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Abstract—The recent use of graphics processing units (GPUs)
in several top supercomputers demonstrate their ability tocon-
sistently deliver positive results in high-performance computing
(HPC). GPU support for significant amounts of parallelism would
seem to make them strong candidates for non-HPC applications
as well. Server workloads are inherently parallel; however, at
first glance they may not seem suitable to run on GPUs due
to their irregular control flow and memory access patterns.
In this work, we evaluate the performance of a widely used
key-value store middleware application, Memcached, on recent
integrated and discrete CPU+GPU heterogeneous hardware and
characterize the resulting performance. To gain greater insight,
we also evaluate Memcached’s performance on a GPU simulator.
This work explores the challenges in porting Memcached to
OpenCL and provides a detailed analysis into Memcached’s
behavior on a GPU to better explain the performance results
observed on physical hardware. On the integrated CPU+GPU
systems, we observe up to 7.5X performance increase compared
to the CPU when executing the key-value look-up handler on the
GPU.

Index Terms—GPGPU, SIMD, OpenCL, key-value store,
server

I. I NTRODUCTION

With the introduction of programmable functional units,
graphics processing units (GPUs) have expanded to general-
purpose, high-performance computing (HPC) applications.
These types of applications are known to efficiently utilize
the underlying GPU hardware to maximize performance.
When performing an initial analysis on an application, many
programmers may look for characteristics similar to existing
applications with proven performance on GPUs. This may lead
a programmer to disregard applications that appear to deviate
from these characteristics. This bias may eliminate from
consideration some applications that actually might perform
well on a GPU.

One family of highly parallel and economically appealing
applications that initially may not appear to gain performance
benefits on GPUs are traditional server applications. HPC
applications have been shown to attain good performance on
GPUs [11]; however they represent a relatively small segment
of the overall computing market1. Large-scale server appli-
cations represent a larger class of applications, but one that

1According to IDC, in 2009 the overall server market had revenues of $43.2
billion [15] versus $8.6 billion for HPC servers [14].
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Fig. 1. Memcached SIMD Efficiency: Expected vs. Actual

is unstructured. In this paper, we study one such application
and show arguably good performance results. These positive
results are achieved by taking advantage of the GPU’s mem-
ory bandwidth and numerous functional units to overcome
the application’s unstructured behavior. More specifically, we
characterize and evaluate Memcached [18], a widely used key-
value store application, and show it is a strong candidate for
acceleration on certain classes of GPUs.

Memcached was originally designed for LiveJournal, but
has since been extended to many other large-scale web
applications such as Facebook, YouTube, Wikipedia, Flickr,
Twitter, and others [18]. Memcached is a memory-intensive
application. On a discrete GPU with isolated memory spaces,
large data transfers are required between the CPU and GPU
to keep a coherent view of the memory on both the host
and device. Assuming Memcached’s requests are independent
and that each request can be handled by a separate thread,
a common expectation might be that each thread exhibits
independent and irregular behavior.

Initial analysis into Memcached shows its memory access
patterns and execution behavior depend on the input data. In
a single-instruction/multiple-data (SIMD) architecture, such as
a GPU, groups of threads must execute instructions together
in lock-step. This suggests that Memcached might not fit the
SIMD model because threads might often execute different
instructions based on their input data. SIMD efficiency rep-
resents the fraction of scalar threads that execute together in
lockstep per cycle. Given these properties, Memcached may
appear to have poor SIMD efficiency on a GPU. Figure 1
presents a comparison between Memcached’s actual SIMD
efficiency (”Actual”) and the SIMD efficiency if all code paths
were equally likely (”Expected”). On average, Memcached’s



actual SIMD efficiency is approximately 2.7X higher than a
naive assumption about code-path suggests. These results are
explained in greater detail in Section V.

The contributions of this paper are:

• It contrasts a programmer’s intuition of an application’s
potential execution behavior on a GPU with the actual
behavior. Using Memcached and two other examples,
we show that the appearance of irregular control-flow
patterns do not directly result in negative performance
on a GPU.

• It describes the methodology used to modify Memcached
to run on a GPU.

• It analyzes Memcached’s performance on AMD
FusionTM CPU-GPU architectures and compares it to
discrete GPU architectures.

• To provide deeper insight, it evaluates the performance
of Memcached on GPGPU-Sim [1].

The rest of this paper is organized as follows: Section II
presents the programming model and baseline architecture
used in this study, and discusses the common performance-
affecting features on a GPU and how Memcached is impacted,
Section III describes how Memcached was ported to the GPU,
Section IV describes the methodology and environment used
to perform this study, Section V presents a characterization
and evaluation of Memcached on hardware and GPGPU-Sim,
Section VI describes related works, and Section VII concludes.

II. GPU ARCHITECTURE ANDBACKGROUND

AMD GPU architectures are used in this study, running
OpenCL applications. OpenCL is a C-like programming model
that provides an application programming interface (API) to
interact with GPUs. The compute kernel2, is a user-defined
parallel section of code that runs on the GPU. Execution begins
on the host with communication of data and commands on the
device taking place in one or more command queues. Here, the
host refers to the CPU and the device refers to the GPU. The
host then launches a compute kernel on the device, specifying
the appropriate hierarchy of threads required by the compute
kernel. In OpenCL, this hierarchy consists of an NDRange of
work groups of wavefronts of work items. In AMD hardware,
each work item is logically equivalent to a scalar thread.
The wavefronts group multiple work items, which execute the
same instruction on different data streams. The work groups
group multiple wavefronts, providing consistency within the
work groups. The NDRange provides an indexing space that
specifies the breakdown, in terms of size and dimension, of
work items into work groups. Figure 2 shows a high-level view
of the GPU architecture used in this study [3].

