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Abstract—The recent use of graphics processing units (GPUSs)
in several top supercomputers demonstrate their ability tocon-
sistently deliver positive results in high-performance cmputing
(HPC). GPU support for significant amounts of parallelism wauld
seem to make them strong candidates for non-HPC applicatich 10% -
as well. Server workloads are inherently parallel; however at 0%
first glance they may not seem suitable to run on GPUs due Expected Actual
to their irregular control flow and memory access patterns.
In this work, we evaluate the performance of a widely used
key-value store middleware application, Memcached, on remt
integrated and discrete CPU+GPU heterogeneous hardware dn

characterize the resulting performance. To gain greater isight, . . L
we also evaluate Memcached'’s performance on a GPU simulator is unstructured. In this paper, we study one such applicatio

This work explores the challenges in porting Memcached to @nd show arguably good performance results. These positive
OpenCL and provides a detailed analysis into Memcached’s results are achieved by taking advantage of the GPU’s mem-
behavior on a GPU to better explain the performance results ory bandwidth and numerous functional units to overcome
observed on physical hardware. On the integrated CPU+GPU {0 application’s unstructured behavior. More specificalle

systems, we observe up to 7.5X performance increase compdre . :
to the CPU when executing the key-value look-up handler on th characterize and evaluate Memcached [18], a widely used key

SIMD Efficiency

Fig. 1. Memcached SIMD Efficiency: Expected vs. Actual

GPU. value store application, and show it is a strong candidate fo
Index Terms—GPGPU, SIMD, OpenCL, key-value store, acceleration on certain classes of GPUs.
server Memcached was originally designed for LiveJournal, but

has since been extended to many other large-scale web
applications such as Facebook, YouTube, Wikipedia, Flickr
With the introduction of programmable functional unitsgyjitter, and others [18]. Memcached is a memory-intensive
graphics processing units (GPUs) have expanded to geneggplication. On a discrete GPU with isolated memory spaces,
purpose, high-performance computing (HPC) applicationgyge data transfers are required between the CPU and GPU
These types of applications are known _to_efficiently utilizg, keep a coherent view of the memory on both the host
the underlying GPU hardware to maximize performancgng device. Assuming Memcached’s requests are independent
When performing an initial analysis on an application, manynq that each request can be handled by a separate thread,
programmers may look for characteristics similar to eR®ti 3 common expectation might be that each thread exhibits
applications with proven performance on GPUs. This may |e?fﬂjependent and irregular behavior.
a programmer to disregard applications that appear to @evia
from these characteristics. This bias may eliminate fro

cor:|3|derat(|§|r31Usome applications that actually might perfo a single-instruction/multiple-data (SIMD) architectuseich as
wetonatLry. . . a GPU, groups of threads must execute instructions together
One family of highly parallel and economically appeahngn lock-step. This suggests that Memcached might not fit the

applications that initially may not appear 1o gain perfonma SIMD model because threads might often execute different
benefits on GPUs are traditional server applications. HP

licati h b h o attai d ; instructions based on their input data. SIMD efficiency rep-
appiications have been shown 1o attain good pertormance iy g the fraction of scalar threads that execute togathe

GPUs [11]; however they represent a relatively small Segmqgckstep per cycle. Given these properties, Memcached may
of the overall computing market Large-scale server appli- ppear to have poor SIMD efficiency on a GPU. Figure 1

cations represent a larger class of applications, but oae t resents a comparison between Memcached's actual SIMD

1According to IDC, in 2009 the overall server market had rexnof $43.2 efﬁCienCy (”Act_ual") and the SIMD eﬁiCienCy if all code pth
billion [15] versus $8.6 billion for HPC servers [14]. were equally likely ("Expected”). On average, Memcached'’s

I. INTRODUCTION

Initial analysis into Memcached shows its memory access
B]atterns and execution behavior depend on the input data. In



actual SIMD efficiency is approximately 2.7X higher than a

naive assumption about code-path suggests. These remailts a Compute Device \ Uttra-Threaded Dispatch Processor (UTDP)
explained in greater detail in Section V. [Gompae i‘
The contributions of this paper are: [Compute Unit J — 12RO
i . . ) » - Image / Constant
« It contrasts a programmer’s intuition of an application’s - = Dt
potential execution behavior on a GPU with the actual s . -
behavior. Using Memcached and two other examples, @R 0' e Loca Data Store
we show that the appearance of irregular control-flow g [m ] NS
patterns do not directly result in negative performance = P| ' _I
on a GPU. i T R0

« It describes the methodology used to modify Memcached

to run on a GPU. L I

o It analyzes Memcached's performance on AMD 111
Fusiof ™ CPU-GPU architectures and compares it to | Memen contoler |
discrete GPU architectures. t

« To provide deeper insight, it evaluates the performance \ Global / Constant Memory W Host

of Memcached on GPGPU-Sim [1].

