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ABSTRACT

Moore’s Law and the drive towards performance efficiency
have led to the on-chip integration of general-purpose cores
with special-purpose accelerators. Pangaea is a heteroge-
neous CMP design for non-rendering workloads that inte-
grates IA32 CPU cores with non-IA32 GPU-class multi-
cores, extending the current state-of-the-art CPU-GPU in-
tegration that physically “fuses” existing CPU and GPU de-
signs. Pangaea introduces (1) a resource repartitioning of
the GPU, where the hardware budget dedicated for 3D-
specific graphics processing is used to build more general-
purpose GPU cores, and (2) a 3-instruction extension to the
TA32 ISA that supports tighter architectural integration and
fine-grain shared memory collaborative multithreading be-
tween the TA32 CPU cores and the non-IA32 GPU cores.
We implement Pangaea and the current CPU-GPU designs
in fully-functional synthesizable RTL based on the produc-
tion quality RTL of an IA32 CPU and an Intel GMA X4500
GPU. On a 65 nm ASIC process technology, the legacy
graphics-specific fixed-function hardware has the area of 9
GPU cores and total power consumption of 5 GPU cores.
With the ISA extensions, the latency from the time an IA32
core spawns a GPU thread to the time the thread begins ex-
ecution is reduced from thousands of cycles to fewer than 30
cycles. Pangaea is synthesized on a FPGA-based prototype
and runs off-the-shelf TA32 OSes. A set of general-purpose
non-graphics workloads demonstrate speedups of up to 8.8 x.

Categories and Subject Descriptors

C.1.3 [Computer Systems Organization|: Processor Ar-
chitectures—Heterogeneous (hybrid) systems

General Terms

Design, Performance
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1. INTRODUCTION

As Moore’s Law pushes for a more rapid pace of silicon de-
velopment and even higher degree of on-die integration, the
number of cores in future multi-core designs will continue to
increase. As the microprocessor industry rapidly marches
into the era of multi-core design, the future generation of
multi-core processors will essentially become an integration
platform with not only numerous cores, but also different
types of cores varying in functionality, performance, power,
and energy efficiency [9]. Fundamentally, ultra low EPI (En-
ergy Per Instruction) cores are essential to scale multi-core
processor designs to incorporate a large number of cores.
One approach to improving EPI by an order of magnitude
is through heterogeneous multi-core designs, which have a
small number of large, general-purpose cores optimized for
instruction-level parallelism (ILP) and many more special-
purpose cores optimized for data-level parallelism (DLP)
and thread-level parallelism (TLP). Such a multi-core pro-
cessor offers opportunities for non-graphics application soft-
ware and usage models [1, 25, 31, 32, 33, 38] to aggressively
exploit the combination of ILP, DLP and TLP.

In this paper we present Pangaea, a synthesizable design
of a heterogeneous chip multiprocessor (CMP) that inte-
grates IA32 CPU cores with GPU multi-cores. Architected
to support general-purpose parallel computation, Pangaea
goes beyond the current state-of-the-art CPU-GPU integra-
tion that physically “fuses” an existing CPU design and an
existing GPU design on the same die. In Pangaea, new en-
hancements are introduced to both the CPU and GPU to
support tighter architectural integration, improved area and
power efficiency, and scalable modular design. On the CPU
side, a three-instruction extension to the IA32 ISA supports
a fly-weight communication mechanism between the CPU
and the GPU and a fine-grain shared memory collaborative
multithreading environment between the 1A32 CPU cores
and the GPU multi-cores. This ISA enhancement allows an
TA32 thread to directly spawn user-level threads to the GPU
cores, bypassing most of the legacy graphics specific fixed-
function hardware (e.g., input assembler, vertex shader, ras-
terization, pixel shader, output merger [26]) found in a mod-
ern GPU design. This can achieve a two-order of magni-
tude reduction in thread spawning latency. On the GPU
side, a state-of-the-art existing GPU design (Intel GMA
X4500 [15]) is rearchitected to significantly reduce the fixed-
function hardware, which is traditionally dedicated to sup-
port 3D-specific graphics processing. The legacy front-end
is replaced with a small FIFO controller that can buffer
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and dispatch GPU threads spawned by the IA32 CPU. The
legacy back-end is replaced by sharing the memory hierar-
chy between the IA32 CPU and the GPU multi-cores. The
removal of the legacy fixed-function hardware can result in
area savings (on a 65 nm process) equivalent to nine addi-
tional GPU cores (of five hardware threads each) and power
savings equivalent to five GPU cores.
This paper makes the following contributions:

e We describe the architecture support and microarchi-
tecture reorganization of both CPU and GPU in Pan-
gaea to achieve tighter architecture integration and
power and area efficiency of a heterogeneous CMP de-
sign.

o We detail a fully functional synthesizable implementa-
tion of a Pangaea design, based on production quality
RTL from an ILP optimized IA32 core and the GMA
X4500 GPU.

e We present an in-depth analysis of architectural trade-
offs between the Pangaea design and a state-of-the-art
design that physically fuses existing CPU and GPU on
the same die.

e We report significant performance gains for a set of me-
dia and non-graphics parallel applications by employ-
ing Pangaea to harvest ILP, DLP and TLP, achieving
speedups of up to 8.8x.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 provides a background on
baseline GPU architecture. Section 4 introduces the archi-
tectural enhancements to the IA32 CPU and the microarchi-
tectural reorganization of the X4500 GPU to support tighter
architectural integration. Section 5 details the implementa-
tion of Pangaea and assesses the key architectural tradeoffs
in terms of power and area savings compared to the state-
of-the-art CPU-GPU design with physical fusion. Section
6 evaluates the performance of a set of general-purpose ap-
plications on a Pangaea hardware prototype on an FPGA-
based emulator. Section 7 concludes.