The following sub-sections discuss a few of the main GPU
features that need to be considered by a programmer to achieve
high performance.

2For the remainder of the paper, “kernel” and “compute kernel” are used
interchangeably.
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Fig. 2. High-level View of AMD’s Baseline Architecture

A. Control Flow

As already mentioned, work items are grouped together into
wavefronts. In an application without any conditional control
flow operations, such as conditional branches, the wavefront
is able to make forward progress throughout the code while
executing instructions for each work item in parallel. However,
if conditional branches are introduced into the code, it is
possible for a sub-set of the work items in a wavefront to
take the branch while the remaining work items do not. This
is known as branch divergence. To handle branch divergence,
a hardware component, similar to the SIMT stack described
by Fung et al. [22] [23] can be used to track the active work
items at various points throughout the program’s execution.
An active work item refers to a work item within a wavefront
that is currently executing instructions. A work item becomes
inactive if it takes a branch that diverges away from the other
work items in the wavefront.

Each entry on the SIMT stack contains a bitmask represent-
ing the active work items in a wavefront, with the top element
in the stack (TOS) signifying the sub-set of work items to
execute. The SIMT stack also records the current program
counter (CPC) and a re-convergence program counter (RPC).
The CPC specifies the instruction that the active work items
on a corresponding stack entry will execute once it becomes
the TOS. As the work items in the TOS entry execute the
instructions, the CPC is incremented accordingly. The other
counter, the RPC, specifies the immediate post-dominator
(IPDOM) instruction. The IPDOM is defined as the closest
point in the program that all paths leaving the branch must go
through before exiting the function. The SIMT stack uses the
RPC to specify where the active and inactive work items can
rejoin.

Figure 3 shows an example of the SIMT execution flow
when executing a piece of code taken from the hash function
in Memcached. It is also annotated with the actual branch
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Fig. 3. SIMT Execution Example

probabilities using the same input data sets as in Section V.
In this example, there are four work items per wavefront.
Snapshots of the SIMT stack are shown at different points
throughout execution on the right.

A work item is represented by a vertical lane in the middle
of Figure 3 (labeled 0 through 3). Active work items are the
black arrows, and inactive work items are the white arrows.
The ovals represent basic blocks, which signify a portion of
code with single entry and exit points that ensure no further
branch divergence. Without branch divergence, the minimum
number of blocks required to reachH from A is four (A →
C → G → H) and the maximum is five (A → B → D/E →
F/G → H).

At the beginning, all of the work items in the wavefront are
set to active and execute the instructions at blockA. At the first
branch, work items 0-1 go to blockB while work items 2-3
go to blockC; the corresponding entries are pushed onto the
stack. The re-convergence point for each work item is set to
the IPDOM blockH . This is shown by the top stack expanding
from B. The next step is to execute a sub-set of the original
wavefront until reaching a re-convergence point. Execution
switches to work items 0-1 atB; here, the work items split
again, removing its current entry and pushing two new entries
onto the stack. Work item 0 executes until reaching the re-
convergence pointH before allowing work item 2 to execute
until reachingH . Work items 2-3 now become active and
execute untilH . The work items are able to resume concurrent
execution once all work items reach the re-convergence point
H .

Assuming all the basic blocks have the same number of
instructions, the SIMD efficiency in this example is approxi-
mately 50% and executes nine blocks in total. Also, blockG
is executed twice, resulting in more instructions being issued
than necessary.

Thus, to achieve the highest performance from the GPU, it
is desirable to have as little branch divergence as possible.

B. Memory Access

Memory accesses are another property of GPUs directly
affected by grouping of work items in a wavefront. If the
instruction being executed by all work items is a memory-
access operation, such as a load or a store, each work item will

A B C D E F

Cache 

Line

Wi-1 Wi-2

1 2

Wi-1 Wi-2

Fig. 4. Memory Request Coalescing

generate a memory request to be handled by the memory sys-
tem. If each memory request is for a data object in a different
region of memory, all requests will be handled separately. This
phenomenon is referred to as “memory divergence” for the
remainder of this paper. However, if the data being requested
from different work items lies within a given range, such as
the size of a cache line or the size of data returned on a
memory request (i.e. high data locality between work items
in a wavefront), an optimization can be applied in which
each memory request falling into one of these regions can be
coalesced into a single request. This can significantly reduce
the amount of memory-request traffic on the memory system.

Consider the example in Figure 4 with two work items,
Wi-1 and Wi-2, executing two load instructions. On the first
load instruction, labeled1, Wi-1 loads inA and Wi-2 loads
in B. Because both data objects lay in a single cache line, the
two memory requests can be coalesced into a single request.
However, on the second load instruction, labeled2, Wi-1 sends
a memory request for an object separated further in memory
than the size of a cache line from Wi-2’s memory request.
Thus, two memory requests will be generated. Extending
this to real applications, typically containing 64 work items
per wavefront and hundredss of wavefronts per kernel, un-
coalesced memory requests can generate large amounts of
memory traffic to the memory system and significantly affect
performance.

