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Abstract—A critical component of high-throughput processors
such as GPUs is the network-on-chip (NoC) that interconnects
the large number of cores and the memory partitions together.
In this work, we provide a detailed analysis, in terms of latency
and bandwidth, of real GPU NoC across several generations of
modern NVIDIA GPUs. Our analysis identifies how non-uniform
latency exists between the cores and the memory partitions
based on their physical location in the GPU. The non-uniformity
can result in up to approximately 70% difference in on-chip
latency. In comparison, the bandwidth provided from the cores
to the memory partitions is approximately uniform. However,
recent GPUs that consist of multiple GPU “partitions” present
different on-chip latency and bandwidth characteristics when
communicating between the partitions. Based on our analysis
of real GPU interconnect, we discuss potential implications
including its impact on timing used in side-channel attacks as
well as NoC microarchitectures. We show how the non-uniform
latency can be exploited in a timing side-channel attack within
a GPU as the core location impacts performance (or timing).
In addition, proper understanding (and proper assumptions) of
GPU NoC is critical to ensure a network that does not bottleneck
the overall system performance.

Index Terms—GPU, network-on-chip, timing side-channel at-
tack

I. INTRODUCTION

The acceleration of parallel applications has become a
significant component of modern computing [1]–[3]. These
emerging workloads often require high-throughput architec-
tures such as GPUs, and along with parallel programming
models such as CUDA and OpenCL, they have enabled GPUs
to be widely used across different application domains [4].
To sustain high performance, the GPUs need to support high
compute throughput and high memory bandwidth. A high-
level summary of the recent three generations of NVIDIA
GPUs used in this work is summarized in Table I. The number
of cores (or streaming multiprocessors (SMs)) has increased
to provide high compute throughput and the memory capacity
and bandwidth, as well as on-chip cache, has also significantly
increased. As a result, the network-on-chip(NoC) [5] that inter-
connects a large number of on-chip components is becoming
a critical component of overall system performance.

V100 A100 H100
SMs 80 108 132

TPCs 40 54 66
GPCs 6 7 8

Max SMs / GPC 14 16 18
L2 cache size 6MB 40MB 50MB

L2 cache slices 32 80 80
GPU memory bandwidth 0.9TB/s 2TB/s 3.35TB/s

Memory controllers 8 10 10
GPU max clock speed 1.38GHz 1.41GHz 1.755GHz

TABLE I: Microarchitecure comparison of NVIDIA GPUs.

While there has been a lot of research on GPU NoC and
its impact on the overall system performance, most prior
work have focus on simulation-based evaluations and are not
necessarily reflective in NoC found in real GPUs. To the best
of our knowledge, this is one of the first works to provide a
detailed analysis of real, modern GPU NoC. In this work, we
first provide a detailed analysis of modern GPU NoC – both
in terms of latency and throughput (bandwidth). Our analysis
on NVIDIA GPUs shows on “average”, on-chip latency is
similar across all of the cores; however, non-uniform latency
to memory partitions exists in GPU NoC, based on the physical
placement of the cores and the L2 slices. In comparison,
bandwidth to the remote L2 (or the L2 fabric bandwidth)
is approximately uniform regardless of the placement of the
cores and the memory partitions. The recent GPUs (e.g., A100,
H100) that have multiple GPU “partitions” introduce different
characteristics both in terms of latency and bandwidth when
traffic crosses from one partition to the other partition.

Based on the analysis, we explore the implications on two
aspects of GPU architecture – timing side-channel attacks
and GPU NoC microarchitecture. There has been recent work
on timing side-channel attacks in GPUs, based on various
microarchitecture features [6]–[11]. However, timing attacks
are fundamentally based on measuring execution time (or
latency). We show how the non-uniform latency of GPU NoC
can be exploited in timing side-channel attacks to potentially
enable attacks as well as help mitigate side-channel attacks.
In addition, GPU NoC architecture presents unique challenges,
compared to conventional multicore NoC, because of the high-



bandwidth (and high-throughput) that is required to intercon-
nect the components together. Based on the analysis of real
GPUs, we highlight some of the challenges (and opportunities)
in the design of the future GPU NoC as well as pitfalls
when exploring GPU NoC architectures. In particular, the main
contributions of this work include the following.

• We provide a detailed characterization and analysis of
real network-on-chip (NoC) across several generations
of NVIDIA GPUs. One key observation is how latency
can be non-uniform but bandwidth is uniformly provided
between the cores and memory partitions.

• Based on NoC characterization, we show its impact on
timing side-channel attacks and how the non-uniform
latency can be exploited both during the attack as well
as a defense against timing side-channel attacks.

• We also show the impact of NoC assumptions in GPU
architectural explortations to ensure that the on-chip net-
work (or on-chip bandwidth) does not bottleneck overall
system performance.

II. BACKGROUND

A. GPU Architecture

GPU is a highly parallel processor that can execute thou-
sands of threads simultaneously to enable high throughput
processing [12]. A GPU consists of multiple cores or SM
(Streaming Multiprocessor) and memory partitions that are
interconnected together by a network-on-chip (NoC). A GPU
context which is written in a GPU-specific programming
model such as CUDA/OpenCL has multiple thread blocks and
a thread block scheduler [13] schedules each thread block.
In a GPU pipeline, a warp or a group of threads is the unit
of execution and executes the same instruction with different
data for each thread. In addition, multiple warps execute
concurrently based on the warp-scheduling algorithm [14]–
[17]. Each core has a private L1 cache and shared mem-
ory, while a globally shared L2 cache is near the memory
controllers. Each memory partition (MP) contains multiple
L2 slices and a memory controller (MC) managing the off-
chip memory [18], [19]. The NoC interconnects the SMs
with the memory partitions (MPs). The GPU architecture is
hierarchical: within a Texture Processing Cluster (TPC), two
SMs are connected by a multiplexer; 7 to 9 TPCs form a
Graphics Processing Cluster (GPC), and 6 to 8 GPCs form a
GPU [12], [20], [21]. Recent GPUs (e.g., A100, H100) include
a central interconnect that splits the GPU into left and right
“partitions”. In this work, we analyze GPU interconnect and
explore the impact of the NoC on high-throughput processors,
both in terms of latency and bandwidth.

B. Related Work

Analysis of recent GPU systems, including V100 [22] and
A100 [23], have been done and some work has analyzed the
memory hierarchy in GPUs [24]. While these work provides an
in-depth understanding of the various components of a GPU,
they do not provide a detailed analysis of the interconnect
within the GPU. Multi-GPU systems have also been analyzed

Algorithm 1 Latency measurement algorithm.
Inputs D[ ] : data array loaded into L2

M[ ] : L2 slice to data (D[ ]) index mapping
Output L[ ][ ] : Measured L2 access latency

1: function L2 LATENCY
2: for s← 1 to S do ▷ S: # of L2 slices
3: idx←M [s];
4: for n← 1 to N do ▷ N : # of cores
5: start← clock();
6: ldcg(&D[idx]);
7: end← clock();
8: L[s][n]← end− start;

to understand the impact of GPU-to-GPU interconnect [25]–
[27], but their discussion of on-chip interconnect is limited.

Network-on-chip (NoC) for high-throughput processors
presents different challenges compared to multi-core CPU
NoC. Throughput-effective NoC for GPGPUs [28] was pro-
posed where the “reply” network bottleneck was identified
based on the many-to-few-to-many traffic pattern. To address
this bottleneck, alternative NoC architectures [29]–[32] have
been proposed to minimize the impact of the reply network.
To reduce the amount of on-chip traffic, coalescing has been
proposed to reduce the amount of on-chip traffic injected into
the NoC [33]. However, many of these work often assume a
multi-hop network such as a 2D-mesh topology and can result
in an on-chip bandwidth bottleneck.

Recent work [34], [35] have assumed a hierarchical crossbar
organization. To the best of our knowledge, GPU interconnect
in real systems are organized similarly to a hierarchical
crossbar; however, these work do not provide a detailed
analysis of real GPU NoC. More importantly, many prior
work do not consider the impact of the NoC bandwidth on
the L2 bandwidth – i.e., the NoC bandwidth needs to be
provisioned such that sufficient L2 bandwidth can be provided.
Accel-sim [36] also argues how L2 bandwidth is potentially
a bottleneck that prevents more accurate modeling of their
simulator in modern GPUs.

C. Methodology

In this work, we used the three GPUs that were described
earlier (Table I). To analyze the performance impact of GPU
network-on-chip (NoC), synthetic micro-benchmark kernels
were written to isolate the effects of different factors and
components within the GPU. In particular, the measurements
focused on understanding NoC latency and bandwidth.

1) Latency Measurement: A high-level overview of how
latency was measured in this work is shown in Algorithm 1.
Only one thread within one warp is utilized to send a request
to minimize the impact of other components in the GPU –
thus, there is no coalescing and no contention for any resource
within the GPU. The memory access made is guaranteed
to bypass the L1 and unless otherwise stated, the working
set fits within the L2. Memory accesses to D[] are done to
warm up the L2 cache to ensure all accesses hit in L2. The
measured (round-trip) latency includes the core (SM), NoC,
and the L2 access latency. As the measurement is carried out



across different SM and L2 slices, the core or the L2 latency
is approximately the same but the change in overall latency
comes from the impact of the NoC. Memory accesses used in
evaluation bypass the per-SM L1 cache through the -dlcm=cg
compilation option. Latency was measured using the hardware
clock counter clock() that is provided within each SM.

To understand the impact of the NoC, the source and the
destination of packets (or memory requests) need to be known.
The source (or the SM) is determined by smid register and
is used to “pin” kernels to a particular SM as necessary. The
destination (or the L2 slice) can be determined by using nvprof
with “non-aggregated” mode to monitor the per-slice traffic.
The profiler was also used to collect information on addresses
that access the same L2 slice. 1 The mapping information from
slice ID s to the appropriate index of D[] (idx) is stored in M []
(i.e., M [s] = idx). Note that the numerical number of the SM
or the L2 slice ID is not significant but is only needed to ensure
different (or for bandwidth measurements, the same) SM or L2
slices are accessed. Initial evaluations were done on the V100
but similar trends were observed on A100 and H100. However,
the larger GPUs (i.e., A100, H100) with multiple “partitions”
had some different characteristics that we also analyze.

