Progressive-BackSpace: Efficient Predecessor Computation for Post-Silicon Debug

Johnny J.W. Kuan and Tor M. Aamodt
Department of Electrical and Computer Engineering
University of British Columbia, Vancouver, BC
Email: jkuan@ece.ubc.ca, aamodt@ece.ubc.ca

Abstract—As microprocessors become more complex, finding
errors in their design becomes more difficult. Most design errors
are caught before the chip is fabricated, however, some make it
into the fabricated design. One challenge in determining what
is wrong with a new design after fabrication is the lack of
observability into the state of the fabricated chip. To address
this challenge, BackSpace [1], [2] proposes generating a trace
of the states that lead up to an erroneous state. To add one
state to the trace, BackSpace first generates a set of possible
predecessor states (the pre-image), then tests them one at a time
to find one that is reached during execution. In this paper, we
propose an improved algorithm called Progressive-BackSpace. It
does not enumerate every state in the pre-image. Instead, it first
finds a reachable candidate state, and then determines if it is a
predecessor state. This results in a practical implementation of
BackSpace by greatly reducing the time needed to find prede-
cessor states. The hardware overhead is also reduced by 94.4%
relative to a recently proposed implementation of BackSpace [3].
These algorithms were implemented and evaluated on a RTL
model of an out-of-order processor, that models non-deterministic
effects.

I. INTRODUCTION

It is common for errors to be found in the design of modern
processors after they are released [4]. A well-known example
of a design error is the Pentium floating point division bug
that is estimated to have directly cost Intel $475 million in
replacements and write-offs [5]. These design errors exist
despite the tremendous effort put into finding and correcting
them. This effort starts before the chip is fabricated, during
pre-silicon validation, and continues afterwards during post-
silicon debug (also known as silicon validation). Ideally, all
design errors would be found and corrected before the chip is
manufactured and post-silicon debug would not be required.
However, this is not possible, due in part to the complexity
of modern chip designs and the slow speed of simulation. For
example during pre-silicon validation of the Pentium 4 the
total amount of simulation performed was equivalent to less
than two minutes of execution on a 1 GHz chip [6].

The process of finding and correcting errors continues after
the chip is fabricated. The fabricated chip may, in addition
to design errors, have electrical errors caused by the man-
ufacturing process. In this paper we assume that a separate
process, known as manufacture testing, has already selected a
set of chips that are free of electrical errors for use in post-
silicon debug. This paper will focus on enhancing the process
of determining what is wrong when the design of a fabricated
chip is incorrect.

Lack of observability into chips is one of the major chal-
lenges in post-silicon debug [7], [8]. This is in contrast with

pre-silicon validation, where the entire internal state of the
design is observable at all times. To improve observability
post-silicon engineers currently use tools like scan chains.
Scan chains allow the state of the chip to be read out once
it is stopped provided special flip-flops are used on the chip.
However, a snapshot of the state of the chip at one cycle may
be insufficient to find the root cause of a bug. Trace buffers
[9] provide a view of many cycles, but for a limited set of
signals. What is needed is a way to expand observability in
terms of both the number of internal signals in the chip that
can be seen by the debug engineer and the length of time over
which they can be observed.

One proposal to increase observability into a chip post-
silicon is BackSpace [1], [2]. The goal of BackSpace is to
produce a trace of on-chip events leading up to a bug that can
be fed into a waveform viewer. Each iteration of BackSpace
requires computing the set of all possible predecessor states
(the pre-image), which can be very large or require substantial
hardware overhead. Then, the states in the pre-image must
be tested one a time by repeatedly running the chip, which
can be time-consuming. We instead run the chip to find a
candidate state first, and then determine whether the candidate
state is a predecessor without enumerating the pre-image by
using information obtained by running the chip forwards. This
allows us to utilize the speed of the fabricated chips forward
state progression in an efficient manner

In this paper, we propose a new post-silicon trace algorithm,
Progressive-BackSpace, that (a) generates traces that satisfy
the same properties as those generated by BackSpace, (b)
requires 94.4% less on-chip storage than a recently pro-
posed implementation of BackSpace and (c) requires dra-
matically fewer chip runs than practical implementations of
BackSpace. We evaluate the performance of BackSpace and
Progressive-BackSpace using a RTL model of an complex,
non-deterministic, out-of-order processor.