C. Data Transfer

Significant losses in performance can occur with large data
transfers between the host and device [13] because the time
required to transfer data increases linearly with the amount
of data needing to be transferred [9]. Discrete GPUs have
separate, isolated memory spaces from the host that require
explicit data transfer. Data communication takes place over
a connection bus between the host and device, typically a
PCIe bus. On the discrete card used in this study, the AMD
RadeonTM HD 5870, data is transferred between the host and
device via a PCIe 2.1 x16 bus, with a maximum transfer rate
of 8 GB/s [3].

III. PORTING MEMCACHED

A. Memcached

Memcached is a general-purpose, high-performance mem-
ory caching system used to improve performance of dynamic
distributed databases in server applications by caching the
recently queried data in main memory. This alleviates the



amount of traffic required to query the database and access
non-volatile storage or other external sources. These expen-
sive I/O operations can significantly reduce performance and
increase power consumption. Main memory from individual
servers is combined to create a large pool of virtual memory
that is common across all servers. This aggregation of memory
effectively provides a much larger memory space that scales
linearly with the number of servers in the system.

A simple interface is provided to store, modify, and retrieve
data from the distributed hash tables. All of the write and
read operations must perform two hashes of the keys. The
first hash selects which server the request should be directed
to and the second hash selects the appropriate entry in the
hash table. Hash-chaining is used in the event of collisions
on write operations and a linear traversal of the linked list
is used on read operations when necessary. On a read (GET
request) hit, in which the key is found in the hash table, the
value corresponding to that key is returned to the requesting
client. On a read miss, however, the client is notified of the
miss and, if applicable, the database is queried for the missing
data, which is then stored into Memcached.

B. Changes Required

This section describes the necessary modifications made to
Memcached to offload theGET request handler to the GPU,
as well as the corresponding changes made to the host to
efficiently interact and communicate with the GPU.

In our implementation of Memcached, we focused on ac-
celerating the read requests on the GPU while leaving the
write requests to be handled by the CPU. Berezecki et al.
observe that read requests far outnumber write requests in
real-world scenarios running Memcached in Facebook [7].
They also conducted experiments showing that write requests
have negligible effects on read performance. It is reasonable
to assume that the read requests will have the most significant
impact on performance, and thus have the greatest benefit – in
terms of overall system performance – from being accelerated
on the GPU.

To take advantage of the massive amounts of available
parallelism provided by the GPU, GET requests are batched on
the host, passed to the device on kernel launch, and processed
in parallel on the device. Each work item in the Memcached
kernel handles a single request, which performs common key-
value look-up operations. This consists of computing the hash
of the request’s key, accessing the appropriate entry in thehash
table using the resulting hash value, and then comparing the
request’s key with the key – or multiple keys in the event of
hash collisions – residing at that hash table location. If the keys
match, the value corresponding to that key is returned to the
requesting object. We assume that the requests have already
been directed to the correct server, and thus the hash performed
on the GPU corresponds to the second hash mentioned in
Section III-A.

When Memcached receives a request from a client via
the network, it creates aconnection object that contains
all information required to process any requests during

the lifetime of this connection. The client is then able to
send requests through this connection to be handled by the
server. These connections contain significant overhead when
considering the amount of information required to process the
request on the GPU, such the protocol and client information.
To reduce the amount of data being sent to the GPU, we
created apayload data object that contains a sub-set of the
connection information required to process aGET request,
such as information about the search key and a pointer to the
requested item if found. On eachGET request, we allocate
and assign a payload object to the requesting connection and
batch these payload objects to be transferred to the GPU,
reducing the overall amount of data to be transferred.

1) Memory Management:To manage all the data allocated
and accessed in Memcached, we implemented a dynamic
memory manager on the host. This memory manager is used
to store all the data that needs to be visible to both the host
and the device; it replaces themalloc and free system calls
originally used in Memcached. Depending on the system being
used, the allocated buffers reside in different memory regions
on the host or device. On the discrete system, the buffers are
allocated in the regular host memory space and transferred
to the device when necessary. On the AMD Fusion systems,
however, these buffers are allocated in pinned memory to take
advantage of the zero-copy memory regions where data can be
allocated on either the CPU or the GPU and accessed directly
by both with varying bandwidth and latencies.

There are two types of zero-copy memory spaces available:
the host-visible device memory and the device-visible host
memory. These memory spaces are allocated from pinned host
memory, a sub-set of the host’s memory space, at system
boot time. The device-visible host memory is optimized for
access by the host, whereas the host-visible device memory
is optimized for the device [3]. To minimize the data access
time on the GPU, we used the host-visible device memory.

While current AMD hardware shares a physical memory
region between the host and device, it does not share a com-
mon address space. The implication of this is that the virtual
addresses returned by ourmem alloc function, corresponding
to the physical location in host-visible device memory, is not
the same as the address seen on the device, even though it
corresponds to the same physical location. Thus, complex data
structures consisting of many multiple-level pointers cannot
simply be de-referenced on the device.