2) Bandwidth Measurement: Micro-benchmark was written
to measure on-chip (or L2 fabric bandwidth) as summarized in
Algorithm 2 and is very similar to streaming benchmarks that
are commonly used to measure bandwidth. Sequential, strided
memory access pattern was used and similar to the latency
measurements, L1 cache was bypassed and when measuring
L2 fabric bandwidth, 2 and L2 cache was warmed up to
ensure all accesses hit in the L2. Unless otherwise stated, read
accesses were performed. Unlike latency measurements, all
threads within a warp were utilized, as well as multiple thread
blocks, to saturate the bandwidth – thus, each thread executes
the kernel described in Algorithm 2. A unique aspect of
Algorithm 2 is that the destination (or L2 slice) was controlled,
similar to the latency measurements. A set of addresses for the
data (D[]) was determined prior to the evaluation and multiple
accesses were issued to the same L2 slice (s) to evaluate L2
bandwidth – thus, M [s][] contained the indices that were used
by threads that sent request to the same L2 slice s. Different
L2 bandwidth measurements were performed including per
L2 slice, per memory partition, and aggregate (total) L2
bandwidth. Performance (or bandwidth) was determined based
on the data (message) size transferred and the amount of time
it took to execute the micro-benchmark.

1The profiler (and the performance counters) that was used for V100 is no
longer supported on A100 or H100 [37]. As a result, a more manual approach
was taken where two kernels were written and one kernel always accessing
a single address (single slice) while the address accessed by the other kernel
was varied. When “contention” occurs, we assume that the same L2 slice is
being accessed.

2The measured bandwidth is not necessarily L2 bandwidth since L2 band-
width represents cache read/write performance. In comparison, we measure
the interconnect or fabric bandwidth to/from the L2.

Algorithm 2 Bandwidth measurement algorithm.
Inputs D[ ] : data array loaded into L2

M[s][ ] : set of data (D[ ]) index mapping to L2 slice s
Output L2 Bandwidth for L2 slice s

1: function L2 BANDWIDTH(s) ▷ s: target L2 slice
2: stride← blockDim.x;
3: tid← blockIdx.x× stride+ threadIdx.x;
4: index←M [s][tid];
5: ldcg(&D[index]);

(a) (b)

Fig. 1: (a) Non-uniform L2 access latency from an SM (i.e.
SM 24) to all of the L2 slices on a V100 GPU and (b) average
latency and the latency variation within each GPC.

III. ON-CHIP LATENCY ANALYSIS

In this section, we provide an analysis of the on-chip
(network-on-chip) latency of GPUs. We demonstrate how non-
uniform latency is observed in GPUs, often determined by the
physical location of the cores and the memory partition (MP)
(and L2 slice). In addition, the increasing GPU size results in
a monolithic GPU consisting of multiple “partitions” and we
analyze the impact of such GPU partitions on on-chip latency.

A. Non-uniform Latency

The L2 access latency or the round-trip latency from the
SM to the L2 slice that includes the core (SM) latency, NoC
latency, and the L2 access latency is shown in Figure 1. The
L2 access latency is measured by a memory read access that
misses in the local L1 cache and hits in the shared L2 cache.
Figure 1(a) plots the L2 access latency distribution from one
particular core (SM 24) to the 32 different L2 slices on a
V100 GPU and the x-axis is the L2 slice ID provided by the
NVIDIA profiler [37]. Although the plot shows only one SM,
the other SMs also have a non-uniform latency distribution
with the lowest latency of 175 cycles while the highest latency
is 248 cycles and the average latency is approximately 212
cycles. The accesses to the different L2 slices share the same
components (e.g., core latency, L2 latency) but the main
difference is in the physical location of the L2 slice (and the
SM location).

Observation #1: Latency from the cores (SMs) to
individual L2 slices through the GPU NoC is non-
uniform.

Overall, average L2 access latency is approximately 212
cycles on V100, similar to prior work that reported an L2
latency of 193 cycles [22]. While the average L2 latency
is consistent across the GPCs, as shown in Figure 1(b), the



variation within each GPC can be significant. For example,
GPC2 and GPC3 have a narrow latency distribution, whereas
other GPCs have a wider distribution as the the L2 latency
within a GPU can differ by as much as 71 cycles for GPC4
– representing approximately 33% difference in L2 latency.
L2 latency histograms for two different GPCs are shown in
Figure 2 where the latency from all SMs within the GPC to
all memory L2 slices are collected on the V100 GPU for two
GPCs. While the average latency for the two GPCs is very
similar, the latency variation is very different – i.e., GPC0
(µ = 213 cycles, σ = 13.9 cycles) and GPC2 (µ = 209
cycles, σ = 7.5 cycles). Thus, the L2 latency varies based on
the source (SM) and destination (L2 slice).

Observation #2: The average L2 latency from a GPC
(i.e., latency from the SMs within a GPC to all L2
slices) is similar across all GPCs; however, the L2
latency variation exists between the SM within a GPC
and latency variation differs across the GPCs.

B. Physical Placement and Latency

As discussed earlier in Sec II, GPUs are organized hierarchi-
cally with multiple cores located within a GPC and multiple L2
slices within a single MP. The exact latency of the L2 access
latency (and network-on-chip) is determined by the physical
location of the core (or SM) within the GPC as well as the
physical L2 slice location within the MP – in addition to the
GPC and MP location itself. To better understand the impact
of placement, we plot L2 latency in Figure 3 but the L2 slice
IDs are first grouped together based on their MP ID – i.e.,
L2 slices located within the same MP are grouped. The L2
slice IDs are then sorted based on the latency values – from
the lowest L2 latency to the highest. The sorted order of the
slice ID across the different SMs are identical – e.g., for MP
0, all four plots show L2 latency in the following L2 slice
ID order: 0, 4, 27, 31, ... For illustration purposes, latency
distributions for only four SMs are shown, with a group of
two SMs from the same GPC. While the exact latency values
differ, the SMs from the same GPC show the same trend in
terms of latency change (e.g., Figure 3(a,b) and Figure 3(c,d)).
While the latency across the different MPs differs, the latency
trend within each MP is similar across the different SMs as
well.

An approximate logical floorplan for the V100, based on
die photo [38] and our analysis, is shown in Figure 4. The
diagram includes an approximate placement of the SMs for
one GPC (i.e., GPC 4) and the L2 slice placement for one
memory partition (MP) (i.e., MP 3). The actual SM ID or the
L2 slice ID is not important but the diagram shows the relevant
placement of the cores (SM) and the L2 slices. The SM and
L2 slice that are closely located have the lowest latency (e.g.,
L2 slice 17 and SM64 with L2 latency of 180 cycles) while the
ones farthest away (e.g., L2 slice 15 and SM4) have the highest
latency with 217 cycles. For simplicity, the figure only shows
one GPC and one MP, but this trend holds across different
GPC and MP combinations. Detailed latency analysis across

(a) (b)

Fig. 2: L2 latency histogram distribution of two different
GPCs, (a) GPC0 and (b) GPC2. Both GPCs have very similar
average L2 latency but different latency distributions.

(a) (b)

(c) (d)

Fig. 3: Latency variation plot for multiple SMs, including two
SMs from GPC0 ((a) SM60 and (b) SM24) and GPC4 ((c)
SM64 and (d) SM28). The L2 slice indexes are sorted as the
L2 slices in the same memory partitions are grouped together.

different SMs and L2 slices is shown in Figure 5. The results
show that different SM locations result in a constant difference
in L2 latency while some L2 slices always have lower latency
compared to other L2 slices.

Observation #3: The non-uniform L2 latency is deter-
mined by the physical location of the SM within the
GPC and the L2 slice within the memory partition.

Pearson Correlation [39], a common measure of linear
correlation between two data sets, can be applied to measure
the similarity in L2 latency distribution between two SMs.
This correlation (r) is defined as follows,

r =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(1)

where n is the number of samples, and Xi, Yi are the
individual latency samples from two different SMs. Pearson
correlation of 0 means no correlation, 1 means perfect pos-
itive (linear) correlation, and -1 indicates perfect negative
correlation. The latency distributions in Figure 3(a,b) have
a Pearson correlation of 0.998, suggesting nearly identical
distributions. However, the correlation between Figure 3(a,
c) is approximately -0.365, indicating minimal amount of
correlation.

Pearson correlation heatmap for V100 is shown in Fig-
ure 6(a). Each axis shows the different SMs, grouped together
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Fig. 4: Block diagram (approximate logical floorplan) of the
V100 GPU showing L2 slices placement inside the MP and
SM placement inside the GPC.

Fig. 5: L2 access latency between the SMs in GPC4 to
different L2 slices inside memory partition (MP) 3 on V100.
Physically closer SMs and L2 slices have lower latency.

based on their GPC ID. The heatmap shows a high correlation
between SMs in GPC0 with every other SM in GPC0 and
GPC1. In general, the SMs inside the same GPC show (near)
perfect correlation and the group of two neighboring GPCs
have a very high, positive correlation value. However, GPCs
that are farther away have a lower correlation. The analysis
suggest that two groups of GPCs (GPC0&1 and GPC4&5)
have similar characteristics, compared to the other two GPC
(GPC2&3). This likely results from the symmetric GPU phys-
ical placement, with GPC2&3 centrally located and GPC0&1
and GPC4&5 at the edges (Figure 4).

Observation #4: Similarities in on-chip latency dis-
tribution using Pearson correlation can be used to
determine the placement of SMs.