The rest of this paper is organized as follows: Section Il
presents the programming model and baseline architecture
used in this study, and discusses the common performan}g\e-
affecting features on a GPU and how Memcached is impacted,
Section Il describes how Memcached was ported to the GPU As already mentioned, work items are grouped together into
Section IV describes the methodology and environment usedvefronts. In an application without any conditional @oht
to perform this study, Section V presents a characterigatiiow operations, such as conditional branches, the wavefron
and evaluation of Memcached on hardware and GPGPU-Sisi,able to make forward progress throughout the code while
Section VI describes related works, and Section VIl conetud executing instructions for each work item in parallel. Hoere

if conditional branches are introduced into the code, it is
II. GPU ARCHITECTURE ANDBACKGROUND possible for a sub-set of the work items in a wavefront to
take the branch while the remaining work items do not. This

AMD GPU architectures are used in this study, running known as branch divergence. To handle branch divergence,
OpenCL applications. OpenCL is a C-like programming modé hardware component, similar to the SIMT stack described
that provides an application programming interface (ARI) toy Fung et al. [22] [23] can be used to track the active work
interact with GPUs. The compute kerfiels a user-defined items at various points throughout the program’s execution
parallel section of code that runs on the GPU. ExecutionisegiAn active work item refers to a work item within a wavefront
on the host with communication of data and commands on thi@t is currently executing instructions. A work item beesm
device taking place in one or more command queues. Here, thactive if it takes a branch that diverges away from the othe
host refers to the CPU and the device refers to the GPU. TWerk items in the wavefront.
host then launches a compute kernel on the device, spegifyin Each entry on the SIMT stack contains a bitmask represent-
the appropriate hierarchy of threads required by the coenpiing the active work items in a wavefront, with the top element
kernel. In OpenCL, this hierarchy consists of an NDRange of the stack (TOS) signifying the sub-set of work items to
work groups of wavefronts of work items. In AMD hardwaregxecute. The SIMT stack also records the current program
each work item is logically equivalent to a scalar threadgounter (CPC) and a re-convergence program counter (RPC).
The wavefronts group multiple work items, which execute thEhe CPC specifies the instruction that the active work items
same instruction on different data streams. The work groups a corresponding stack entry will execute once it becomes
group multiple wavefronts, providing consistency withimet the TOS. As the work items in the TOS entry execute the
work groups. The NDRange provides an indexing space thastructions, the CPC is incremented accordingly. The rothe
specifies the breakdown, in terms of size and dimension, @funter, the RPC, specifies the immediate post-dominator
work items into work groups. Figure 2 shows a high-level vieyPDOM) instruction. The IPDOM is defined as the closest
of the GPU architecture used in this study [3]. point in the program that all paths leaving the branch must go

The following sub-sections discuss a few of the main GPthrough before exiting the function. The SIMT stack uses the
features that need to be considered by a programmer to achiBf’C to specify where the active and inactive work items can
high performance. rejoin.

Figure 3 shows an example of the SIMT execution flow
2For the remainder of the paper, “kernel” and “compute keraet used WNeN executing a piece of code taken from the hash function
interchangeably. in Memcached. It is also annotated with the actual branch

Fig. 2. High-level View of AMD’s Baseline Architecture

Control Flow
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Fig. 3. SIMT Execution Example generate a memory request to be handled by the memory sys-

tem. If each memory request is for a data object in a different
region of memory, all requests will be handled separatetis T

probabilities using the same input data sets as in Section phenomenon is referred to as “memory divergence” for the
In this example, there are four work items per wavefrontemainder of this paper. However, if the data being reqdeste
Snapshots of the SIMT stack are shown at different poinfiom different work items lies within a given range, such as
throughout execution on the right. the size of a cache line or the size of data returned on a

A work item is represented by a vertical lane in the middimemory request (i.e. high data locality between work items
of Figure 3 (labeled 0 through 3). Active work items are thin a wavefront), an optimization can be applied in which
black arrows, and inactive work items are the white arroweach memory request falling into one of these regions can be
The ovals represent basic blocks, which signify a portion ebalesced into a single request. This can significantly aedu
code with single entry and exit points that ensure no furthtre amount of memory-request traffic on the memory system.
branch divergence. Without branch divergence, the minimumConsider the example in Figure 4 with two work items,
number of blocks required to readt from A is four (A — Wi-1 and Wi-2, executing two load instructions. On the first
C — G — H) and the maximum is fiveA - B —+ D/E — load instruction, labeled, Wi-1 loads inA and Wi-2 loads
F/G — H). in B. Because both data objects lay in a single cache line, the

At the beginning, all of the work items in the wavefront aréwo memory requests can be coalesced into a single request.
set to active and execute the instructions at bldclat the first However, on the second load instruction, labele@vi-1 sends
branch, work items 0-1 go to block while work items 2-3 a memory request for an object separated further in memory
go to blockC; the corresponding entries are pushed onto tfiean the size of a cache line from Wi-2's memory request.
stack. The re-convergence point for each work item is set Tus, two memory requests will be generated. Extending
the IPDOM blockH . This is shown by the top stack expandinghis to real applications, typically containing 64 workrite
from B. The next step is to execute a sub-set of the originger wavefront and hundredss of wavefronts per kernel, un-
wavefront until reaching a re-convergence point. Executicoalesced memory requests can generate large amounts of
switches to work items 0-1 aB; here, the work items split memory traffic to the memory system and significantly affect
again, removing its current entry and pushing two new esntrigerformance.
onto the stack. Work item 0 executes until reaching the & Data Transfer

convergence poink/ before allowing work item 2 to execute o ) )

until reaching H. Work items 2-3 now become active and Significant losses in performance can occur with large data
execute untill. The work items are able to resume concurreffansfers between the host and device [13] because the time
execution once all work items reach the re-convergencet poiduired to transfer data increases linearly with the armoun
H. of data needing to be transferred [9]. Discrete GPUs have