We first discuss the baseline BackSpace algorithm and its
limitations in Sec. II. A series of optimizations are then pre-
sented in Sec. III that culminate in the Progressive-BackSpace
algorithm. A hardware implementation of this algorithm is
discussed in Sec. IV. Our methodology is outlined in Sec. V
and results are presented in Sec. VI. Related work is discussed
in Sec. VII, and Sec. VIII concludes.

II. BACKGROUND

De Paula et al. proposed a methodology to improve post-
silicon observability by creating a complete trace of events
on-chip using a technique they called BackSpace [1], [2]. A

post-silicon trace can be fed into a waveform viewer and used
by an engineer in the same manner as a trace generated pre-
silicon by a simulator. This trace is created by running the chip
multiple times; ideally adding one state to the trace every time
the chip is run.

A. BackSpace Algorithm

The BackSpace algorithm begins by assuming that the chip
is stopped at a state that we would like to generate a trace to.
This state will be referred to as the crash state sy. To extend
the trace earlier into execution, the state that precedes the crash
state is needed. Additional hardware is used to store a portion
of the previous state s; which we call the signature Sig(sy).
From the crash state, the design of the chip (in the form of
a gate-level description) and the signature, the set of possible
states that could have led to sy is computed. This set is the
pre-image P. One of the states in P is the state that actually
occurred before s, so we know that this state can be reached
by the chip. The other states in P might not be reachable.

In the next step, we find a state in the pre-image that is
reached during execution. This is done using a breakpoint
circuit that checks, every cycle, if the current state matches
a target state. One candidate state in the pre-image is loaded
into the breakpoint circuit and the chip is run until either the
candidate state is reached and the chip stops, or a timeout is
reached. If the chip times out then another state in P is loaded
into the breakpoint circuit. Eventually a state in the pre-image
P will be reached. This state s; is known to occur during
execution and also is a possible previous state to the earliest
state in the trace so it can be added to the trace. This process
is repeated to generate a trace of arbitrary length.

B. Pre-Image Computation

We model the circuit as a finite state machine with S latches,
J inputs, initial states Init C 25 and transition relation
§ C 2% x 27 x 29 as in [1]. The pre-image of a state s;
is then Py, = {s | 35[(s,7,5:) € 0] A Sig(s) = Sig(si+1)},
where s;4; is the state preceding s;. It is computed by first
constructing a boolean formula such that variable assignments
that satisfy the formula correspond to a possible previous state.
Some of the clauses in this formula describe the combinational
logic of the chip, while others encode the current state of the
chip and the signature of the previous state. All the solutions
to this formula are then found. Please refer to [1] for details
on the pre-image computation.

C. Partial Breakpoints

Gort [3] described a optimization that reduces the hardware
overhead of BackSpace. Instead of comparing every bit in the
state s with a stored target state ¢, only part of the state part(s)
is compared with a partial breakpoint part(¢). There are two
problems, temporal mismatches and spatial mismatches, that
can occur [3]. Temporal mismatches occur when states earlier
in execution also match part(t). We resolve this problem by
loading part(t¢) into a counting circuit that counts how many
times part(t) matches before execution reaches the earliest

TABLE I
THE NUMBER OF STATE BITS THAT CAN BE OVERWRITTEN.

Register File Name Total Bits ~ Number Size
Renamed Registers 5120 80 64
Store Queue Addresses 1024 16 64
Load Queue Addresses 1024 16 64
Architectural RAT 224 32 7
Speculative RAT 224 32 7
Fetch PC (program counter) 64 1 64
Flush PC (program counter) 64 1 64
Total 7744

state in the trace. After collecting this information we run the
breakpoint circuit again and stop the circuit when part(t) is
matched the recorded number of times. The other problem, a
spatial mismatch, is that part(¢) and the count matches during
a run that does not lead to the correct state. Let s}, be the
state that matches part(¢) and the count. Spatial mismatches
can be resolved by scanning out s, ;, then checking if it is
the state ¢ we are looking for.

