
JPEG-ACT: Accelerating Deep Learning via
Transform-based Lossy Compression

R. David Evans
Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada
rdevans@ece.ubc.ca

Lufei Liu
Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada

lucy.lufei@alumni.ubc.ca

Tor M. Aamodt
Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada
aamodt@ece.ubc.ca

Abstract—A reduction in the time it takes to train machine
learning models can be translated into improvements in accuracy.
An important factor that increases training time in deep neural
networks (DNNs) is the need to store large amounts of temporary
data during the back-propagation algorithm. To enable training
very large models this temporary data can be offloaded from lim-
ited size GPU memory to CPU memory but this data movement
incurs large performance overheads.

We observe that in one important class of DNNs, convolutional
neural networks (CNNs), there is spatial correlation in these
temporary values. We propose JPEG for ACTivations (JPEG-
ACT), a lossy activation offload accelerator for training CNNs
that works by discarding redundant spatial information. JPEG-
ACT adapts the well-known JPEG algorithm from 2D image
compression to activation compression. We show how to optimize
the JPEG algorithm so as to ensure convergence and maintain
accuracy during training. JPEG-ACT achieves 2.4× higher
training performance compared to prior offload accelerators,
and 1.6× compared to prior activation compression methods. An
efficient hardware implementation allows JPEG-ACT to consume
less than 1% of the power and area of a modern GPU.

Index Terms—GPU, Hardware Acceleration, CNN Training,
Compression

I. INTRODUCTION

Reductions in training time of deep neural networks [1]
played an important role in enabling dramatic improvements in
accuracy [2]. Those accuracy improvements, in turn, led to an
explosion in the application of deep learning in recent years.
These speedups were due to the use of graphics processor
units (GPUs) in place of out-of-order superscalar processor
architectures. While many recent papers propose advances in
specialized hardware acceleration of networks during inference
(after a network has been trained) far less have discussed
hardware acceleration of the training process.

In this paper, we focus on accelerating the training of
Convolutional Neural Networks (CNNs). CNNs have produced
state-of-the-art results in image classification, object detection,
and semantic labelling [2]–[5]. Typically when training a CNN
the output of each individual neuron, called its activation,
is computed, saved to memory and, later restored. Activa-
tion values are needed again when updating weights using
backpropagation [6]. Saving these activation values requires
large memory capacities. For example, ResNet50 [3] trained
on the ImageNet dataset [7] requires over 40GB of storage,
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Fig. 1: a) Forward pass offload schedules for repeating conv/
norm/ReLU (CNR) blocks in ResNet50/ImageNet. c: compute
streams, m: memcpy stream, arrows: corresponding activation
offloads. b) Compression ratios on ResNet50/ImageNet, er-
ror indicates change from no compression on the validation
dataset.

which is greater than the memory available on consumer-grade
GPUs (e.g. 12GB, NVIDIA Titan V). State-of-the-art networks
contain more layers and larger input image dimensions [3],
[8]–[10]. E.g., GPIPE increases memory storage by 4.6× to
achieve 10% higher accuracy versus ResNet50 [9].

Cost-effective activation storage can be achieved via recom-
putation, GPU memory compression, and transfer to CPU-
attached memory. Recomputing activations in the backward
pass incurs compute overhead [11], [12]. Memory compression
has been evaluated on GPUs and activations (GIST, Figure
1) [13] and is well studied on CPUs [14]–[18] but is still
limited by the amount of GPU memory. Naively offloading
activations to CPU DRAM (e.g., vDNN in Figure 1) [19] or
disaggregated memory [20] is limited by PCIe throughput or
requires expensive specialized interconnects (e.g., NVLINK
on the IBM Power9). However, the cost effectiveness of
offloading can be enhanced by compressing the data before
it is transferred [21] (cDMA, Figure 1). We build upon the
latter approach as it allows for lower cost interconnect and
memory technologies (JPEG-ACT, Figure 1).

Activation compression for CPU offload has been studied
for shallow networks containing high sparsity [13], [19], [21].
However, during training, ResNets and other extremely deep
networks have a high proportion of dense activations and
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Fig. 2: Frequency entropy distribution for images and non-
sparse ResNet50/CIFAR10 activations. Measured using Shan-
non Entropy of a Discrete Cosine Transform.

sparse activations (average sparsity of ≈ 50%) causing large
performance penalties. The sparse methods used by GIST [13]
and vDNN [21] perform best when activation sparsity is high,
and have a maximum dense compression ratio of 4×.

We propose JPEG-ACT, a compressing offload accelerator
that exploits activation sensitivities and distributions to max-
imize compression. JPEG-ACT extends compressed offload
through the use of domain-specific lossy compression. The key
insights exploited by JPEG-ACT are (1) that dense activations
are similar to images but with a modified frequency distri-
bution (Figure 2), and (2) that CNNs have error sensitivities
that differ from human perception. JPEG-ACT adjusts JPEG
compression to optimize for use with CNNs. During the
forward pass, JPEG-ACT compresses data before sending it to
CPU memory via Direct Memory Access (DMA). During the
backward pass, JPEG-ACT decompresses data retrieved from
CPU memory before placing it in GPU memory. JPEG-ACT
works with both dense and sparse activations and improves
training performance versus accuracy loss.

The contributions of this paper are as follows:

• We propose Scaled Fix-point Precision Reduction
(SFPR), a method allowing JPEG-ACT to use an 8-bit
integer compression pipeline instead of floating-point.

• We optimize JPEG for activation compression of CNNs
to account for differing sensitivity to information loss
during CNN training versus human perception. This
achieves 5.8× (stock JPEG) and 8.5× (optimized JPEG)
compression ratio over uncompressed, and 1.98× over
the state-of-the-art, GIST [13], with <0.4% change in
trained accuracy.

• We propose and evaluate JPEG-ACT, an offload acceler-
ator for JPEG and SFPR, demonstrating a performance
improvement of 2.6× over uncompressed offload, and
1.6× over GIST, using <1% GPU area.

We begin by giving an overview of algorithms for training
CNNs, and activation compression (Section II), then detail our
accelerator design (Section III), and optimization of the JPEG
parameters (Section IV). Finally, we report our experimental
setup and evaluation of JPEG-ACT (Sections V and VI).
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Fig. 3: Training a Convolutional Neural Network using back-
prop. conv: convolution, norm: batch normalization, ReLU:
Rectified Linear Unit

II. BACKGROUND

This section reviews neural network training, related work
on activation compression and the JPEG algorithm.

A. SGD and Backprop

Figure 3 illustrates the training process for a typical con-
temporary CNN. The backpropagation algorithm [6] has three
stages: forward propagation, backward propagation, and up-
date. Forward propagation is performed by starting with an
input image, and applying a sequence of layer functions from
the first to last layer in the network. The loss (L in Figure 3)
is calculated from the final layer’s output and it quantifies the
error of the network output when compared with the desired
or target output. To train the network the gradient of the loss is
propagated in the reverse direction by calculating the gradient
of the loss with respect to each layer’s inputs (∇x ≡ ∂L/∂x,
Figure 3). Then, the gradient of the loss with respect to each
weight (∇wi ∈ ∇w, bottom, Figure 3) is calculated and
updated according to the SGD update:

wt+1
i = wt

i − η∇wt
i (1)

where t is iteration number and η is a learning rate parameter
used to adjust how aggressively weights are updated.