Assuming all the basic blocks have the same number %qurfa\te, isolated memory spaces from_ the host that require
instructions, the SIMD efficiency in this example is appmxiexpllclt data transfer. Data communication takes placer ove

mately 50% and executes nine blocks in total. Also, blgtk & connection bus between the host and device, typically a

is executed twice, resulting in more instructions beingiéss PCle buz On the discrete_ card used in this study, the AMD
than necessary. Radeod™ HD 5870, data is transferred between the host and

Thus, to achieve the highest performance from the GPU,dif\gcgé’/'a a3PCIe 2.1 x16 bus, with a maximum transfer rate
is desirable to have as little branch divergence as possible0 s [3l.

IIl. PORTING MEMCACHED
B. Memory Access A. Memcached

Memory accesses are another property of GPUs directlyMemcached is a general-purpose, high-performance mem-
affected by grouping of work items in a wavefront. If theory caching system used to improve performance of dynamic
instruction being executed by all work items is a memonydistributed databases in server applications by cachieg th
access operation, such as a load or a store, each work itém vétently queried data in main memory. This alleviates the



amount of traffic required to query the database and acc#lss lifetime of this connection. The client is then able to
non-volatile storage or other external sources. Theserexpsend requests through this connection to be handled by the
sive 1/O operations can significantly reduce performanad aserver. These connections contain significant overhead whe
increase power consumption. Main memory from individuadonsidering the amount of information required to procéss t
servers is combined to create a large pool of virtual memorgquest on the GPU, such the protocol and client information
that is common across all servers. This aggregation of mgmdio reduce the amount of data being sent to the GPU, we
effectively provides a much larger memory space that scale®ated apayload data object that contains a sub-set of the
linearly with the number of servers in the system. connection information required to processG&iT request,

A simple interface is provided to store, modify, and reteievsuch as information about the search key and a pointer to the
data from the distributed hash tables. All of the write ancequested item if found. On eacRET request, we allocate
read operations must perform two hashes of the keys. Thed assign a payload object to the requesting connection and
first hash selects which server the request should be ditechatch these payload objects to be transferred to the GPU,
to and the second hash selects the appropriate entry in thducing the overall amount of data to be transferred.
hash table. Hash-chaining is used in the event of collisions
on write operations and a linear traversal of the linked list 1) Memory Managemenflo manage all the data allocated
is used on read operations when necessary. On a read (GE@ accessed in Memcached, we implemented a dynamic
request) hit, in which the key is found in the hash table, thmemory manager on the host. This memory manager is used
value corresponding to that key is returned to the requgstito store all the data that needs to be visible to both the host
client. On a read miss, however, the client is notified of thend the device; it replaces thealloc and free system calls
miss and, if applicable, the database is queried for theimgissoriginally used in Memcached. Depending on the system being
data, which is then stored into Memcached. used, the allocated buffers reside in different memoryomg)i
on the host or device. On the discrete system, the buffers are
allocated in the regular host memory space and transferred

This section describes the necessary modifications madadahe device when necessary. On the AMD Fusion systems,
Memcached to offload th& ET request handler to the GPU,however, these buffers are allocated in pinned memory t® tak
as well as the corresponding changes made to the hostativantage of the zero-copy memory regions where data can be
efficiently interact and communicate with the GPU. allocated on either the CPU or the GPU and accessed directly

In our implementation of Memcached, we focused on aby both with varying bandwidth and latencies.
celerating the read requests on the GPU while leaving theThere are two types of zero-copy memory spaces available:
write requests to be handled by the CPU. Berezecki et #le host-visible device memory and the device-visible host
observe that read requests far outnumber write requestsniemory. These memory spaces are allocated from pinned host
real-world scenarios running Memcached in Facebook [fhemory, a sub-set of the host's memory space, at system
They also conducted experiments showing that write requebbot time. The device-visible host memory is optimized for
have negligible effects on read performance. It is readenalccess by the host, whereas the host-visible device memory
to assume that the read requests will have the most sigrificanoptimized for the device [3]. To minimize the data access
impact on performance, and thus have the greatest benefit tinme on the GPU, we used the host-visible device memory.
terms of overall system performance — from being acceldrate While current AMD hardware shares a physical memory
on the GPU. region between the host and device, it does not share a com-

To take advantage of the massive amounts of availableon address space. The implication of this is that the irtua
parallelism provided by the GPU, GET requests are batchedaxidresses returned by omem alloc function, corresponding
the host, passed to the device on kernel launch, and prategsethe physical location in host-visible device memory, @& n
in parallel on the device. Each work item in the Memcachdatle same as the address seen on the device, even though it
kernel handles a single request, which performs common keprresponds to the same physical location. Thus, compliex da
value look-up operations. This consists of computing th&hhastructures consisting of many multiple-level pointers can
of the request’s key, accessing the appropriate entry indasé simply be de-referenced on the device.
table using the resulting hash value, and then comparing théVhat is common between the host and device, however,
request’s key with the key — or multiple keys in the event aé the offset of each memory object from the start of the
hash collisions — residing at that hash table location.dfikbys allocated memory region. Using this property, we pass the
match, the value corresponding to that key is returned to thietual address pointing to the start of the memory region
requesting object. We assume that the requests have alreselyn by the host as an argument to the Memcached kernel
been directed to the correct server, and thus the hash perfbor and calculate the offset between the this and the start of
on the GPU corresponds to the second hash mentionedthe memory region seen by the device. A macro is used to
Section IlI-A. subtract this offset from every memory de-reference on the