D. BackSpace Limitations

One of the concerns with BackSpace is the number of states
in the pre-image in the worst case. De Paula et al. [1] have
shown that the pre-image can include all possible states if
the current state is a reset. Even if we are not interested in
generating a trace that goes past resets, a very similar situation
occurs whenever a register gets overwritten. Suppose the 64-
bit register X gets overwritten in the transition from state A to
state B. Assume the chip is currently stopped at state B and
the signature includes all the state bits except for register X. If
we have no additional information about the value of register
X in state A then there will be 264 states in the pre-image. A
conservative estimate of the number of state bits in registers
that can be overwritten in the Illinois Verilog Model (IVM)
processor introduced in Sec. V is shown in Table 1.

To prevent this type of pre-image state explosion the
contents of the overwritten register should be recorded in
the signature. If one of these registers are not included in
the signature, the pre-image may become very large when a
register is overwritten. This problem highlights two related
challenges of using BackSpace: the number of times the chip
must be run and the hardware overhead required. Using a
larger signature, at the expense of more hardware overhead,
means that the pre-image will, on average, be smaller and so
the chip needs to run fewer times. Using a smaller signature
reduces the hardware overhead, but increases the size of the
pre-image and the expected number of times the chip must be
run. We address both of these challenges in the next section.

III. OPTIMIZATIONS TO BACKSPACE

As noted, BackSpace has problems recovering the value
of overwritten registers. This is because BackSpace explicitly
enumerates all possible previous states, and then finds one
which is reachable. We avoid this problem by first finding a
reachable state, and then determining whether this state is a

possible previous state without explicitly enumerating the pre-
image. The algorithm proposed below builds on the partial
breakpoint BackSpace algorithm [3] summarized in Sec. II-C.
This algorithm produces a trace with the same properties as
a trace produced by BackSpace more quickly and with less
hardware overhead. These properties [1] are: every state added
to the trace (after the crash state) is a predecessor of the
last state added and is reachable. To show that this algorithm
produces a trace that satisfies these properties we will present
it as a series of optimizations to the baseline BackSpace
algorithm. We first describe a method to check all the states
in the pre-image simultaneously. Then we show how to check
if a state is in the pre-image without computing it. Next, we
eliminate the need to compute the pre-image before running
the breakpoint circuit. Finally, we pipeline the two breakpoint
steps to obtain the Progressive-BackSpace algorithm.

A. Check All States in Pre-image Simultaneously

We gave an example in Sec. II-D where there are 254 states
in the pre-image P;,. It would be much faster to check all the
states in Pg;, for reachability simultaneously, rather than one
at a time. We can do this by loading a set of states containing
Py;4 into the breakpoint circuit. First, we compute the subset
of bits that are the same across all the states in Py;,. We refer
to this subset of bits as known(Ps;,). We then use the partial
breakpoint technique described in Sec. II-C, with known(Ps;4)
as the partial breakpoint. The main difference is that instead
of checking if the scanned out state s;,, is equal to part(t),
we check if 5], is in P, and running the chip again if it
is not. By loading the entire pre-image into the breakpoint
circuit the number of runs to find a predecessor state is no
longer dependent on the size of the pre-image. However, s;
must be compared with every state in Py;g.

B. Transition Check

Comparing s;,, with every state in Py, can be time-
consuming if P, is large. Fortunately, we can determine if
a state is in Py;, without these comparisons. First, consider
the pre-image with no bits in the signature. This is the set
of all predecessor states P, = {s | 3j[(s,4,8") € 9]}
Next, consider the set of all states that match the signature
Ssig = {s | Sig(s) = Sig(siy1}. Recall that Py, =
{s | 3j[(s,4,8:) €] A Sig(s) = Sig(si+1)}. This means
that instead of checking if s 41 18 in P,;4 we can check if it
is in Py and in Syg. s, € Ssig if Sig(sj, ;) is equal to
the signature of the previous state. Checking if 5], € Py is
equivalent to checking if 35[(s}, 1, J, si) € d].

To check if a state 11 18 in Py we construct a satisfiability
problem (SAT) instance that checks for a transition from s;
to s;. It is similar to the SAT instance used to generate one
state in the pre-image. The clauses that correspond to the
combinational logic and the earliest state in the trace s; are
identical. Each bit in s , is also converted to a clause. A SAT
solver [10] is then used to determine if this boolean formula
has a solution. If it does, then there exists a transition between

run 1

run 2

run 3

\ 4

Stop chip when
signature of sj,q
matched n times

Count matches
n for signature of
state si.»