Backpropagation requires that activations be saved after
being computed in the forward pass to avoid recomputing
them in the backward pass. Most layer’s gradients (e.g. conv,
norm, ReLU) are calculated using both the input activation
and output activation gradient. Recomputation approximately
doubles floating-point operations (FLOPs) in the backward
pass, which can significantly increase training times.

Gradient calculations can be reformulated to modify which
activations need to be saved. The ReLU layer has multiple for-
mulations with similar computation cost. The ReLU forward
and backward calculations are, respectively:

r = (x > 0)?x : 0 (2)
∇x = (x > 0)?∇r : 0 (3)

From Eqns. 2 and 3, either the input, x, or the output, r,
can be used in the backward pass as (r > 0) = (x > 0).
Alternatively, a binary mask, (x > 0) can be used instead of
x [13] (discussed in Section II-B1).

Frameworks choose which activations to save by examining
the overall network structure, minimizing the total compu-
tation, and then discarding unused activations. Determining



which activations to store requires information about all net-
work layers, hence dynamic CNN frameworks select on a per-
layer basis. Most (Caffe2, Pytorch, and Chainer [22], [23]) use
the following strategy: save the conv input, norm input, and
ReLU output (r, c and y, resp., Figure 3). These choices are
based on knowledge of the computation required to calculate
gradients from each activation. For instance, the conv input (r,
Figure 3) is required for gradient calculation, and is expensive
to recalculate from the output, c. This results in frameworks
discarding c if it is not required by another layer’s gradient.

We focus on applying compression to activations in the
conv/norm/ReLU (CNR) block (Figure 3), used in nearly
all modern CNNs. CNR blocks smooth the loss landscape,
allowing the training of a wide variety of deep CNNs [3], [9],
[10], [24]–[26]. Previously, networks containing alternating
conv/ReLU layers only required memoizing the sparse ReLU
activation [21]. The introduction of norm ((3), Figure 3),
however, adds the requirement that the dense conv output must
be saved. Due to this, ReLU compression, such as in [21],
covers less than 50% of modern network storage. Although
we focus on the CNR block, the compression methods that we
use are flexible enough for other sparse and dense activations
such as dropout, pooling, and summations.

B. Activation Compression

To compress activations, we require a method that can sus-
tain both a high compression rate and throughput to match the
GPU memory system. Compression methods can be classified
as either lossless or lossy. Lossless compression algorithms
allow the original data to be perfectly reconstructed, whereas
lossy compression permits reconstruction of an approximation
of the original data. By allowing partial reconstruction, lossy
methods discard irrelevant portions of the data to greatly
increase the compression rate. Moving between high compres-
sion error and high compression rate is commonly called the
rate-distortion trade-off. We will now detail prior works on
activation compression and the JPEG algorithm for images.

1) Binary ReLU Compression (BRC): Binary ReLU Com-
pression was formulated by Jain et al. [13] to compress ReLU
activations to 1-bit. The sign bit of the input ReLU activation
is saved, effectively saving (x > 0) instead of x in Eqn. 3.
BRC can be used on a ReLU activation provided it is not
immediately followed by a conv layer. Networks involving
dropout, which include VGG [27] and Wide ResNet [25], can
use BRC, but not ResNet [3].

2) Precision Reduction: Many studies focused on inference
have explored reducing the precision of activations [28]–[31],
however, few examine training [13], [32]–[37]. To the best of
our knowledge, most require extensive network modifications
[33]–[37], with the exception of Dynamic Precision Reduction
(DPR) [13] and Block Floating Point (BFP) [32], [38].

In DPR, 32-bit activations are cast to either 16-bit or 8-bit
floating-point values after the forward pass to reduce activation
storage, however, Jain et al. noted the difficulty in using 8-bit
activations for deeper networks, such as VGG. Jain et al. use
this in addition to Compressed Sparse Row (CSR) storage for
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Fig. 4: An example of Zero Value Compression (ZVC) of 8
values

sparse activations. The authors decreased activation storage by
up to 4× using DPR [13].

In BFP, fix-point values are used with power-of-two scaling
factors for a group of activations [38]. Courbariaux et. al train
networks on 10-bit multiplications using BFP [32].

3) Run-length Encoding: ReLU and dropout activations
have 50-90% sparsity [21], lending to zero-based compres-
sion methods. Run-length encoding [39] has previously been
investigated for activation compression and found to give poor
results [21]. The method is highly sensitive to sparsity patterns,
as it compresses “runs” of zeros. As well, dense activations
(e.g. conv) cannot be compressed in this manner.

4) Zero Value Compression (ZVC): Randomly spaced zero
values are compressed easily using Zero Value Compression
[21], a derivative of Frequent Value Compression [40]. In
ZVC, a non-zero mask is created, and the non-zero values
are packed together (Figure 4). The mask limits the maximum
compression ratio to 8× for 8-bit values. A key advantage of
this method is that it works equally well regardless of zero
value distribution. The authors achieve a compression ratio of
2.6× on ReLU and dropout activations using ZVC.

5) JPEG: JPEG is a commonly used image compression
algorithm [41]. JPEG represents high-frequency spatial infor-
mation in an image with less precision as this is less important
to perception. Below we summarize relevant portions of JPEG.
Additional details can be found elsewhere [41]–[43].

Figure 5 illustrates the JPEG algorithm. JPEG splits images
into 8× 8 blocks of adjacent pixels and quantizes them in the
frequency domain. Due to space limitations in Figure 5 we
represent these blocks as 3 × 3 matrices. A block of pixels,
represented with integers ( 1 ), is passed through a Discrete
Cosine Transform (DCT, 2 ), which converts them to the
frequency space ( 3 ). Next division quantization (DIV, 4 ) is
applied. Here frequency values are quantized after dividing
them by corresponding entries in the Discrete Quantization
Table (DQT, 5 ). As the division output is quantized to 8
bits, a high value in the DQT results in fewer bits kept and
thus a higher compression. Quantization produces a matrix
with a large number of zeros ( 6 ). These are removed in
the next stage, Run-length and Huffman coding (RLE, 7 ).
RLE is lossless and removes zeros by storing run-value pairs.
Huffman coding converts these using variable width codes ( 8 )
to produce the final output ( 9 ).

III. THE JPEG-ACT ACCELERATOR

JPEG was selected for this work as it was designed for
image compression. Convolutions, in essence, are image pro-
cessing kernels, and it follows that activations resulting from
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Fig. 5: JPEG encoding example. This illustration uses smaller
blocks (3× 3 instead of 8× 8) due to space limitations.

the convolution of images would also resemble images. To
test this hypothesis, we analyze the Shannon information
entropy [44] in the spatial (before DCT) and frequency (after
DCT) domains (Figure 6). Our experiments demonstrate that
the spatial correlations persist deep into the network, even
after 40 convolution layers. Frequency domain entropy is
lower, especially in the early layers of the network, where
activation storage requirements are higher. This implies that
the frequency domain is a more compact representation for
convolution activations. We do not observe this trend for sparse
activations (e.g. ReLUs).

