concurrent Programming

General Terms
Design, Performance
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GPU, Transactional Memory
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1. INTRODUCTION
Originally designed as an accelerator for graphics rendering, Graph-

ics Processing Units (GPUs) have evolved into a class of through-
put computing processor capable of efficiently exploiting paral-
lelism in applications in the form of thread-level parallelism. Mod-
ern GPUs feature hardware-accelerated thread spawning. This al-
lows GPU applications to decompose their workloads into as many
threads as possible without introducing significant overhead. The
GPU runs thousands of these threads concurrently, interleaving their
execution on hardware to tolerate latencies from aggressive pipelin-
ing and off-chip memory accesses. This allows GPU architec-
tures to focus hardware resources on the actual computation instead
of the assistance mechanisms that keep execution units busy (e.g.
branch prediction and speculative execution). By combining this
fine-grained multi-threading with wide SIMD hardware, GPUs can
provide higher computing throughput while consuming less energy
per operation than traditional multi-core processors.

Through the development of compute acceleration programming
models such as CUDA [27] and OpenCL [20], GPUs are used to
speedup a wide range of applications from scientific simulations to
computer vision. Many of these applications have copious amounts
of parallelism, and operate on their data with highly regular op-
erations. Many recent works have demonstrated that applications
with irregular parallelism can also be accelerated by GPUs [24, 22].
However, the development of these GPU applications tends to be a
risky process that involves significant effort from the programmer.
The irregular, data-dependent memory accesses in these applica-
tions make decomposing the workloads into thousands of threads a
tedious, error-prone task. It requires great care from the program-
mer to avoid introducing deadlocks and/or data races when they use
fine-grained locks and non-blocking data structures to eliminate un-
necessary serialization among threads. To reduce this risk, software
developers may choose to deploy a less efficient algorithm that in-
volves more coarse-grained communication among threads to per-
form the same computation, and scale the amount of data instead
to achieve the same level of parallelism required by the GPU. GPU
applications parallelized using this weak scaling approach tend to
perform sub-optimally due to contention at the memory subsystem.
The decreased computational efficiency in turn makes GPUs less
appealing to software developers.

Transactional memory (TM) [17] has gained significant inter-
est as a promising way to reduce this development risk in multi-
threaded applications. While most research and development effort
focuses on supporting TM on multi-core processors [15, 39, 33],
there are several recent proposals for supporting TM on GPU ar-
chitectures. Kilo TM [11] is a hardware TM (HTM) proposal de-
signed to support 1000s of concurrent transactions on GPU archi-
tectures. Despite the promising scalability, concerns over perfor-



mance and energy overhead of Kilo TM may deter GPU vendors
from incorporating it into future designs. In this paper, we address
these concerns by evaluating and analyzing the overhead of Kilo
TM. The insights from this analysis leads to two distinct enhance-
ments, warp-level transaction management and temporal conflict
detection.

The contributions of this paper are:

• It analyzes the performance and energy overhead of support-
ing transactional memory on GPUs.

• It proposes warp-level transaction management, which man-
ages non-conflicting transactions within a warp as a single
entity during validation and commit. This aggregates com-
munication to reduce protocol overhead, and more impor-
tantly, captures spatial locality from multiple transactions to
increase memory subsystem utility.

• It proposes and evaluates two intra-warp conflict resolution
schemes to resolve conflicts within a warp.

• It proposes temporal conflict detection, a low overhead mech-
anism that uses globally synchronized timers to detect con-
flicts in read-only transactions.

Warp-level transaction management and temporal conflict detec-
tion together improve the overall performance of Kilo TM by 65%
while reducing the energy consumption by 34%. Kilo TM with the
two enhancements achieves 66% performance of fine-grained lock-
ing with 34% energy overhead. More importantly, the enhance-
ments allow applications with small, rarely-conflicting transactions
to perform equal or better than their fine-grained lock versions. We
believe that GPU applications using transactions can be incremen-
tally optimized to reduce memory footprint and transaction con-
flicts to take advantage of this. Meanwhile the transaction seman-
tics can maintain correctness at every step, providing a low-risk
environment for exploring optimizations.

2. BACKGROUND
This section discusses aspects of the baseline GPU architecture

that are relevant for this paper. It also summarizes the transactional
memory programming model and briefly describes the original de-
sign of Kilo TM [11].

2.1 Baseline GPU Architecture
Figure 1 shows the high-level overview of our baseline GPU ar-

chitecture. A GPU application starts on the CPU and uses a com-
pute acceleration API such as CUDA or OpenCL to launch work
onto the GPU [25, 27, 20]. Each launch consists of a hierarchy of
scalar threads that execute the same compute kernel. The thread
hierarchy organizes threads as thread blocks. Each block is dis-
patched to one of the heavily multi-threaded SIMT cores as a single
unit of work. It stays on the SIMT core until all of its threads have
completed execution. Threads within a block can communicate via
an on-chip scratchpad memory called shared memory (local mem-
ory in OpenCL), and can synchronize quickly via hardware barri-
ers. The SIMT cores access a distributed, shared, read/writeable
last-level (L2) cache and off-chip DRAM via an on-chip network.

The application may launch a thread hierarchy that far exceeds
the GPU on-chip capacity. The GPU command unit automatically
dispatches as many thread blocks as the GPU on-chip resources can
sustain, and dispatches the rest of the thread hierarchy as resources
are released by completed thread blocks.
SIMT Execution Model. In the SIMT core, scalar threads are
managed as SIMD execution groups called warps (wavefronts in
AMD terminology). In this paper, each warp contains 32 scalar
threads [27]. Each warp has a hardware SIMT stack that serializes
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Figure 1: High-Level GPU architecture exposed by the CUDA
programming model. TX Log Unit, Commit Unit added for
Kilo TM. SIMT stack modified to support transactions [11].
TX Log Unit extended to use shared memory for intra-warp
conflict resolution.

the execution of different subsets of threads that diverge to different
control flow paths [10].
Memory Subsystem. For each memory instruction, each scalar
thread in the warp can generate a scalar memory access. These
accesses are served in parallel by the memory subsystem in the
SIMT core. Shared memory accesses are served by 32 shared mem-
ory banks. Accesses contending for the same bank are serialized.
For global and local memory spaces [27], accesses from different
threads in the same warp to the same 128-Byte memory chunk are
merged (coalesced) into a single wide access. The memory subsys-
tem services one wide access per cycle.

The L1 data caches in the SIMT cores are not coherent [26]. The
applications in this paper store shared data in the global memory
space that can be updated by threads from different SIMT cores.
To avoid access to stale (non-coherent) data, all global memory
accesses skip the L1 cache. They are serviced directly by the L2
cache bank at the corresponding memory partition.

Each thread can store thread-private data and spilled registers in
a private local memory space [27]. The local memory is stored in
off-chip DRAM and cached in the per-core L1 data cache and the
shared L2 cache. It is organized such that consecutive 32-bit words
are accessed by consecutive scalar threads in a warp. When all
the threads in a warp are accessing the same address in their own
local memory space, their accesses fall into the same cache line in
the L1 cache and are serviced in parallel in a single cycle. Kilo
TM stores the read and write-logs of each transaction in its local
memory space to facilitate L1 caching.
Atomic Operation Units. Current GPUs provide hardware atomic
operations for simple single-word read-modify-write operations [27,
20]. The SIMT cores send atomic operation requests to a set of
raster operation units in the memory partitions (Atomic Op. Unit
in Figure 1) to perform these read-modify-write operations to indi-
vidual locations atomically within the memory partitions [4]. Pro-
grammers can use these atomic operations to implement locks.