Stop chip when
signature of s,
matched n times

Collect signature
of state si3

Count matches
n for signature of
state si+3

Stop chip when
signature of si.3
matched n times

Add State s to
trace

Collect signature
of state sj+4

Count matches
n for signature of
state sj:4

Add State si» to

Collect signature

trace of state si:s

Add State sj.3 to
trace

Fig. 1. Timeline of the steps to add four states to the trace.

s} 11 and s;. Although we do not compute Ps;y, it may be
useful to think of our approach as a “lazy evaluation” of P;,.

C. Breakpoint and Signature Selection

We would also like to eliminate the need to compute the
pre-image before determining what bits to load into the partial
breakpoint circuit. One way this can be accomplished is to
approximate known(Ps;,) with the signature Sig(s;11). This
works because all the states in known(PSig) must have the
same signature Sig(s;11). Utilizing a larger partial breakpoint
requires computing known(Ps;,) or a better approximation to
it, so in the rest of this paper the state bits used in the partial
breakpoint will be the same as the bits use in the signature.
Also, using a signature larger than the partial breakpoint does
not change the operation of the breakpoint circuit. Since we
use the signature Sig(s;+1) as the partial breakpoint, there is
no need to compute the pre-image Fq;g.

D. Pipelining

The partial breakpoint technique described in Sec. III-A
requires two processor runs to add a state to the trace. A
signature is obtained in the first run, and the count for this
signature is obtained in the second run. The number of runs
needed can be reduced by recording a signature and counting
the number of matches of a signature in the same run as
shown in Fig. 1. We can record Sig(s;13) while we record
the number of matches for its successor state s; 2.

E. Progressive-BackSpace

After applying the above optimizations, we obtain the
Progressive-BackSpace algorithm. Before each iteration, the
signatures of two states preceding the earliest state in the trace
s; are known, as well as a count of the number of times
Sig(si+1) was seen. After running the chip, the state s,
a count of the times Sig(s;12) was seen, and Sig(s;3) are
also known. Next, we verify that a transition exists between
s;_H and s;. If it does, we add s; to the trace. We now have
the necessary information to start another iteration.

Load Breakpoint Circuit
with Sig(si+1)
and count n(sj.1)

Chip Crashes

_.

Scan out Sig(s+)

Load Counting Circuit
with Sig(si+2)

Load Counting Circuit
with Sig(s+)

Rerun Chip
until Crash 7

Sig(s+)
Matched in Last

Was
Stopped by
Breakpoint

Scan out State s,
count n(si+1)=n(s1), —
and Sig(+2)=Sig(s2)

Scan out State s’
count n(si.y),
and Sig(si+3)

Is
trace long
1

Does
Transition exist
from s’
tos?

Add State s'i+1 to trace,
Increment i

Fig. 2. Flowchart describing the operation of Progressive-BackSpace.

The flowchart shown in Fig. 2. details the operation of
Progressive-BackSpace. The shaded block on the left shows
the steps to obtain the crash state sg, the signature for the state
before it Sig(s1), the number of times Sig(s;) is matched
n(s1), and Sig(sz). The algorithm begins when the chip
crashes (@). The signature of the state before the crash is read
(@) and loaded into the partial breakpoint counter circuit (€)).
The chip is then rerun (@) until Sig(s;) is matched in the last
cycle (@). We then scan out the crash state sg (@). The count
for Sig(s1) and Sig(sz) are also read. With this information
the algorithm can enter its main loop, which is shown in the
shaded block on the right of Fig. 2.

We start each iteration of the main loop with the signature
for a state Sig(s;+1), its match count n(s;+1), and the sig-
nature for the previous state Sig(s;+2). We begin by loading
the breakpoint circuit (@) with the signature Sig(s;;1) and
its count n(s;11). The partial breakpoint counting circuit is
loaded with Sig(s;12 (@). The chip is then rerun (@) until it
is stopped by the breakpoint circuit (@). If the chip is stopped
for another reason, for example a timeout or a crash, the chip
is rerun (@) again. Also, if Sig(s;12) was not matched in the
previous cycle (@) then Sig(s;42) is not the signature of the
state before the one where the chip is stopped, so the chip is
also rerun (@) again. If the chip was stopped by the breakpoint
circuit and Sig(s;42) matched in the previous cycle, then the
state of the chip is scanned out (@). This state is a candidate to
be 5,41 and is referred to as sj, ;. The count for the signature

of $;12, n(s;y+2), and Sig(s;4+3) are also read. The existence
of a transition from sj | to s; is determined (@) as described
in Sec. III-B. If a transition does not exist, the chip is rerun
(@). Otherwise, if a transition does exist, the state sj_ ; is
added to the trace (@) as s;+1. Also, ¢ is incremented so that
s; is still the earliest state in the trace. If the trace is long
enough (@) the algorithm is complete (). Otherwise, we
have the information needed to start another iteration.