JPEG-ACT is a compressing offload accelerator, similar to
cDMA (Figure 1). However, the goals of JPEG-ACT are to
address the issues introduced by modern networks. Offloading
using cDMA or vDNN has a high overhead due to low
PCIe bandwidth and, in networks such as ResNets, due to
a low sparsity and/or high proportion of dense activations.
GIST avoids the PCIe bottleneck by compressing to GPU
memory instead. This removes offload times but uses precious
computation resources to perform activation compression. As
well, the compression rates provided by GIST (2.2× - 4.0×)
result in only moderate relief from activation storage, and
still require large amounts of costly GPU memory. JPEG-ACT
instead addresses the PCIe bottleneck through an aggressive
lossy compression scheme, allowing for a cheaper memory
solution, and addresses compute overheads through a custom
hardware implementation, avoiding the use of general compute
resources.

In this section, we present an overview of the system
and JPEG-ACT offload accelerator (Section III-A), how 2D
activations map onto the accelerator (Section III-C), and
the implementations of the JPEG-ACT components (Sections
III-B, and III-D to III-G).
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Fig. 6: Convolution activation entropy averaged over all epochs
and activations in each layer for ResNet50/CIFAR10.

A. Overview

The baseline system comprises a GPU with High Bandwidth
Memory (HBM) and DMA over PCIe to CPU DRAM (Figure
7a) [45]–[47]. We assume each Streaming Multiprocessor
(SM), L2 cache/memory controller partition (L2/MC), and
DMA unit, are connected using symmetric links to the GPU
crossbar. Training using vDNN on this system involves off-
loading each activation over DMA after its usage in the
forward pass (Figure 1). Similarly, in the backward pass,
activations are loaded over DMA into GPU HBM before their
first use and freed after use. This process is overlapped with
compute.
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For compressed offload, we augment the DMA with several
Compression/Decompression Units (CDUs), and a collector/
splitter between the CDUs and DMA (Figure 7b). With this
system, the maximum effective offload rate is the compression
ratio multiplied by the PCIe bandwidth. We use a multi-link,
multi-CDU design to avoid being limited by crossbar link
bandwidth, explored further in Section VI-E. It is also possible
to store compressed data in the GPU HBM, however, we do
not investigate this as activations can be as large as 1GB,
requiring a large amount of HBM. In this system, compressed
traffic from the multiple CDUs is aggregated by the collector
when transferring to the CPU, and uncompressed traffic is
distributed among CDUs by the splitter when transferring to
the GPU.

DMA-side compression (Figure 7b) in this work differs
from the cache-side compression (Figure 7c) used by cDMA
[21]. Cache-side compression requires a large area and power
overhead due to the replication of CDUs across the many
cache partitions on modern GPU architectures (e.g., 48 on
Volta, [48]). Additionally, for load balancing, sequential cache
lines are typically distributed across memory partitions [47].
JPEG compression operates on eight rows of the activation,
hence spans up to eight cache lines. This would require inter-
cache communication across memory partitions for a cache-
side design, thus we perform JPEG exclusively at the DMA-
side. We examine locating parallel portions of the CDU at
the cache in Section VI-E. For comparison, we re-implement
cDMA (Figure 7c) as a DMA-side technique, cDMA+ (Figure
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7b). cDMA and cDMA+ have identical CDUs, and differ only
in their CDU location and number.

We will start by giving a brief high-level overview of the
JPEG-ACT CDU which operates in either compression or
decompression mode (Figure 8). Scaled Fix-point Precision
Reduction (SFPR) is introduced to convert 32-bit floating-
point values to 8-bit integers while keeping quantization error
low (Section III-B). SFPR is located between the GPU cross-
bar and a 256B alignment buffer, allowing four JPEG blocks
to be loaded from GPU cache for simultaneous processing
(Section III-C). The DCT and iDCT units are pipelined units
composed of eight 8-point DCT units to operate on all 64
values in a block at once (Section III-D). The last two stages
of the JPEG-ACT compression pipeline are shift quantization
(SH) and ZVC/ZVD (Section III-F). In compression mode, the
result is sent to the collector, which combines the output from
multiple CDUs for sending through the DMA unit (Section
III-G). In decompression mode, the compressed input is read
from the splitter output (Section III-G).

We find that JPEG standard DQTs (jpeg80 and jpeg60)
lead to poor results and that DQT coefficient selection has
a large impact on training accuracy. We tune the JPEG DQT
for activation compression, by optimizing over the compressed
entropy and recovered activation error on ResNet50 (Figure
9). From this procedure, we select optimized low and high
compression DQTs, optL, and optH. Finally, we introduce
a piece-wise DQT that trains in two stages (optL5H). The
selection of these DQTs is discussed in Section IV.

B. Scaled Fix-point Precision Reduction (SFPR)

We propose Scaled Fix-point Precision Reduction (SFPR),
a technique to cast from the 32-bit floating-point activations to
8-bit integers to reduce both hardware costs and compression
error. Activations are generally represented by floating-point
values, however, JPEG compression operates on integers.

JPEG Image DQTs:
    jpeg80, jpeg60

Optimized DQTs:
    optL, optH

Piece-wise DQT:
    optL5H

Trained ResNet50CIFAR10 Inputs 
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L2 Error
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Fig. 9: JPEG DQT optimization procedure.

Naive casting to integers can cause large errors on activations
with a dissimilar range to the target integer format. Thus,
we develop SFPR to normalize the activation scale, while
converting them to integers.

SFPR involves a channel-wise max-scaling of a 4D input
activation tensor, x ∈ RN×C×H×W , followed by clipping to
an 8-bit signed integer:

sc = S/maxnhw(|xnchw|) (4)

ynchw = clip
(
[2m−1scxnchw],−2m−1, 2m−1 − 1

)
(5)

where m is the integer bit width (i.e., 8), [...] denotes the
round-to-nearest function, and clip(..., A, B) trims values
outside of the range [A,B] to the nearest value within the
range. xnchw and ynchw are the original and scaled activations,
with n, c, h, w (< N,C,H,W ) indicating the batch, channel,
height, and width index, respectively. The global scaling factor,
S, is a hyper-parameter specifying how much of the range of
the activation should be clipped to the integer max. The per-
channel scaling factor, sc, is dependent on the maximum of
the channel over all batches, maxnhw. We compute sc on a
per-layer basis during training.

The SFPR global scaling factor, S is selected by minimizing
the recovered activation error, both when compressing with
SFPR alone, and when combining it with JPEG with different
DQTs (Figure 10). By definition, S = 1 results in no
activations being clipped. Two effects increase activation error
with varying S, clipping and truncation. A high value of S
results in high magnitude activations being clipped to the
integer min or max (S → ∞, Figure 10). A low value of
S results in low magnitude activations being truncated to zero
(S→0, Figure 10). SFPR compression has a low sensitivity to
the value of S, with an average increase in recovered activation
error of 5.0× 10−5 across the range [0.5, 1.25]. When SFPR
is combined with JPEG (SFPR+DCT+...), truncation error
(S → 0) increases due to quantization following the DCT.
We select a value of S = 1.125, which minimizes the overall
error of SFPR, JPEG-BASE (...+DIV+RLE), and JPEG-ACT
(...+SH+ZVC). A single value of S is used across all networks
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and layers to avoid introducing additional hyper-parameters
into training.