What is common between the host and device, however,
is the offset of each memory object from the start of the
allocated memory region. Using this property, we pass the
virtual address pointing to the start of the memory region
seen by the host as an argument to the Memcached kernel
and calculate the offset between the this and the start of
the memory region seen by the device. A macro is used to
subtract this offset from every memory de-reference on the
device:translate(address, offset). The inverse operation is
applied to all pointers set on the device, such as the return
value in a read request. This ensures that both the host and
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Fig. 5. Contiguous Memory Layout

device access the same physical memory locations. Gelado et
al. [12] implement a similar technique by either ensuring that
the virtual pointers returned to the shared memory region are
the same or by maintaining address mappings between the
host and device. This reduces demands on programmers by
eliminating the need to traverse and reconstruct complex data
structures that contain multiple pointers on the device, such as
linked lists or tree structures.

2) Read-only Data:With the exception of the data struc-
tures written to with the result of the GET request, the majority
of the data between successive kernel launches is read-only
when processing GET requests in Memcached. Current AMD
hardware provides various hardware components, such as read-
only caches, that can significantly decrease data access time.
Where possible, we allocated data in a read-only buffer to take
advantage of the buffer’s high-bandwidth, low-latency memory
access.

3) Memory Layout:Using the dynamic memory manager,
we can allocate data in specific layouts to take advantage of the
memory-coalescing property discussed in Section II-B. Two
data structures guaranteed to be accessed by all work items
on the GPU in a known access pattern are the payloads and
the keys corresponding to each payload. As introduced in Sec-
tion III-B, the payload contains a pointer to the requested key,
the length of the key, and a pointer to the item being requested.
Each work item is assigned a single payload corresponding to
a singleGET request. Assuming a 32-bit system, the size
of each payload is only 12 bytes. With a wavefront size of
64 work items and a cache line size of 128 bytes, these 64
memory requests could be reduced to six to retrieve the same
amount of data. Therefore, we ensure payloads are allocated
contiguously in memory by allocating a separate dedicated
buffer.

To access the payloads, each work item requires only a
pointer to the start of the buffer and uses its global work
item ID to access the appropriate index in the payload array.
This same technique is applied to the keys corresponding to
the payloads, such that when each work item dereferences
the pointer to the key, it will lie relatively close in memory.
Figure 5 shows how the connections, payloads, and keys are
allocated in the different buffers.

TABLE I
HARDWARE SPECIFICATIONS

Name
AMD
Radeon
HD 5870

Llano A8-3850
(AMD Radeon
HD 6550D)
AMD Fusion

Zacate E-350
(AMD Radeon
HD 6310)
AMD Fusion

Engine Speed (MHz) 850 600 492
# Compute Units (CU) 20 5 2

# Stream Cores 320 80 16
# Processing Elements 1,600 400 80

Peak Gflops (single-precision) 2,720 480 78.72
# of Vector Registers/CU 16,384 16,384 16,384

LDS Size/CU (kB) 32 32 32
Constant Cache / GPU (kB) 48 16 4

L1 Cache / CU (kB) 8 8 8
L2 Cache / GPU (kB) 512 128 64

DRAM Bandwidth (GB/sec) 153.6 29.9 17.1

C. WikiData

We simulated request traffic to our Memcached server using
a large input file consisting of read and write requests. Specif-
ically, we used portions of the Wikipedia Workload traces
found at [21] to stimulate our application. These workload
traces were recorded by Wikipedia’s front-end proxy caches
and, in total, contain billions of HTTP requests.

Memcached’s host code was modified to process the re-
quests from the trace files instead of incoming requests from
the network. A configurable number of requests are processed
on the CPU, prior to the offloading work to the GPU, to set
up the environment and ensure there is a sufficient amount of
data stored in Memcached’s memory. Once the setup period
completes, write requests are handled immediately on the host
and read requests are placed into a buffer until the configurable
number of read requests are encountered.

IV. M ETHODOLOGY

A. Hardware

We performed tests on three configurations of GPUs and
accelerated processing units (APUs): a high-performance dis-
crete graphics card, a low-power AMD Fusion APU, and a
mid-to-high-end AMD Fusion APU. The discrete card was
chosen to show potential upper bounds on compute perfor-
mance, while the low-power AMD Fusion APU provides
insight into the performance capabilities of such a system.The
mid-to-high-end AMD Fusion APU falls in the middle of these
two systems, combining the higher compute performance with
the benefits of the APU’s shared memory space. The hardware
specifications for these GPUs are outlined in Table I.

B. GPGPU-Sim

We used GPGPU-Sim to further analyze Memcached’s
behavior on a GPU. Although the GPU architecture modeled
by GPGPU-Sim differs from the physical hardware analyzed
in this study, such as in its use of a VLIW unit, we do not
think that this is an issue because the architecture resem-
bles AMD’s future architecture [17]. GPGPU-Sim simulates
Parallel Thread Execution (PTX) code, a pseudo-assembly
language. Table II presents the configurations used in GPGPU-
Sim.



TABLE II
GPGPU-SIM CONFIGURATION

# Streaming Multiprocessors 30
Warp Size 32

SIMD Pipeline Width 8
Number of Threads / Core 1024
Number of Registers / Core 16384

Shared Memory / Core 16KB
Constant Cache Size / Core 8KB
Texture Cache Size / Core 32KB, 64B line, 16-way assoc.

Number of Memory Channels 8
L1 Data Cache 32KB, 128B line, 8-way assoc.