C. Impact of GPU Partitions

The Pearson correlation heatmap of A100 (Figure 6(b))
shows some difference among SMs within a single GPC,
unlike V100 where the Pearson correlation was relatively
constant between all SMs within a GPC. Since the size of
the GPU increased from V100 to A100, both in terms of the
physical die size and the number of SMs per GPC, the GPU
effectively consists of two “partitions” and impacts the latency
characteristics. While not shown, the non-uniform L2 latency
observed on V100 also exists in A100 and H100. However, the
SMs between the GPCs for A100 do not necessarily have the
same latency distribution characteristics (as what was observed
in V100). The latency among the SMs within the same GPC is
nearly identical, as shown by the diagonal line in the heatmap
but the similarity that existed with neighboring GPCs in V100

(a) (b) (c)

Fig. 6: Pearson correlation heatmap for L2 latency on the (a)
V100, (b) A100, and (c) H100 GPUs. For A100 and H100,
GPCs 0-3 are located on the left “partition,” while GPC 4-7
are located on the right “partition.”
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Fig. 7: (a) Block diagram of CPC hierarchy within a GPC
of H100 that provides SM-to-SM communication, and (b)
average SM-to-SM latency based on CPC location.

is reduced in A100. 3 The difference between SMs in a GPC is
much greater in H100 as shown in Figure 6(c). A group of 4 or
6 SMs (i.e. 2 or 3 TPCs) have similar latency characteristics
that are very different compared with other groups of SMs
within the same GPC. This similarity in latency distribution
suggests the potential existence of a new hierarchy of cores
between the TPC and GPC hierarchies, which we will refer
to as CPC. 4

A high-level block diagram of the CPC hierarchy within a
GPC is shown in Figure 7(a) with three CPC’s located within
a GPC that are interconnected with a SM-to-SM network.
One unique feature of H100, compared to the previous gen-
eration of GPUs, is the distributed shared memory [12] that
enables access to remote shared memory through the SM-to-
SM network. To understand the latency characteristics of the
SM-to-SM network, a synthetic kernel was used, similar to
Algorithm 1, but the key difference was that load was issued
to a remote shared memory within the same GPC. The average
latency for the SM-to-SM communication across different
CPC combinations within a GPC is shown in Figure 7(b),
represented with (src, dest) CPC pairing information. The
CPC’s relative distances impacts the latency – e.g., latency
is lowest (196 cycles) when two SMs within CPC0 commu-
nicate but increases to around 213 cycles for communications
between SMs in CPC2 which is likely farthest away. The other

3The reason for this is not clear but we suspect the additional number of
SMs as well as the bigger chip area has some effect on the latency correlation.

4While NVIDIA documentation does not disclose this level of hierarchy,
some hardware teardown [40] have also identified a potential intermediate
level of hierarchy that they refer to as “CPC” or Compute Processing Cluster.
We use the same terminology in this work. The existence of this hierarchy is
not confirmed; however, our work shows the impact of such hierarchy on the
interconnect performance.



combination of source and destination CPCs show varying
latency based on their distance and placement.

Observation #5: Larger GPUs (with multiple “parti-
tions”) result in different latency characteristics and
more non-uniformity. In particular, H100 includes
another level of SM core hierarchy, between TPC and
GPC, that impacts the latency characteristics.

Recent GPUs (A100, H100) also have a significantly dif-
ferent characteristics (compared to V100) in L2 latency when
crossing the GPU “partitions.” In Figure 8(a,b,c), we plot
the average L2 access latency across the 3 different GPUs
– averaged across requests from all SMs within a GPC to
different L2 slices within a single MP. V100 shows an average
latency of approximately 212 cycles (Figure 8(a)) (similar
to earlier results in this section); however, for A100, the
average L2 latency differs significantly – e.g., requests from
GPCs 1,2,6,7 have latency that is similar to V100 but L2
accesses from GPCs 0,3,4,5 have much higher latency. In
our evaluation, we assumed the destination (or L2 slice) was
located on the left “partition.” Since GPCs 1,2,6,7 were located
on the same partition as the destination L2 slice, the latency
was lower as requests destination was located in the near
partition. However, for GPCs 0,3,4,5, the destination L2 slices
were on the far partition – resulting in a much higher latency
of approximately 400 cycles – caused by the extra latency of
traversing back and forth across the GPU partitions.

H100 also has two partitions, similar to A100. However,
the latency values are much more uniform across the GPCs
(Figure 8(c)). 5 While the details are not clear, the memory
hierarchy (and the cache organization) for H100 has optimiza-
tions where “L2 ... caches data for memory accesses from
SMs in GPCs directly connected to the partition.” [12] As
a result, latency from an SM is relatively similar regardless
of the memory address. To better understand the L2 latency
behavior, we measure the L2 miss penalty – i.e., the amount
of for the cache line to be brought in from the main memory
to the L2. For both V100 and A100, the L2 miss penalty is
relatively constant (Figure 8(d,e)) but for H100, the latency
is not constant since depending on where the data is cached,
the miss penalty will vary (Figure 8(f)). This work does not
completely reverse-engineer the GPU NoC architecture or the
memory hierarchy; however, as the size of a GPU increases,
more latency non-uniformity is introduced.

Observation #6: Recent GPUs with multiple GPU
“partitions” has additional uniformity depending on
the L2 cache policy.

5The results are collected for each GPC separately but because of local
caching in H100, the L2 slice ID for the same address can vary among the
GPCs. However, for simplicity, the x-axis just shows 8 different L2 slices and
different GPCs do not necessarily access the same set of L2 slices.
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Fig. 8: (a) Block diagram of CPC hierarchy within a GPC
of H100 that provides SM-to-SM communication, and (b)
average SM-to-SM latency based on CPC placement and
distance.

number of SMs (or TPCs) reveals performance degradation,
particularly during write operations, where cores within a CPC
can cause up to 1.35⇥ performance degradation.

The analysis provided earlier in this section is based on an
older generation GPU (V100) but similar observations (and
trends) can be observed in recent GPUs (A100, H100). In the
rest of this section, we highlight some additional differences
(beyond the Pearson correlation values) in the impact of
NoC on the L2 memory latency. In Figure 10(a,b,c), we plot
the average L2 access latency across the 3 different GPU
architectures – averaged across requests from all SMs within
a GPC to a single MP. The plot is shown for differ

V100 has an average latency of approximately 212 cycles
(Figure 10(a)) (similar to earlier results and Observation 2).
However, for A100, the average L2 latency differs significantly
– e.g., requests from GPC1,2,6,7 have latency values that
are similar to V100 but L2 accesses from GPC0,3,4,5 have
much higher latency. In our evaluation, we assumed the
destination memory address (or L2 slice) was located on the
left “partition.” Since GPC1,2,6,7 were located on the same
partition as the destination L2 slice, it resulted in lower latency
when accessing near partition. However, for GPC 0,3,4,5
the destination L2 slices were located on the far partition
– resulting in a much higher latency of approximately 400
cycles.

The V100 GPU has an average latency of 212 cycles,
as shown in Figure 10(a), consistent with previous findings
and Observation 2. In contrast, the A100 GPU shows a
marked variance in L2 latency. For instance, requests from
GPC1,2,6,7 align with V100 latency results, whereas requests
from GPC0,3,4,5 show significantly higher latency values.
This discrepancy is attributed to the assumed location of the
destination memory address (or L2 slice) on the left partition.
Consequently, GPC1,2,6,7, being on the same partition as the
L2 slice, benefit from lower latency when accessing the near
partition. On the other hand, GPC0,3,4,5 face higher latency
of around 400 cycles due to their L2 slices being on the far
partition.

The H100 GPU maintains a similar dual-partition structure
as the A100. Yet, it exhibits more consistent latency across
GPCs, as depicted in Figure 10(c). The memory hierarchy
(and the cache organization) for H100 has optimizations such
that “L2 cache localizes and caches data for memory accesses
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Fig. 9: TPC and GPC speedup comparison across 3 different
generations of NVIDIA GPUs (CPC speedup for H100) and
(b) impact of CPC on interconnect bandwidth.
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Fig. 10: Average memory access latency from one GPC to one
MP in (a) V100, (b) A100, and (c) H100. Average L2 access
latency from the global memory to one MP in (d) V100, (e)
A100, and (f) H100.

from SMs in GPCs directly connected to the partition.” [57]
As a result, the difference between access to far or remote
L2 partition is negligible, and near uniform latency can be
observed. To better understand the L2 latency behavior, we
measure the L2 miss penalty latency in Figure 10 – i.e., the
amount of time it takes for the data to be brought in from the
main memory to the L2. For both V100 and A100, the L2
miss latency is relatively constant (Figure 10(d,e)). However,
for H100, the latency is not necessarily constant – based on
the “locality” or the location of where the data is cached, the
main memory access latency can be either high or low.

This work does not completely reverse-engineer the GPU
NoC architecture or the memory hierarchy. However, what
is clear is that as the size of a GPU increases, more non-
uniformity is introduced, and based on architectural optimiza-
tion, it can appear in different components (e.g., L2 access
latency for A100 vs off-chip memory access for H100).

Observation #6: Recent GPUs (e.g., A100, H100) with
multiple GPU “partitions” results in higher latency
when communicating across the GPU partitions.
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number of SMs (or TPCs) reveals performance degradation,
particularly during write operations, where cores within a CPC
can cause up to 1.35⇥ performance degradation.

The analysis provided earlier in this section is based on an
older generation GPU (V100) but similar observations (and
trends) can be observed in recent GPUs (A100, H100). In the
rest of this section, we highlight some additional differences
(beyond the Pearson correlation values) in the impact of
NoC on the L2 memory latency. In Figure 10(a,b,c), we plot
the average L2 access latency across the 3 different GPU
architectures – averaged across requests from all SMs within
a GPC to a single MP. The plot is shown for differ

V100 has an average latency of approximately 212 cycles
(Figure 10(a)) (similar to earlier results and Observation 2).
However, for A100, the average L2 latency differs significantly
– e.g., requests from GPC1,2,6,7 have latency values that
are similar to V100 but L2 accesses from GPC0,3,4,5 have
much higher latency. In our evaluation, we assumed the
destination memory address (or L2 slice) was located on the
left “partition.” Since GPC1,2,6,7 were located on the same
partition as the destination L2 slice, it resulted in lower latency
when accessing near partition. However, for GPC 0,3,4,5
the destination L2 slices were located on the far partition
– resulting in a much higher latency of approximately 400
cycles.