The channel-wise scaling factor, sc, could require the costly
calculation of the maximum of each channel in the activation
map. To avoid this, the maximum can be calculated efficiently
using the activation statistics (mean and variance) already
determined by batch normalization [24]. Alternatively, prior
work on integer quantization has shown that activation statis-
tics do not vary significantly between batches [49], making
a sampling-based method a promising approach. We do not
measure scaling factor calculation due to the many solutions
with little or no performance or hardware overhead.

SFPR, when used as a pre-stage to JPEG, has the benefit of
scale normalization. We find that without scale normalization,
compression ratios vary greatly during training, and across
different networks. Compression variation across channels also
reduces trained network accuracy. This appears to result from
different input ranges to JPEG compression: activations with a
small range will be truncated, giving a high compression ratio
but also high compression error. For instance, activations with
a range smaller than 1.0 result in zeros after integer casting.
Scale normalization ensures that the entire 8-bit integer range
is utilized for all activation channels with SFPR and JPEG.

The SFPR compression unit used in the JPEG-BASE and
JPEG-ACT accelerator designs is divided into eight identical
SFPR Processing Elements (SPE1 to SPE8), each of which
handle the conversion of one integer or float (Figure 11).

During the forward pass, sc is loaded when starting each
new channel ( 1 ). Then, after the return of a cache sector
(32B) through the GPU crossbar, the eight 32-bit floating-
point values on this sector are split among the SPEs ( 2 ). sc
is multiplied with the activation using a 2-stage floating-point
multiplier ( 3 ), and cast to an 8-bit integer ( 4 ). Casting of out-
of-range values saturates, rather than truncates the resulting
value. The results of each SPE are concatenated and saved to
the alignment buffer ( 5 ) to await JPEG compression.

During the backward pass, the inverse of the scaling factor
(1/sc) is loaded ( 1 ). Inverse scaling factors can be calculated
at run time without significant overhead, as the computation
cost is amortized for each channel due to the large spatial
dimensions of the activations. Eight 8-bit integers (having been
decompressed using JPEG) are loaded and split among the
SPEs ( 6 ) and converted back to 32-bit floating-point values.
The values are multiplied by 1/sc ( 3 ) and concatenated before
being sent to the GPU crossbar ( 7 ).

SFPR has some similarities to DPR [13] and BFP [32].
SFPR reduces hardware area versus DPR by converting to 8-
bit integers instead of floats. The channel-wise scaling of BFP
is similar to SFPR, however, SFPR adds scale normalization,
which allows for better utilization of the integer data type.

C. Alignment Buffer

The alignment buffer is a structure designed to convert
between the linear address space and the 8×8 blocks (H×W )
required by JPEG. As the DCT is a 2D operation, it requires
that all 64 elements in a block be available before processing.
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The buffer is sized to hold enough JPEG blocks to prevent
duplicate cache line accesses. This requires that activations
be padded and aligned such that the start of each cache line
coincides with a JPEG block.

The size of the alignment buffer is determined by the JPEG
block size, cache line size, activation data type, and SFPR
compression ratio. We assume an NCHW memory layout
(batch, channel, height, width) for activation tensors, as it
has the highest performance for training CNNs [50], and is
the default for many frameworks [22], [23], [51]. As each
JPEG block has a height of eight elements, a single block can
span at most eight cache lines. A single 128B cache line [48]
can contain values from up to four JPEG blocks with 32-bit
activations. Hence, the alignment buffer is sized to cover eight
cache lines compressed to eight bits per activation, i.e. 256B
or four JPEG blocks (Figure 12). A smaller buffer would result
in duplicate cache line accesses.

The JPEG-ACT CDU requires that blocks are aligned with
cache line boundaries. The access stride depends on whether
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activation tensor boundary.



the activation tensor has W ≤ 32. If W ≤ 32, eight sequential
cache lines are loaded, containing exactly four JPEG blocks
(Fig. 12a and 12b). If W > 32, eight cache lines with a
stride of W are loaded (not shown). To force alignment, we
zero pad the input activations’ width up to a multiple of the
JPEG block width, eight elements (W pad, Figure 12a). Rather
than padding the height of each activation channel, we instead
pad a reshaped activation. The 4D tensors, RN×C×H×W , are
reshaped to a 2D tensor, RNCH×W , and padded along the
reshaped dimension (NCH pad, Figure 12b). Reshaping re-
quires no data movement as only the indices are changed, and
padding in this manner requires no framework modifications.

Padding increases the memory footprint of the activations
and causes a performance overhead, however, this increase
is usually small. Padding could be performed at the hard-
ware level, however, this introduces additional hardware and
unaligned access overheads. It is preferable to have N ∈
8, 16, 32, ... due to warp sizing on GPUs, which results in
no NCH padding. Similarly, activation tensors with W ∈
8, 16, 32, ... result in no W padding. Out of the datasets
and networks this work examines, only ResNet18/ImageNet
and ResNet50/ImageNet [3] require padding, with a storage
overhead of 6.4% for H,W padding, and 3.0% for NCH,W
padding on ResNet50. These overheads are low as most
activation storage is in the widest layers of the network,
making the relative size of the padded elements small.

The alignment buffer is designed with one 8B read/write
port, and one 64B read/write port. During compression, the
SFPR unit may perform 8B writes, while the DCT and other
compression units perform 64B reads. Once the first JPEG
block has been loaded, the DCT stage proceeds until all 4
blocks have been read (4 cycles) and the buffer is freed for
use by the next set of blocks. During decompression, roles are
reversed, with 64B writes from the decompression pipeline,
and 8B reads by the SFPR unit. Structuring allows us to
maintain fewer read and write ports on the buffer.

D. Discrete Cosine Transform

The DCT unit used by JPEG-BASE and JPEG-ACT is
implemented by utilizing eight 8-point 1D DCT units (Figure
13). We use the well known 8-point DCT of Loeffler et al. (the
LLM DCT) [52] due to its ease of pipelining, and efficient use
of multipliers. The LLM implementation requires 11 multipli-
cations, and 29 additions for each 8-point DCT, resulting in 88
multipliers for the JPEG-ACT DCT. We implement the JPEG-
ACT DCT as two passes through the 1D DCT units. After
computing the DCT along the first dimension, the block is
transposed and processed again for the DCT along the second
dimension. Each pass through the unit takes four cycles to
complete. After being transformed by the 2D DCT, the block
is sent to the DIV unit for JPEG-BASE (not shown) or the
SH unit for JPEG-ACT (right, Figure 13 and Section III-F).