L2 Unified Cache 512k, 128B line, 8-way assoc.
Compute Core Clock 1300 MHz
Interconnect Clock 650 MHz

Memory Clock 800 MHz
DRAM request queue capacity 32

Memory Controller Out of Order (FR-FCFS)
Branch Divergence Method PDOM [22]

Warp Scheduling Policy Loose Round Robin
GDDR3 Memory Timing tCL=10 tRP =10 tRC=35

tRAS=25 tRCD=12 tRRD=8
Memory Channel BW 8 (Bytes/Cycle)

C. Control-flow Simulator

We are interested in analyzing an application’s control-flow
behavior to study: (a) how programmer’s intuition compares
with reality, and (b) the effect of branch probabilities relative
to correlation. To analyze the control-flow for a given appli-
cation, we designed a stand-alone control-flow simulator that
simulates the behavior of a wavefront through an application’s
control-flow graph. Each branch in the application is annotated
with an outcome probability. At each branch, the active work
items generate a random number and compare it with the
threshold outcome probability at that branch.

This is useful when performing the initial analysis in
deciding to port an application to the GPU. Prior to writing
any code for the GPU, the programmer can gain better insight
into the average SIMD efficiency likely to result on the
hardware. The simulator takes three input files: aDOT file
containing the information required to generate the control-
flow graph, a file containing the number of instructions per
basic block (specified in the DOT file), and a file containing
the outcome probabilities for each branch in the application.
A SIMT stack handles branch divergence and re-convergence,
and the simulator measures the overall SIMD efficiency for
each iteration through the application’s control-flow graph. For
a set of given branch probabilities, we ensure SIMD efficiency
results converge by averaging a large number of iterations (in
this work, 100,000 iterations) through the control-flow graph.

In theory, branch probabilities themselves may not be
enough to accurately simulate the SIMD efficiency of an
application. Consider an application already ported to run
on a GPU. After profiling the execution, it is possible to
have a SIMD efficiency of 100% with an outcome prob-
ability of 50% at every branch if every work item takes
the same path but alternates paths between every execution.
This correlation among branches is not implemented in the
control-flow simulator and is left to future work. Despite
this, by extracting Memcached’s actual branch probabilities
from GPGPU-Sim and using them as input to the control-flow
simulator, we found the estimated SIMD efficiency is within
1.3% of the actual SIMD efficiency of Memcached. One such

application that requires branch correlation to estimate the
SIMD efficiency accurately is Ray Tracer, which is discussed
in Section V-B.

D. Assumptions and Known Limitations

Throughout this study, we assume requests are independent
of each other. Thus, all read operations will view the most
up-to-date data.

Currently, the size of memory accessible by the GPU and
APU is limited. On the APU, each zero-copy buffer can be a
maximum of 64 MB, with a system total of 128 MB [3]. This
poses various problems for memory-intensive applications,
such as Memcached, that require large amounts of memory
to be effective. This problem would be eliminated with a
larger region of pinned memory available to the GPU and
an appropriate interface to allocate and access the additional
memory. For example, the industry is moving to address the
limited memory capacities available in current graphics cards.
AMD announced at the 2011 AMD Fusion Developer Summit
(AFDS) that future GPUs and APUs will support accessing
CPU virtual memory [10]. We expect future products will
allow sharing of arbitrarily large memory spaces between the
CPU and GPU cores, eliminating this restriction.

Batching requests inherently adds additional latencies tothe
system. Offloading requests to the GPU would help reduce
system-queuing latency if CPU throughput became the bottle-
neck when experiencing high incoming request rates. While
some applications may not be able to accept the latency impact
of batching thousands of requests, we expect we could achieve
many of the benefits with smaller batch sizes. Our future work
will look at batching fewer requests at a time (e.g., batch
a wavefront [or a few] at a time and launch them to some
persistent worker threads on the GPU).

We initially profiled Memcached to locate sections of code
that bottlenecked performance and would benefit from running
in parallel on the GPU. This revealed that the majority of
execution time is spent in I/O and handling the network stack.
The key-value lookup, although a less significant portion, was
the next-highest contributor to the overall execution timeof
Memcached. Thus, we focused our efforts on porting the key-
value lookup handler to the GPU and left optimizing the
networking stack for future work.

E. Validation and Metrics

To verify the GPU version of Memcached returns the correct
results, we first processed the batch ofGET requests on the
CPU, and then passed off the same batch of requests to the
GPU. On kernel completion, we compared the two results to
ensure the same set of items was found. The execution times
on the CPU were recorded using a fine-grained time stamp
counter (TSC) that records the sequential look-up times forthe
batch of requests. When timing the CPU, all data was allocated
in a cacheable memory region. For each GPU, we recorded
the kernel execution times using the AMD APP Profiler tool
(v. 2.3). We verified that the comparison with the TSC timer
was valid by also timing the kernel execution time on the



TABLE III
CPU HARDWARE SPECIFICATIONS

Name Llano A8-3850 Zacate E-350
# x86 Cores 4 2
CPU Clock 2.9 GHz 1.6 GHz

TDP 100W 18W
L2 $ / core 1MB 512 KB

Llano A8-3850 system immediately before the kernel launch
and immediately after theclF inish synchronization function.
Both timing methods output the same values.