When Memcached receives a request from a client vigvice:translate(address, of fset). The inverse operation is
the network, it creates aonnection object that contains applied to all pointers set on the device, such as the return
all information required to process any requests duringlue in a read request. This ensures that both the host and

B. Changes Required



TABLE |
HARDWARE SPECIFICATIONS

S S S s
E 3 E 3 Llano A8-3850| Zacate E-350
Q o0 () Q o0 (9]
£ = £ = Name g’;/ld?eon (AMD Radeon| (AMD Radeon
o &) (&) o HD 5870 HD 6550D) | HD 6310)
ﬁ‘ AMD Fusion AMD Fusion
J/J 7 Engine Speed (MHz) 850 600 492
21238 # Compute Units (CU) 20 5 2
212|222 eee # Stream Cores 320 80 16
I R e # Processing Elements 1,600 400 80
i Peak Gflops (single-precisionf) 2,720 480 78.72
NE # of Vector Registers , , ,
\—\v 2 Y% Regi /CU 16,384 16,384 16,384
‘ Key ‘ Key ‘ Key cos LDS Size/CU (kB) 32 32 32
Constant Cache / GPU (kB) 48 16 4
L1 Cache / CU (kB) 8 8 8
Fig. 5. Contiguous Memory Layout L2 Cache / GPU (kB) 512 128 64
DRAM Bandwidth (GB/sec) 153.6 29.9 17.1

. . . C. WikiData
device access the same physical memory locations. Gelado et

al. [12] implement a similar technique by either ensuringtth We simulated request traffic to our Memcached server using
the virtual pointers returned to the shared memory regien & large input file consisting of read and write requests. Bpec
the same or by maintaining address mappings between ig@lly, we used portions of the Wikipedia Workload traces
host and device. This reduces demands on programmersf@ynd at [21] to stimulate our application. These workload
eliminating the need to traverse and reconstruct compléx défaces were recorded by Wikipedia's front-end proxy caches
structures that contain multiple pointers on the devicehsas and, in total, contain billions of HTTP requests.

linked lists or tree structures. Memcached’s host code was modified to process the re-
, ) guests from the trace files instead of incoming requests from
2) Read-only Data:With the exception of the data StruC-e network. A configurable number of requests are processed

tures written to with the result of the GET request, the mgjor 4\ the cpu prior to the offloading work to the GPU, to set
of the data between successive kernel launches is read-’\q/k%y ' '
t

- i the environment and ensure there is a sufficient amount of
when processing GET requests in Memcached. Current A a stored in Memcached’s memory. Once the setup period

hardware provides various hardware components, SUCh @S reayjetes, write requests are handled immediately on tae ho

only caches, that can significantly decrease data access tig},q read requests are placed into a buffer until the confifira
Where possible, we allocated data in a read-only bufferke ta, , per of read requests are encountered.

advantage of the buffer’s high-bandwidth, low-latency men

access. IV. METHODOLOGY

3) Memory Layout:Using the dynamic memory manager,,
we can allocate data in specific layouts to take advantageeof t
memory-coalescing property discussed in Section 1I-B. Two We performed tests on three configurations of GPUs and
data structures guaranteed to be accessed by all work itedggelerated processing units (APUs): a high-performaiee d
on the GPU in a known access pattern are the payloads &fete graphics card, a low-power AMD Fusion APU, and a
the keys corresponding to each payload. As introduced in S&¥d-to-high-end AMD Fusion APU. The discrete card was
tion I11-B, the payload contains a pointer to the requesteg k chosen to show potential upper bounds on compute perfor-
the length of the key, and a pointer to the item being reqdestéance, while the low-power AMD Fusion APU provides
Each work item is assigned a single payload correspondingifigight into the performance capabilities of such a sysfEme.

a single GET request. Assuming a 32-bit system, the siz@id-to-high-end AMD Fusion APU falls in the middle of these
of each payload is only 12 bytes. With a wavefront size d¥o systems, combining the higher compute performance with
64 work items and a cache line size of 128 bytes, these &® benefits of the APU’s shared memory space. The hardware
memory requests could be reduced to six to retrieve the sasfecifications for these GPUs are outlined in Table |I.
amount of data. Therefore, we ensure payloads are allocated

contiguously in memory by allocating a separate dedicat€d GPGPU-Sim

buffer. We used GPGPU-Sim to further analyze Memcached’s

To access the payloads, each work item requires onlybahavior on a GPU. Although the GPU architecture modeled
pointer to the start of the buffer and uses its global wotty GPGPU-Sim differs from the physical hardware analyzed
item ID to access the appropriate index in the payload array.this study, such as in its use of a VLIW unit, we do not
This same technique is applied to the keys correspondingtiink that this is an issue because the architecture resem-
the payloads, such that when each work item dereferent#ss AMD's future architecture [17]. GPGPU-Sim simulates
the pointer to the key, it will lie relatively close in memory Parallel Thread Execution (PTX) code, a pseudo-assembly
Figure 5 shows how the connections, payloads, and keys &meguage. Table Il presents the configurations used in GRGPU
allocated in the different buffers. Sim.