The iDCT unit is fashioned similarly to the DCT unit. In
brief, eight 8-point iDCT units are combined with a normal-
izing shift stage. The stages are inverted relative to the DCT,
i.e. multipliers become dividers, etc. This results in a similar
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from the LLM fast DCT [52]. Bottom: DCT algorithm building
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implementation with a two-pass structure and four pipeline
stages.

E. DIV and RLE (JPEG-BASE)

JPEG-BASE uses a hardware implementation of the JPEG
standard quantization and coding stages. DIV quantization is
a simple division by the DQT, and RLE coding combines run-
length encoding and Huffman coding. We implement the DIV
unit as a parallel multiplier, and use designs from OpenCores
for RLE (encoding) [53], and RLD (decoding) [54]. Hardware
is duplicated as necessary to meet throughput requirements.

F. SH and ZVC (JPEG-ACT)

The JPEG standard was designed for software compression
of images. We developed the shift (SH) and ZVC back-end,
replacing steps from the standard JPEG algorithm to reduce
hardware overheads and improve compression on activations.
SH quantization is designed to remove the multipliers used
in the DIV stage of JPEG-BASE. ZVC coding [21] is used
because of our observations that activation frequency distribu-
tions vary drastically from images. SH and ZVC, combined
with SFPR and the DCT, compose the JPEG-ACT accelerator.

SH is motivated by our observations that exact quantization
is often unnecessary. By switching the division to a shifting
operation (Figure 14), the area associated with the quantization
operation can be reduced by 88%. This has the effect of limit-
ing DQT values to powers of 2. In compression mode, 64 right
shift operations are performed in parallel. In decompression
mode, the right shifts are replaced by left shifts. SH comes at
the expense of having only eight available quantization modes
for each frequency. When performing activation compression,
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we observe that fewer quantization modes are sufficient as the
individual effect of single frequencies is reduced (Section IV).

We use ZVC to compress the sparse result of the SH stage.
After the DCT and quantization, images have most zeros
at high frequency values (Figure 2). Conversely, activations
display a flatter profile, with zeros randomly distributed across
mid and high frequencies (Figure 2). Thus, ZVC has a higher
compression than RLE on frequency domain activations.

The modifications of SH and ZVC decrease hardware area
by 1.5× (Section VI-F), and increase compression by up to
1.4× (Section VI-C).

G. Collector and Splitter

The collector and splitter units are required to convert
between the multiple CDU data streams and the single PCIe
DMA data stream. The collector joins the variable-sized
streams from the CDUs into a single stream. The splitter splits
the PCIe stream by calculating and tracking the number of
bytes in each block. Both the collector and splitter connect
directly to the PCIe DMA unit.

The scheduling policy for interleaving CDUs can have a
large impact on collector and splitter designs, hence it needs
to be addressed first. The collector and splitter operate at
a rate of one 8 × 8 block per cycle (Figure 15). The load
or store rate to the GPU crossbar is one block per eight
cycles per CDU. Hence, the entire JPEG-ACT accelerator will
always be bottlenecked by either the PCIe interconnect at low
compression rates or the crossbar link at high compression
rates. As the CDU processing is 8× faster than the crossbar
rate, we use a simple round-robin scheduling of the CDUs
accomplished with a simple mux (Figure 15), i.e. CDUs are
scheduled in order with one cycle each. This also solves the
issue of splitting, as streams are deterministically interleaved.

The collector unit operates during the forward pass (Figure
15a). One CDU writes to the collector on each cycle with a
round-robin policy ( 1 ). The ZVC mask is summed to obtain
the total number of non-zero bytes in the block ( 2 ). The
primary structure for aligning non-zero values is the 256B
Input FIFO (IFIFO, 3 ). The IFIFO is designed to allow a
variable-sized push operation from 0B to 72B, indexed by the
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push bytes signal. When the IFIFO fill is greater than 128B,
128B is popped from the head of the IFIFO and the filled
packet is sent to the DMA unit ( 4 ). As pop operations are
always 128B, the IFIFO tail location is always at the 0th or
128th byte.

The splitter unit operates during the backward pass (Figure
15b). 128B packets from the DMA are pushed onto a 256B
Output FIFO (OFIFO, 5 ). Eight bytes, representing the mask
of the next block to be read, are peeked from the front of
the OFIFO ( 6 ). The mask is used to calculate the number of
bytes to pop from the OFIFO in the next cycle ( 7 and 8 ).
As collection is deterministic, the distribution of blocks from
the splitter occurs with the same round-robin policy ( 9 ).

By utilizing a collector and splitter, multiple CDUs can be
used while avoiding issues with inter-cache communication.

IV. OPTIMIZING COMPRESSION

The JPEG DQTs for images (jpeg60, jpeg80, etc.) were
created by extensively studying human perception, however,
prior work indicates that CNNs have a different frequency
sensitivity [55]. Optimization is performed by first defining
metrics for approximating network convergence and compres-
sion, and the creation of an objective function (Figure 9). This
results in a significantly higher activation compression rate
with similar error relative to a JPEG DQT for images.

Network convergence is currently a poorly understood topic
[56]. However, an efficient way of measuring convergence is
required to optimize the JPEG DQT. There are no objective
functions to gauge the final accuracy of a network without
training. Therefore, we choose to maintain accuracy, rather
than attempting to maximize accuracy.

The effect of JPEG compression on training can be under-
stood by considering a single layer of a network during train-
ing, with reshaped and padded activations, x ∈ RNCH×W , and
weights, w. For one iteration of backprop and no compression,
output activation and weight gradient are calculated as y =
w ◦x, and ∇w = ∇y ◦x, respectively, where ∇y is the output
activation gradient, and ◦ is a generic tensor dot product. If
the iteration is repeated using JPEG activation compression,
the approximate weight gradient, ∇w∗, is calculated as:

q =
(
qij
)
=
(
[DCT(x)ij/DQTuv]

)
(6)

x∗ = iDCT(
(
qijDQTuv

)
) (7)

∇w∗ = ∇y ◦ x∗ (8)

where u, v ≡ i mod 8, j mod 8, [...] is the round-to-nearest
function, q ∈ ZNCH×W is the quantized frequency matrix,
and x∗ is the recovered activation.

The tensor dot product is a linear operation, hence the error
relative to uncompressed can be expressed as:

∇w∗ −∇w = ∇y ◦ (x∗ − x) (9)

Identical convergence to uncompressed is achieved as the
error approaches zero. This can be accomplished by minimiz-
ing the L2 activation error, using Eqn. 9 and a first order
approximation: ‖∇w −∇w∗‖ ∝ ‖x− x∗‖.



To form the global objective function, a measure of com-
pression is also required for the optimization procedure. We
use the Shannon entropy (H , Eqn. 11) of the quantized
frequency coefficients (q), which represents the minimum bits
required per activation. This, combined with the average L2
error per activation (L2), form the objective function, O:

L2 = (NCHW )−1‖x− x∗‖ (10)

H =

2m−1−1∑
v=−2m−1

P (q=v)log2(P (q=v)) (11)

O = (1− α)λ1H + αλ2L2 (12)

where m = 8 is the quantization bit width, P (q = v) is the
probability that q = v, determined by counting the number
of occurrences of v in q, and λ1 = 10 and λ2 = 10000
are normalizing scaling factors. α is a hyper-parameter that
controls the rate/distortion trade-off.