2.2 Transactional Memory
Transactional memory [17, 16] simplifies development for par-

allel software by providing the programmer with the illusion that
code regions, called transactions, execute atomically in isolation.
With TM, the programmer does not need to protect shared data in
memory with locks to enforce mutual exclusion. Instead, he/she
should place code routines that may access the shared data inside
transactions. At runtime, threads may execute transactions in paral-
lel. An underlying TM system monitors data accesses from trans-
actions for data-races (known as conflicts in TM). The TM sys-
tem resolves conflicts between two transactions by restarting one
of them, effectively serializing their execution. This automatic se-



rialization ensures that some of the transactions can always make
forward progress, avoiding system-wide deadlocks.

For example, in the ATM benchmark (Section 7), each scalar
thread uses a transaction to transfer funds from one account into an-
other account atomically. Transactions that try to access the same
account simultaneously are automatically serialized, while trans-
fers between disjoint sets of accounts are processed in parallel.

2.3 Kilo TM
Kilo TM [11] is a proposed HTM system designed for GPU ar-

chitectures. With Kilo TM, programmers specify weakly-isolated
transactions within the compute kernels. Each scalar thread can
execute an independent transaction, which may conflict with any
other transactions in the system. Nested transactions are flattened.

Figure 1 highlights the hardware implementation of Kilo TM: an
enhanced SIMT execution hardware to handle control-flow diver-
gence due to transaction aborts within a warp, a transaction log unit
in each SIMT core that manages the read- and write-logs for each
transaction, and a set of commit units which orchestrate the valida-
tion and commit of transactions to increase commit parallelism.

Kilo TM uses value-based conflict detection [8, 28] to avoid ex-
pensive tracking of data ownership among thousands of threads
while permitting unbounded transactions. Each transaction buffers
the value loaded from global memory in a read-log. Prior to com-
mit, the transaction validates its read-set – it compares every value
in the read-log to the most recent value in the global memory to de-
tect conflicts with previously committed transactions. If all the val-
ues match, the transaction is free of conflicts and can writeback the
data buffered in its write-log to the global memory. To allow multi-
ple transactions to commit in parallel, each commit unit uses a last
writer history unit to detect conflicting transactions that try to com-
mit concurrently. These conflicts are called hazards. The commit
unit serializes transactions with hazards so that values committed
from one transaction will be visible to the other one.

Our evaluation shows that GPU TM applications running on a
simulated NVIDIA Fermi GPU extended with our baseline Kilo
TM only captures 40% of the fine-grained locking performance,
and consumes 2× the energy. Notice that this is lower than the 59%
relative performance between Kilo TM and fine-grained lock in our
previous evaluation [11]. The discrepancy is mainly contributed
by the different core to memory ratio between the NVIDIA Fermi
architecture and the cache-extended Quadro FX5800 architecture
modeled in our previous evaluation [11].

3. WARP-LEVEL TRANSACTION
MANAGEMENT (WARPTM)

The GPU memory subsystem is designed to handle accesses with
high spatial locality. The L2 cache bank in each memory partition
can access a quarter of the cache block (32 Bytes) in a single cy-
cle, and the accessed data is delivered through an interconnection
network that can inject 32 bytes per cycle at each port. The use of
wide cache ports and wide flit size matches well with the off-chip
DRAM architecture, and delivers high bandwidth with relatively
low control hardware overhead. GPU uses special coalescing logic
to capture the spatial locality among scalar memory accesses from
threads in the same warp.

Although Kilo TM executes transactions in the same warp in
parallel, each transaction validates and commits individually. This
scalar management simplifies the design of the commit units – con-
flicts between transactions within the same warp are handled just
as conflicts between any two transactions in the system. This de-
sign simplification results in an inefficient utilization of the mem-
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Figure 2: Transaction conflicts within a warp.

ory subsystem. Every cycle, each commit unit can only send one
scalar, 4-Byte request (validation or memory writeback of a single
4-Byte word for a single transaction) to the L2 cache bank. This
wastes at least 7/8 of the L2 cache bandwidth, creating a major
energy overhead for Kilo TM.

The scalar management also introduces many extra protocol mes-
sages between the SIMT cores and the commit unit. Each transac-
tion has to generate at least three messages: (1) a done-fill message
to indicate that the entire read-set and write-set have arrived at the
commit unit, (2) a response from the commit unit to relay the out-
come of value-based conflict detection local to the unit, (3) a mes-
sage broadcasting the overall transaction outcome to each commit
unit. These extra protocol messages can significantly increase in-
terconnection traffic.

Even though it is possible to improve the L2 cache bandwidth
utility by extending each commit unit with an access combine buffer
that opportunistically accumulates multiple scalar accesses and co-
alesces them into wider accesses, we believe a simpler alternative
is to exploit the spatial locality that already exists in a warp. We
call this Kilo TM extension warp-level transaction management
(WarpTM). WarpTM uses a low-overhead intra-warp conflict res-
olution mechanism to detect and resolve all conflicts within a warp
before validating and committing the warp via the commit units.
The warp that is free of intra-warp conflicts can then be managed
as a single entity, allowing various optimizations that boost the per-
formance and efficiency of Kilo TM without introducing complex
control logic.

The rest of this section describes the optimizations enabled by
warp-level transaction management and the hardware modifications
required to realize these optimizations. The implementation of
intra-warp conflict resolution will be discussed in Section 4.

3.1 Optimizations Enabled by WarpTM
Without any potential conflicts within the warp, the commit unit

can coalesce the validation and commit requests from all transac-
tions within the warp into wider accesses to the L2 cache. It can
also aggregate the protocol messages so that it is relaying the val-
idation outcomes of the entire warp. The benefits from WarpTM
can be categorized as follows.
Eliminate Futile Validation. By resolving the conflicts within a
warp prior to the global commit, transactions that would have failed
can abort before sending any traffic out of the SIMT core. This can
reduce contention at the commit units for workloads with high con-
tention, improving their performance and energy usage. Figure 2
shows that conflicts between transactions within the same warp,
intra-warp conflicts, rarely occur in most of our workloads. The
exceptions, BH and AP, both feature a high contention period when
many transactions are trying to append leaf nodes to a small tree.
Aggregate Control Messages. Figure 3 illustrates the protocol
messages that are sent between the SIMT core and the commit units
to commit a transaction. Notice that the original proposal of Kilo
TM already aggregates the read-set and write-set messages and the
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Figure 4: Interconnection Traffic Breakdown.

done-fill messages from multiple transactions in the warp. How-
ever, it does not aggregate the remaining protocol messages.

With WarpTM, in the absence of potential intra-warp conflicts,
the commit unit can wait until all transactions have finished valida-
tion and combine their outcomes (pass/fail) into a single message.
After receiving replies from all the commit units, the SIMT core
can also combine the final outcomes of the entire warp into a single
message that is broadcast to the commit units.

Figure 4 shows the interconnection traffic breakdown for our
workload with fine-grained locks, Ideal TM, and Kilo TM. The
protocol messages for Kilo TM (TxMsg) on average account for
36% of the interconnection traffic.
Validation and Commit Coalescing. While applications with ir-
regular parallelism tend to exhibit less spatial locality among threads
within a warp, coalescing memory accesses from the same warp
can still significantly reduce the number of accesses. With the
original Kilo TM, the memory accesses performed by threads dur-
ing transaction execution are already coalesced just as the non-
transactional memory accesses. The commit units, however, gen-
erate scalar memory accesses for validation and commit of transac-
tions to avoid explicitly handling intra-warp conflicts. This simpli-
fies the design of the commit units. With WarpTM, each commit
unit knows a priori that all transactions from the same warp are
free of intra-warp conflicts. Consequently, the value-comparison
outcome for the validation of one transaction will not be changed
after another transaction in the same warp has committed. As a re-
sult, the commit unit can always merge the scalar memory accesses
for the validation of multiple transactions in the same warp into
wider accesses. We call this validation coalescing. Similar rea-
soning permits the commit unit to merge scalar memory writeback
accesses for the commit as well. We call this commit coalescing.