. Hardware



TABLE Il
GPGPU-3v CONFIGURATION

application that requires branch correlation to estimége t

# Streaming Multiprocessors 30 .. . . . .
Warp Size 32 SIMD efficiency accurately is Ray Tracer, which is discussed
SIMD Pipeline Width 8 in Section V-B.
Number of Threads / Core 1024
Number of Registers / Core] 16384 . L
Shared Men?O,y,Co,e T6KB D. Assumptions and Known Limitations
Constant Cache Size / Corg 8KB . B
Texture Cache Size ] Core| 32KB, 648 Tine, T6-way ass0d. Throughout this study, we assume .reques_ts are independent
Number of Memory Channels 8 of each other. Thus, all read operations will view the most
L1 Data Cache 32KB, 128B line, 8-way assod. +A-
L2 Unified Cache 512k, 128B line, 8-way assod. up to-date data. ) i
Compute Core Clock 1300 MHz Currently, the size of memory accessible by the GPU and
'“:jmonneg]‘:"‘(’“ ggg m:z APU is limited. On the APU, each zero-copy buffer can be a
emory Cloc z . . .
DRAM request queue capacily 5 maximum _of 64 MB, with a system tota! of 12.8 MB [3]_. Th|s
Memory Controller Out of Order (FR-FCFS) poses various problems for memory-intensive applications
Branch Divergence Method PDOM [22] such as Memcached, that require large amounts of memor
Warp Scheduling Policy Loose Round Robin . o a 9 o . y
GDDR3 Memory Timing | ¢cz=10 trp=10 trc=35 to be effective. This problem would be eliminated with a
tras=25trcp=12trrp=8 i i i
Viemory Channel BW 8 ByteCycle) larger region of pinned memory available to the GPU and

an appropriate interface to allocate and access the aailitio
memory. For example, the industry is moving to address the
limited memory capacities available in current graphicsisa

We are interested in analyzing an application’s contrakfloAMD announced at the 2011 AMD Fusion Developer Summit
behavior to study: (a) how programmer’s intuition compargAFDS) that future GPUs and APUs will support accessing
with reality, and (b) the effect of branch probabilitiesatéte CPU virtual memory [10]. We expect future products will
to correlation. To analyze the control-flow for a given appliallow sharing of arbitrarily large memory spaces between th
cation, we designed a stand-alone control-flow simulatat thCcPU and GPU cores, eliminating this restriction.
simulates the behavior of a wavefront through an applic&io  Batching requests inherently adds additional latencieseo
control-flow graph. Each branch in the application is anteata system. Offloading requests to the GPU would help reduce
with an outcome probability. At each branch, the active worgstem-queuing latency if CPU throughput became the bottle
items generate a random number and compare it with theck when experiencing high incoming request rates. While
threshold outcome probability at that branch. some applications may not be able to accept the latency impac

This is useful when performing the initial analysis irof batching thousands of requests, we expect we could achiev
deciding to port an application to the GPU. Prior to writingnany of the benefits with smaller batch sizes. Our future work
any code for the GPU, the programmer can gain better insighill look at batching fewer requests at a time (e.g., batch
into the average SIMD efficiency likely to result on thea wavefront [or a few] at a time and launch them to some
hardware. The simulator takes three input filesD&@T file persistent worker threads on the GPU).
containing the information required to generate the cntro We initially profiled Memcached to locate sections of code
flow graph, a file containing the number of instructions pehat bottlenecked performance and would benefit from rumnin
basic block (specified in the DOT file), and a file containingh parallel on the GPU. This revealed that the majority of
the outcome probabilities for each branch in the applicatioexecution time is spent in I/O and handling the network stack
A SIMT stack handles branch divergence and re-convergentée key-value lookup, although a less significant portioas w
and the simulator measures the overall SIMD efficiency fahe next-highest contributor to the overall execution tiofe
each iteration through the application’s control-flow drafor Memcached. Thus, we focused our efforts on porting the key-
a set of given branch probabilities, we ensure SIMD effigienealue lookup handler to the GPU and left optimizing the
results converge by averaging a large number of iteratioms fetworking stack for future work.
this work, 100,000 iterations) through the control-flow gra o .

In theory, branch probabiliies themselves may not He Validation and Metrics
enough to accurately simulate the SIMD efficiency of an To verify the GPU version of Memcached returns the correct
application. Consider an application already ported to ruesults, we first processed the batchGaET requests on the
on a GPU. After profiling the execution, it is possible t&€CPU, and then passed off the same batch of requests to the
have a SIMD efficiency of 100% with an outcome probGPU. On kernel completion, we compared the two results to
ability of 50% at every branch if every work item takesnsure the same set of items was found. The execution times
the same path but alternates paths between every executmnthe CPU were recorded using a fine-grained time stamp
This correlation among branches is not implemented in tleeunter (TSC) that records the sequential look-up timeser
control-flow simulator and is left to future work. Despitebatch of requests. When timing the CPU, all data was alldcate
this, by extracting Memcached’s actual branch probaéditiin a cacheable memory region. For each GPU, we recorded
from GPGPU-Sim and using them as input to the control-flothe kernel execution times using the AMD APP Profiler tool
simulator, we found the estimated SIMD efficiency is withirfv. 2.3). We verified that the comparison with the TSC timer
1.3% of the actual SIMD efficiency of Memcached. One suchas valid by also timing the kernel execution time on the

C. Control-flow Simulator



TABLE Il
CPU HARDWARE SPECIFICATIONS

process that batch of requests. Figure 7 presents thedesresu

Name Llano A8-3850| Zacate E-35 . o K X

# x86 Cores Z 2 normalized to an initial batch size of 1,024 requests, akoly

CPU Clock| 2.9 GHz 1.6 GHz data transfer times. Also shown in Figure 7(a) is a 0.5-ms
TDP 100W 18w . . . .