The V100 GPU has an average latency of 212 cycles,
as shown in Figure 10(a), consistent with previous findings
and Observation 2. In contrast, the A100 GPU shows a
marked variance in L2 latency. For instance, requests from
GPC1,2,6,7 align with V100 latency results, whereas requests
from GPC0,3,4,5 show significantly higher latency values.
This discrepancy is attributed to the assumed location of the
destination memory address (or L2 slice) on the left partition.
Consequently, GPC1,2,6,7, being on the same partition as the
L2 slice, benefit from lower latency when accessing the near
partition. On the other hand, GPC0,3,4,5 face higher latency
of around 400 cycles due to their L2 slices being on the far
partition.

The H100 GPU maintains a similar dual-partition structure
as the A100. Yet, it exhibits more consistent latency across
GPCs, as depicted in Figure 10(c). The memory hierarchy
(and the cache organization) for H100 has optimizations such
that “L2 cache localizes and caches data for memory accesses
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generations of NVIDIA GPUs (CPC speedup for H100) and
(b) impact of CPC on interconnect bandwidth.
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Fig. 10: Average memory access latency from one GPC to one
MP in (a) V100, (b) A100, and (c) H100. Average L2 access
latency from the global memory to one MP in (d) V100, (e)
A100, and (f) H100.

from SMs in GPCs directly connected to the partition.” [57]
As a result, the difference between access to far or remote
L2 partition is negligible, and near uniform latency can be
observed. To better understand the L2 latency behavior, we
measure the L2 miss penalty latency in Figure 10 – i.e., the
amount of time it takes for the data to be brought in from the
main memory to the L2. For both V100 and A100, the L2
miss latency is relatively constant (Figure 10(d,e)). However,
for H100, the latency is not necessarily constant – based on
the “locality” or the location of where the data is cached, the
main memory access latency can be either high or low.

This work does not completely reverse-engineer the GPU
NoC architecture or the memory hierarchy. However, what
is clear is that as the size of a GPU increases, more non-
uniformity is introduced, and based on architectural optimiza-
tion, it can appear in different components (e.g., L2 access
latency for A100 vs off-chip memory access for H100).

Observation #6: Recent GPUs (e.g., A100, H100) with
multiple GPU “partitions” results in higher latency
when communicating across the GPU partitions.
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Fig. 8: Average L2 hit latency from one GPC to one MP (top)
and average L2 miss penalty or latency from global memory
to L2 (bottom) on (a,d) V100, (b,e) A100, and (c,f) H100.
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Fig. 11: Interconnect input speedup comparison across differ-
ent GPU architecture.

While on-chip latency is non-uniform (Observation 3), the
bandwidth to the different destinations (or L2 slices) is more
uniform. Figure 10(b) shows a histogram of the L2 bandwidth
in V100 when a single SMs send traffic to a single L2 slice,
showing bandwidth value across all combination of source
(SMs) and destination (L2 slices). The average bandwidth
from a single SM to an L2 slice is approximately 34 GB/s with
� = 0.147 GB/s. When all SMs within a GPC send traffic to
a single L2 slice, the achievable bandwidth is approximately
85 GB/s with � = 0.06 GB/s, as shown in Figure 10(c) –
measured across all combinations of GPCs and a destination
L2 slice. Both of these results demonstrate a tight distribution
of bandwidth and suggests that the bandwidth provided to
each L2 slice from the different cores (SMs) and GPCs are
approximately similar. The results also show that to saturate a
single L2 slice bandwidth, a minimum of 4 SMs are needed.

Observation #8: While latency to different L2 slices is
non-uniform, the bandwidth to the different L2 slices
is (mostly) uniform.

In this work, input speedup is defined as the excess band-
width that is provided into the GPU interconnect [5]. GPUs
are organized hierarchically and input speedup is necessary
to minimize potential performance bottlenecks from the hi-
erarchical bandwidth sharing. In the GPUs that we evaluate,
two SMs are clustered together in a TPC and TPC speedup
(Figure 12) is effectively the bandwidth ratio of the TPC output
to the SM output. With a 2-to-1 sharing, TPC speedup of 1
means only 50% of the bandwidth can be provided across
both SMs. In comparison, TPC speedup value of 2 results in
“full” bandwidth from the two SMs in to the NoC, towards the
destination L2 slices. Speedup was measured as the bandwidth
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Fig. 12: Block diagram that illustrates the various interconnect
speedup that are provided within the GPU NoC.

(performance) ratio of x SMs compared to one SM, with the
SMs sending traffic to all L2 slices. For TPC speedup, x = 2
while for GPCl, x is the number of TPCs and for GPCg , x
is the number of TPCs multiplied by the number of SMs per
TPC. 6

The speedup across the different GPUs are shown in
Figure 11 for Reads and Writes. For Reads, the bandwidth
required from the SM (i.e., small request messages) is lower
than the bandwidth to the SM (i.e., large reply message with
cache line data) while the opposite is true for Writes. For
TPC speedup, full bandwidth is provided for Reads across all
GPUs (i.e., TPC speedup of 2); however, for Writes, a speedup
of only 1.09⇥ is achieved on the V100. For A100 and H100,
full bandwidth is also achieved for the TPC Writes. For GPCl,
achieving full bandwidth requires a speedup of 7, 8, and 9 for
the V100, A100, and H100, respectively. V100 reaches about
50% of this speedup while the H100 approaches 85%, with a
speedup close to 8. The evaluations show that input bandwidth
speedup is provided to minimize any performance impact from
the hierarchical organization and recent GPUs have more on-
chip bandwidth or input speedup. In particular, GPCg provides
additional speedup (compared to GPCl, especially for A100
and H100. For H100, CPC speedup is also shown and results
show that the added hierarchy does not have any impact on
Read accesses but when all SMs within the CPC are utilized
for Writes, there is a slight performance degradation as only
a speedup of approximately 4.6 is provided (compared to a
speedup of 6 needed for full bandwidth).

Observation #9: Although GPUs are organized hi-
erarchically, input speedup exists to provide higher
bandwidth in to the on-chip interconnect.

B. Non-Uniform Bandwidth with GPU Partitions

In recent GPUs with multiple GPU partitions (i.e., A100,
H100), additional non-uniform latency was introduced when
crossing the partition (Observation 6) but in this section, we
show how bandwidth non-uniformity occurs when accessing
L2 slice in a different partition. An example of L2 bandwidth
non-uniformity for A100 is shown in Figure 13. SM0 is located

6GPCl is local GPC speedup between the TPC and GPC hierarchy while
GPCg is global speedup when all SMs within the GPC are sending traffic.
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Fig. 9: (a) On-chip aggregate L2 and global memory band-
width. Distribution of L2 bandwidth to a single L2 slice when
accessed by (b) a single SM and (c) a single GPC in V100.

IV. NETWORK-ON-CHIP BANDWIDTH ANALYSIS

In this section, we analyze on-chip bandwidth in GPUs
and in particular, bandwidth to the L2 slices (or the memory
partition) or the L2 fabric bandwidth.

A. Uniform On-Chip Bandwidth

In Figure 9(a), we compare the total aggregate on-chip L2
fabric bandwidth and global memory bandwidth measured
across the different GPUs. Aggregated L2 fabric bandwidth
has all SMs send traffic to all L2 slices (and hit in the L2) while
memory bandwidth measurements assume accesses to not hit
in the L2. Both bandwidths were measured with sequential
memory accesses and memory bandwidth reaches approxi-
mately 85-90% of the peak maximum memory bandwidth.
While off-chip memory bandwidth has continued to increase,
the on-chip L2 bandwidth has also increased accordingly and
is approximately 2.4× to 3.5× higher compared to off-chip
memory bandwidth. While having higher L2 bandwidth is not
necessarily suprising [22], it does have implications on the
design of GPU NoC, as we discuss in Section VI, since the
NoC significantly impacts the L2 fabric bandwidth.

Observation #7: On-chip aggregate (total) L2 fabric
bandwidth exceeds the total off-chip memory bandwidth
in modern GPUs.

While on-chip latency is non-uniform (Observation 3), the
bandwidth to the different destinations (or L2 slices) is more
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uniform. Figure 9(b) shows a histogram of the L2 bandwidth in
V100 when one SM sends traffic to a single L2 slice, showing
the bandwidth distribution across all combination of source
(SMs) and destination (L2 slices). The average bandwidth
from a single SM to an L2 slice is approximately 34 GB/s with
σ = 0.147 GB/s. When all SMs within a GPC send traffic to
a single L2 slice, the achievable bandwidth is approximately
85 GB/s with σ = 0.06 GB/s, as shown in Figure 9(c) –
measured across all combinations of GPCs and a destination
L2 slice. Both of these results demonstrate a tight distribution
of bandwidth and suggests that the bandwidth provided to
each L2 slice from the different cores (SMs) and GPCs are
approximately similar. The results also show that to saturate a
single L2 slice bandwidth, a minimum of 4 SMs are needed.

Observation #8: While latency to different L2 slices is
non-uniform, the bandwidth to the different L2 slices
is (mostly) uniform.