Figure 5 shows the amount of L2 cache access from the commit
units that can be reduced through validation and commit coalesc-
ing. On average, coalescing can reduce the number of validation
requests and memory writeback requests by 40% and 39% respec-
tively. Without coalescing, scalar accesses that exhibit spatial lo-
cality tend to hit the L2 cache. However, they still waste L2 cache
bandwidth supplied by the wide cache ports, and they will consume
more L2 cache miss-status holding registers (MSHR) that track ac-
cesses waiting for in-flight requests from DRAM.

Validation and Commit coalescing can benefit any GPU TM sys-
tem as long as the GPU still employs the SIMT execution model,
and accesses memory in large contiguous chunks. Even with wide-
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Figure 5: Reduction in L2 cache accesses from the commit
units via validation and commit coalescing.

channel 3D DRAMs, there are tangible benefits in amortizing SRAM
and DRAM control logic by accessing data in large chunks, as long
as the applications contain sufficient memory access spatial local-
ity. Most existing GPU applications do.

3.2 Hardware Modification to Kilo TM
Aside from implementing intra-warp conflict resolution (described

in Section 4), WarpTM requires modification to the commit units.
Each commit unit contains a small read/write buffer that caches the
read-logs and write-logs of committing transactions. In the original
Kilo TM, the commit unit only accesses one word from the read-log
or write-log of one transaction in each cycle. The read/write buffer
can supply this bandwidth with a narrow (4-Byte) port. WarpTM
requires this read/write buffer to have a wide (64-Byte) port. The
wide port allows the read-sets and write-sets from multiple trans-
actions in the same warp to be retrieved in a single cycle. Each
commit unit also needs to be extended with a memory coalesce
logic unit to merge multiple scalar accesses that head to the same
cache block into a wider access.

4. INTRA-WARP CONFLICT RESOLUTION
Developing a low overhead mechanism to detect conflicts among

transactions within a warp is the key challenge in enabling WarpTM.
Each transaction in Kilo TM stores its read-set and write-set as
linear logs in the local memory space. The logs are organized
physically such that each transaction may only access one word
in its logs per cycle. Detecting conflicts between two transactions
naively requires traversing the linear logs repeatedly, once for each



word in the read- and write-log, for a full comparison of the logs.
Even if the logs are fully cached in the L1 data cache, a full pair-
wise comparison among T transactions still requires O(T 2 × N)
traversals, where N is the combined size of the read- and write-
logs of a transaction. The overhead would likely negate any perfor-
mance and energy benefit from WarpTM.

4.1 Multiplexing Shared Memory for
Resolution Metadata

We noticed that many applications that require irregular commu-
nication between threads in different SIMT cores make little use of
shared memory (the on-chip scratchpad memory). This observa-
tion is exploited in NVIDIA Fermi GPUs by allowing part of the
shared memory storage to be configured as the L1 data cache [26].
The non-configurable part of the shared memory remains unused
in most of these applications. Given that intra-warp conflict resolu-
tion only involves communication within a warp, we propose to use
this underused storage as temporary buffers for intra-warp conflict
resolution. When a warp has finished executing its transactions, it
allocates a buffer in the shared memory to perform the intra-warp
conflict resolution. The warp then uses this buffer to store metadata
for its intra-warp conflict resolution, and releases the buffer after
the resolution is done. This allows the buffer to be time-shared by
multiple warps – a technique known as shared memory multiplex-
ing [37]. The shared memory storage can also be partitioned into
multiple buffers to allow multiple warps to interleave their intra-
warp conflict resolution to hide access latency for read/write-log
accesses that miss the L1 data cache.

To support applications that use shared memory for other com-
putations, the GPU command unit can be extended to launch fewer
thread blocks on each SIMT core according to amount of metadata
storage reserved by the programmer.

4.2 Sequential Conflict Resolution with
Bloom Filter (SCR)

Using the shared memory to store a bloom filter [39, 7], we have
developed a sequential conflict resolution scheme that always pri-
oritizes the transactions executed by the lower lanes in the warp.
Threads with lower thread ID are assigned to the lower lanes in the
warp. In this scheme, the transaction with the lowest lane in the
warp first populates the bloom filter with its write-set. Each sub-
sequent transaction in the warp first checks to see if its read-set or
write-set hits in the bloom filter. If so, this transaction conflicts with
one of the transactions in the prior lanes, and it is aborted. Other-
wise, the transaction adds its write-set to the bloom filter to make
its write-set visible to the subsequent transactions in the warp. The
accumulative nature of the bloom filter allows each transaction to
compare its read and write-set against the write-set of all transac-
tions in the prior lanes. While this scheme does reduce the number
of transaction log traversals, its sequential nature makes poor use
of the bandwidth provided by the L1 cache and shared memory.

4.3 2-Phase Parallel Conflict Resolution with
Ownership Table (2PCR)

In SCR, each transaction in the warp is essentially matching its
read-set and write-set with the aggregated write-set of all the trans-
actions in the prior lanes. This matching is inherently parallel if
each lane has a pre-constructed record of the aggregated write-
set from its prior lanes. Also, the priority among lanes is known
in advance, so that multiple conflicting lanes can resolve the con-
flicts unanimously in parallel without extra communication. From
these two insights, we have developed two-phase parallel intra-
warp conflict resolution (2PCR). First, the transactions in the warp

collaboratively construct an ownership table in parallel from the
write-logs of every transaction in the warp. Each transaction then
checks this ownership table for conflicts with another transaction
in a prior lane. If such a conflict exists, the transaction aborts itself.

Each entry in the ownership table represents a region in global
memory. Its value contains the lane ID (5-bit) of the lowest lane
that intends to write to the region and an extra null-bit to indicate if
none of the lanes intends to write to the region. Each entry, padded
with two used bits, occupies a byte in shared memory. To construct
the ownership table, each transaction traverses through its write-
log to read out the locations in its write-set. For each location, the
transaction calculates the index of the corresponding entry in the
ownership table hashing the location’s address. It then updates the
corresponding entry with its own lane ID if the existing value in the
entry has a higher lane ID. The lockstep nature of a warp and the
memory pipeline allows this to occur in parallel: At each step, ev-
ery transaction reads one entry from its write-log, reads the existing
value from the corresponding ownership table entry, compares the
value against its own lane ID and updates the entry if its lane ID is
lower. Special hardware similar to the bank conflict detection for
shared memory is added to prevent two transactions from racing to
update the same entry at the same step.

After constructing the ownership table, every transaction tra-
verses through its read-log and write-log. For each location in the
read-log, the transaction retrieves the lane ID from the correspond-
ing ownership table entry. If the retrieved lane ID is not null and
it is lower than the transaction’s own lane ID, a conflict exists be-
tween this transaction and an earlier transaction. For each location
in the write-log, the transaction also retrieves the lane ID from the
corresponding ownership table entry. However, a conflict exists if
the retrieved lane ID value does not equal the transaction’s own
lane ID. The different lane ID indicates that another transaction
may overwrite the same location as this transaction. Notice that in
this case, the retrieved lane ID will always be smaller, because the
ownership table construction mandates that every entry contains the
lane ID of the lowest lane intending to write to the corresponding
region. Every transaction with any detected conflict aborts itself.
The remaining transactions in the warp can then proceed and bene-
fit from the optimizations enabled by WarpTM.