V. EXPERIMENTAL RESULTS

At the time of this study, Linux drivers for the AMD
Fusion system did not support zero-copy buffers. To access
the Windows AMD SDK and the necessary Linux libraries,
we used Cygwin [8] to run Memcached on the AMD Fusion
systems. One issue with Cygwin is its inability to access
all provided hardware counters. This significantly limitedthe
amount and variety of data we were able to collect from
Memcached on the hardware. To gain additional information
about Memcached’s behavior, we profiled Memcached on
GPGPU-Sim.

A. Hardware Performance

Memcached was run on the three GPU configurations
introduced in the previous section, with the performance
measured via hardware counters through AMD App Profiler.
Both the AMD Radeon HD 5870 and the Llano A8-3850
(AMD Radeon 6550D) are compared against a single Llano
x86 CPU core, while the Zacate E-350 system was compared
against a single Zacate x86 CPU core. Table III provides
additional information about the CPUs used in this study.

Figure 6(a) presents the average speed-up, in terms of key-
value look-ups per second (LPS), for each GPU configuration
normalized to the CPU’s execution time. Because these results
do not include any data transfer times, they explicitly highlight
the computational performance benefits when performing a
key-value look-up on the GPU relative to the CPU. Even with
the irregular control-flow and memory-access patterns present
in Memcached, the AMD Radeon HD 5870 is able to perform
the key-value look-up on a batch of requests approximately
33X faster, the Llano A8-3850 7.5X faster, and the Zacate
E-350 4.5X faster than their CPU counterparts.

Data transfer times result in a large overall performance
decrease on the discrete system, as can be seen in Figure 6(b).
The APUs, however, have close to 0 transfer time due to the
shared memory space. These data transfer times are small
but non-zero due to the mapping and unmapping operations.
Although the compute power of the APUs is less than the
high-performance discrete AMD Radeon GPU, the ability to
fully eliminate the transfer of data allows these devices to
outperform the AMD Radeon HD 5870.

1) Request Batching:Whenever considering batch pro-
cessing, there is always a trade-off between throughput and
latency; as the number of queued requests increases, the time
taken to process these requests also increases. We measured
these values on the AMD Radeon HD 5870 by varying the
batch request size and recording the average time taken to

process that batch of requests. Figure 7 presents these results
normalized to an initial batch size of 1,024 requests, excluding
data transfer times. Also shown in Figure 7(a) is a 0.5-ms
latency reference line. Berezecki et al. [7] indicate that a1-
ms delay, including network transfer and TCP processing time,
would be the maximum tolerable latency for a request. The
large spike in throughput from 1-5X in Figure 7(b) is caused
by the minimal increase in latency, approximately 1.3X, while
increasing the number of requests/batch by 7.5X (1,024→
7,680). This results in the behavior shown by the throughput,
corresponding to the initial increase in latency, which begins
to level off and fluctuates between 6X and 7X the throughput
at 1,024 requests per batch.

This behaviour suggests that the GPU is underutilized when
the request batch size is less than approximately 20,000.
Assuming a theoretical incoming request rate can be set to
match any level of throughput, selecting a batch size of
approximately 8,000 requests per batch qualitatively provides
the maximum ratio of throughput to latency.

Another property of batch processing to consider is how
the performance between the GPU and CPU varies when the
request batch size is modified. These results are presented
in Figure 8 for both the AMD Radeon HD 5870 and the
Llano A8-3850 when compared to a single CPU core on
the Llano A8-3850 system. Both architectures show a large
initial increase in performance when the batch size is increased
between small values. Similar to the throughput behavior seen
in Figure 7(b), the speed-up compared to the CPU begins to
level out on both architectures at around 40,000 requests/batch.

2) Data Transfer: In applications with large amounts of
data needing to be transferred to and from the device, such as
Memcached, transfer time can dominate the overall execution
time of the kernel. Figure 9 shows the contribution of the
execution time and data transfer times as a percentage of
the overall execution time for each GPU. We optimistically
selected the minimum amount of data that must be transferred
to and from the device: the requests to be processed and the
results of the requests respectively. Assuming cyclic3 transfer
of data, more than 98% of the overall execution time is spent
transferring data for the discrete AMD Radeon HD 5870.
These values were recorded assuming that none of the data
could have been modified on the host between successive
kernel launches, thus ensuring all data in the device memoryis
valid. Therefore, on kernel launch, the only data that must be
transferred are the requests themselves; upon completion of the
kernel, all of the results must be transferred back to the host.
A more realistic assumption is that an unknown amount of
data could have been modified between kernel launches, thus
invalidating a portion of the data on the device and requiring
explicit tracking and transfers of the modified data on every
kernel launch. Tracking which data was modified could be
avoided by pessimistically transferring all of the data on every
kernel launch, however, this cyclic memory transfer model that

3Cyclic refers to transferring data before and after successive kernel
launches, whereas acyclic data transfer overlaps data transfer with the kernel
execution [19]
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Fig. 7. Throughput and Latency While Varying the Request Batch Size on the AMD Radeon HD 5870 (normalized to 1,024 requests/batch)

transfers data regardless of whether it has been modified is
sub-optimal.