2. RELATED WORK

We adopt the distinction between asymmetric and hetero-
geneous multi-core designs from related work [12, 38]. All
cores in an asymmetric multi-core design are of the same ISA
but differ microarchitecturally. In a heterogeneous multi-
core design, some cores feature different ISAs in addition
to microarchitectural differences. Prior work on multi-core
architectures has demonstrated significant benefits for both
power /performance and area/performance efficiency [3, 4, 8,
10, 12, 19, 20, 21, 27, 28]. However, those studies primar-
ily focus on asymmetric rather than heterogenous multi-core
design.

Heterogeneous multi-core designs integrate cores of differ-
ent ISAs and functionalities and can potentially lead to even
further improvement in power/area/performance efficiency.
IBM Cell’s heterogeneous architecture [18] offers a mix of
execution elements optimized for a spectrum of functions.
Applications execute on this system, rather than a collec-
tion of individual cores, by partitioning the application and
executing each component on the most appropriate execu-
tion element. The exoskeleton sequencer (EXO) architecture
[38] presents heterogeneous cores as MIMD function units to
the IA32 CPU and provides architectural support for shared

virtual memory, ensuring efficient data sharing across the
heterogeneous execution elements.

Recently, both AMD and Intel have made public announce-
ments on their upcoming mainstream heterogeneous proces-
sor designs for the 2009-10 timeframe. These processors
will be on-die integrations of the IA32 CPU and their re-
spective GPUs, which are traditionally found on the chipset
or in discrete GPU cards. The so-called fusion integration
physically connects existing CPU and GPU designs and sup-
ports some level of cache sharing between them, while the
designs themselves remain unchanged. Although the inte-
grated GPU is intended to run the legacy graphics software
stack, there has been growing interest in harvesting such het-
erogeneous multi-core processors to accelerate non-graphics
applications. Furthermore, there have been extensive efforts
to provide programming model abstractions and runtime
support to ease the otherwise daunting task for program-
mers to use heterogeneous multi-cores [6, 31, 32, 33].

Although heterogeneous integration is key to Pangaea,
Pangaea is different than fused designs in that it supports a
tighter-coupled integration through lightweight user-level in-
terrupts. Bracy et al. discuss these lightweight user-level in-
terrupts and utilize existing coherency logic to provide sim-
ple, preemptive, low-latency communication between cores
[5]. Many other microarchitectures also support preemptive
communication [2, 7, 13, 14, 22, 24, 29, 35, 37].

3. BACKGROUND

This section provides some necessary background on GPU
architecture and defines terminology that will be used in the
following sections. Figure 1 depicts an architectural organi-
zation of a modern GPU. It consists of three major compo-
nents (from left to right):

e Front-end: a graphics-specific pipeline ensemble of
fixed-function units, each corresponding to a certain
phase of the pixel and vertex processing primitives,
e.g., command streamer, vertex fetcher, vertex shader,
clipper, strip/fan, windower/masker, roughly in corre-
spondence to DirectX’s input assembler, vertex shader,
rasterization, pixel shader, and output merger [26],
respectively. The front-end translates graphics com-
mands into threads that can be run by the processing
cores.

e Processing multi-cores: hereafter referred to as Ex-
ecution Units (EU). This is where most GPU compu-
tations are performed. Each EU usually consists of
multiple SMT hardware threads, each implementing
a wide SIMD ISA. In the GMA X4500, each thread
supports 8-wide SIMD operations.

e Back-end: consists of graphics-specific structures like
render cache, etc., which are responsible for marshalling
data results produced by the EUs back to the legacy
graphics pipeline’s data representation.

Non-graphics communities are understandably interested
in harvesting the massive amount of thread level and data-
level parallelism offered by the EU to accelerate general-
purpose computation, for which the graphics specific hard-
ware front-end and back-end are largely overhead. The GPU
is managed by device drivers that run in a separate memory
space from applications. Consequently, communication be-
tween an application and the GPU usually requires device
driver involvement and explicit data copying. This results
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Figure 1: Organization of the Intel GMA X4500.

in additional latency overhead due to the software program-
ming model.

Pangaea assumes the EXO execution model that supports
user-level shared memory heterogeneous multithreading and
an integrated programming environment such as C for Het-
erogeneous Integration (CHI) [38] that can produce a sin-
gle fat binary consisting of multiple code sections of dif-
ferent instruction sets that target different cores. The fo-
cus of our study of the Pangaea design space is to inves-
tigate architectural improvements beyond the physical on-
die fusion of existing CPUs and GPUs and to assess the
power /area/performance efficiency using production quality
RTL for both an TA32 CPU design and a modern multi-core
multithreaded GPU design. The proposed architecture en-
hancements to both the CPU and GPU can enable much
more efficient software management of parallel computation
across heterogeneous cores. By minimizing resources ded-
icated solely to 3D-specific graphics processing, significant
improvements in area and power efficiency can be achieved.

4. PANGAEA ARCHITECTURE

This section introduces Pangaea’s architecture enhance-
ments to the IA32 CPU and architectural reorganization of
the X4500 GPU to support tighter architectural integration.