IV. HARDWARE

In this section, the hardware needed to implement the
Progressive-BackSpace algorithm will be described and the
storage overhead required will be discussed.

A. Progressive-BackSpace Hardware

We will start by describing the three sub-circuits common
to Progressive-BackSpace and BackSpace with partial break-
points. Next, we will show how to use these components to
implement Progressive-BackSpace.

Partial Breakpoint Circuit: generates a breakpoint signal
that stops the chip so that the current state of the chip can
be scanned out. Before the chip is run, the target partial
breakpoint Sig(s;+1) and target counter value n(s;y1) are
loaded into two registers. After the target Sig(s;+1) matches
the signature of the current state Sig(s.), the desired number
of times n(s;+1), the breakpoint signal is asserted.

Counting Circuit: obtains the target counter value used by
the partial breakpoint circuit. Before the chip is run, the
target partial breakpoint Sig(s;12) that we wish to obtain
the count for is loaded into a register. As the chip runs, the
number of states s. where Sig(s;12) = Sig(sc) is counted.
A match that occurs on the cycle the breakpoint triggers is
not counted. Progressive-BackSpace requires an output that
indicates whether the previous cycle matched the target.
Signature Creation Circuit: creates the signature. The sig-
nature could in general be an arbitrary function of the state,
but in our implementations selects a subset of the state bits.

The hardware needed to implement Progressive-BackSpace
is shown in Fig. 3. The signature, created by the signature
creation circuit, is connected to the inputs for the partial break-
point circuit, counting circuit, and the signature collection
circuit. The signature collection circuit in Fig. 3 stores the
signature for the two previous states. In Fig. 2 (@) the Load
signal is asserted which causes the partial breakpoint circuit
to load in the new target signature and count. In Fig. 2 (@)
the same Load signal is asserted which causes the counting
circuit to load in the new signature to count.

B. Hardware Overhead

W now consider the hardware overhead needed to im-
plement the various post-silicon trace generation techniques
discussed so far. The hardware described in Sec. IV-A was
not synthesized so the area overhead will not be discussed.
We will instead focus on the storage required on-chip.

All the post-silicon trace generation techniques discussed
so far require storing additional information in hardware. In

Fig. 3.

TABLE I
STORAGE USED BY THE DIFFERENT TRACE GENERATION ALGORITHMS.

Pamal, Breakpoint
sig Breakpoint —
Circuit
Sigtaget Narget
Sigout
B Match Last
Count
Sig Coyntmg Cycle?
Load Circuit —
—
Sigin
LD LD
State Bits Signature
— " . . IN ouT ——>(IN out
Creation Circuit
Register Register
Signature Collection Circuit

Hardware schematic for Progressive-BackSpace.

Component BS BS-part Prog-BS
Target State 88796 64 64
Breakpoint Circuit ~ Counter n/a 64 64
Target Count n/a 64 64
. S Target State n/a 64 64
Counting Circuit Counter n/a 64 64
Signatures 7744 7744 128
Total 96540 8064 448

the breakpoint circuit, a full state (or a part of it) must be
stored in a register to compare with the current state. This
overhead can be reduced using the partial breakpoint technique
discussed in Sec. II-C, but then requires a circuit to count
matches. A signature of the previous state must be stored for
each algorithm. Progressive-BackSpace also requires storing
the signature of the state two cycles before the current one. For
BackSpace, either with full breakpoints or partial breakpoints,
the signature is chosen to consist of the registers that can be
overwritten as discussed in Sec. II-D. This signature is used
since it is a lower bound on what a practical signature would
contain. In the counting circuit, 64 bit counters are used to
be conservative. With a 10 GHz chip, if every state matched
the target partial breakpoint, a 64 bit counter could count the
matches for over 50 years.