25/ core VB 515 KB latency reference line. Berezecki et al. [7] indicate thdt-a

ms delay, including network transfer and TCP processing,tim
Llano A8-3850 system immediately before the kernel launckiould be the maximum tolerable latency for a request. The
and immediately after thel F'inish synchronization function. large spike in throughput from 1-5X in Figure 7(b) is caused
Both timing methods output the same values. by the minimal increase in latency, approximately 1.3X, levhi
increasing the number of requests/batch by 7.5X (1,624
7,680). This results in the behavior shown by the throughput
At the time of this study, Linux drivers for the AMD corresponding to the initial increase in latency, whichibgg
Fusion system did not support zero-copy buffers. To accasslevel off and fluctuates between 6X and 7X the throughput
the Windows AMD SDK and the necessary Linux librariesat 1,024 requests per batch.
we used Cygwin [8] to run Memcached on the AMD Fusion This behaviour suggests that the GPU is underutilized when
systems. One issue with Cygwin is its inability to accesbe request batch size is less than approximately 20,000.
all provided hardware counters. This significantly limitd® Assuming a theoretical incoming request rate can be set to
amount and variety of data we were able to collect froomatch any level of throughput, selecting a batch size of
Memcached on the hardware. To gain additional informati@pproximately 8,000 requests per batch qualitatively ioles/
about Memcached’s behavior, we profiled Memcached dime maximum ratio of throughput to latency.
GPGPU-SIm. Another property of batch processing to consider is how
the performance between the GPU and CPU varies when the
A. Hardware Performance request batch size is modified. These results are presented
Memcached was run on the three GPU configuratioms Figure 8 for both the AMD Radeon HD 5870 and the
introduced in the previous section, with the performanddano A8-3850 when compared to a single CPU core on
measured via hardware counters through AMD App Profilehe Llano A8-3850 system. Both architectures show a large
Both the AMD Radeon HD 5870 and the Llano A8-385(nitial increase in performance when the batch size is asezd
(AMD Radeon 6550D) are compared against a single Llam@tween small values. Similar to the throughput behaviense
x86 CPU core, while the Zacate E-350 system was compaiiadrigure 7(b), the speed-up compared to the CPU begins to
against a single Zacate x86 CPU core. Table Ill providdsvel out on both architectures at around 40,000 requedtsib
additional information about the CPUs used in this study. 2) Data Transfer: In applications with large amounts of
Figure 6(a) presents the average speed-up, in terms of kdgta needing to be transferred to and from the device, such as
value look-ups per second (LPS), for each GPU configuratiddemcached, transfer time can dominate the overall exacutio
normalized to the CPU’s execution time. Because thesetsestiime of the kernel. Figure 9 shows the contribution of the
do not include any data transfer times, they explicitly figft execution time and data transfer times as a percentage of
the computational performance benefits when performingtlze overall execution time for each GPU. We optimistically
key-value look-up on the GPU relative to the CPU. Even witbelected the minimum amount of data that must be transferred
the irregular control-flow and memory-access patternsemtesto and from the device: the requests to be processed and the
in Memcached, the AMD Radeon HD 5870 is able to performesults of the requests respectively. Assuming cydfiansfer
the key-value look-up on a batch of requests approximatedy data, more than 98% of the overall execution time is spent
33X faster, the Llano A8-3850 7.5X faster, and the Zacatgansferring data for the discrete AMD Radeon HD 5870.
E-350 4.5X faster than their CPU counterparts. These values were recorded assuming that none of the data
Data transfer times result in a large overall performane®uld have been modified on the host between successive
decrease on the discrete system, as can be seen in Figure &gyel launches, thus ensuring all data in the device meisory
The APUs, however, have close to 0 transfer time due to tkalid. Therefore, on kernel launch, the only data that mest b
shared memory space. These data transfer times are siwafisferred are the requests themselves; upon compldtiba o
but non-zero due to the mapping and unmapping operatiokernel, all of the results must be transferred back to the. hos
Although the compute power of the APUs is less than the more realistic assumption is that an unknown amount of
high-performance discrete AMD Radeon GPU, the ability tdata could have been modified between kernel launches, thus
fully eliminate the transfer of data allows these devices tovalidating a portion of the data on the device and reqgirin
outperform the AMD Radeon HD 5870. explicit tracking and transfers of the modified data on every
1) Request Batching:Whenever considering batch pro-kernel launch. Tracking which data was modified could be
cessing, there is always a trade-off between throughput aaxbided by pessimistically transferring all of the data verg
latency; as the number of queued requests increases, the tk@rnel launch, however, this cyclic memory transfer mohat t

taken to process these requests also increases. We measured _ _
Cyclic refers to transferring data before and after sudéeeskernel

these values On_ the AMD Rad_eon HD 5870 by _Varying thgunches, whereas acyclic data transfer overlaps datsférawith the kernel
batch request size and recording the average time takenesecution [19]

V. EXPERIMENTAL RESULTS
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transfers data regardless of whether it has been modifiedpigsented in Section IV. This section attempts to gain hisig
sub-optimal. into the performance of Memcached using GPGPU-Sim.