4.1 CPU-GPU Integration

Pangaea is a novel CPU-GPU integration architecture de-
sign that removes the legacy graphics front-end and back-
end of the traditional GPU design to enhance general-purpose
(non-graphics) computation. With architectural support for
shared memory and a fly-weight user-level inter-core com-
munication mechanism, Pangaea provides a tightly-coupled
architectural integration of CPU and GPU EUs to more effi-
ciently support collaborative heterogeneous multithreading
between GPU threads and CPU threads.

Each EU has 5
hardware

CPU threads

Thread Spawner
insn ptr | data (ptr)
|
Shared Memory Hierarchy

Figure 2: Pangaea: Integrated CPU-GPU without
Legacy Graphics Front- and Back-End.

Figure 2 shows a high level diagram of the Pangaea ar-
chitecture. Pangaea physically couples a set of EUs directly
with each CPU via an agile thread spawning interface, but

without the legacy graphics front-end and back-end. Each
EU works as a TLP/DLP coprocessor to the CPU. This
mechanism allows for a more power and area efficient design,
which maximizes the utilization of the massively-parallel
ALUs packed in the EUs.

The shared cache supports the collaborative multithread-
ing relationship (peer-to-peer or producer-consumer) between
the CPU and EUs. Both CPU and EU cores fetch their in-
structions and data from the shared memory. The common
working sets between CPU threads and EU threads benefit
from the shared cache. Enabling a coherent shared address
space also make it easier to build a simple communication
mechanism between the CPU and EU cores. The communi-
cation mechanism between the CPU and EU cores is intro-
duced as an ISA extension.

In Panagea, the EUs appear as additional function units
to which threads can be dispatched from the CPU. The CPU
is responsible for both assigning and monitoring the GPU’s
work. The CPU can receive results from the GPU as soon as
they are ready and schedule new threads to the GPU as soon
as EU cores become idle. Inter-processor interrupts (IPIs)
have often been leveraged for cross-core communication, but
they introduce performance overheads that are not appropri-
ate in the intended fine grained multithreaded environment
of Pangaea. Instead of using IPIs, Pangaea leverages simple
and fast user-level interrupts (ULIs) which are discussed in
the next section. A fast mechanism is desirable as the EU
threads are short lived and each EU thread processes only a
small amount of data. The CPU spawns a large number of
threads to increase the resource utilization of the EUs which
are optimized for DLP and TLP.

Sections 4.2 and 4.3 describe the TA32 ISA extension that
supports a user-level communication mechanism between
the CPU and EUs. Section 5 presents an analysis of the
power and area efficiency of Pangaea versus the fusion de-
sign.

4.2 1ISA Extension for User-level Interrupts

Pangaea introduces a three-instruction 1A32 ISA exten-
sion that supports communication between heterogeneous
cores. The three instructions are EMONITOR, ERETURN,
and SIGNAL. The communication mechanism is as follows.

A scenario is a particular machine event that may occur
(or fire) on any core. Example scenarios include an inval-
idation of a particular address, an exception on an EU, or
termination of a thread on an EU. EMONITOR allows ap-
plication software to register interest in a particular scenario
and to specify a user-defined software handler to be invoked
(via user-level interrupt (ULI)) when the scenario fires. This
scenario-to-handler mapping is stored in a new form of user-
level architecture register called a channel. Multiple chan-
nels allow multiple scenarios to be monitored simultaneously.

When the scenario fires, the microcode handler disables
future ULIs, flushes the pipeline, pushes the current in-
terrupted instruction pointer onto the stack, looks up the
instruction pointer for the user-defined handler associated
with the channel, and redirects program flow to that address.
The change in program control flow is similar to what hap-
pens when an interrupt is delivered. The key difference is
that the ULI is handled completely in user mode with mini-
mal state being saved/restored when the user-level interrupt
handler is invoked.
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Figure 3: Example of User-Level Interrupt (ULI).

ERETURN is the final instruction of the user-defined
handler. It pops the stack and returns the processor to the
interrupted instruction while re-enabling ULIs.

Figure 3 shows an example of using ULIs. On the left
and right is code provided by software. In the middle is the
microcode handler. Software activates a channel by execut-
ing the EMONITOR instruction, registering its interest in
invalidations to the task_complete variable and providing
the handler that should be called when the invalidation oc-
curs. In this example—one of many possible usage models—
the user code spawns a task to the EU and then performs
other work. When the EU completes its task, it writes to
the variable task_complete which is being monitored and
the scenario fires. The microcode handler invokes the user-
defined interrupt handler. The user’s handler can use the
result of the EUs immediately and/or assign the EU an-
other task. The user’s handler ends with ERETURN. The
program then returns to the instruction just after the last
committed instruction prior to the interrupt and the user
code continues its work. Other usage models might have the
EU’s task completion affect the user code’s behavior upon
returning from the interrupt.

To spawn a thread to the EU, the CPU stores the task (in-
cluding an instruction pointer to the task itself and a data
pointer to the possible task input) at an address monitored
by the Thread Spawner, shown in Figure 2. The Thread
Spawner is directly associated with the thread dispatcher
hardware on the EUs. The CPU then executes the SIG-
NAL instruction—the third ISA extension—to establish the
signaling interface between the CPU and EU.

As in related work [12], the SIGNAL instruction is a spe-
cial store to shared memory that the CPU uses to spawn
EU threads. Using SIGNAL, the EUs can be programmed
to monitor and snoop a range of shared addresses simi-
lar to SSE3’s MONITOR instruction [17]. Upon observing
the invalidation caused by the CPU’s SIGNAL, the Thread
Spawner loads the task information from the cache-line pay-
load. The Thread Spawner then enqueues the EU thread
into the hardware FIFO in the EU’s thread dispatcher, which
binds a ready thread to a hardware thread core (EU), and
then monitors the completion of the thread’s execution.