The storage required for the hardware components of each
of the post-silicon trace generation algorithms is shown in
Table II. BS is the baseline BackSpace algorithm with a
signature containing only registers that can be overwritten
as described in Sec. II-D. BS-part is BackSpace using the
partial breakpoints described in Sec. II-C. Prog-BS is the
Progressive-BackSpace algorithm described in Sec. III-E. Our
proposed algorithm requires 99.5% fewer bits of storage than

TABLE III
AVERAGE NUMBER OF RUNS NEEDED TO ADD ONE STATE TO THE TRACE.

Program BS-ideal =~ Prog-BS
arith-add 10.64167 10.68333
fib-20 72.44083 55.92547

the original BackSpace algorithm and 94.4% fewer bits than
BackSpace with partial breakpoints.

V. METHODOLOGY

A superscalar out-of-order processor running a subset of the
Alpha instruction set, the IVM processor [11], was used. This
processor was synthesized using the BackSpace technology
library [12] which contains logic gates and flip-flops. The
synthesized processor was used to generate the SAT clauses
that correspond to the circuit and to build the simulator. Non-
determinism was introduced in the form of variable memory
latency.

We compare the performance of Progressive-BackSpace
against an unrealistic implementation of BackSpace that con-
tains the entire previous state (88796 bits) in its signature. This
implementation, BackSpace-ideal, provides an upper bound on
the performance of BackSpace. Note that this was not the
signature size used to determine the hardware overhead of
BackSpace (BS) or BackSpace with partial breakpoints (BS-
part) in the previous section. The 64 bit Fetch PC was used as
the signature for Progressive-BackSpace. The intuition is that
the PC, coupled with the number of times it occurs, serves as
indicator of the chip’s progress through a program.

VI. RESULTS

The performance of the post-silicon trace generation algo-
rithms discussed in this paper are studied in this section. The
average (mean) number of runs to add one state to the trace
is the metric used to measure performance. To evaluate the
performance of the different algorithms, traces from various
programs were collected. These traces all end at (i.e., has
as initial crash state) the end of program execution. Trace
collection ends when a trace of 25 states has been collected, or
the algorithm times out after 48 hours. For each algorithm, 100
traces were collected for each program. The average number
of processor runs needed to add one state to the trace is
shown in Table III. With deterministic execution, both these
algorithms would only require one run to add one state to the
trace. We can see that non-determinism significantly reduces
the performance of both algorithms. The distribution of runs
per state added is also interesting. Histograms showing the
distribution of average runs needed to add a state to a trace
of the arith-add program are shown in Fig. 4. There
are 100 data points for each algorithm. We can see that the
non-determinism has a similar effect on both distributions.
Note that these distributions are only similar because this
implementation of BackSpace uses the entire previous state as
its signature. This means that there will only be one state in
the pre-image, and multiple runs of the processor are required
only to handle non-determinism.

B BackSpace-ideal
O Progressive—BackSpace

40

Percentage
30
1

o _|
N
o |
o - ﬂl]l]l],',,-:iil:‘,i,-:i,
T T T T 1
0 20 40 60 80 100
Runs
Fig. 4. Histograms of the number of runs to add one state to the trace of
arith-add.
o
© N
B BackSpace-ideal
O Progressive—BackSpace
g -
o
<

Percentage
30
1

20

N | D 0. o cn o _ .
1 1 1T 1T T T 1 T T T T T T T T T T T T 1
1 10 100 1000 10000
Runs

Fig. 5. Histograms with a logarithmic scale of the number of runs to add
one state to the trace of £ib-20.

The distributions for the average number of runs to add a
state to a trace of the £ib-20 program are much wider, so
a logarithmic scale is used for the average number of runs in
Fig. 5. This figure shows the average run distributions for the
fib-20 program using the BackSpace-ideal and Progressive-
BackSpace algorithms.

VII. RELATED WORK

There are techniques that use scan chains and trace buffers
directly to aid in post-silicon debug. For example, Ko and
Nicolici [13] combine the information collected from scan
chains and trace buffers, then apply state restoration tech-
niques to create a trace that contains more state information
than either scan chains or trace buffers alone could provide.
However, the length of the trace is limited by the amount of
storage used. There has also been a proposal to extend the
length of traces generated by a trace buffer by running the
chip multiple times and stitching together the traces [14]. Note
that, unlike Progressive-BackSpace, neither of these proposals
produce traces of complete states. However, the breakpoint
technique used in [14] may be combined with our transition
check technique and scan chains to produce traces with the
same formal properties as ours.