Others [19], [16], [6], [20] have proposed solutions to this 1y g\1p Efficiency of Memcachedf a work item branches
challenge (e.g., implementing frameworks to automa’g’rcalhway from the other work items in its wavefront, the GPU
and acyclicly transfer modified data to the device or requiri oy acites the two sub-groups separately, requiring more cy-
programmer annotation of the code to specify memory regiopgs than if they were executed together [3]. This reduces
to be explicitly managed) to reduce the impact data trassfefq 4| SIMD efficiency. Combining Memcached's complex
have on performance. With the introduction of CPU-GPUqht fiow graph, which contains multiple nested corodisil
architectures _that share a p_hy5|cal memory Sspace, _SUChb?a?nches, with the level of uncertainty in branch outcoroas,
th_e AMD Fusion systems, thIS. traqsfer time can be .V|r_tuallé((,3ln expect Memcached to have very poor SIMD efficiency,
eliminated. As can b(_a seen in Figure 9, the majority Qi‘irectly resulting in poor performance on the GPU. Although
the overall execgtlon time for the_ Llano A8-3850 and Zaca ssimistic, an initial view of the system might be that each
E-350 systems is spent performing useful work, rather thgf, . outcome has an equal probability. In many applicatio
waiting for the data _transfer to complete. B_elng able _tfP'lis might be an unreasonable assumption; however, many of
reduce the time required to transfer data, either by usiRg, pranches in Memcached depend on input data, such as the
an architecture with a unified memory space or reducing t%ﬁgth of the request key, that varies greatly between stgue
transfer overhead by one of the methods proposed by otheffis is marginally better than the worst case, in which at
is crucial when looking to port an application requiringd@r o,c pranch the thread grouping deterministically splitaf.
data transfers to the GPU. After further analysis of the system, certain branches may
be reasoned to occur rarely or never (e.g., error handling or
dead code). These branches can be removed from the analysis

Unless otherwise stated, the data presented in this sectignforcing the threads to take a certain path because their
was collected from the baseline GPGPU-SIim configurationclusion would negatively bias the expected SIMD efficienc

B. Simulation Performance
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which can result in higher throughput on memory-limited
applications even in the presence of significant control flow
divergence. MUM follows a similar trend to Memcached; how-
ever, the theoretical results in RAY perform significantlgrae
than the actual results. This is caused by high correlations
between work items’s branch outcomes within a wavefront.
of the system. Although each branch outcome may have a relatively random

Simulating the control-flow behavior of a single threadrobability, each work item is biased by the results of theeot

grouping with the control flow simulator, discussed in Sedvork item within the group.
tion 1V, we can compare Memcached’s SIMD efficiency with 2) Effect of Memcached on the Memory Systeviem-
these initial views of how the system might behave, resglticached’s key-value retrieval algorithm places a signitican
in the data in Figure 10. This figure compares the over@mount of stress on the memory system.
SIMD efficiency of Memcached'’s actual execution (Act) with Figure 11 shows the misses per 1,000 instructions (MPKI)
the pessimistic view that all branches have equal outcorfte Memcached with a variety of L1 data cache configurations.
probabilities (Pes). In this case, there are 32 work itemrs pEehis data shows that Memcached has some exploitable kpcalit
wavefront. Each bin in the graph represents the fractiootaft and that the working set of our simulated configuration fits in
program execution in which the specified number of scalar256k cache. The remaining 10 MPKI are caused by cold
threads was concurrently executing. start misses.

We then improve on this pessimistic view by optimizing Figure 12 shows the performance of Memcached on
away all branch paths that are never taken during norm@PGPU-Sim with a number of L1 global data cache config-
execution (Aug) and compare the recorded SIMD efficienayrations and two variations of an idealized memory system.
with the actual execution. Although there is an improvemerferformance is presented as a percentage of peak IPC (when
the SIMD efficiency of the actual execution still outperfemevery lane is active every cycle). Increasing the cache size
the theoretical behavior. We extend this analysis to aaplicresults in a continuous performance improvement up to 256Kk,
tions known to perform well on the GPU, such as Mummeéseyond which it levels off. This result indicates that Mem-
(MUM) and Raytracer (RAY), and measure how these resultached is a cache-sensitive workload. Further investigadf
compare when similar assumptions are applied, also showrthie source code reveals that two instructions receive a sig-
Figure 10. nificant reduction in latency when cache size increasesséhe

Although MUM exhibits a relatively low SIMD efficiency, instructions are the loads performed inside the key corapari
GPUs tend to have more memory bandwidth than CPUepp which compares the input key and a key found in the
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30