Upon recognizing the completion of a thread, the Thread

Spawner performs a final store (here, writing to task_complete)

that results in the scenario firing, as shown in Figure 3. The
CPU thread can schedule and dispatch more EU threads in
response (not shown).

Because the thread spawning and signaling interface be-
tween the CPU and EUs leverages simple loads and stores,
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Figure 4: TA32 CPU Block Diagram. Shaded blocks
indicate modifications to support ULI.

it can be built as efficiently as regular cache coherence with
very low on-chip latencies.

A similar fly-weight signaling mechanism is also used in
hardware to implement the exoskeleton prozy erecution mech-
anism [38]. In Pangaea the IA32 CPU handles exceptions
and faults incurred on the GMA X4500 cores for address
translation remapping and collaborative exception handling
using proxy execution. These mechanisms are essential to
support a shared virtual address space between the 1A32
CPU and the GMA X4500 cores.

Figure 4 shows the microarchitecture block diagram of the
TA32 core used for this study. The darkened units were mod-
ified to support ULIs. First, new registers are introduced
to support multiple channels (shown in Figure 4(a)). Each
channel holds a mapping between a user handler’s starting
address and the associated ULI scenario. A register is used
to hold a blocking bit which specifies if ULIs are temporar-
ily disabled. Since the channel registers store application
specific state, these registers need to be saved and restored
across OS thread context switches along with any active EU
thread context. Existing IA32 XSAVE/XRSTOR instruc-
tion support can be modified to save and restore additional
state across context switches [16]. These registers can be
read and written under the control of microcode.

The exception/interrupt unit (shown in Figure 4(b)) han-
dles all interrupts and faults, and determines whether in-
structions should be read from the instruction decoder or
the microcode. This unit is modified to recognize ULI sce-
narios. A new class of interrupt request, ULI-YIELD, trig-
gers at the firing of a scenario and requests a microcode
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control-flow transfer to the ULI microcode handler. This
interrupt is handled in the integer pipeline. All state logic
associated with the ULI-YIELD, determining when an ULI-
YIELD should be taken, and saving pending ULI-YIELD
events is found here. Because the ULI-YIELD request has
the lowest priority of all interrupt events, ULIs do not in-
terfere with traditional interrupt handling. Once the ULI-
YIELD has priority, the exception/interrupt unit flushes the
pipeline and jumps to the ULI microcode handler. If mul-
tiple channels are implemented, when multiple instances of
ULI-YIELD interrupts simultaneously occur, lower indexed
channels have higher priority over higher indexed channels.

The instruction decoder (shown in Figure 4(c)) is respon-
sible for decoding instructions and providing information
needed for the rest of the CPU to execute the instruction.
The decoder is modified to add entry points for the new IA32
instructions EMONITOR, ERETURN and SIGNAL. These
changes map the CPU instructions to the corresponding mi-
crocode flows in the microcode. The microcode (shown in
Figure 4(d)) is modified to contain the ULI microcode han-
dler and the microcode flows for EMONITOR, ERETURN
and SIGNAL. The ULI microcode handler flow saves the
current instruction pointer by pushing it onto the current
stack, sets the blocking bit to prevent taking recursive ULI
events, and then transfers control to the user-level ULI han-
dler. The EMONITOR microcode flow registers a scenario
and the user handler instruction pointer in the ULI channel
register. The ERETURN microcode flow pops the saved in-
struction pointer off the stack, clears the blocking bit and
finally transfers control to the main user-code where it starts
re-executing the interrupted instruction.

In Pangaea, we introduce a ULI scenario, ADDR-INVAL,
which architecturally represents an invalidation event in-
curred on a range of addresses, which resembles the be-
havior of a user-level version of the MONITOR/MWAIT
instruction in SSE3. Unlike MWAIT [17], when the IA32
CPU in Pangaea snoops a store to the monitored address
range, the CPU will activate the ULI microcode handler
and transfer program control to the user-level ULI handler.
To implement a producer-consumer workload using a tra-
ditional polling model, the producer regularly reads a des-
ignated semaphore address, checking for a value indicating
that the consumer has completed its task. With the ADDR-
INVAL ULI, the producer sets up a ULI channel to moni-
tor future asynchronous updates to a semaphore and then
proceeds to work on other tasks in parallel while the hard-
ware performs the monitoring. When a consumer writes to
the semaphore indicating task completion, this triggers the
ADDR-INVAL ULI scenario and the producer is informed of
this asynchronously. This ULI scenario is used for the signal-
ing between the IA32 CPU cores, the thread spawner, and
the GMA X4500 EUs by leveraging the existing cache co-
herence protocol support, which is much more efficient than
traditional IPI mechanisms that are sent via the interrupt
controller. The address range that needs to be monitored
is set up using the SIGNAL instruction which directly com-
municates with the thread spawner.

4.3 User-level Interrupt Handler

Certain precautions need to be taken in designing and
writing a user-level interrupt handler as it runs in the con-
text of the monitoring software thread. The monitoring soft-
ware thread is the thread that executes the EMONITOR

instruction and monitors the execution of the EU threads.
The monitoring software thread runs on the IA32 CPU con-
currently with the EU threads that run on the GPU. The
user-level interrupts are delivered in the context of the mon-
itoring thread without operating system intervention and
they pre-empt the execution of the monitoring thread. Due
to the pre-emptive nature of the user-level interrupt the user-
defined interrupt handler should avoid attempting to acquire
locks or invoke system calls that acquire locks as the mon-
itoring thread may be executing in the middle of a critical
section when it is pre-empted to execute the user-level inter-
rupt handler. If the user-level interrupt handler attempts to
acquire the same lock that has already been acquired then a
deadlock results. An ideal user-level interrupt handler does
not need to be complex or invoke system calls as the user-
level interrupt handler is responsible for dispatching a new
set of threads to the EU or resolving exception conditions
for the EU threads to make forward progress. The user-
level interrupt handler usually sets flags that are checked by
the monitoring thread when exception conditions have to be
resolved. An example of this is shown in Figure 3.