We minimize O with respect to the DQT for all convolution
layers using 240 example activations from a generator network
with frozen weights, ResNet50/CIFAR10 trained for 5 epochs.
The example activations are used to calculate L2, H , and O
for a given DQT. SGD is used as an optimizer (lr = 2.0,
p = 0) with DQT gradients calculated using forward finite
difference (difference of 5). The first of the 64 DQT parame-
ters, representing the activation mean, is fixed to 8 to prevent
instability in the batch normalization parameters.

We examine the rate/distortion trade-off for SFPR and
different JPEG DQTs to determine the efficacy of optimization
(Figure 16). Optimizing the DQTs for activation compression
results in lower error for the same compression than both
SFPR and JPEG-BASE with image DQTs, and decreases
entropy by 1 bit for the same error compared to image DQTs
(optH vs. jpeg80, Figure 16).

Tuning of the DQT for the desired compression rate and
error is controlled using α, hence we select two values repre-
senting low and high compression variants, optL (α = 0.025)
and optH (α = 0.005), respectively. As α increases, a higher
cost is placed on L2 activation error, resulting in the error
decreasing from 0.10 to 0.02 with optH vs. optL (Figure 16).

optH
jpeg60

SFPR (3-bit)
jpeg80

optL

Fig. 16: Rate/distortion trade-off for SFPR (2-, 3-, and 4-bit),
and JPEG-BASE with image DQTs (jpeg40, 60, 80, and 90)
and optimized DQTs (α = 0.001, 0.005, 0.01, and 0.025).
Based on ResNet50/CIFAR10 trained for 5 epochs.
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The values of α for optH and optL were chosen as they have
a similar error to the jpeg80 and jpeg90 DQTs. This error
range was observed to be approximately where a decrease in
accuracy begins.

We examine how compression error and entropy vary over
the course of training by evaluating each DQT on snapshots of
the networks at different epochs (Figure 17). Activation error
is highest in the first epochs for ResNet50 and WRN (Figure
17, left), which is a consequence of weight decay. However,
we observe that after the first 5 epochs, compression remains
constant. This is attributed to stable activation distributions
from batch normalization [24], combined with the scale nor-
malization of SFPR. We observe that these trends in error and
entropy continue for the remainder of training.

The first epochs of training are critically important to the
convergence of CNNs [57]. To address the critical first epochs,
we propose a piece-wise approach to selecting DQTs, optL5H
(Figure 17). optL5H uses the optL DQT for the first 5 epochs
of training, then switches to the optH DQT for the remainder
of training. This avoids high errors in the critical period.

V. METHODOLOGY

We compress the activations in each CNN according to layer
type and dimensions (Table II). The use of BRC is determined
by whether a ReLU activation is followed by a conv layer,
hence they are divided by subsequent layer. Sum refers to
dense activations produced by the addition of two activations.
JPEG compression is used on conv and sum activations with
size ≥ 8, due to the 8× 8 block size of the algorithm. We do
not use JPEG on the final four convolutions, or fully connected
layers, due to their small activation size.

Datasets and networks are selected from a variety of net-
work types and CNN applications. Extremely large networks,
e.g. GPIPE, are not examined in this work due to high
memory requirements [9]. We evaluate JPEG-ACT using the
CIFAR10 [58], ImageNet [7], and Div2k [59] datasets. We
use six image classification CNNs: VGG-16 (VGG) [27],



TABLE I: Compression rate trade-offs. Compression ratios are bracketed, bolded values indicate highest for lossy methods.

Baseline cDMA+ GIST SFPR JPEG-BASE JPEG-ACT
8-bit 8-bit jpeg80 jpeg60 optL optH optL5H

CIFAR10 % Top-1 Val. Accuracy (Compression ratio)
VGG 92.1 - (1.5x) 92.7 (6.1x) 92.0 (4x) 91.4 (7.4x) 89.0 (8.3x) 92.8 (9.4x) 91.9 (12.0x) 92.4 (11.9x)
ResNet50 94.5 - (1.1x) 94.4 (4.1x) 94.5 (4x) 93.6 (5.1x) 93.0 (6.0x) 94.4 (5.2x) 93.8 (7.6x) 94.4 (7.5x)
ResNet101 94.7 - (1.1x) 94.4 (4.1x) 94.7 (4x) 94.0 (5.0x) 92.8 (5.8x) 94.8 (5.0x) 94.0 (7.2x) 94.5 (7.2x)
WRN 95.4 - (1.6x) 95.8 (5.6x) 95.2 (4x) 92.6 (6.2x)* 91.9 (7.2x)* 95.7 (8.1x) 91.8 (11.0x)* 94.2 (10.9x)

ImageNet % Top-1 Val. Accuracy (Compression ratio)
ResNet18 67.8 - (1.2x) 66.9 (3.6x) 67.9 (4x) 67.4 (5.7x) 66.6 (6.4x) 67.6 (6.1x) 66.9 (7.3x) 67.3 (7.2x)
ResNet50 71.7 - (1.2x) 68.5 (3.7x) 71.4 (4x) 71.8 (5.3x) 69.8 (6.1x) 71.8 (5.1x) 28.9 (6.0x)* 71.6 (5.9x)

Div2K Val. PSNR (Compression ratio)
VDSR 35.6 - (1.3x) 34.8 (4.0x) 35.5 (4x) 35.5 (5.9x) 35.3 (6.4x) 35.5 (8.2x) 35.4 (9.2x) 35.4 (9.1x)

Average % Change from Baseline (Compression ratio)
All Models - 0 (1.3x) -1.07 (4.5x) -0.12 (4x) -0.87 (5.8x) -2.27 (6.6x) +0.07 (6.7x) -9.58 (8.6x) -0.38 (8.5x)

∗ run failed to converge

TABLE II: Compression selection by activation type.
SD=SFPR+DCT

Method conv or ReLU ReLU pool or
sum (to other) (to conv) dropout

cDMA+ None ZVC
GIST DPR BRC DPR+CSR
SFPR SFPR
JPEG-BASE SD+DIV+RLE ∗ BRC SFPR
JPEG-ACT SD+SH+ZVC ∗ BRC SFPR+ZVC

∗ for NCH,W ≥ 8, 8, otherwise SFPR.

Wide ResNet (WRN) [25], and ResNet18, 50, and 101 [3].
Networks are unmodified from the original sources [22], [60].
Additionally, we examine JPEG-ACT on super-resolution with
VDSR [61], which is modified to use 64 × 64 random crops
and batch normalization.

We implement a functional simulation of each method in
Chainer [22] to examine compression and its effects on trained
neural network accuracy. The methods are implemented as
CUDA code that extends the framework. We skip lossless
compression during functional simulation, instead calculating
compression ratios offline with a batch size of 8.