Figure 6 contains an example of the two-phase parallel intra-
warp conflict resolution. The example consists of four transactions
(X1, X2, X3, X4), each reading and writing to two locations in
memory (except X4, which only reads from one location). Here
are the steps in this example:

1. Every entry in the ownership table is initialized to read-only
(RO).

2. Every transaction updates the ownership table according to
entry 1 in its own write-log.

3. The transactions proceed to entry 2 in their write-log. The
ownership entry for 0x08 is not updated to X4 because it is
already owned by X2, which has a higher priority. Mean-
while, the ownership of 0x10 is updated from X3 to X1.

4. The transactions proceed to entry 1 in their read-log for par-
allel matching. They all check the ownership table in parallel
for the first lane that writes to 0x04, which is X4. None of
the transactions aborts at this point since their lane IDs are
smaller or equal to X4.

5. Every transaction proceeds to checking entry 2 in its own
read-log. X3 is aborted since 0x10 is already owned by X1.

6. Each remaining transaction has ownership to address in entry
1 of its write-log.

7. After checking entry 2 in its write-log, X4 is aborted due to
a WAW conflict with X2 at 0x08.
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Figure 6: Two-Phase Parallel Intra-Warp Conflict Resolution.
Each step shows the content of the ownership table and accesses
from the transactions in the warp. RO = Read-Only

Finally, X1 and X2 are conflict free and can be validated and com-
mitted together via the commit units. Notice that this relatively
narrow warp will take 15 steps with SCR. With 32-wide warps
and larger transaction footprints in real workloads, the difference
is even greater.

The accuracy of 2PCR depends on the size of the ownership ta-
ble. Our evaluation shows that a 4K entry ownership table (re-
quiring 4kB of storage in shared memory) performs comparably to
an ownership table with infinite capacity. With a fixed-size own-
ership table, the accurracy of the intra-warp conflict resolution de-
creases for transactions with larger read/write-set. The average per-
transaction footprint in our workloads spans between 3 to 36 words.
Since GPU applications usually decompose larger input data into
more threads, we believe that the per-transaction footprints in fu-
ture GPU TM applications should not grow significantly beyond
the footprints found in our workloads.

Notice that 2PCR tends to be less accurate than SCR. Since the
ownership table is constructed in parallel assuming that every trans-
action in the warp will be committed, a transaction may unnecessar-
ily abort due to a conflict with another aborted transaction. Never-
theless, our evaluation shows that the benefit from 2PCR outweighs
the overhead from its additional false conflicts.

5. TEMPORAL CONFLICT DETECTION
(TCD)

While warp-level transaction management can help reduce the
extra interconnect traffic introduced by the Kilo TM protocol and
improve L2 cache bandwidth utility, the fundamental overhead for
Kilo TM still exists: Even without conflicts among transactions,
each transaction has to reread its entire read-set for value compar-
isons prior to updating memory. To overcome this overhead, we
propose temporal conflict detection, a low overhead mechanism
that uses a set of globally synchronized timers to detect conflicts
for read-only transactions.

A read-only transaction can occur dynamically when the trans-

action only conditionally writes to memory, or it can be explicitly
introduced by programmers to ensure that code within the trans-
action can safely read from a shared data structure which may be
updated occasionally by other transactions. A read-only transaction
differs from a read-write transaction in that it can commit silently
and locally as long as it has observed a consistent memory state –
a memory state that does not contain partial memory updates from
other committing transactions. Although the original design of Kilo
TM can dynamically detect a read-only transaction at commit by
observing an empty write-log, it does not exploit this information.
Among the workloads we evaluated, read-only transactions account
for ∼40% of the transactions in CL/CLto and ∼85% of the transac-
tions in BH-L/BH-H. Being able to commit these read-only trans-
actions silently without rereading their read-set can significantly
reduce their energy and performance overhead.

TCD is a form of eager conflict detection that complements Kilo
TM. Using a set of globally synchronized timers, it checks the ac-
cessed location as a transaction reads from global memory to en-
sure that the loaded data has not been modified since the transaction
first reads from global memory. To do so, the system records when
each word in memory was last written. Each transaction maintains
the time of its first load, and each subsequent load in the transac-
tion retrieves the time when the loaded word is last written. A re-
trieved last written time that occurs later than the time of the trans-
action’s first load indicates a potential conflict, because the value at
the loaded location have been modified since the first load. If none
of the words loaded by the transaction has been written since the
first load, the value of every word read by the transaction coexists in
a instantaneous snapshot of global memory that existed at the time
of the first load. A read-only transaction satisfying this condition
has effectively obtained all of its input value from this snapshot,
and appears to have executed instantly with respect to other trans-
actions. Therefore, the read-only transaction can commit directly
without further validation.

Notice that the instantaneous snapshot observed by the transac-
tion via TCD may occur in the midst of a memory writeback from
a committing transaction. This causes the snapshot to contain par-
tial updates from a transaction, which is not a consistent view of
the memory. We have not observed this issue in the workloads we
evaluated. Nevertheless, it is possible to extend TCD to detect if
a transaction is loading from a location in the write-set of another
committing transaction. The overhead for such detection mecha-
nism involves a hardware buffer that conservatively records the last
transaction that has written to each memory location, and extra pro-
tocol messages and hardware for maintaining a conservative set of
committing transactions. We leave the exploration of this and other
potential solutions as future work.

While timestamp-based conflict detection has been used in ex-
isting software TM systems [8, 36], each of these systems uses
a global version number that is explicitly updated by software at
transaction commit. The globally synchronous timers used by tem-
poral conflict detection increment locally at each hardware compo-
nent. This eliminates the bottleneck to update and access the global
version number. Ruan et al. [31] also proposed extending Orec-
based STM systems with synchronous hardware timers. Their ap-
proach embeds timestamps in the ownership record of each transac-
tion variable in memory, whereas we uses a small on-chip storage
to conservatively record when each word is last written.

5.1 Implementation
Figure 7 shows the hardware modification to implement TCD: A

64-bit globally synchronized timer in each SIMT core and memory
partition, a first-read time table in each SIMT core recording when
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Figure 8: Temporal conflict detection example.

each transaction sends its first load, and a last written time table in
each memory partition that conservatively records the last written
time of each 128-Byte block in the partition. Existing hardware
already implements timers synchronized across components [18,
Section 17.12.1] to provide efficient timer services. We implement
the last written timetable with a recency bloom filter [11]. Each re-
cency bloom filter consists of multiple sub-arrays of timestamps.
Each 128-Byte block in the memory partition maps to an entry
in each sub-array of the recency bloom filter via a different hash
function. Whenever a word in the 128-Byte block is updated by a
committing transaction in the L2 cache, the corresponding entries
in every sub-array of the recency bloom filter are updated with the
value from the synchronized timer. Each transactional load served
by the L2 cache retrieves a timestamp from each sub-array in the
recency bloom filter and returns the minimum of those timestamps
along with the data to the SIMT core. This timestamp is compared
against the time of the transaction’s first load to detect conflicts.

At 700MHz, 64-bit timers only roll over every few hundred years.
In the event that it happens, the TM system can handle the rollover
by validating the read-set of all running transactions through value-
based conflict detection. For the transactions that remain valid, the
TM system resets their first read time to zero. Although not needed
for correctness, it should also reset the last written time table so
that the table will not report overly conservative last written time.