In this work, input speedup is defined as the excess band-
width that is provided into the GPU interconnect [5]. GPUs
are organized hierarchically and input speedup is necessary
to minimize potential performance bottlenecks from the hi-
erarchical bandwidth sharing. In the GPUs that we evaluate,
two SMs are clustered together in a TPC and TPC speedup
(Figure 11) is effectively the bandwidth ratio of the TPC output
to the SM output. With a 2-to-1 sharing, TPC speedup of 1
means only 50% of the bandwidth can be provided across both
SMs. TPC speedup value of 2 results in “full” bandwidth from
the two SMs into the NoC, towards the destination L2 slices.
Speedup was measured as the bandwidth (performance) ratio
of x SMs compared to one SM, with the SMs sending traffic
to all L2 slices. For TPC speedup, x = 2 while for GPCl, x is
the number of TPCs and for GPCg , x is the number of TPCs
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Fig. 12: L2 slice bandwidth for (a) SM0 and (b) SM2 on A100
where SM0 and SM2 are located on different GPU partitions.

multiplied by the number of SMs per TPC. 6

The speedup across the different GPUs are shown in
Figure 10 for Reads and Writes. For Reads, the bandwidth
required from the SM (i.e., small request messages) is lower
than the bandwidth to the SM (i.e., large reply message with
cache line data) while the opposite is true for Writes. For
TPC speedup, full bandwidth is provided for Reads across all
GPUs (i.e., TPC speedup of 2); however, for Writes, a speedup
of only 1.09× is achieved on the V100. For A100 and H100,
full bandwidth is also achieved for the TPC Writes. For GPCl,
achieving full bandwidth requires a speedup of 7, 8, and 9 for
the V100, A100, and H100, respectively. V100 reaches about
50% of this speedup while the H100 approaches 85%, with a
speedup close to 8. The evaluations show that input bandwidth
speedup is provided to minimize any performance impact from
the hierarchical organization and recent GPUs have more on-
chip bandwidth or input speedup. In particular, GPCg provides
additional speedup compared to GPCl, especially for A100
and H100. For H100, CPC speedup is also shown and results
show that the added hierarchy does not have any impact on
Read accesses but when all SMs within the CPC are utilized
for Writes, there is a slight performance degradation as only
a speedup of approximately 4.6 is provided (compared to a
speedup of 6 needed for full bandwidth).

Observation #9: Although GPUs are organized hi-
erarchically, input speedup exists to provide higher
bandwidth in to the on-chip interconnect.

B. Non-Uniform Bandwidth with GPU Partitions

In recent GPUs with multiple GPU partitions (i.e., A100,
H100), additional non-uniform latency was introduced when
crossing the partition (Observation 6) but in this section, we
show how bandwidth non-uniformity occurs when accessing
L2 slice in a different partition. An example of L2 bandwidth
non-uniformity for A100 is shown in Figure 12. SM0 is located
on the same partition as L2 slices 0–39 while SM2 is located
on the same partition as L2 slices 40–79. For the “near”
partition, higher bandwidth (approximately 39.5 GB/s) can be
achieved but for L2 accesses to “far” partitions, the bandwidth
drops to approximately 26 GB/s. For SM2 which is located
on the other partition, similar L2 bandwidth can be achieved
but “near” and “far” L2 slices are swapped.

6GPCl is local GPC speedup between the TPC and GPC hierarchy while
GPCg is global speedup when all SMs within the GPC are sending traffic.
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Fig. 13: L2 bandwidth distribution to a single L2 slice in (a)
A100 and (b) H100 GPUs.

0
5
10

15
20
25
30
35

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

Pe
rc

e
n
ta

g
e
 (

%
)

B
a
n
d
w

id
th

 (
G

B
/s

)

# SMs per GPC

Near Partition BW

Far partition BW

% Difference

Fig. 14: Single L2 slice bandwidth on A100 as the number of
SMs sending traffic is increased.

Figure 13(a) shows the bandwidth distribution for a single
L2 slice when accessed by each SMs in A100. Similar results
of bimodal distribution are shown for other L2 slices – the
higher value peak occurring for SMs in the same partition
as the L2 slice and the smaller value peak occurring for the
remote partition SMs. Figure 13(b) shows the L2 bandwidth
distribution for the H100, which exhibits a single peak due
to the localized L2 cache [12]. Compared to the V100, both
A100 and H100 have higher per-L2 slice bandwidth but also
higher variation.

To understand the lower bandwidth when accessing remote
partition L2 in A100, Figure 14 shows how L2 slice bandwidth
increases as more SMs send traffic to the same L2 slice. At
approximately 8 SMs, the bandwidth saturates regardless of
whether the L2 is on the near partition or the far partition.
However, for smaller number of SMs, the bandwidth that can
be achieved is lower for far partition – i.e., for one or two
SMs, the amount of bandwidth that can be achieved for far
partition is up to 28% lower. Since the latency to the far
partition L2 slice is higher, the longer latency results in lower
bandwidth according to Littel’s Law until sufficient SMs are
used to saturate the bandwidth.

Observation #10: Recent GPUs (e.g., A100, H100) have
more on-chip bandwidth (and more speedup) compared
to previous GPUs; however, it also results in non-
uniform bandwidth.

Since there are multiple L2 slices within a single memory
partition (MP), the bandwidth into the MP can become the
bottleneck, and L2 input speedup (Figure 11) from the output
of the NoC is needed. To evaluate L2 input speedup, we
vary the number of L2 slices (and their allocation across the
MPs) and evaluate a kernel where all SMs are sending traffic.
Contiguous MP has the L2 slices used within the same MP
while Distributed MP has the L2 slices spread out across
different MPs – thus, for contiguous MP, the number of MP
accessed does not change but for distributed MP, the number
of MPs increase from 1 to 4. Results show that there is

(a) (b) (c)

Fig. 15: L2 bandwidth on V100 with (a) all SMs accessing
different num. of L2 slices, (b) different num. of SMs access-
ing one MP, and (c) 14 SMs accessing varied num. of MPs.
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Fig. 16: Memory access pattern for (a) BFS and (b) Gaussian
workloads measured on the NVIDIA V100 GPU.

minimal difference in bandwidth (performance) between the
two approaches on V100 (Figure 15(a)) – suggesting near
ideal L2 input speedup to minimize the impact from L2 slices
sharing NoC output bandwidth.

In comparison, varying the SM location while sending
traffic to one MP results in significant performance degradation
(Figure 15(b)). Contiguous SM places all SMs in 1 GPC (for
14 SMs) or 2 GPCs (for 28 SMs) and compared to distributed
SM where the SMs are distributed across 6 GPCs, there is sig-
nificant performance degradation – approximately 62% when
28 SMs are accessing a single MP – caused by the limited GPC
speedup. To further understand the impact of GPC speedup,
14 SMs were used and their traffic were distributed across
different numbers of MPs. With distributed SM, the impact on
performance was relatively small; however, with contiguous
SM, as the number of MP destinations increased from 1 to
4, performance increased by 218% – thus, demonstrating that
some of the GPC speedup is provided in space (i.e., additional
connectivity) and not entirely in time (i.e., more bandwidth).

Observation #11: Load-balancing kernels across the
SMs is more critical than load-balancing L2 slices
because of the asymmetric NoC speedup.

C. On-Chip Traffic

On-chip traffic in GPU is determined by the memory traffic
(or L2 traffic) and in particular, the memory address. If a
memory access pattern results in one memory channel being
over-utilized, the overall memory throughput (and system



performance) can degrade – a behavior referred to as memory
camping [41]. To prevent memory camping, modern GPUs
employ complex address hashing to ensure access across all
L2 slices is load-balanced [42]. To understand the effect of
hashing, memory access patterns for two workloads (bfs,
gaussian) from the Rodinia benchmark suite [43] are shown
in Figure 16 for the V100 GPU as a function of time and
the varying intensities indicate the amount of traffic destined
for each L2 slice. Although the amount of memory accesses
changes over time, the distribution of traffic across the chan-
nels remains relatively consistent. Thus, load-balancing of on-
chip traffic from the NoC is not critical but uniform bandwidth
needs to be provided to each destination to support address
hashing.

Observation #12: Since memory traffic is load-
balanced across the memory channels, the NoC traffic
is also load-balanced.

V. GPU TIMING SIDE-CHANNEL IMPLICATIONS

This section explores how NoC characteristics impact GPU
timing side-channel attacks and how non-uniform latency can
be leveraged to enable timing side-channel attacks and be used
as a defense mechanism against timing side-channel attacks.

A. GPU Co-Location Placement

In highly parallel GPU architectures, side-channel (or
covert-channel) attacks often require careful co-location of
kernels on the cores (or SMs) to exploit the GPU’s parallelism.
However, given the increasing threat of side-channel attacks in
modern GPUs, GPU vendors are limiting availability of some
performance counters that are exploited in side-channel attacks
– e.g., in response to prior work [44], performance counter is
no longer available without the root privilege [45]. In addition,
information obtained from profilers are also limited – e.g.,
per-L2 slice performance counters are no longer available in
recent NVIDIA GPUs [37] as only aggregate performance
counter values are available. In this work, we argue how NoC
latency characteristics can be exploited to determine core (SM)
placement information and can be leveraged for the co-location
placement of kernels. As stated earlier in Observation 3,
the L2 cache access latency serves as a reliable proxy for
estimating the distance between the SM and the L2 slice.
Consequently, the Pearson correlation (Observation 4) can be
exploited to reverse-engineer core placement within a GPU.
This includes determining the SM’s position within the GPC
as well as the L2 slice’s location within the memory partition.
Thus, the latency characteristics can be leveraged when co-
location is necessary for a GPU side-channel attack [46]–[48].
In addition, SM placement can establish a covert channel at
the GPU NoC input but if a covert channel is desired at the
output of the GPU NoC (or at the input of the L2), the L2
slice placement can potentially be exploited as well.

(a) (b) (c)

Fig. 15: Measured L2 bandwidth on V100 when (a) increasing
the number of L2 slices accessed, (b) accessing one MP with
14 SMs or 28 SMs, and (c) increasing the number of memory
partitions (MPs) accessed with 14 SMs. Contiguous refers to
when SMs or L2 slices are allocated to the same GPC (or MP)
while Distributed refers to different GPC (or MP).
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Fig. 16: Memory access pattern for (a) BFS and (b) Gaussian
workloads measured on the NVIDIA V100 GPU.

hashing algorithms are not publicly known, they are designed
to spread traffic across the memory channels.