The user-level interrupt serves as a notification mecha-
nism of a exception that needs to be resolved for the EU
threads to make forward progress or to inform the monitor-
ing thread about the termination of a group of EU threads.
The monitoring thread can resolve the exception condition
and then resume the EU thread at a later point in time. The
interrupt mechanism is optional and the monitoring thread
can always use the polling mechanism to poll on the status
of the EU threads by reading the channel registers which
contain the scenarios that are being monitored as well as
the current status of the scenario. The monitoring thread
may attempt to just poll the channel registers when there
is no more concurrent work to do or there is a need for a
barrier synchronization between the monitoring thread and
the EU threads.

The user-level interrupt handler is also responsible for sav-
ing and restoring the register state that is not saved /restored
by the microcode handler. Since the user-level interrupt
handler runs in the context of the monitoring thread it is
safe to assume that the code segment or stack segment regis-
ters do not change after the monitoring thread executes the
EMONITOR instruction as segmentation is not normally
used for virtual memory management in modern operating
systems. The only exception to this assumption is when the
monitoring thread is running in compatibility 32-bit mode
under a wrapper on a 64-bit operating system. A change
in the code and stack segment occurs during transition from
compatibility 32-bit mode to 64-bit mode in user space. The
microcode handler is modified to suppress any user-level in-
terrupts to be delivered when the code segment values do not
match what was recorded when the EMONITOR instruction
is executed. The delivery of the user-level interrupt is frozen
for the duration of execution in 64-bit user mode. The EU
threads that do not need to report any exceptions or ter-
minate can continue to execute even when the monitoring
thread is executing in 64-bit user mode. When the moni-
toring thread returns from executing in 64-bit mode back
to 32-bit mode the microcode detects the pending user-level
interrupt and invokes the user-level interrupt handler. This
simple mechanism is sufficient to allow 32-bit applications to
continue to work when migrated to run on a 64-bit operating
system that runs the application in compatibility mode.
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Parameter Configuration
2-issue, in-order, 4-wide SIMD capabilities,
TA32CPU optimistically giving 4x speedup over non-SIMD
CPU-only 8KB 2-cycle access write-back data cache, 8KB Instruction cache,
L1 Caches 2-way set associative
EUs 2 EUs, 5 hardware threads each, 8-wide SIMD ISA, 4-wide SIMD execution unit,
0 latency thread switch, 64 256-bit registers per thread. Same clock speed as CPU
EU._ only 4KB shared instruction cache, 4-way set associative
Instruction Cache
Shared L2 Cache 256KB shared with EU for EU instructions and data, 32-bits/clock bandwidth,
configurable access latency by EU (2 to >100 cycles)

Table 1: One Pangaea Prototype Configuration that fits one Xilinx Virtex-5.

The user-level interrupt mechanism provides a simple, fast
and efficient core-to-core communication mechanism with-
out having to introduce new interrupts that need device
driver management or major changes to the interrupt con-
troller.

5. PANGAEA IMPLEMENTATION

To assess its power/area/performance efficiency, we im-
plement a synthesizable design of Pangaea using produc-
tion quality RTL for both an TA32 CPU design and a mod-
ern multi-core multithreaded GPU design. This section de-
scribes the Pangaea implementation and prototyping on an
FPGA. We also discuss the power/area efficiency analysis.
Section 6 presents a performance evaluation of Pangaea us-
ing a set of non-graphics parallel workloads.

5.1 Pangaea’s Synthesizable RTL Design

We build a prototype of the proposed Pangaea architec-
ture by implementing synthesizable RTL of a fully functional
single-chip heterogeneous CMP consisting of an IA32 CPU
and GMA X4500 multi-cores (i.e., EUs). The CPU used
in our prototype (shown in Figure 4) is a production two-
issue in-order IA32 processor equivalent to a Pentium with
a 4-wide SSE enhancement. The EU is derived from the
RTL for the full GMA X4500 production GPU. We config-
ure our RTL to have two EUs, each supporting five hard-
ware threads. While the baseline design is the physical fu-
sion of the existing CPU and full GPU, in Pangaea much of
the front-end and back-end of the GPU have been removed,
keeping only the EUs and necessary supporting hardware.
By attaching the EU onto the memory hierarchy of the CPU
(sharing of the last-level cache), we no longer need to dupli-
cate the hardware required for accessing and caching mem-
ory on the GPU. This prototype design provides means to
adjust various configuration parameters, including capaci-
ties and access latencies for the memory hierarchy, number
of EUs and number of hardware threads per EU. The RTL
can be synthesized to either ASIC or FPGA targets.