5.2 Example
Figure 8 walks through how TCD detects an inconsistent view of

memory during transaction execution. The example consists of two
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Figure 9: Kilo TM in enhanced with warp-level transaction
management and temporal conflict detection.

committing transactions, XA and XB , and one read-only transac-
tion XC . At time T=1, XC starts execution and issues its first load
to location 0x10. XA then commits and updates the value at 0x10
at time T=7. At the same time, XA also updates the timestamps
corresponding to location 0x10 in the recency bloom filter (con-
sists of 2 sub-arrays with 2 timestamp each). XC issues its second
load to location 0x30 at T=10, and the recency bloom filter returns
with TW [0x30]=0. Notice that even though the original value at
0x10 is overwritten by XA, the updated value is not visible to XC

and does not constitute a conflict. XB commits and updates the
value at 0x20 at time T=15, and updates the recency bloom filter.
XC issues its third load to location 0x20 at T=18, and the recency
bloom filter returns with TW [0x20]=15, which is later than the first
load from XC . This is a conflict for XC because the value loaded
is not the same value at 0x20 at T=1. The memory state observed
by XC does not correspond to an actual global memory state at any
time – an invalid snapshot.

5.3 Integration with Kilo TM
In this paper, Kilo TM uses TCD to allow read-only transac-

tions to commit silently in the absence of detected conflicts. The
recency bloom filter does not perfectly record the time when each
word is last written. Aliasing of timestamps in the filter can lead
to false positives in TCD. To reduce the penalty of falsely detected
conflicts, read-only transactions with detected conflict are given a
second chance to commit through the commit units as read-write
transactions in Kilo TM. In this way, we can use a relatively small
filter with coarse granularity (128-Byte chunk maps to the same
entry) to allow most conflict-free read-only transaction to commit
silently, and use value-base conflict detection for the situations that
require finer granularity detection. Similar hierarchical validation
schemes are used in NOrec [8] and the software GPU TM system
by Xu et al. [36].

6. PUTTING IT ALL TOGETHER
Our two proposed enhancements to Kilo TM, warp-level trans-

action management and temporal conflict detection, can work to-
gether to further improve performance. Figure 9 shows the over-
all design of Kilo TM with both enhancements enabled. In this
enhanced Kilo TM, each transaction uses TCD to eagerly detect
conflicts for each global memory read during its execution. Writes
to global memory are buffered in the write-log as in the original
Kilo TM. After the transaction has completed execution, if it is a
read-only transaction (i.e. containing an empty write-log) and TCD
has not detected any conflict, it can commit silently. The remain-



Table 1: GPGPU-Sim Configuration
# SIMT Cores 15

Warp Size 32
SIMD Pipeline Width 16 × 2

# Threads / Core 1536
# Registers / Core 32768

Branch Divergence Method PDOM [10]
Warp Scheduling Policy Greedy-then-oldest [30]
Shared Memory / Core 16KB
L1 Data Cache / Core 48KB, 128B line, 6-way assoc.

(transactional+local mem. access only)
L2 Unified Cache 128KB/Memory Partition,

128B line, 8-way assoc.
Interconnect Topology 1 Crossbar/Direction

Interconnect BW 32 (Bytes/Cycle) (288GB/s/Dir.)
Interconnect Latency 5 Cycle (Interconnect Clock)
Compute Core Clock 1400 MHz
Interconnect Clock 1400 MHz

Memory Clock 924 MHz
# Memory Partitions 6
DRAM Req. Queue 32 Requests
Memory Controller Out-of-Order (FR-FCFS)

GDDR5 Memory Timing Hynix H5GQ1H24AFR
Total DRAM BW 177GB/s
Min. L2 Latency 330 Cycle (Compute Core Clock)

DRAM Scheduler Latency 200 Cycle (Compute Core Clock)

Kilo TM
Commit Unit Clock 700 MHz

Validation/Commit BW 1 Word/Cycle/Memory Partition
# Concurrent TX 1, 2, 4, 8 Warps/Core or No Limit

(480, 960, 1920, 3840 or Unlimited # TX Globally)
Last Writer History Unit 5kB

Intra-Warp Conflict Resolution
Shared Memory Metadata 4kB/Warp (3 Concur. Resolution/Core)

Default Mechanism 2-Phase Parallel Conflict Resolution

Temporal Conflict Detection
Last Written Time Table 16kB (2048 Entries in 4 Sub-Arrays)

Detection Granularity 128-Byte

ing transactions take part in the intra-warp conflict resolution to
resolve all conflicts within the same warp. WarpTM then processes
the still-active transactions in the warp with the assurance that they
do not have conflict among each other. Our evaluation in Section 8
compares the performance and energy consumption of this com-
bined TM system to the original Kilo TM.

7. METHODOLOGY
For our evaluation, we started with the version of GPGPU-Sim [2]

from our previous work [11, 12]. It extends GPGPU-Sim version
3.1.2 with support for transactional memory, and includes the per-
formance model for Kilo TM. We incorporated GPUWattch [21]
into this version of GPGPU-Sim, and modified it to model the tim-
ing and power of our proposed enhancements. We configured the
modified GPGPU-Sim to simulate a GPU similar to Geforce GTX
480 (Fermi), with 16kB of shared memory storage per SIMT core.
Table 1 lists the major microarchitecture configurations.

We used the workloads from our previous evaluation [11, 13] to
evaluate the proposed improvements to Kilo TM. In addition to the
original input, we also added new inputs that varies the amount of
contention for BH and HT. We have created an optimized version of
CL (CLto). In this version, each thread loads the read-only data into
its register file before entering the transaction to reduce the read-set
of the transaction. Table 2 summarizes each of our workloads.

7.1 Power Model
We modeled the power overhead of Kilo TM by estimating the

access energy of the various major structures in the commit units
implemented in the 40nm process with CACTI 6.5 [23]. We mul-
tiplied the access energies with the operating frequency, conser-

Table 2: GPU TM Workloads.
Name Abbr. Description

Hash Table (CUDA) HT-H Populate an 8000-entry hash table.
HT-M Populate an 80000-entry hash table.
HT-L Populate an 800000-entry hash table.

Bank Account (CUDA) ATM Parallel transfer between 1M accounts.
Cloth Physics [3] (OpenCL) CL Cloth physics simulation of 60K edges.

CLto Optimized version of CL.
Barnes Hut [5] (CUDA) BH-H Build an octree with 30K bodies.

BH-L Build an octree with 300K bodies.
CudaCuts [35] (CUDA) CC Segmentation of a 200×150 pixel image.
Data Mining [1, 19] (CUDA) AP Data mining 4000 records.

Table 3: Power component breakdown for the added hardware
specific to Kilo TM, warp-level transaction management, and
temporal conflict detection.

Commit Unit
Size Area (mm2) Power (mW )

Last Writer History - Look Up Table 3kB 0.010 6.3
Last Writer History - Recency Bloom Filter 2kB 0.010 6.6
Commit Entry Array 19kB 0.094 57.5
Read-Write Buffer 32kB 0.128 82.5

Per-Unit Total 0.242 153
All Units Total 1.454 918

Commit Unit (Warp-Level Transaction Management)
Read-Write Buffer (Warp-Level TM) 32kB 0.731 260

Per-Unit Total 0.846 419
All Units Total 5.074 2512

Temporal Conflict Detection
Size Area (mm2) Power (mW )

First Read Timetable (One per SIMT core) 12kB 0.034 25.5
Last Written Time Buffer (One per Mem. Part.) 16kB 0.078 52.3

All Units Total 0.979 696

vatively assuming that the structures are accessed every cycle, to
estimate their power overhead. For small memory arrays, CACTI
provides a conservative area and energy estimates as it automat-
ically partitions the array into sub-arrays when a single array is
sufficient [32]. Similarly, we modeled the power overhead of TCD
with the full activity power to the last written time buffer in each
memory partition and the first read timetable in each SIMT core.
Table 3 shows the estimated power for each component in Kilo TM
and temporal conflict detection. The Kilo TM specific hardware
consumes 0.9W in total, and extending it to support WarpTM in-
creases the consumption to 2.5W. The power increase is introduced
by having a wider port to the read-write buffer (See Section 3.2).
The hardware that implements TCD consumes 0.7W. Kilo TM with
WarpTM and TCD consumes a total of 3.2W.