TO understand the effect of hashing, memory access pat-
terns for two workloads (bfs, gaussian) from the Rodinia
benchmark suite [8] are shown in Figure 16 for the V100 GPU.

The varying intensities indicate the volume of traffic des-
tined for each L2 slice. Although the number of memory
accesses fluctuates over time, the distribution of traffic across
the channels remains consistent. The only notable difference
emerges towards the end of execution due to workload-
imbalance (e.g., around timestep 700 in Gaussian workload)
– i.e., some cores have finished while other cores still have
work remaining.

Observation #12: Since memory traffic is load-
balanced across the memory channels, the NoC traffic
is also load-balanced.

V. GPU TIMING SIDE-CHANNEL IMPLICATIONS

This section explores how NoC characteristics impact GPU
timing side-channel attacks. In particular, we describe how
non-uniform on-chip interconnect latency characteristics can
be leveraged to enable timing side-channel attacks as well as

Fig. 17: (a) Average cache access latency when the number of
unique cache lines are varied on the V100 GPU. (b) Average
execution time of multiply kernel.

be exploited to provide a defense mechanism against potential
timing side-channel attacks.

A. GPU Co-Location Placement

In highly parallel GPU architectures, side-channel attacks
often require careful co-location of kernels on the cores (or
SMs) to exploit the GPU’s parallelism. However, given the
increasing threat of side-channel attacks in modern GPUs,
GPU vendors are limiting availability of some performance
counters that are exploited in side-channel attacks – e.g., in
response to prior work [41], per-L2 slice performance counters
are no longer available in recent NVIDIA GPUs [45] and only
the aggregate performance counter values are available. In
this work, we argue how NoC latency characteristics can be
exploited to determine core (SM) placement information and
can be leveraged for co-location as SM placement information
can be inferred from NoC latency characteristics.

As stated earlier in Observation 3, the L2 cache access
latency serves as a reliable proxy for estimating the dis-
tance between the SM and the L2 cache. Consequently,
the Pearson correlation (Observation 4) can be exploited to
reverse-engineer core placement within a GPU. This includes
determining the SM’s position within the GPC as well as the
L2 slice’s location within the memory partition. Thus, when
co-location is necessary for a GPU side-channel attack [3],
[40], [57] (e.g., spy and trojan co-located to establish a
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latency serves as a reliable proxy for estimating the dis-
tance between the SM and the L2 cache. Consequently,
the Pearson correlation (Observation 4) can be exploited to
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L2 slice’s location within the memory partition. Thus, when
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as well.

Implication #1: NoC characterization can be leveraged
to obtain information about the core and/or L2 slice
placement in GPUs.
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can be inferred from NoC latency characteristics.
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latency serves as a reliable proxy for estimating the dis-
tance between the SM and the L2 cache. Consequently,
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determining the SM’s position within the GPC as well as the
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[40], [57] (e.g., spy and trojan co-located to establish a
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In addition, the awareness of the SM placement can establish
a covert channel at the GPU NoC input but if a covert channel
is desired at the output of the GPU NoC (or at the input of
the L2), the L2 slice placement can potentially be exploited
as well.

Implication #1: NoC characterization can be leveraged
to obtain information about the core and/or L2 slice
placement in GPUs.

B. Attack: Non-uniform Latency

The correlation between performance or execution time and
input-dependent microarchitecture features are exploited in
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Fig. 18: AES key-recovery attack on GPU with (a) conven-
tional (static) and (b) random thread block scheduling. The
correct key value is circled in the plots and only 4 out of the
16 keys are shown for simplicity.

Implication #1: NoC characterization can be leveraged
to obtain information about the core and/or L2 slice
placement in GPUs for timing side-channel attacks.

B. Attack: Non-uniform Latency

The correlation between performance or execution time
and input-dependent microarchitecture features are commonly
exploited in timing side-channel attacks in GPUs [6], [7]
Timing is impacted by L2 latency and for a given source
(or SM) and a given destination (or L2), the latency does
not change but if the kernel is executed across different
cores, the latency or timing will change. In this section, we
explore the impact of NoC latency on two previously proposed
timing side-channel attacks for GPUs – AES key recovery [6]
and RSA side-channel attack [49] – and discuss the NoC’s
implications on both the attack and defense mechanism.

1) AES key recovery: Prior work [6] exploited the linear
correlation between the number of unique cache line requests
and execution time to recover AES key in GPUs. 7 For a
synthetic kernel using one warp (with 32 threads), depending
on the amount of memory coalescing, the latency is linearly
proportional to the number of unique cache lines accessed
(Figure 17(a)). These results are consistent with prior work [6],
[7] that have demonstrated similar linear relationships across

7A detailed description of the side channel attack can be found in [6].
Due to space constraints, we only highlight the key differences caused by the
non-uniform interconnect latency.



different GPUs. However, this relationship holds only when
the same SM (or core) is utilized. When different SMs are al-
located while the destination (or the L2 slice) does not change,
the linear relationship “shifts” as shown in Figure 17(a) for
different SMs.

Since the threat model assumes that the attacker knows the
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of unique cache lines can vary significantly. For example, if
a latency of 240 cycles is observed, the number of unique
cache lines can vary from 12 to 18. Thus, when the AES
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for the particular core needs to be known; otherwise, the
attacker cannot accurately infer the number of unique cache
line requests using the timing and guess the key byte.

2) RSA key recovery: Prior work [49] demonstrated how
the fraction of 1’s in the RSA key can be inferred based on its
linear relationship with execution time. During the decryption,
RSA performs square() and reduction() for bit 0, and
additional multiply() and reduction() for bit 1. Since
each function requires a constant amount of computation, the
execution time for processing a bit 1 is approximately twice
as long as a bit 0. Thus, an attacker can exploit the linear
increase in the RSA program’s execution time with the number
of functions executed to infer the number of 1’s.

However, based on the core (SM) that is executing the code,
the kernel execution time can vary significantly because of the
non-uniform latency to the memory partitions. An example of
the square() kernel timing on the A100 across different
SMs is shown in Figure 17(b). In this example, SM 2, 16,
30, 44, 58 are located on one partition and the other SMs are
located on the other partition. The square kernel [50] utilizes
two SMs and for illustration purposes, one SM is fixed while
the other SM placement is varied. Based on the placement of
the other SMs, the timing (latency) can vary significantly –
i.e., when SMs are located on different GPU partitions, the
added latency between the partition and the synchronization
overhead results in longer execution time, by up to 1.7×. Even
for SMs located within the same partition, the non-uniform
latency introduces up to 12% difference in performance.

It remains to be seen if the non-uniform latency can be
exploited for a different type of attack. For example, recent
work [51] has leveraged distance in a multi-hop (2D mesh)
network and higher latency to determine the L2 access pattern.
The hop-count is not necessarily different in GPUs but the
latency characteristics can potentially be exploited to enable
new types of side-channel attacks.

Implication #2: Non-uniform L2 latency does not
fundamentally change the timing side-channel attacks
but differences in timing between cores can impact side-
channel attack behavior.
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benchmark suite [8] are shown in Figure 16 for the V100 GPU.

The varying intensities indicate the volume of traffic des-
tined for each L2 slice. Although the number of memory
accesses fluctuates over time, the distribution of traffic across
the channels remains consistent. The only notable difference
emerges towards the end of execution due to workload-
imbalance (e.g., around timestep 700 in Gaussian workload)
– i.e., some cores have finished while other cores still have
work remaining.

Observation #12: Since memory traffic is load-
balanced across the memory channels, the NoC traffic
is also load-balanced.
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GPU vendors are limiting availability of some performance
counters that are exploited in side-channel attacks – e.g., in
response to prior work [41], per-L2 slice performance counters
are no longer available in recent NVIDIA GPUs [45] and only
the aggregate performance counter values are available. In
this work, we argue how NoC latency characteristics can be
exploited to determine core (SM) placement information and
can be leveraged for co-location as SM placement information
can be inferred from NoC latency characteristics.

As stated earlier in Observation 3, the L2 cache access
latency serves as a reliable proxy for estimating the dis-
tance between the SM and the L2 cache. Consequently,
the Pearson correlation (Observation 4) can be exploited to
reverse-engineer core placement within a GPU. This includes
determining the SM’s position within the GPC as well as the
L2 slice’s location within the memory partition. Thus, when
co-location is necessary for a GPU side-channel attack [3],
[40], [57] (e.g., spy and trojan co-located to establish a
covert channel), the latency characteristics can be leveraged.
In addition, the awareness of the SM placement can establish
a covert channel at the GPU NoC input but if a covert channel
is desired at the output of the GPU NoC (or at the input of
the L2), the L2 slice placement can potentially be exploited
as well.

Implication #1: NoC characterization can be leveraged
to obtain information about the core and/or L2 slice
placement in GPUs.

B. Attack: Non-uniform Latency

The correlation between performance or execution time and
input-dependent microarchitecture features are exploited in
timing side-channel attacks [6], [7], [21], [39]. Performance
is impacted by L2 latency and for a given source (or SM) and
a given destination (or L2), the latency does not change but
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the aggregate performance counter values are available. In
this work, we argue how NoC latency characteristics can be
exploited to determine core (SM) placement information and
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As stated earlier in Observation 3, the L2 cache access
latency serves as a reliable proxy for estimating the dis-
tance between the SM and the L2 cache. Consequently,
the Pearson correlation (Observation 4) can be exploited to
reverse-engineer core placement within a GPU. This includes
determining the SM’s position within the GPC as well as the
L2 slice’s location within the memory partition. Thus, when
co-location is necessary for a GPU side-channel attack [3],
[40], [57] (e.g., spy and trojan co-located to establish a
covert channel), the latency characteristics can be leveraged.
In addition, the awareness of the SM placement can establish
a covert channel at the GPU NoC input but if a covert channel
is desired at the output of the GPU NoC (or at the input of
the L2), the L2 slice placement can potentially be exploited
as well.