Performance simulation uses GPGPU-Sim [45], [46], con-
figured to simulate an NVIDIA Titan V GPU [47], and PCIe
3.0 with an effective transfer rate of 12.8GB/s (Figure 7a)
[19]. We model boost clocks of 1455MHz, 40 Streaming
Multiprocessors, an interconnect capable of 32B/cycle bi-
directional bandwidth, and 850MHz HBM. Whole-network
performance is assessed by a microbenchmark, programmed
in C++, CUDA, cuDNN, cuSPARSE, of three CNR blocks
sampled from each network at a batch size of 16, as full
networks lead to prohibitive simulation requirements. A warm-
up of one ReLU is used to avoid cold start misses in the GPU
cache. As source code for GIST is not publicly available we
reimplemented it both for performance (CUDA and cuSparse)
and functional (Chainer and CUDA) simulation. This includes
the DPR, BRC, in-place optimizations and Sparse Storage
Dense Compute, a Compressed Sparse Row (CSR) variant.
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Fig. 18: Percentage accuracy loss vs. relative speedup.

We implement the JPEG-ACT accelerator as RTL and
synthesize using Synopsys Design Compiler to evaluate tim-
ing, area, and power requirements. Our synthesis targets the
interconnect clock frequency, and 45nm technology using the
FreePDK45 design library [62]. Results are scaled to 15nm, as
the 15nm library is no longer available, and 50% wire overhead
added in a similar manner to prior works [21], [63].

VI. EVALUATION

A. Overall

Figure 18 plots percentage change in accuracy versus perfor-
mance improvement. The two JPEG-ACT variants, optL and
optL5H achieve better performance gains for a given level of
accuracy loss versus the alternatives considered in this study.

B. Compression and Accuracy

We train all networks under compression and report the best
validation score, i.e. the Top-1 accuracy or Peak Signal-to-
Noise Ratio (PSNR), and average network compression ratio
(Table I). ImageNet accuracies are lower (-4.2%) than the
original work [3], [64] as we use a more CPU-efficient aug-
mentation procedure and report the 1-crop validation instead
of the 10-crop test accuracy.

cDMA+ is lossless, resulting in no accuracy change, how-
ever, it has a low compression ratio of 1.3×. We observe ReLU
and dropout compression ratios of 2.1× and 3.9×, similar to



those of Rhu et al. [21]. Networks with batch normalization
have up to 60% dense activations, leading to the low overall
compression (Figure 19).

Training with GIST results in a significant decrease in
accuracy/PSNR when compared to SFPR (-1.07× vs. -0.12×),
predominantly in ResNets and VDSR. Jain et al. also observed
this issue with VGG/ImageNet and 8-bit DPR [13]. We hy-
pothesize this is due to the truncation of small valued channels.
We observe that the minimum per-channel range of activations
in these networks is 0.16. With this range, 15% of the 256
available 8-bit DPR values are utilized, while 66% are utilized
for SFPR. This could be avoided at the expense of 2× lower
compression by using 16-bit GIST [13]. SFPR generally has a
higher integer utilization than DPR due to scale normalization,
resulting in lower activation error and better accuracy.

GIST compression ratios are significantly higher on net-
works that contain dropout (VGG, Figure 19, and WRN)
versus those that do not (ResNets, Figure 19, and VDSR).
The CSR method used by GIST first compresses using 8-bit
DPR, then extracts non-zero values and their column index.
With the optimizations made by Jain et al., this requires the
storage of an 8-bit DPR value and an 8-bit column index per
non-zero value [13]. When sparsity is <50%, size increases
over DPR alone, which is observed for ResNets on ImageNet
(Table I), making CSR a poor choice for networks without
dropout. CSR is advantageous when the compressed values
are larger than the indices, i.e. with 16-bit DPR.

JPEG-BASE provides improved compression over cDMA+,
GIST and SFPR, however, a lower accuracy than SFPR. WRN
is most sensitive to lossy compression, as it does not converge
with jpeg80. This non-convergence (* in Table I) is observed
as a sudden decrease in accuracy during training, which can
be used as a warning sign that the compression is too high.
For jpeg80, this is only observed with WRN, and with an
average accuracy change of -0.54% across the remaining
networks. Although jpeg60 provides high compression ratios,
the decrease in accuracy for it and lower quality settings (e.g.,
jpeg40) is too severe to warrant use.

The modifications to create JPEG-ACT provide both a
significant increase in accuracy/PSNR and compression. The
optimization procedure of optL reduces activation error to
obtain a similar or better accuracy than SFPR, and the baseline
(Table I). Small decreases in error are likely due to CNN
training being a stochastic process. optH causes divergence for
WRN/CIFAR10 and ResNet50/ImageNet, however, this is not
observed with the piece-wise technique, optL5H. Annealing
the networks for the first 5 epochs using optL, then switching
to optH, provides an average compression ratio of 8.5× while
keeping the accuracy change at -0.38%, less than half that
of GIST. JPEG-ACT with optL5H increases compression over
JPEG-BASE with jpeg80 both by having a higher quantization
from the DQT, and by using ZVC on sparse activations.
Higher quantization has a larger effect on sum activations,
with conv activation compression remaining mostly unchanged
(Figure 19). ZVC can compress ReLU and dropout activations
to further decrease their size after SFPR, with a relative
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Fig. 19: Activation footprint breakdown by activation type for
CIFAR10 models.

contribution of 1.1× to total compression (Figure 19).
Networks that do not converge were examined and found to

have diverging activation distributions, i.e. a diverging mean
or standard deviation over training. We suspect that activation
compression is affecting the activation mean, causing diver-
gence of the mean-dependent batch normalization parameters.
Decreasing the compression of the first DQT coefficient, relat-
ing to the mean, can reduce this behavior. Similarly, annealing
for the first 5 epochs with lower compression (optL5H, Table
I) also prevents divergence, implying that this is made worse
by rapid changes early in training. More investigation into the
training dynamics of CNNs under error is required to fully
understand this issue.

C. Quantization and Coding Modifications

To isolate the effects of DQT optimization, quantization,
and coding, we evaluate each DQT with each JPEG back
end and measure the conv and sum compression ratio (Table
III). The jpeg80 DQT has a significantly lower compression
than optH, highlighting the effectiveness of the optimization
procedure to increase compression (Table III). However, this
high compression is at the expense of accuracy (Table I).
Training with optL5H results in a compression ratio similar
to optH while maintaining accuracies similar to optL (Tables
I and III). Using optL5H over jpeg80 increases conv and sum
compression by >1.38× for any back end.

TABLE III: ResNet50/CIFAR10 conv+sum compression for
various DQTs (top) and JPEG back ends (left)

jpeg80 jpeg60 optL optH optL5H
DIV+RLE 5.29 6.43 3.52 7.79 7.72
SH+RLE 5.26 6.32 3.99 7.43 7.38
DIV+ZVC 5.80 6.52 4.62 8.31 8.24
SH+ZVC 5.77 6.46 5.08 8.01 7.96
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The use of ZVC over RLE increases the compression
ratio by 1.12×. In JPEG-BASE, RLE is used because high-
frequency information has a low magnitude, leading to most
high-frequency values being zero after quantization. CNN
activations, however, have much larger high-frequency modes,
which are quantized to non-zero values. RLE performs poorly
with randomly distributed zeros in contrast to ZVC. Addition-
ally, the optimized DQTs have a flatter quantization profile
when compared to image DQTs. This low-frequency quanti-
zation further randomizes zeros and is especially apparent in
the improvement of optL when using ZVC (1.3×).