Table 1 shows one particular design that can be synthe-
sized to a Xilinx Virtex-5 XC5VLX330 FPGA using Synplify
Pro 9.1 and Xilinx ISE 9.2.03i. Table 2 shows the resource
usage as reported by Synplify Pro for our FPGA prototype.
The IA32 core is larger than one EU, taking up approxi-
mately 24% of the 207,360 available FPGA 6-LUTs. As the
table shows, the EU subsystem with 2 EUs is less than dou-

. Block DSP48

LUTs | Registers RAMs blocks

1A32 CPU 50621 24518 118 24

EU 84547 | 36170 67 64
Subsystem

Other 1604 591 91 2

Table 2: Virtex-5 FPGA Resource Usage for the
Pangaea configuration in Table 1.

ble the area IA32 CPU in our prototype. The impact from
the modifications to the CPU to support ULIs (not shown)
is negligible—on the order of 50 LUTs. The logic added
to support the thread spawner (not shown) is only 2% of a
single EU.

The prototype can fit just two EU cores and occupies 66%
of the 6-LUTs available on the Virtex-5 LX330. Larger con-
figurations consisting of multiple EUs have been evaluated
in RTL simulation. For parallelizable workloads evaluated
in this paper (see Section 6), we expect throughput per-
formance to scale roughly with the number of EUs. The
critical timing path within the EU allows us to clock the
Pangaea prototype system at a maximum of 17 MHz with-
out any special tuning. Similar to [23], the FPGA system on
chip is mounted on an adapter that sits in a standard Intel
Pentium motherboard with 256 MB DRAM. Because of the
critical path in our FPGA prototype, we underclocked the
motherboard to 17 MHz, down from the original 50 MHz.
Note that by underclocking the entire board, the relative
speeds between all parts of the system remain unchanged,
including processor, RAM and cache. The main advantage
of an FPGA prototype compared to RTL simulation is the
ability to execute orders of magnitude faster. Even at 17
MHz, the FPGA emulation speed is quicker than fast TA32
platform functional simulators such as SoftSDV [36]. This
allows our prototype to run off-the-shelf operating system
software, including Windows XP and Linux, and execute fat
binaries of heterogeneous multithreaded programs produced
by frameworks similar to EXOCHI [38].

5.2 Area Efficiency Analysis

To assess the area efficiency of Pangaea versus the baseline
fusion design, we use the area data collected from the ASIC
synthesis of the baseline GMA X4500 RTL code. This ASIC
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synthesis result corresponds to a processor built on a 65 nm
process. The left column of Table 3 shows the area dis-
tribution of a fusion-styled design with two EUs, including
both legacy graphics front- and back-ends. The total area
used for graphics-specific legacy hardware (the front- and
back-ends) is 81%—the equivalent of over nine EUs. Even
if this cost were amortized across more EUs, the overhead
remains significant. With 32 EUs, for example, the front-
and back-ends still occupy 23% of the chip area.

2-EU GPU | 2-EU Pangaea
Processing 17% 94%
Thread Dispatch 1% 5%
Front-End 34% -
Memory Interface 1% -
Back-End 47% -
Interfacing Logic - 1%

Table 3: Area distribution of two-EU systems.

The right column of Table 3 depicts the distribution of
chip area of the Pangaea configuration shown in Table 1.
Unlike the two EU GPU in a fusion design, a two EU Pan-
gaea design has much higher area efficiency. A majority
(94%) of the area is used for computation. The extra hard-
ware added to implement the thread spawner and its in-
terface to the interconnection fabric is minimal, amounting
to 0.8% of the two-EU system, and easily becomes negligi-
ble in a system with more EUs. This significantly reduced
overhead allows us to efficiently use EUs as building blocks
for DLP/TLP and couple them with the IA32 cores in a
heterogeneous multi-core system.

5.3 Power Efficiency Analysis

Table 4 shows the total power consumption distribution
for a two-EU GPU including both dynamic power and leak-
age power. Like our area analysis, we use power data based
on ASIC synthesis. Most noticeable is that the legacy graph-
ics front-end contributes a lower proportion of power relative
to its area. This is mainly due to extensive use of clock-
gating that results in reduced dynamic power consumed by
the front-end, since only the fixed-functions in the front-end
that relate to the current task are switched on. We estimate
that removing the legacy graphics-specific hardware would
result in the equivalent of five EUs of power savings.

Processing 29%
Thread Dispatch | 0.5%
Front-End 14%
Memory Interface | 0.5%
Back-End 57%

Table 4: Power distribution of a two-EU GPU.

Because of the reduced front-end power, the power over-
head for keeping the front-end and back-end in the design is
lower than the area overhead. Despite that, the power over-
head is still significant for a large number of EUs per GPU,
and prohibitive for a small number of EUs. For a two-EU
Pangaea (not shown), the power increase due to the thread
spawner and related interfacing hardware is negligible com-
pared to the amount of power saved by removing the legacy
graphics specific front- and back-ends of the two-EU GPU.

5.4 Thread Spawn Latency

Table 5 compares the latency of spawning a thread in
fusion CPU-GPU integration versus Pangaea. The thread
spawn latencies are collected from RTL simulations of the
two configurations. The latencies reported are for the hard-
ware only. For the baseline GPGPU case, thread spawn
latency is measured from the time the GPU’s command
streamer hardware fetches a graphics primitive from the
command buffer until the first EU thread performing the
desired computation requests is scheduled on an EU core
and performs the first instruction fetch. For the Pangaea
case, we measure the time from when the IA32 CPU writes
the thread spawn command to the address monitored by the
thread spawner set up by the SIGNAL instruction, until the
thread spawner dispatches the thread to an EU core and
the first instruction is fetched. The latency in the GPGPU
case is approximate, as the amount of time spent in the 3D
pipeline varies somewhat depending on the graphics primi-
tive performed.