For parts of the GPU microarchitecture not specific to Kilo TM,
we used GPUWattch [21] to estimate the average dynamic power
consumed by each workload with the different synchronization mech-
anisms. This captures the difference in microarchitecture activity
between fine-grained locks and Kilo TM (with and without the pro-
posed enhancements). This includes extra L1 cache accesses for the
transaction logs, extra L2 accesses for value-based conflict detec-
tion, extra interconnection traffic for Kilo TM protocol messages,
and accesses to shared memory for intra-warp conflict resolution.
We added 59W of leakage power, 9.8W of constant clock power
and the dynamic power of the Kilo TM specific hardware to the
average dynamic power reported by GPUWattch to obtain the total
power. Finally, we multiplied this total power by the execution time
to obtain the total energy required to execute each workload.
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Figure 10: Execution Time. Lower is better.

8. EXPERIMENTAL RESULTS
In this section, we evaluate the performance and energy effi-

ciency of our proposed enhancements to Kilo TM: warp-level trans-
action management (WarpTM) and temporal conflict detection (TCD).
We also analyze the benefit of each optimization that is enabled
by WarpTM, compare the two intra-warp conflict resolution ap-
proaches, and investigate the sensitivity of TCD to the the available
hardware resource. Finally, we study the performance impact of L2
cache port width and number of SIMT cores on both fine-grained
locks and Kilo TM.

8.1 Performance and Energy Efficiency
Figure 10 compares the execution time of the original Kilo TM

(KiloTM-Base), Kilo TM with TCD enabled (TCD), Kilo TM with
WarpTM (WarpTM) and a configuration with both enhancements
enabled (WarpTM+TCD). We evaluate the performance of each
configuration with different limits on the number of concurrent
transactions, and select a limit for each workload that yields the
optimal performance (See Table 4). The performance of each con-
figuration with this optimal limit is normalized to the execution
time of an alternative version of the application using fine-grained
locking (FGLock) to illustrate their overhead with respect to a pure
software effort. Figure 11 breaks down the energy consumption of
the same set of Kilo TM configurations. Each breakdown is nor-
malized to the total energy used by the fine-grained locking version
of the same workload.

Without WarpTM and TCD, Kilo TM performs 2.5× slower than
FGLock on average. The performance of BH-H is particularly poor.
Our detailed investigation shows that the major slowdown occurs
near the start of the octree-building kernel, where every thread tries
to append its node to only a few branches in the octree. This behav-
ior also stresses one memory partition in the GPU, working against
the distributed design of Kilo TM. This effect slowly disappears
as the octree grows to a point that conflicts become rare. As a
result, BH-L, which scales the number of nodes in the octree by
10×, exhibits less slowdown. A similar attempt to reduce transac-
tion contention does not work as well between HT-H and HT-M.
The energy-per-operation penalty of Kilo TM is relatively lower
(2× energy used vs. 2.5× performance slowdown) due to its lower
activity from the poor performance.

Enabling temporal conflict detection for Kilo TM improves the
performance of workloads that contain read-only transactions (CL,
CLto, BH-H and BH-L). By allowing non-conflicting read-only
transactions to commit silently, TCD reduces contention at the com-
mit units and the memory subsystem. This performance improve-
ment translates directly to energy savings as well. Across work-
loads with read-only transactions, TCD improves performance of

Table 4: Performance-Optimal Concurrent Transaction Limit
and Abort-Commit Ratio. Base = KiloTM-Base. NL = No
Limit.

Concurrent Transaction Limit Aborts per 1000 Committed Trans.
(#Trans. Warps/SIMT Core)
Base TCD WarpTM TCD+WarpTM Base TCD WarpTM TCD+WarpTM

HT-H 2 – 2 – 50 – 107 –
HT-M 2 – 8 – 7 – 84 –
HT-L 4 – 8 – 2 – 63 –
ATM 1 – 4 – 1 – 27 –
CL 2 2 2 2 84 55 149 97
CLto 2 2 2 4 85 49 102 99
BH-H 2 2 4 4 23 23 53 56
BH-L 8 4 8 8 7 5 17 20
CC NL – NL – 6 – 6 –
AP 1 – 1 – 264 – 318 –

Kilo TM by 37% while reducing energy per operation by 30%.
The optimizations enabled by warp-level transaction manage-

ment (WarpTM) apply to a broader class of applications. In partic-
ular, coalescing of memory accesses from the commit units allevi-
ates the bottlenecks at the L2 cache banks. Without this bottleneck,
the reduction in transaction contention from HT-H to HT-M now
leads to performance improvement for Kilo TM. Section 8.3 ana-
lyzes how each optimization from WarpTM contributes to speed-
ing up Kilo TM in different applications. WarpTM does slow down
CC, due to overhead from intra-warp conflict resolution (See Sec-
tion 8.4). Overall, WarpTM speeds up Kilo TM by 42% and re-
duces energy per operation by 27%.

Kilo TM with both enhancements enabled captures the bene-
fits from both TCD and WarpTM. The combined benefits, together
with software optimizations, allow CLto to perform within 90%
of the FGLock version while using about the same amount of en-
ergy. The original version of this cloth simulation workload starts
out performing 2.2× worse than the FGLock version on Kilo TM.
This kind of performance improvement indicates that a well de-
signed TM system can complement optimization efforts from the
software developer to produce efficient TM applications compara-
ble to FGLock. Overall, Kilo TM with both TCD and WarpTM
enabled achieves 66% of the performance of FGLock with only
34% energy overhead.
Concurrency Limit. Table 4 shows the limit on number of concur-
rent transactions that yields the best performance for each workload
with the different Kilo TM configurations. Enabling WarpTM gen-
erally increases the optimal limit for each workload, as a result of
reduced congestion at the memory subsystem and interconnection
network compared to KiloTM-Base. The exceptions include high-
contention workloads (HT-H), workloads that do not benefit from
WarpTM (CC, AP), and workloads that may overflow the L1 cache
with higher limits (CL). We find that enabling TCD has little ef-
fect on the optimal concurrency limit for our workload. Enabling
TCD increases the limit for CLto, but the actual speedup from the
increased limit is <5%.
Impact on Abort-Commit Ratio. Table 4 also shows the number
of aborts per 1000 committed transactions for the different Kilo
TM configurations. Enabling TCD reduces the amount of aborted
transactions for CL and CLto by shortening the execution time span
for each read-only transaction. This lowers the probability of an-
other transaction overwriting a location in the read-set of the read-
only transaction. Enabling WarpTM introduces significantly more
aborted transactions due to false conflicts from intra-warp conflict
resolution. Nevertheless, our evaluation has shown that WarpTM
leads to an overall speedup and a net energy saving.
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Figure 11: Energy Consumption Breakdown. Lower is better.

8.2 Energy Usage Breakdown
The energy usage breakdown in Figure 11 illustrates the relative

contributions from different overheads of Kilo TM to its overall
energy usage. Across our workloads, leakage and idle power con-
tributes to >50% of the total energy consumption. Both leakage
power and idle power (consists mostly of clock distribution power)
persist throughout the program execution, so their contributions in-
creases as execution time lengthens. Removing the contribution
from leakage reduces the overall energy overhead of KiloTM-Base
from 103% to 59%. Similarly, the pure dynamic energy overhead
of KiloTM with WarpTM and TCD enabled is only 18% (versus
34% with leakage).