% requests generated for each static PTX assembly instnuctio

520 In our GPGPU-Sim baseline configuration the maximum Y-
15 value for each bar is 32 (all 32 lanes of the wavefront gererat
10 a request) and the minimum is two (because requests are

coalesced per half-wavefront in GPGPU-Sim). A well-beldave
GPU application will attempt to minimize this number and
limit the stress on the memory system. From this graph
we can see that many memory instructions do not coalesce
Fig. 13. Memory Requests Generated per Instruction for &tatic PTX their a,Cces_seS,lmo two requests. Th? bulk of the program’s
Instruction execution time is spent between PTX lines 157 and 253, where
the instructions request between seven and 23 cache lines
each on average. Further analysis of this code revealed that
hashtable. This loop accesses memory sequentially, irgsultthe only reason these instructions do not request close? to 3
in a high cache hit rate when the cache is large enoughiiiges is that our SIMD efficiency also drops during this phase
capture the working set. resulting in fewer active lanes. A relatively small amoufit o
The 1,024k fully associative (FA) configuration suffersyonlcode repeatedly generates a large number of memory acgcesses
from cold-start misses. The No Memory Latency data poigfhich backs up the memory-request queue.
models a system in which requests can be processed in ong¢he preceding data indicates that the inclusion of an L1 data
cycle, but each compute core can send only one request ggthe is critical to the performance of Memcached. Proogssi
cycle to the global memory system. We can see from theg@yre than one memory request per cycle (e.g., through a
two data points the amount of one-touch data loaded by thfilti-banked L1 data cache) would also improve performance
kernel. Increasing from no cache to a cache that capturesidcause it allows the backed-up memory-request queue to
the kernel's locality takes the IPC from less than 1% of thémpty sooner.
peak to 12%, and removing the cold-start misses provides3) Effect of Wavefront Size on PerformancEigure 14
21%. This suggests that Memcached contains a high fractigiows the performance of our modified Memcached on the
of touched-once data. This was verified by measuring th@seline simulator when varying wavefront lengths. The per
number of accesses to each L1 cache line prior to evictiffymance is normalized to a wavefront length of eight. This
in the 1M cache configuration. The No Memory Stalls setugiata shows that there is an 18% difference in performance
sends memory requests though the pipeline as fast as theywveen a wavefront size of eight and 64. This indicates that

are generated. No Memory Stalls show an additional 12ffemcached’s SIMD efficiency is a limiting factor even in the
increase in performance over the No Memory Latency systeptesence of excessive memory stalls.

This result tells us that Memcached spends a large fraction
of its execution time with a backed-up queue of memory VI. RELATED WORK
requests waiting to access the memory system. If wavefront€Concurrent work by Berezecki et al. [7] presents a many-
do not stall on memory then performance is largely limitedore architecture, the Tilera TILEPro64 64-core CPU, used
by SIMD efficiency. The performance of the non-stallingo accelerate Memcached. In their work, different parts of
memory system is 33% of peak, while the SIMD efficiency dflemcached are modified to run on individual processors,
Memcached is 40%. This 7% discrepancy can be attributedch as network workers, hash-table processes, TCP and
to idle cycles when some cores take longer than others WP cores, and the operating system itself. Although the
complete the kernel. focus of their work and ours is similar (i.e., accelerating
Figure 13 illustrates the amount of memory divergence Memcached on a many-core architecture), our work differs in
Memcached. It presents the average number of global memtrg method of achieving this goal, focuses on the feasibilit
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of running such an application on a GPU, and provides g]
detailed characterization of Memcached on hardware and on
a simulator.

Andersen et al. [4] propose a log-structured datastoresyst
that utilizes lower-power CPUs and flash memory to maintaif?!
performance and reduce power consumption. This is effectiyi4]
in key-value store applications, such as Memcached, intwhic
large amounts of computation are replaced with long 1/0-oper
ations and various network latencies that are not signifizan [5]
affected by low clock frequencies.

A core operation when processingGaE'T request is the
hash. Because our focus was parallelizing independent rg}
quests, the hash algorithm is computed by each work item
individually. Massively parallel hashing algorithms, buas
the one implemented in StoreGPU [2], provide significant7]

performance increases when the data being hashed is large.

However, the keys hashed in this study were all less thamg
100 bytes and would not benefit from this divide-and-conqué®!
technique.

Others have also exploited the parallel properties of serve
resident applications, such as SQL [5], using a similar wekth [10)
of offloading batches of read requests to the GPU. They gaj
not, however, model the data transfer times as they produce
significant overheads in the overall execution time. Alijiou 15
we experience the same memory size limitations on the GPU,
we are able to include the full data transfer times, whichiltes
in negligible times due to the use of the zero-copy shared-
memory region on the AMD Fusion systems. "

VIl. CONCLUSIONS 1l

In this paper, we present a characterization and evaluatig
of Memached on the new AMD Fusion architectures and a
discrete AMD GPU architecture. We then present an anaIyEig]
using GPGPU-Sim to gain additional insight into the behavigie]
of Memcached on a GPU. From this analysis, we conclude
that irregular applications, such as Memcached, should not
be immediately disregarded when considering porting them t
a GPU. We believe the methodology presented in this stuﬁ);]
of batching user requests for processing on a throughptt-
efficient device can be generalized so many server appitati
could take advantage of this framework. We observed that e
Llano A8-3850 and Zacate E-350 GPUs outperformed theim)
respective CPUs by factors of 8 and 4, respectively. We al@l(a
showed that the discrete system was able to outperform é
CPU when data transfers are ignored; however, when inaudin
the data transfer time, results are hindered by data-uanﬁgll
overheads.
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