GPGPU Pangaea
3D pipeline ~ 1500 Bus interface 11
Thread Dispatch 15 | Thread Dispatch | 15
Total ~ 1515 Total 26

Table 5: Thread Spawn Latency in cycles.

Unlike the Pangaea case, the measurement for the GPGPU
case is optimistic since (1) the latency numbers apply only
when the various caches dedicated to the front-end all hit,
and (2) the measurement does not take into account of the
overhead incurred by the CPU to prepare command primi-
tives. In the GPGPU case, the CPU needs to do a significant
amount of work before the GPU hardware can begin process-
ing. For example, when the GPGPU parallel computation
is expressed in a shader language, the CPU needs to first
convert the device independent shader byte code into native
graphics primitives, place the appropriate commands into
the command buffer, and notify the GPU that there is new
data in the command buffer. Since CPU and GPU operate
in separate address spaces, the CPU would also need to go
through the device driver interface to copy the code and data
into non-cacheable memory the GPU can access. This pro-
cess is usually inefficient due to the involvement of privilege
level ring transitions and data movement between cacheable
and non-cacheable memory regions. In effect, the 1515 cy-
cle latency for GPGPU assumes 0O-cycles of CPU work. In
contrast, the Pangaea case simply involves a user-level 32-
bit store containing the instruction pointer of the EU thread
to be spawned to the EU core.

Much of the latency for the GPGPU case comes from
needing to map the computation to the 3D graphics pro-
cessing pipeline. Most of the work performed in the 3D
pipeline is not relevant to the computation, but is neces-
sary if the problem were formulated as a 3D computation.
By bypassing the front-end of the 3D pipeline, we have suc-
cessfully reduced the thread spawning latency. With spawn-
ing latency reduction of two orders of magnitude, Pangaea
can enable more versatile exploration of ILP, DLP and fine
grain TLP through tightly-coupled execution on the hetero-
geneous multi-cores. In Section 6, we will study a set of
workloads with varying degrees of ILP, DLP and TLP.
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Kernel Description EU-kernel Data Size Threads | Icount/
code size thread
Linear filter 1,2 computes average of pixel and 8 neighbors 25KB |1: 640x480 24-bit image 6,480 159
2: 2000x2000 24-bit image 83,500 159
Sepia Tone 1,2 modifies RGB values of each pixel 4.0KB |1: 640x480 24-bit image 4,800 247
2: 2000x2000 24-bit image 62,500 247
Film Grain Technology| applies artificial film grain filter from H.264 standard 6.6 KB 1024x768 image 96 15,200
(FGT)
Bicubic Scaling scales YUV image using bicubic filtering 6.1 KB 360x240 — 720 x 480 2,700 691
k-means k-means clustering of uniformly distributed data 1.5 KB k=8, 100,000x8 200,000 94
SVM kernel from SVM-based face classifier 3.6 KB 704x480 image 1,320 11248

Table 6: Benchmark Suites

6. PERFORMANCE EVALUATION

This section evaluates the performance of Pangaea. Our
benchmarks are run on the FPGA prototype with the con-
figuration described in Table 1, under Linux, compiled us-
ing a production IA32 C/C++ compiler that supports het-
erogeneous OpenMP with the CHI runtime [38]. For the
benchmarks, we select four product quality media process-
ing kernels and 2 informatics kernels that are representative
of highly parallel compute-intensive workloads rich in ILP,
DLP and TLP. These benchmarks have been optimized to
run on the IA32 CPU alone (with 4-way SIMD) as the base-
line, and on Pangaea to use both the IA32 CPU and the
GMA X4500 EUs in parallel whenever applicable, including
leveraging the new IA32 ISA extension to support user-level
interrupts. Table 6 gives a brief description of the bench-
marks. While FGT and SVM have relatively few threads of
coarser granularity, the rest have many more threads of fine
granularity.

Figure 5 shows the speedups of Pangaea relative to a CPU
only case. Despite each EU being slightly smaller in area
than the CPU, running highly parallel workloads on Pan-
gaea rather than the IA32 CPU alone results in significant
performance improvements, ranging from 1.9 to 8.8x im-
provement on a two-EU Pangaea system.
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Figure 5: Pangaea speedup vs. CPU w/ SSE alone.

The first four benchmarks are implementations of several
key image and video processing algorithms. They operate
on image frames and tend to be highly parallelizable, be-
cause an input image can usually be divided into indepen-
dent macro-blocks (e.g., 8 by 8 pixels in dimension) which
can be processed independently. Consequently, many paral-
lel threads can be created, each corresponding to a macro-
block. Each thread can be further optimized to exploit 8-
wide SIMD operations. Between threads, spatial or tempo-

ral locality can also be exploited. For example, in some
video processing algorithms, adjacent macro-blocks along
x-, or y- or the diagonal dimension may have overlapping
stripe or mini-blocks. It is advantageous to schedule the
corresponding threads back-to-back so that the overlapped
data fetched by the first thread can be reused by the second
thread. With architectural support for fly-weight thread
spawning and inter-core signaling, Pangaea can efficiently
support agile user-level thread scheduling. With these opti-
mizations, the benchmarks show impressive speedups. Lin-
ear filter computes the average pixel values of a pixel with
its 8 neighbors. Sepia tone modifies each pixel’s RGB val-
ues, dependent only on the same pixel’s original RGB values.
FGT applies an artificial film grain filter. Bicubic performs
a bicubic-filtered image scaling.