D. Performance

Performance measurement is accomplished through micro-
benchmarking using CNR blocks with an optional dropout or
pooling layer. Due to simulation time and memory constraints,
we simulate three layers of each network (the first, middle,
and last), and use a batch size of 16. The algorithms used
are WINOGRAD, and WINOGRAD NONFUSED for 3 × 3
convolutions, and IMPLICIT GEMM and ALGO 0 for 1× 1
convolutions. This is representative of software frameworks
such as Chainer and Pytorch [46].

GIST performance is strongly influenced by network
structure (Figure 20). Poor performance on ResNet50 and
ResNet101 can be attributed to the presence of bottleneck
layers [3], which involve 1 × 1 convolution to decrease the
number of channels. Bottlenecks involve up to 2048 channels,
creating large activations with 9× fewer FLOPs than a sim-
ilarly sized 3 × 3 kernel. The non-zero scan in the cuSparse
dense2CSR conversion takes longer than a 1×1 kernel, in this
case, creating a large performance overhead.

By comparison, SFPR and JPEG-ACT display performance
that is not network dependent. The SFPR-only design pro-
vides 1.35× performance over GIST despite having a lower
compression, primarily because CSR is slower than SFPR.
The PCIe bandwidth limitations are nearly eliminated by
JPEG-ACT with optL5H, giving a performance increase over
GIST of 1.59× and overhead of 1.13×. More consistent
performance is obtained by shifting the bottleneck to effective
offload rate instead of compression throughput. Compression
increases that result from modifying JPEG for CNNs, improve
performance by 1.12× while decreasing the error change
from baseline by 2.3× (JPEG-ACT optL5H vs. JPEG-BASE
jpeg80). We observe that the remaining overheads of JPEG-
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Fig. 21: Performance when changing the number of CDUs on
ResNet50/CIFAR10 with a fixed compression ratio. Cache- +
DMA-side refers to Cache-size SFPR CDUs, and DMA-side
DCT+SH+ZVC CDUs.

ACT are caused by congestion on the GPU interconnect from
the increase in DMA traffic. Despite this, JPEG-ACT obtains
2.61× performance versus vDNN.

VDSR has 1.4× to 2.3× worse offload performance than the
other networks (Figure 20). VDSR has no dropout, pooling,
or bottleneck layers, however, the most important difference
is that all activations have few channels and a large spatial
dimension. We have observed that cuDNN launches a different
set of compute kernels for VDSR, and hypothesize that the
method used has a lower compute density, resulting in poor
offload performance.

E. CDU Count and Location

The effective offload rate available to JPEG-ACT is highly
dependent on the location and configuration of the CDUs in
the GPU memory system. Most importantly, the number of
CDUs affects the available bandwidth into the GPU (Figure
21). With DMA-side compression, there is little increase in
performance over 1 CDU at 2× and 4× compression as the
offload is bottlenecked by the PCIe offload rate. At 8× and
12× compression, however, the bottleneck is removed, and
performance increases as CDUs are added. Performance for
12× compression increases by 1.08× when moving from 2
to 4 CDUs, but by less than 0.5% when moving from 4 to 8
CDUs. At this compression and number of CDUs, the memory
partitions become the bottleneck, preventing further increases.

We also examine the impact of moving the SFPR portion of
the CDU to the L2 cache in a combined Cache- and DMA-side
compression (Figure 21). In this configuration in the forward
pass, values from the cache are immediately compressed by



TABLE IV: JPEG-ACT synthesis by component

Component Area (um2) Power (mW)
SFPR 44924 34.3
DCT + iDCT 229118 273.4
Quantize (DIV) 12507 14.4
Quantize (SH) 1593 2.5
Coding (RLE + RLD) 125890 176.0
Coding (ZVC + ZVD) 21519 17.1
Collector + Splitter 173445 170.3
Crossbar (+3 ports) 2253427 1668.0

TABLE V: Designs comparison with buffers and 4 CDUs.
Crossbar excluded.

cDMA+ SFPR JPEG-BASE JPEG-ACT
(jpeg80) (optL5H)

Power (W) 0.26 0.35 1.82 1.36
Area (mm2) 0.35 0.31 2.16 1.48
Compression 1.3x 4.0x 5.8x 8.5x
Offload (GB/s) 15.6 48.0 69.6 108.8

SFPR, sent over the GPU interconnect, and compressed again
by JPEG before the DMA unit. The minimum compression
rate is 4× due to the mandatory use of SFPR. As there
is one SFPR unit per memory partition, there are 48 SFPR
CDUs and 4 JPEG CDUs. This configuration has a high area
overhead due to duplication of the SFPR units and results in a
performance increase of 1% over a 4 CDU DMA-side design.

F. Synthesis

Power and area results for the individual JPEG-ACT compo-
nents (Table IV), indicate that the DCT is the most expensive
component of JPEG-ACT, followed by the required buffers.
The overall area and power for each design are visible in Table
V. When compared to cDMA+, JPEG-ACT provides a signif-
icant increase in effective PCIe bandwidth while maintaining
an area and power <1% of an NVIDIA Titan V GPU. This
is even smaller relative to larger data center GPUs [65]. The
modifications to the JPEG-ACT back end for CNNs reduce
overall area and power by 1.3× and 1.5× , respectively, while
increasing available PCIe offload bandwidth.

VII. RELATED WORK

We compare favorably against the primary works examining
activation storage during training, i.e. vDNN [19], cDMA
[21], and GIST [13]. However, there are many proposals
for compressing pre-trained neural networks to reduce costs
at inference , which, unlike JPEG-ACT, do not decrease
activation storage during training [33]–[37], [66]–[70]. These
methods include frequency transforms [68], [69] and precision
reduction [33]–[37], [70]. Training networks with a reduced
precision (e.g. 1, 3, or 8 bits), while effective, requires
modification of the CNN framework, network architecture, and
training schedule [33]–[37], which is not necessary with JPEG-
ACT. Other works have examined reduced precision gradient
storage for multi-GPU training, which does not decrease local
memory consumption [71].

Stored activations can be removed entirely, either through
removing gradients [72] or by using reversible networks [12].
These methods involve a much higher computational load than
more conventional compression methods, as gradients [72]
or convolutional activations [12] need to be regenerated. In
contrast to JPEG-ACT, this restricts the available layer types
of the network.

VIII. CONCLUSION

We have presented JPEG-ACT, a novel offload accelerator
for CNN activation compression, and its fixed-point com-
pression mechanism Scaled Fix-point Precision Reduction
(SFPR). Our results demonstrate JPEG-ACT can be effectively
used on a wide variety of datasets and benchmarks, and
provides significantly higher compression ratios than the state-
of-the-art. JPEG can be further tuned for CNNs, providing a
1.5× improvement in compression, while increasing trained
accuracy. Given hardware support, JPEG-ACT can be incor-
porated simply with any CNN architecture and framework
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