Implication #1: NoC characterization can be leveraged
to obtain information about the core and/or L2 slice
placement in GPUs.

B. Attack: Non-uniform Latency
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Fig. 19: RSA timing attack with (a) static and (b) random
thread-block scheduling.

C. Defense: Random Thread-block Scheduling

While prior side-channel attacks have been demonstrated on
real GPU systems, they require collecting a lot of data samples
but every time the workloads are executed, the assignment of
cores (or SMs) is the same – i.e., the latency observed is the
same since the same SMs are assigned – and the non-uniform
latency is not observed. Thread block (or CTA) scheduling
in GPUs, which is responsible for assigning the kernel to
the cores, is effectively static scheduling. Thus, we propose
dynamic scheduling using random assignment as the thread
blocks are initially mapped to random SMs for each kernel
execution to prevent side-channel attacks. Random thread-
block scheduling is effectively a random seed scheduling as
the assignment of the cores begins at a random core.

1) AES key recovery: The impact of random thread block
scheduling for AES key recovery is shown in Figure 18 which
shows the different possible key values on the x-axis and
the Pearson correlation values. Pearson correlation is used
to compare the distribution of the timing and number of
unique cache line requests, and when the correct key byte
is guessed, a high correlation value is obtained. With conven-
tional static scheduling, Figure 18(a) shows how AES key can
be recovered. 8 However, with the proposed random thread
block scheduling, the high Pearson correlation disappears
(Figure 18(b)) as the random scheduling results in the non-
deterministic execution time of AES based on the non-uniform
latency to the L2 cache slices.

2) RSA key recovery: Impact of random thread block
scheduling on RSA key recovery is shown in Figure 19.
With static thread-block scheduling, a linear relationship exists
between the number of ‘1’s and the execution time; however,
when the RSA code is executed across different SMs, the
linear relationship shifts based on the core location. In compar-
ison, when random thread-block scheduling is used, the linear
relationship becomes very noisy as shown in Figure 19(b).
The individual kernel within RSA timing varies based on
placement and leads to significant variability in the overall
execution time. Thus, if the attacker has a measured timing,
the range of the amount of ‘1’s can vary significantly – e.g.,
with an execution time of 2× 109 cycles, the number of ‘1’s
can vary between 416 and 1920.

8Due to space constraints, only the first four out of the 16 keys are shown
but the remain keys follow the same pattern.
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Fig. 15. Average cache access la-
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cache line
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Fig. 16. AES correlation a�ack with static block scheduling.

Fig. 17. Average execution time of
multiply kernel.

Fig. 18. RSA Timing a�ack with
static block scheduling.

Fig. 19. RSA Timing a�ack with
random block scheduling.

number of the unique cache line, but there is a variation on the execution time when it is mapped
to di�erent SMs. We observed that in one GPC, the maximum di�erence across di�erent SM is
around 11 cycles, while the number of unique cache lines is the same. It means that the attacker
can experience 11 cycles of di�erence on each execution when it is mapped to a di�erent SM. For
example, if the ground truth AES program sends 1 cache line request, the latency sample collected
by the attacker will be in the range (214, 225), then there are 29 possibilities according to which SM
it is mapped to. We also evaluate the end-to-end AES correlation attack by varying the block usage.
As shown in Figure 16, we observe that high correlation when the attacker’s key is the same as the
real key with normal block scheduling. However, such correlation disappears when we use the
random block to perform encryption at every execution, shown in Figure ??.

If a program uses a uniform amount of resources (cache and core), the non-uniform latency can
be averaged out and become uniform. While memory usage is uniform because of the hashing, the
core usage usually depends on the application. AES programs do not uniformly utilize the GPU
resources, such that the execution time of cache line requests will show great variance according
to how it is mapped to di�erent SM and L2 slices. The attacker is able to exploit the timing for AES
program in the real system in prior work because the victim always requires the same amount of
the GPU resource at every execution, i.e. the GPU scheduler always allocates the same SM and L2
cache to the AES program. Thus, as long as the SM and L2 slice mapping is always the same in
every execution, the attacker can compare the Pearson correlation to �nd the matching pattern to
reveal the secret. However, if the block scheduling is random, and a di�erent combination of SM
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cache to the AES program. Thus, as long as the SM and L2 slice mapping is always the same in
every execution, the attacker can compare the Pearson correlation to �nd the matching pattern to
reveal the secret. However, if the block scheduling is random, and a di�erent combination of SM
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(a) (b)

Fig. 20: Communication pattern of many-to-few-to-many in
throughput processors. (a) Bisection bandwidth (BWNoC−Bc )
and (b) memory bandwidth (BWMEM ) and the interface
bandwidth (BWNoC−MEM ) are highlighted.

Implication #3: Random thread block scheduling can
exploit the non-uniform latency to reduce the impact
timing side-channel attacks in GPUs.

Randomization is commonly used to prevent collection of
useful timing measurements in side-channel attacks [52]–[54].
However, randomization is often added to the hardware (e.g.,
randomize coalescing logic [52]) which introduces some com-
plexity and potentially degrades performance. In comparison,
our random thread-block scheduling is effectively a random
seed scheduling that does not introduce additional hardware
complexity. While random thread block scheduling can reduce
the impact of previously proposed timing side-channel attacks,
it remains to be seen if the proposed solution is fully secure
against various timing side-channel attacks.

VI. GPU NOC ARCHITECTURE IMPLICATIONS

In this section, we explore the implications of the NoC
analysis on the GPU NoC itself. More importantly, we revisit
the GPU NoC bottleneck identified in prior GPU NoC [28]
and we show how the previously assumed NoC bottleneck
does not properly model the impact of NoC bandwidth on
overall memory and L2 bandwidth.

A. Bandwidth Bottleneck in NoC

The network-on-chip (NoC) in GPUs consists of a request
network and a reply network (Figure 20(a)) with many-to-few-
to-many traffic pattern [28] – with the few memory controllers
becoming the performance bottleneck compared to the many
cores. Since memory access for high-throughput workloads
is often Read operation with small, read request size but
larger reply data size, the reply bandwidth (BWnoc−mem

in Figure 20(b)) was identified as a NoC bottleneck for
throughput processors [28], [30], [31], [33]. When congestion
builds up at the NoC-MEM interface of the reply network,
congestion backpressure impacts not only the memory band-
width utilization and the request network. However, we revisit
the reply bandwidth bottleneck and evaluate its impact on
memory bandwidth utilization. Using a similar configuration
as prior work [28], Figure 21(a) plots the memory utilization
of a single memory channel over time when executing a
memory-intensive synthetic kernel. The memory bandwidth
reaches maximum bandwidth but the bandwidth cannot be
sustained as the average memory bandwidth utilization is

Fig. 21: Memory channel utilization fluctuation from back-
pressure from the reply bandwidth bottleneck in a simulation-
based evaluation.

significantly lower – approximately 20% utilization – as
the reply bandwidth interface congestion blocks the memory
system and backpressure towards the request NoC. However,
evaluations on real GPUs, as shown earlier in Figure 9(a),
provide high bandwidth utilization across different GPUs,
exceeding 85% utilization. Thus, the simulator NoC modeling
is not necessarily representative of real GPU systems

In addition to the memory bandwidth, the L2 fabric band-
width or the on-chip bandwidth provided to the L2 is affected
by the NoC bandwidth. As shown earlier in Figure 9, L2
bandwidth exceeds overall memory bandwidth in recent GPUs;
however, simulations using the same configuration also show
that L2 bandwidth is lower than the maximum memory band-
width. 9 As a result, NoC in GPUs needs to be designed (and
modeled) such that it does not bottleneck both the memory
and the L2 bandwidth.

Implication #4: NoC does not bottleneck memory (or
L2) bandwidth in real GPUs but inaccurate assump-
tions of NoC can limit overall system bandwidth.

B. Bandwidth Hierarchy

Baseline NoC of throughput processors in prior work [28]
provided a balance between memory bandwidth and
NoC bisection bandwidth to achieve cost-effective (or
“throughput-effective”) NoC. However, the bisection band-
width (BWNoC−BC

in Figure 20(a)) only becomes an impor-
tant metric if the nodes (i.e., compute nodes for the request net-
work and memory nodes for the reply network) are injecting
sufficient bandwidth to saturate the bisection bandwidth. With
communication occurring from the cores to the memory nodes
(and vice-versa), the terminal or interface bandwidth from the
nodes (in particular, BWNoC−MEM in Figure 20(b)) becomes
the bottleneck. Insufficient interface bandwidth fundamen-
tally limits the memory (and L2) bandwidth. Another ap-
proach to view the problem is using a bottleneck analysis [55]
to identify that interface bandwidth can be the bottleneck.
Since the cores, the NoC, and the memory system are con-
nected in series, “the maximum throughput of K sub-systems
in series is the minimum of the subsystem throughput” [56].
Thus, even if high memory bandwidth is provided, the system
cannot sustain such high bandwidth if the aggregate terminal

9Note that this is not from the L2 cache modeling in the simulator but from
modeling/assumption of the NoC.



bandwidth (BWNoC−MEM ) becomes the bottleneck, even if
sufficient bisection bandwidth is provided. In general, the on-
chip bandwidth hierarchy [57] should reflect the hierarchical
system organization with the memory bandwidth being the
most costly yet the most limited resource, while the NoC
bandwidth is the (relatively) lowest cost resource and should
be provisioned such that it does not bottleneck the memory or
the L2 bandwidth.

Implication #5: On-chip bandwidth hierarchy needs to
be considered for the NoC to ensure it does not bot-
tleneck the overall system; in particular, the interface
bandwidth needs to be properly provisioned in addition
to the bisection bandwidth.