One aspect of post-silicon debug is locating where in hard-

ware and in which cycle a detected bug occurred. BLoG [15]

records the data and instruction flows through certain design
blocks during execution, and then analyzes these flows after
execution in conjunction with the program binary to localize
any errors. BLoG was evaluated by modelling electrical bugs
as single bit-flips in a micro-architectural simulator.

VIII. CONCLUSIONS

We began by considering the limitations of the proposed
post-silicon trace generation technique BackSpace. In par-
ticular, the number of states in the pre-image that must be
enumerated and tested grows exponentially with the number
of state bits that are overwritten in an unrecoverable way.
We presented a series of optimizations to BackSpace that
culminate in an algorithm that does not need to compute
the pre-image and only requires as many processor runs as
an unrealistic implementation of BackSpace which stores the
entire previous state in its signature. Our proposed algorithm,
Progressive-BackSpace, also requires storing 94.4% fewer bits
than a recently proposed implementation of BackSpace.

It is clear that non-determinism significantly impacts the
performance of Progressive-BackSpace. In the future, we
would like to study the non-determinism present in real
systems and investigate ways to reduce the impact of non-
determinism on the performance of Progressive-BackSpace.

REFERENCES

[1] F. M. de Paula, M. Gort, A. J. Hu, S. J. E. Wilton, and J. Yang,
“BackSpace: Formal analysis for post-silicon debug,” in Formal Methods
in Computer Aided Design, 2008.

[2] F. M. de Paula, M. Gort, A. J. Hu, and S. J. E. Wilton, “BackSpace:
Moving towards reality,” in International Workshop on Microprocessor
Test and Verification, December 2008, pp. 49-54.

[3] M. Gort, “Practical considerations for post-silicon debug using Back-
Space,” Master’s thesis, University of British Columbia, 2009.

[4] “Revision guide for AMD family 10h processors,” June 2010.

[5] Intel Corporation, Annual Report, 1994.

[6] B. Bentley, “Validating the Intel® Pentium® 4 microprocessor,” in
Design Automation Conference, 2001. Proceedings, 2001, pp. 244-248.

[71 T. Bojan, M. Aguilar Arreola, E. Shlomo, and T. Shachar, “Func-
tional coverage measurements and results in post-silicon validation of
Core™ 2 Duo family,” in International High Level Design Validation
and Test Workshop. 1EEE Computer Society, 2007, pp. 145-150.

[8] S. Mitra, S. A. Seshia, and N. Nicolici, “Post-silicon validation oppor-
tunities, challenges and recent advances,” in Proceedings of the 47th
Design Automation Conference, 2010, pp. 12-17.

[9] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and

D. Miller, “A reconfigurable design-for-debug infrastructure for SoCs,”

in 43rd ACM/IEEE Design Automation Conference, 2006, pp. 7-12.

N. Eén and N. Sorensson, “An extensible SAT-solver,” in 6th Interna-

tional Conference on Theory and Applications of Satisfiability Testing

(SAT), May 2003, pp. 502-518.

N.J. Wang and S. J. Patel, “ReStore: Symptom based soft error detection

in microprocessors,” in International Conference on Dependable Systems

and Networks (DSN), June 2005, pp. 30-39.

F. M. de Paula, “Backspace toolkit,” 2010. [Online]. Available:

http://www.cs.ubc.ca/~depaulfm/BackSpace

H. F. Ko and N. Nicolici, “Combining scan and trace buffers for en-

hancing real-time observability in post-silicon debugging,” in European

Test Symposium (ETS), 15th IEEE, May 2010, pp. 62-67.

F. M. de Paula, A. Nahir, Z. Nevo, A. Orni, and A. J. Hu, “TAB-

BackSpace: Unlimited-length trace buffers with zero additional on-chip

overhead,” in 48th Design Automation Conference, June 2011.

S.-B. Park, A. Bracy, H. Wang, and S. Mitra, “BLoG: Post-silicon

bug localization in processors using bug localization graphs,” in Design

Automation Conference, 47th ACM/IEEE, June 2010, pp. 368 —373.

[10]

(1]

[12]

[13]

[14]

[15]