Although similar to Sepia tone, Linear filter sees a larger
speedup mainly because Linear filter makes references to
neighboring pixels, which the CPU cannot store entirely in
architectural registers, requiring cache accesses. When exe-
cuted on the EU, an entire block of pixels can be stored and
manipulated in the EU’s large register file. The other two
benchmarks are classic machine learning informatics bench-
marks that focus on either clustering (k-means) or segre-
gating (SVM) classes of high dimensional data. K-means
clustering finds k clusters in a set of points by finding the
set of points closest to randomly-generated centroids, then
iteratively moving the centroid to be the mean of the set of
points that belongs to it. This benchmark is partially par-
allelized, and cooperatively executes on both the CPU and
EU simultaneously. Finding which cluster each point be-
longs to is parallel and runs on the EU, and computing the
mean is performed serially, on the CPU. The serial portion
is the bottleneck in this benchmark, resulting in a small
1.9% speedup. The transition between parallel and serial
sections of the computations is made more efficient through
the fly-weight thread spawning and signaling between the
CPU and the EU. The Support Vector Machine (SVM) ker-
nel performs the dot product of blocks of pixels with an
array of constant values. Unlike k-means, there is no signif-
icant serial portion to the code, and a speedup of 3.6x is
achieved.

While it may seem that achieving almost a 9x speedup
with only twice the number of functional units is unreal-
istic, multiple architectural features combine to allow the
EUs to operate much more efficiently than the CPU’s SIMD
unit and result in larger than expected speedup. As dis-
cussed in Section 3, Pangaea utilizes not only DLP but also
TLP. When multiple threads exist, multithreading signifi-
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Figure 6: Tolerance of Pangaea to Different Memory Access Latencies.

cantly increases utilization of the EU’s functional units (e.g.
92% on the EUs vs 65% on the CPU in Linear filter). Addi-
tional performance improvement is attributable to the EUs’
ISA. The EU’s SIMD-8 instructions allow a large reduction
in the instruction count for these data parallel workloads.
Furthermore, the EU’s large register file minimizes spilling
of registers to memory (57% of CPU instructions in bicubic
reference memory, whereas only 7.4% of the EU instructions
are loads and stores). Bicubic also heavily uses the multi-
ply accumulate instruction and the low latency accumulator
registers (55% of EU instructions), which the CPU does not
support, giving this benchmark a particular advantage on
the EUs.

To further explore the performance aspects of Pangaea,
we assess its sensitivity to the latency of the shared memory
hierarchy. Here we vary the latency it takes the EU hard-
ware thread to access shared memory from 2 to 1000 cycles.
Figure 6 shows the results of this experiment. This experi-
ment sheds light on the impact of not only different access
times for the shared L2, but also different shared memory
configurations. While a latency of between 50 and 100 cycles
might simulate a shared last level cache, latencies exceeding
100 cycles can indicate the performance impact of configu-
ration where CPU and EUs share no caches at all. Although
the “performance knee” varies for each benchmark, perfor-
mance is insensitive to access latency up to approximately
60 cycles for all benchmarks. Once access time exceeds 100-
200 cycles, performance improvement slowly diminishes, but
even at 1000 cycles, speedups are still anywhere from 1.9x
to 5.9%. Bicubic and FGT are the most sensitive to access
latency due to the fact that the EU’s instruction cache is
only 4KB, and each of these kernels is over 6KB in size (see
Table 6). Consequently, higher memory latency affects not
only data accesses, but also the instruction supply. K-means
shows the least sensitivity to memory latency. This is be-
cause the serial portion of the algorithm (the part run on
the CPU) continues to be the performance bottleneck.

The results of this sensitivity study indicate that a va-
riety of shared cache configurations and access times will
produce similar speedups. The performance of the Pangaea
architecture does not depend entirely on sharing the closest
level cache; the choice of which level of memory hierarchy to
share can be traded off with margins for ease or efficiency of
implementation without noticeably degrading performance.

7. CONCLUSION AND FUTURE WORK

In this paper, we present Pangaea, a heterogeneous multi-
core design, including its architecture, an implementation
in synthesizable RTL and an in-depth evaluation of power,

area, performance efficiency and tradeoffs. We demonstrate
the potential to significantly improve power/area/performance
efficiency for heterogeneous multi-core designs, should they
be targeted for a general-purpose heterogeneous multithread-
ing model beyond legacy graphics. As long as Moore’s Law
continues at its current pace, the level of integration in main-
stream microprocessors will continue to increase in terms of
quantity and diversity of heterogeneous building blocks, so
will the need to achieve higher power/area efficiency. It
is advantageous to represent these heterogeneous building
blocks as additional architectural resources to the general-
purpose CPU. Such tighter architectural integration will al-
low ease of programming and the use of these new build-
ing blocks without requiring drastic changes in the software
ecosystem (e.g., the OS). In turn, the software ecosystem
will continue to innovate and harvest the parallelism of-
fered by the hardware more efficiently. Even for graphics,
leading researchers [11, 34] are actively investigating op-
portunities beyond today’s brute-force, unidirectional ren-
dering pipeline. They have proposed programmable graph-
ics and interactive rendering techniques to design adaptive,
demand-driven renderers that can efficiently and easily lever-
age all processors in heterogeneous parallel systems and tightly
couple the distinct capabilities of the ILP-optimized CPU
and DLP/TLP-optimized GPU multi cores to generate far
richer and more realistic imagery. Like the famed wheel of
reincarnation [30], an efficient heterogeneous multi-core de-
sign like Pangaea potentially offers opportunities to signifi-
cantly accelerate parallel applications like interactive render-
ing. We continue to actively investigate these opportunities
in our on-going exploration.
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