C. Baseline NoC in GPUs

There have been many simulation-based architectural stud-
ies of GPUs, including NoC architectures, warp scheduling,
and memory hierarchy. For such evaluations, the baseline
NoC needs to be properly defined to ensure proper insights
are drawn. In Figure 22, we collect data from several prior
work [14], [15], [17], [28]–[32], [58], [59]. We plot the
memory bandwidth (BWMEM ) vs. the NoC-MEM inter-
face bandwidth used where interface bandwidth is defined
as BWNoC−MEM = fNoC × w × C, (fNoC : NoC clock
frequency, w: NoC channel width, C: number of MPs). For
data points below the sloped line (i.e., BWNoC−MEM <
BWMEM ), the NoC interface bandwidth is the bottleneck and
can limit overall performance for memory intensive workloads
and effectively create a “network wall.” While different tech-
niques to improve the NoC bandwidth can improve overall
performance for such systems, the baseline NoC or the on-chip
bandwidth becomes the system bottleneck and not the memory
bandwidth. In comparison, when BWNoC−MEM > BWMEM

, the memory bandwidth is the bottleneck and is more repre-
sentative of modern GPU systems. As a result, simulations of
GPU architecture should ensure that on-chip bandwidth does
not bottleneck the more expensive, global memory bandwidth
or create a “network wall” – otherwise, insights can lead to
potentially overstating the benefits of NoC optimizations.

Throughput processors such as GPUs are bandwidth sen-
sitive and uniform bandwidth should be provided across
different destinations or memory partitions (Section IV-A).
However, if a multi-hop such as a 2D mesh is assumed as the
NoC topology, providing uniform bandwidth is a challenge as
shown in Figure 23(a). 10 Based on the physical location of the
core nodes, some nodes will receive much higher throughput,
by up to 2.4×. If globally fair arbitration such as age-based
arbitration [61], [62] is used, then global fair bandwidth can
be achieved (Figure 23(b)) on a 2D mesh topology but comes
at the cost of additional complexity for the flow control. In
addition, providing any necessary speed-up in the NoC is a

10Network-only simulation [60] was used with 6×6 2D mesh with random
traffic from the 30 compute nodes to 6 memory controllers on the edges
with dimension-ordered routing and round-robin arbitration. Nodes with zero
throughput are the memory nodes.

Fig. 22: Comparison of memory bandwidth and NoC-Mem
interface bandwidth modeled as different symbols represent
different simulation-based prior work [14], [15], [17], [28]–
[32], [58], [59].

(a) (b) (c)

Fig. 15: Measured L2 bandwidth on V100 when (a) increasing
the number of L2 slices accessed, (b) accessing one MP with
14 SMs or 28 SMs, and (c) increasing the number of memory
partitions (MPs) accessed with 14 SMs. Contiguous refers to
when SMs or L2 slices are allocated to the same GPC (or MP)
while Distributed refers to different GPC (or MP).

(a)

(b)

Fig. 16: Memory access pattern for (a) BFS and (b) Gaussian
workloads measured on the NVIDIA V100 GPU.

hashing algorithms are not publicly known, they are designed
to spread traffic across the memory channels.

TO understand the effect of hashing, memory access pat-
terns for two workloads (bfs, gaussian) from the Rodinia
benchmark suite [8] are shown in Figure 16 for the V100 GPU.

The varying intensities indicate the volume of traffic des-
tined for each L2 slice. Although the number of memory
accesses fluctuates over time, the distribution of traffic across
the channels remains consistent. The only notable difference
emerges towards the end of execution due to workload-
imbalance (e.g., around timestep 700 in Gaussian workload)
– i.e., some cores have finished while other cores still have
work remaining.

Observation #12: Since memory traffic is load-
balanced across the memory channels, the NoC traffic
is also load-balanced.

V. GPU TIMING SIDE-CHANNEL IMPLICATIONS

This section explores how NoC characteristics impact GPU
timing side-channel attacks. In particular, we describe how
non-uniform on-chip interconnect latency characteristics can
be leveraged to enable timing side-channel attacks as well as

Fig. 17: (a) Average cache access latency when the number of
unique cache lines are varied on the V100 GPU. (b) Average
execution time of multiply kernel.

be exploited to provide a defense mechanism against potential
timing side-channel attacks.

A. GPU Co-Location Placement

In highly parallel GPU architectures, side-channel attacks
often require careful co-location of kernels on the cores (or
SMs) to exploit the GPU’s parallelism. However, given the
increasing threat of side-channel attacks in modern GPUs,
GPU vendors are limiting availability of some performance
counters that are exploited in side-channel attacks – e.g., in
response to prior work [41], per-L2 slice performance counters
are no longer available in recent NVIDIA GPUs [45] and only
the aggregate performance counter values are available. In
this work, we argue how NoC latency characteristics can be
exploited to determine core (SM) placement information and
can be leveraged for co-location as SM placement information
can be inferred from NoC latency characteristics.

As stated earlier in Observation 3, the L2 cache access
latency serves as a reliable proxy for estimating the dis-
tance between the SM and the L2 cache. Consequently,
the Pearson correlation (Observation 4) can be exploited to
reverse-engineer core placement within a GPU. This includes
determining the SM’s position within the GPC as well as the
L2 slice’s location within the memory partition. Thus, when
co-location is necessary for a GPU side-channel attack [3],
[40], [57] (e.g., spy and trojan co-located to establish a
covert channel), the latency characteristics can be leveraged.
In addition, the awareness of the SM placement can establish
a covert channel at the GPU NoC input but if a covert channel
is desired at the output of the GPU NoC (or at the input of
the L2), the L2 slice placement can potentially be exploited
as well.

Implication #1: NoC characterization can be leveraged
to obtain information about the core and/or L2 slice
placement in GPUs.

B. Attack: Non-uniform Latency

The correlation between performance or execution time and
input-dependent microarchitecture features are exploited in
timing side-channel attacks [6], [7], [21], [39]. Performance
is impacted by L2 latency and for a given source (or SM) and
a given destination (or L2), the latency does not change but
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hashing algorithms are not publicly known, they are designed
to spread traffic across the memory channels.
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benchmark suite [8] are shown in Figure 16 for the V100 GPU.
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emerges towards the end of execution due to workload-
imbalance (e.g., around timestep 700 in Gaussian workload)
– i.e., some cores have finished while other cores still have
work remaining.

Observation #12: Since memory traffic is load-
balanced across the memory channels, the NoC traffic
is also load-balanced.
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non-uniform on-chip interconnect latency characteristics can
be leveraged to enable timing side-channel attacks as well as
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be exploited to provide a defense mechanism against potential
timing side-channel attacks.

A. GPU Co-Location Placement

In highly parallel GPU architectures, side-channel attacks
often require careful co-location of kernels on the cores (or
SMs) to exploit the GPU’s parallelism. However, given the
increasing threat of side-channel attacks in modern GPUs,
GPU vendors are limiting availability of some performance
counters that are exploited in side-channel attacks – e.g., in
response to prior work [41], per-L2 slice performance counters
are no longer available in recent NVIDIA GPUs [45] and only
the aggregate performance counter values are available. In
this work, we argue how NoC latency characteristics can be
exploited to determine core (SM) placement information and
can be leveraged for co-location as SM placement information
can be inferred from NoC latency characteristics.

As stated earlier in Observation 3, the L2 cache access
latency serves as a reliable proxy for estimating the dis-
tance between the SM and the L2 cache. Consequently,
the Pearson correlation (Observation 4) can be exploited to
reverse-engineer core placement within a GPU. This includes
determining the SM’s position within the GPC as well as the
L2 slice’s location within the memory partition. Thus, when
co-location is necessary for a GPU side-channel attack [3],
[40], [57] (e.g., spy and trojan co-located to establish a
covert channel), the latency characteristics can be leveraged.
In addition, the awareness of the SM placement can establish
a covert channel at the GPU NoC input but if a covert channel
is desired at the output of the GPU NoC (or at the input of
the L2), the L2 slice placement can potentially be exploited
as well.

Implication #1: NoC characterization can be leveraged
to obtain information about the core and/or L2 slice
placement in GPUs.

B. Attack: Non-uniform Latency

The correlation between performance or execution time and
input-dependent microarchitecture features are exploited in
timing side-channel attacks [6], [7], [21], [39]. Performance
is impacted by L2 latency and for a given source (or SM) and
a given destination (or L2), the latency does not change but
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Fig. 23: Bandwidth unfairness that occurs in a multi-hop (2D
mesh) topology architecture for (a) round-robin arbitration and
(b) globally fair, age-based arbitration.

challenge in a flat topology like 2D mesh. Recent work [34],
[35] have leveraged a hierarchical crossbar as the baseline NoC
topology that does not necessarily have the same limitations as
a 2D mesh NoC. While hierarchical crossbar can provide more
bandwidth, the NoC to memory (and L2) bandwidth needs to
be carefully provisioned for GPU architectural explorations. A
recent GPU simulator exploration (Accel-Sim [36]) discussed
how the L2 bandwidth discrepancy can potentially explain
some inaccuracy in their modeling of modern GPUs. Thus,
the bandwidth hierarchy of the entire system and not just NoC
bandwidth needs to be considered and properly modeled in
simulations.

Implication #6: Multi-hop topologies (e.g., 2D mesh)
present challenges in providing support for uniform
bandwidth across the nodes, regardless of the place-
ment, as well as difficulty in providing any speedup
needed in the NoC.

VII. CONCLUSION

This work provided a detailed analysis of modern GPU
network-on-chip (NoC), in terms of its latency and bandwidth.
In particular, non-uniform latency occurs based on the place-
ment of the cores and the L2 slices while on-chip bandwidth
is approximately uniform. However, the larger GPU with
multiple “partitions” introduces additional non-uniformity in
bandwidth and performance. Based on the characterization
of the NoC, we introduce some implications including its
impact on timing side-channel attacks of GPUs as well as
NoC architecture designs.
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