Others [19], [16], [6], [20] have proposed solutions to this
challenge (e.g., implementing frameworks to automatically
and acyclicly transfer modified data to the device or requiring
programmer annotation of the code to specify memory regions
to be explicitly managed) to reduce the impact data transfers
have on performance. With the introduction of CPU-GPU
architectures that share a physical memory space, such as
the AMD Fusion systems, this transfer time can be virtually
eliminated. As can be seen in Figure 9, the majority of
the overall execution time for the Llano A8-3850 and Zacate
E-350 systems is spent performing useful work, rather than
waiting for the data transfer to complete. Being able to
reduce the time required to transfer data, either by using
an architecture with a unified memory space or reducing the
transfer overhead by one of the methods proposed by others,
is crucial when looking to port an application requiring large
data transfers to the GPU.

B. Simulation Performance

Unless otherwise stated, the data presented in this section
was collected from the baseline GPGPU-Sim configuration

presented in Section IV. This section attempts to gain insight
into the performance of Memcached using GPGPU-Sim.

1) SIMD Efficiency of Memcached:If a work item branches
away from the other work items in its wavefront, the GPU
executes the two sub-groups separately, requiring more cy-
cles than if they were executed together [3]. This reduces
overall SIMD efficiency. Combining Memcached’s complex
control-flow graph, which contains multiple nested conditional
branches, with the level of uncertainty in branch outcomes,one
can expect Memcached to have very poor SIMD efficiency,
directly resulting in poor performance on the GPU. Although
pessimistic, an initial view of the system might be that each
branch outcome has an equal probability. In many applications,
this might be an unreasonable assumption; however, many of
the branches in Memcached depend on input data, such as the
length of the request key, that varies greatly between requests.
This is marginally better than the worst case, in which at
each branch the thread grouping deterministically split inhalf.
After further analysis of the system, certain branches may
be reasoned to occur rarely or never (e.g., error handling or
dead code). These branches can be removed from the analysis
by forcing the threads to take a certain path because their
inclusion would negatively bias the expected SIMD efficiency
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of the system.
Simulating the control-flow behavior of a single thread

grouping with the control flow simulator, discussed in Sec-
tion IV, we can compare Memcached’s SIMD efficiency with
these initial views of how the system might behave, resulting
in the data in Figure 10. This figure compares the overall
SIMD efficiency of Memcached’s actual execution (Act) with
the pessimistic view that all branches have equal outcome
probabilities (Pes). In this case, there are 32 work items per
wavefront. Each bin in the graph represents the fraction of total
program execution in which the specified number of scalar
threads was concurrently executing.

We then improve on this pessimistic view by optimizing
away all branch paths that are never taken during normal
execution (Aug) and compare the recorded SIMD efficiency
with the actual execution. Although there is an improvement,
the SIMD efficiency of the actual execution still outperforms
the theoretical behavior. We extend this analysis to applica-
tions known to perform well on the GPU, such as Mummer
(MUM) and Raytracer (RAY), and measure how these results
compare when similar assumptions are applied, also shown in
Figure 10.

Although MUM exhibits a relatively low SIMD efficiency,
GPUs tend to have more memory bandwidth than CPUs,

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MC
(Pes)

MC
(Aug)

MC
(Act)

RAY
(Pes)

RAY
(Aug)

RAY
(Act)

MUM
(Pes)

MUM
(Aug)

MUM
(Act)

P
e
rc
e
n
ta
g
e
 C
y
c
le
s
 E
x
e
c
u
te
d

1-4
5-8
9-12
13-16
17-20
21-24
25-28
29-32

# Active 

Work-

Fig. 10. SIMD Efficiency

0

10

20

30

40

50

60

70

80

90

8k 8-

way

16k 8-

way

32k 8-

way

64k 8-

way

128k 8-

way

256k 8-

way

512k 8-

way

1M 8-

way

1M FA

M
P
K
I

Fig. 11. L1 Data Cache Mmisses per 1,000 Instructions at Various
Configurations.

which can result in higher throughput on memory-limited
applications even in the presence of significant control flow-
divergence. MUM follows a similar trend to Memcached; how-
ever, the theoretical results in RAY perform significantly worse
than the actual results. This is caused by high correlations
between work items’s branch outcomes within a wavefront.
Although each branch outcome may have a relatively random
probability, each work item is biased by the results of the other
work item within the group.

2) Effect of Memcached on the Memory System:Mem-
cached’s key-value retrieval algorithm places a significant
amount of stress on the memory system.

Figure 11 shows the misses per 1,000 instructions (MPKI)
for Memcached with a variety of L1 data cache configurations.
This data shows that Memcached has some exploitable locality
and that the working set of our simulated configuration fits in
a 256k cache. The remaining 10 MPKI are caused by cold
start misses.

Figure 12 shows the performance of Memcached on
GPGPU-Sim with a number of L1 global data cache config-
urations and two variations of an idealized memory system.
Performance is presented as a percentage of peak IPC (when
every lane is active every cycle). Increasing the cache size
results in a continuous performance improvement up to 256k,
beyond which it levels off. This result indicates that Mem-
cached is a cache-sensitive workload. Further investigation of
the source code reveals that two instructions receive a sig-
nificant reduction in latency when cache size increases. These
instructions are the loads performed inside the key comparison
loop which compares the input key and a key found in the
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hashtable. This loop accesses memory sequentially, resulting
in a high cache hit rate when the cache is large enough to
capture the working set.