Aside from leakage and idle power, the memory subsystem (L2
Cache and DRAM) and the interconnection network (NoC) dom-
inate the remaining portion of the dynamic energy usage. On av-
erage, the two combined contributes to ∼70% of the dynamic en-
ergy. For some workloads, the L2cache energy with KiloTM-Base
is >2× that of FGLock. WarpTM and TCD have essentially elim-
inated this overhead, and on average, reduce the combined energy
of L2 Cache, DRAM and NoC by 29%. Energy consumed by the
SIMT cores only contributes to ∼25% of the dynamic energy us-
age. With Kilo TM, energy consumption by the core is lower than
FGLock. This illustrates how an effective transaction concurrency
control mechanism can substantially cut down the energy overhead
for transaction re-execution. L1 accesses for transaction logs con-
tribute to 5% of the dynamic energy usage. Adding intra-warp con-
flict resolution to support WarpTM increases this overhead by 23%
(i.e. <2% increase to the overall energy usage). Finally, Kilo TM-
specific hardware only contributes to 3% of the dynamic energy
usage. Inclusion of hardware to support TCD and WarpTM only
increases this to 8%.

8.3 WarpTM Optimizations Breakdown
Figure 12 breaks down the performance impact of each optimiza-

tion introduced by WarpTM by enabling the optimizations one by
one. In this analysis, we have used an ideal version of intra-warp
conflict resolution that has perfect accuracy and no overhead. This
isolates our analysis from performance issues that may arise from
the particular conflict resolution scheme.

With only intra-warp conflict resolution enabled, WarpTM only
impacts performance for applications that exhibit intra-warp trans-
action conflicts. While detecting such conflicts and resolving them
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Figure 12: Performance impact from different optimizations
enabled by WarpTM.

within the warp benefits BH, it slows down HT-H. In resolving a
conflict within a warp, it is possible that a transaction that could
eventually commit is aborted while the conflicting transaction is in
turn aborted in the global phase of the commit.

Aggregating protocol messages speeds up applications by a vary-
ing amount. Without further optimizations, the aggregation simply
exposes the memory subsystem bottleneck. Nevertheless, the aver-
age performance of Kilo TM is improved by 30% and the energy
consumption is reduced by 17%.

Coalescing the memory accesses from the commit units allows
the L2 cache bandwidth to be better utilized. This reduces the stress
on the memory subsystem and improves performance for most of
the applications. This optimizes Kilo TM by another 14% on av-
erage. BH-H and BH-L do not benefit from this optimization.
This is surprising given our measurement has shown that valida-
tion and commit coalescing can reduce the amount of L2 cache
accesses from the commit units by >50% for both workloads (See
Figure 5). The reason is that the serial harzard detection in each
commit unit becomes a bottleneck. If the hazard detection hard-
ware were running at twice the clock frequency, BH-H and BH-L
can finally benefit from validation and commit coalescing. With all
the optimizations enabled, WarpTM with ideal intra-warp conflict
resolution can speed up Kilo TM by 49%.

While we could parallelize the hazard detection in the commit
units with additional hardware, we find that temporal conflict de-
tection has removed this bottleneck entirely in BH-H and BH-L by
allowing most of their read-only transactions to commit silently.
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Figure 13: Comparison between different intra-warp conflict
resolution. SCR = Sequential Conflict Resolution. 2PCR = 2-
Phase Parallel Conflict Resolution.
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Figure 14: Performance of temporal conflict detection with
different last written timetable organizations. Lower is better.

8.4 Intra-Warp Conflict Resolution Overhead
Figure 13 compares the performance between the two intra-warp

conflict resolution mechanisms proposed in Section 4: sequential
conflict resolution (SCR) in Section 4.2 and 2-phase parallel con-
flict resolution (2PCR) in Section 4.3. We evaluate the performance
of each mechanism with and without modeling the overhead of
the conflict resolution. Without modeling the overhead (NoOver-
head), each warp finishes the intra-warp conflict resolution instan-
taneously, and does not generate traffic to the memory pipeline in
the SIMT core when it traverses its logs or when it accesses the
metadata in shared memory. This allows us to discern between two
sources of performance overhead: transaction aborts due to inac-
curate conflict resolution and the extra operations that implement
the resolution itself. The no-overhead configuration of both SCR
and 2PCR performs almost identically across all of our workloads,
indicating that the accuracy of both mechanisms are roughly equiv-
alent. However, the serial nature of SCR introduces significant
overhead (an average 60% slowdown) to WarpTM, to the extent
that most of its performance benefits are negated. 2PCR, on the
other hand, can deliver similar accuracy as SCR with a much lower
overhead (∼2% on average). The overhead in most cases is minor
compared to the benefits from WarpTM, except for CC, where it
causes 11% slowdown.

8.5 Temporal Conflict Detection
Resource Sensitivity

Figure 14 shows the performance sensitivity of TCD to differ-
ent last written time table organizations. While our default config-
uration uses 2048 entries in each memory partition (TCD-2K), a
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Figure 15: Performance impact with different L2 cache port
widths. 6CBK = 6 L2 cache banks with 64-Byte ports. 12CBK
= 12 L2 cache banks with 32-Byte ports. Lower is better.

lower cost organization using 128 entries (TCD-128) can capture a
significant portion of the performance benefit from TCD-2K. Dou-
bling the size of the last written time table (TCD-4K) shows no
further improvement over TCD-2K, indicating that the 2048-entry
table is sufficient. Even though the data shows that a single 2048-
entry sub-array (TCD-2K-1SubArray) performs comparably to our
default organization, we do notice having multiple sub-arrays can
reduce the effect of aliasing as transaction concurrency increases.
Finally, contrary to our intuition, we notice that reducing the de-
tection granularity of TCD from 128-Byte blocks to 4-Byte words
(TCD-2K-WordAddr) decreases performance. We believe that re-
ducing the granularity causes more entries in the recency bloom
filter to be populated and the aliasing effect dominates.

8.6 Sensitivity to L2 Cache Port Width
In this section, we study the performance impact of L2 cache port

width on FGLock, the original KiloTM (KiloTM-Base), and the
enhanced KiloTM with both WarpTM and TCD (WarpTM+TCD).
The L2 cache in our baseline GPU architecture is partitioned into 6
banks, each with a 64-Byte port (6CBK). In this study, we further
divide each L2 cache bank into two subbanks with a 32-Byte port,
resulting in 12 L2 cache banks across the system (12CBK). Other
parts of the GPU architecture, including the total L2 cache band-
width, remain identical between the two configurations. Figure 15
compares the performance between these two configurations.

Overall, the FGLock workloads with 32-Byte ports run 12%
slower than with 64-Byte ports. HT-H and BH-H suffers a higher
degree of load imbalancing among the L2 cache banks. The more
congested L2 cache bank forms a tighter bottleneck with 32-Byte
ports than with 64-Byte ports. While we did not observe this im-
balance for CL and CLto, we did notice more atomic accesses from
increased lock acquisition failures. The extra failures are caused by
higher memory latency due to lower DRAM efficiency.

In this study, we also increased the number of commit units with
the number of L2 cache banks due to their tightly-coupled design.
The increased number of commit units can increase interconnec-
tion network traffic for Kilo TM, because each transaction needs to
communicate with more commit units for validation and commit.
We notice this extra traffic impacting the performance of Kilo TM
for BH-H, BH-L, CC, and AP.