The 1,024k fully associative (FA) configuration suffers only
from cold-start misses. The No Memory Latency data point
models a system in which requests can be processed in one
cycle, but each compute core can send only one request per
cycle to the global memory system. We can see from these
two data points the amount of one-touch data loaded by the
kernel. Increasing from no cache to a cache that captures all
the kernel’s locality takes the IPC from less than 1% of the
peak to 12%, and removing the cold-start misses provides
21%. This suggests that Memcached contains a high fraction
of touched-once data. This was verified by measuring the
number of accesses to each L1 cache line prior to eviction
in the 1M cache configuration. The No Memory Stalls setup
sends memory requests though the pipeline as fast as they
are generated. No Memory Stalls show an additional 12%
increase in performance over the No Memory Latency system.
This result tells us that Memcached spends a large fraction
of its execution time with a backed-up queue of memory
requests waiting to access the memory system. If wavefronts
do not stall on memory then performance is largely limited
by SIMD efficiency. The performance of the non-stalling
memory system is 33% of peak, while the SIMD efficiency of
Memcached is 40%. This 7% discrepancy can be attributed
to idle cycles when some cores take longer than others to
complete the kernel.

Figure 13 illustrates the amount of memory divergence in
Memcached. It presents the average number of global memory

0

0.2

0.4

0.6

0.8

1

1.2

WS 8 WS 16 WS 32 WS 64

P
e

r
fo

r
m

a
n

c
e

 N
o

r
m

a
li

z
e

d
 t

o
 W

S
 8

Fig. 14. Performance of Memcached at Various Wavefront Sizes (normalized
to a warp size of 8)

requests generated for each static PTX assembly instruction.
In our GPGPU-Sim baseline configuration the maximum Y-
value for each bar is 32 (all 32 lanes of the wavefront generate
a request) and the minimum is two (because requests are
coalesced per half-wavefront in GPGPU-Sim). A well-behaved
GPU application will attempt to minimize this number and
limit the stress on the memory system. From this graph
we can see that many memory instructions do not coalesce
their accesses into two requests. The bulk of the program’s
execution time is spent between PTX lines 157 and 253, where
the instructions request between seven and 23 cache lines
each on average. Further analysis of this code revealed that
the only reason these instructions do not request closer to 32
lines is that our SIMD efficiency also drops during this phase,
resulting in fewer active lanes. A relatively small amount of
code repeatedly generates a large number of memory accesses,
which backs up the memory-request queue.

The preceding data indicates that the inclusion of an L1 data
cache is critical to the performance of Memcached. Processing
more than one memory request per cycle (e.g., through a
multi-banked L1 data cache) would also improve performance
because it allows the backed-up memory-request queue to
empty sooner.

3) Effect of Wavefront Size on Performance:Figure 14
shows the performance of our modified Memcached on the
baseline simulator when varying wavefront lengths. The per-
formance is normalized to a wavefront length of eight. This
data shows that there is an 18% difference in performance
between a wavefront size of eight and 64. This indicates that
Memcached’s SIMD efficiency is a limiting factor even in the
presence of excessive memory stalls.

VI. RELATED WORK

Concurrent work by Berezecki et al. [7] presents a many-
core architecture, the Tilera TILEPro64 64-core CPU, used
to accelerate Memcached. In their work, different parts of
Memcached are modified to run on individual processors,
such as network workers, hash-table processes, TCP and
UDP cores, and the operating system itself. Although the
focus of their work and ours is similar (i.e., accelerating
Memcached on a many-core architecture), our work differs in
the method of achieving this goal, focuses on the feasibility



of running such an application on a GPU, and provides a
detailed characterization of Memcached on hardware and on
a simulator.

Andersen et al. [4] propose a log-structured datastore system
that utilizes lower-power CPUs and flash memory to maintain
performance and reduce power consumption. This is effective
in key-value store applications, such as Memcached, in which
large amounts of computation are replaced with long I/O oper-
ations and various network latencies that are not significantly
affected by low clock frequencies.

A core operation when processing aGET request is the
hash. Because our focus was parallelizing independent re-
quests, the hash algorithm is computed by each work item
individually. Massively parallel hashing algorithms, such as
the one implemented in StoreGPU [2], provide significant
performance increases when the data being hashed is large.
However, the keys hashed in this study were all less than
100 bytes and would not benefit from this divide-and-conquer
technique.

Others have also exploited the parallel properties of server-
resident applications, such as SQL [5], using a similar method
of offloading batches of read requests to the GPU. They do
not, however, model the data transfer times as they produce
significant overheads in the overall execution time. Although
we experience the same memory size limitations on the GPU,
we are able to include the full data transfer times, which result
in negligible times due to the use of the zero-copy shared-
memory region on the AMD Fusion systems.

VII. C ONCLUSIONS

In this paper, we present a characterization and evaluation
of Memached on the new AMD Fusion architectures and a
discrete AMD GPU architecture. We then present an analysis
using GPGPU-Sim to gain additional insight into the behavior
of Memcached on a GPU. From this analysis, we conclude
that irregular applications, such as Memcached, should not
be immediately disregarded when considering porting them to
a GPU. We believe the methodology presented in this study
of batching user requests for processing on a throughput-
efficient device can be generalized so many server applications
could take advantage of this framework. We observed that the
Llano A8-3850 and Zacate E-350 GPUs outperformed their
respective CPUs by factors of 8 and 4, respectively. We also
showed that the discrete system was able to outperform the
CPU when data transfers are ignored; however, when including
the data transfer time, results are hindered by data-transfer
overheads.
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