In other workloads, switching to 32-Byte ports improves perfor-
mance for the original Kilo TM, because the commit units can use
the port bandwidth more effectively with just scalar (4-Byte wide)
accesses. In turn, the narrower L2 cache ports reduces the ben-
efit provided by validation and commit coalescing. This lowers
the average speedup of WarpTM over the original KiloTM from
43% to 40%. In particular, WarpTM does not speedup CLto at all.
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Figure 16: Performance impact from doubling the number of
SIMT cores. Lower is better.

Nevertheless, in a GPU architecture with narrower L2 cache ports,
KiloTM-Base obtains 49% of the FGLock performance. Kilo TM
with WarpTM and TCD captures 76% of the FGLock performance,
up from 66% with the wider L2 cache ports.

8.7 Sensitivity to Core Scaling
In this section, we explore the impact of increasing the number of

SIMT cores on the overhead of Kilo TM. Specifically, we evaluate
the performance of our workloads on a scaled up GPU architec-
ture with 30 SIMT cores, doubled from our baseline configuration.
Figure 16 compares the performance overhead of Kilo TM (and
WarpTM+TCD) over FGLock with 15 and 30 SIMT cores. While
doubling the SIMT cores increases concurrency in the GPU archi-
tecture, it slows down our FGLock applications by 9% on average.
For this study, we have not scaled the memory subsystem with the
core counts. The increased concurrency generate extra memory-
level parallelism, but these extra concurrent memory accesses in-
troduce more the L2 cache misses, resulting in a net performance
loss [30]. We also noticed more atomic accesses from increased
lock acquisition failure in HT-M, CL, and BH-H. Only CC can take
advantage of the extra cores for a 13% speedup. Moreover, the
FGLock version of HT-H runs into a livelock, so its performance
is not shown in Figure 16. In comparison, the Kilo TM version is
only slowed down by 6-9% with 30 cores.

Aside from HT-H, Kilo TM and WarpTM+TCD mostly follow
the performance trends of FGLock with the scaled up GPU archi-
tecture. For HT-M, HT-L and ATM, the overhead of Kilo TM and
WarpTM over FGLock remains approximately the same with more
cores. WarpTM works more effectively for CL with 30 cores be-
cause the extra cores provide extra L1 cache capacity for transac-
tion logs, allowing extra transaction concurrency without the L1
cache overflow penalty. WarpTM+TCD works less effectively for
CLto and BH-L with 30 cores, whereas enabling each enhancement
alone with 30 cores is just as effective as with 15 cores. A detailed
investigation reveals that enabling both enhancements with Kilo
TM boosts the transaction concurrency in these workloads, gen-
erating significantly more transaction conflicts. CC and AP are not
affected by the increased concurrency limit, and hence, the extra
cores do not impact the overhead of Kilo TM and WarpTM+TCD
for these two workloads.

9. RELATED WORK
GPU Transactional Memory. Other than Kilo TM, there are other
proposals to support transactional memory on GPU architectures.
Cederman et al [6] proposed a GPU software TM system that uses
per-object version locks to detect conflicts. As each transaction
executes, it records the version of the object it access. These ver-
sion numbers are later checked during commit to detect conflicts
with committed transactions. Xu et al. [36] also proposed a GPU

software TM system, but similar to Kilo TM, it uses value-based
conflict detection. For each transaction, it has a hash table to store
the set of memory locations that needs to be locked during commit.
The memory locations stored in this table are sorted, so that every
transaction acquires its lock in the same order to prevent deadlocks.
Energy Analysis for Transaction Memory. Ferri et al. [9] ana-
lyzed the energy and performance of SoC-TM, their TM system
proposal for embedded multi-core SoC. Their analysis shows that
for workloads that scale to multiple threads, SoC-TM performs bet-
ter than locking while consuming less energy. We perform similar
analysis for Kilo TM, a TM proposal for GPU architectures.
Intra-Warp Conflict Resolution. Qian et al. [29] described a
method to detect and resolve conflicts among threads running on
SMT CPU cores, which usually have far fewer threads per core in
comparison to GPU cores. The relatively small number of threads
allows their design to dedicate explicit storage to record the depen-
dency between transactions and extend each cache line to record
read-sharer information. Such storage is impractical for GPU cores
which have more than 1000 threads on each core sharing the L1
cache. This work focuses on detecting and resolving conflicts among
transactions within a warp on GPU.

Yang et al. [37] proposed multiplexing shared memory storage
among multiple concurrently running thread blocks by dynamically
allocating the storage to each thread block for temporary use and
freeing it immediately after. Our proposed intra-warp conflict reso-
lution employs the same strategy to allow each warp to use a own-
ership table larger than the capacity possible with static allocation.

Nasre et al. [24] proposed a probabilistic 3-phase conflict reso-
lution that uses parallel passes to resolve conflicts among multiple
threads. Similar to our proposed intra-warp 2-phase parallel con-
flict resolution, their approach uses thread ID to prioritize among
different threads. However, their approach focuses on obtaining
exclusive access to modify shared data and does not permit read-
sharing, which is key to TM system performance.
Globally Synchronized Timers. Temporal Coherence [34] pro-
posed by Singh et al., is a cache coherence framework for GPU
architectures that uses a set of globally synchronized timers to elim-
inate invalidation messages. It uses timestamps to determine when
cache blocks in local data cache will expire. Temporal conflict de-
tection uses timestamps to detect if all the values read by a trans-
action can exist as a global memory snapshot. Ruan et al. [31] also
proposed extending ORec-based STM systems with synchronous
hardware timers found on existing CMP systems. Their approach
embeds timestamps in the ownership record of each transaction
variable in the main memory, whereas TCD uses a set of small on-
chip buffers to conservatively record when each word in the global
memory space was last written.

10. CONCLUSION
In this paper, we proposed two enhancements to Kilo TM, an

existing hardware TM proposal for GPU architectures. Warp-level
transaction management exploits the spatial locality among trans-
actions within a warp to enable a set of optimizations. These opti-
mizations allows Kilo TM to exploit the wide memory subsystem
in GPU architectures. Temporal conflict detection complements
WarpTM by allowing read-only transactions to commit silently in
the absence of a conflict. Our evaluation shows that these two en-
hancements can improve Kilo TM performance by 65% while re-
ducing its energy per operation by 34%. Kilo TM with the two
enhancements can achieve 66% of the performance of fine-grained
locking, while only requiring 34% more energy per operation. More-
over, software optimizations that reduce transaction footprints and
contentions can further close this gap.



While this paper presents WarpTM and TCD as enhancements
to Kilo TM, the insights behind these mechanisms extend well be-
yond GPU TM systems. WarpTM demonstrates the effectiveness
of aggregating multiple transactions to amortize their management
overheads in a TM system. This principle applies to other novel
data synchronization/inter-thread communication mechanisms [38,
14]. The 2-phase parallel conflict resolution that enables WarpTM
illustrates how transactions with predetermined order can resolves
conflict in parallel with low overhead. This insight may be readily
applied to thread-level speculation on multi-core systems. We be-
lieve that TCD’s ability to cheaply verify that a thread has observed
from an instantaneous global memory snapshot has wider uses be-
yond TM. For example, one may use TCD to accelerate runtime
data-race detection on parallel computing systems without relying
on any cache coherence protocol.

Finally, as newer commodity CMP systems start to add hardware
support for TM, more software developers will start using transac-
tions in their applications. GPU that supports TM will have higher
interoperability with these future software applications. This will
be an important design consideration for future heterogeneous pro-
cessors with tightly integrated CMP and GPU.
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