Treelet Accelerated Ray Tracing on GPUs

Yuan Hsi Chou
yuanhsi@ubc.ca
University of British Columbia
Vancouver, Canada

Abstract

Despite advances in hardware acceleration, ray tracing use
in real-time rendering is limited and often lowers frame rates,
leading users such as video game players to disable the fea-
ture entirely. Prior work has shown that dividing the BVH
tree into smaller subtrees (treelets) and traversing all rays
that visit a treelet before switching treelets can significantly
reduce memory traffic on a specialized accelerator, but there
are many challenges to applying treelets to GPUs. We find
that a naive treelet implementation is ineffective and propose
optimizations to improve performance. Virtualized Treelet
Queues consist of two main components. Ray virtualization
increases the number of concurrent rays in flight to cre-
ate more cache reuse opportunities by terminating raygen
shaders that have already issued their trace ray instruction,
reclaiming CUDA cores and allowing more raygen shaders to
be executed. To take advantage of the increased concurrent
rays, we propose a dynamic treelet queue architecture that
dynamically switches between traversal modes to increase ef-
ficiency. We also find that performing warp repacking boosts
SIMT efficiency of warps in the RT unit which is crucial to
achieving good traversal performance with treelet queues.
Our simulations show virtualized treelet queues achieve on
average 95% speedup compared to a baseline GPU with ray
tracing acceleration across all scenes in LumiBench rendered
with path tracing at one sample per pixel with three max
bounces per ray.
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1 Introduction

Ray tracing can create photorealistic images, and is tradi-
tionally used in offline rendering such as for movie produc-
tion. However, its high computation cost limits it from being
widely used in real-time applications. While modern GPUs
from companies such as NVIDIA, AMD, and Intel feature
dedicated ray tracing hardware to improve rendering speed,
they can still only achieve limited ray-traced effects within
real-time frame rates of 60 frames per second [27].

In ray tracing applications, rays are traced through a scene
to identify intersections with geometry. Ray tracing is a
memory-intensive workload because of the vast amount of
geometry that must be searched through. While scene ge-
ometry is already encoded into an acceleration structure as
a bounding volume hierarchy (BVH) tree to reduce search
complexity, traversing the BVH tree is still costly due to long
memory latencies and high cache misses. These challenges
are exacerbated by the fact that rays are usually incoherent
(or lack locality), traversing through different parts of the
BVH tree, and causing memory divergence [18]. Additionally,
BVH trees are large and do not fit in on-chip caches, lead-
ing to frequent off-chip memory accesses and high memory
traffic. Figure 1a shows L1 miss rates of only BVH accesses
issued from the RT unit across all scenes in LumiBench for
path tracing [22] measured in Vulkan-Sim [28], a cycle-level
simulator. The average L1 miss rate is 58% and reaches as
high as 70%, implying caches are ineffective at capturing
BVH node locality and promoting data reuse. Additionally,
we observe that the baseline RT unit also has low SIMT effi-
ciency, as shown in Figure 1b, indicating that there are many
inactive threads in the RT unit during traversal which could
be used to improve performance.

To address this, researchers have proposed various tech-
niques to improve ray tracing performance. Aila et al. [5]
proposed to subdivide the BVH tree into smaller subtrees, or
treelets, that fit in the processor’s cache to reduce memory
traffic. They group up and process rays that will traverse
the same treelet first before switching to a different treelet
and its corresponding rays and reduced memory traffic by
50-75%. While no performance results were shown, Aila et
al’s study motivates the possibility of a 2x or higher perfor-
mance improvement. However, Aila et al’s evaluation only
considered memory traffic and did not appear to factor in the
memory latency of accessing data at different levels of the
memory hierarchy, which is crucial for latency-bound work-
loads like ray tracing. We attempted to implement treelets
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Figure 1. Performance bottlenecks of the baseline RT unit.
Scenes are sorted by ascending BVH size.

on a modern GPU in Vulkan-Sim, but found that a naive
treelet implementation did not result in a speedup due to
insufficient rays in treelet queues to promote data reuse and
low SIMT efficiency. Kopta et al. [19] adopted the treelet idea
to STRaTA, a custom MIMD architecture, and observed up
to 43% lower DRAM energy. Shkurko et al. [30] improved
upon Kopta et al. by reorganizing the traversal algorithm,
transforming memory accesses during ray traversal into two
predictable data streams: one for the BVH tree and one for
the ray data. This improved traversal performance and re-
duced DRAM energy compared to STRaTA, however both
STRaTA and Shkurko et al. increased memory bandwidth
consumption. MIMD architectures also do not experience
SIMT divergence like GPUs do, and we find that maintain-
ing high SIMT efficiency is key to achieving good traversal
performance with treelets on GPUs. Chou et al. [8] proposed
a treelet-based prefetcher on ray tracing capable GPUs and
observed a 30% speedup in ray tracing performance. How-
ever, Chou et al. report 43.5% of prefetches are unused which
wastes memory bandwidth. We build on the treelet traversal
order by Chou et al. to implement our virtualized treelet
queues. Intel has also described a mechanism at a high level
similar to what we call ray virtualization in their GPUs [1] to
reorder hit shaders after traversal, but we adopt it to increase
concurrent rays in flight for better treelet performance.

In this work, we introduce virtualized treelet queues, an
efficient architecture that provides the benefits of treelets
on modern ray tracing capable GPUs and is compatible with
modern ray tracing APIs. Virtualized treelet queues com-
prise three parts: ray virtualization, dynamic treelet queues,
and warp repacking. Ray virtualization greatly increases the
number of concurrent rays in flight which would normally

be limited by the amount of warp slots in the RT unit since
each ray is executed by a thread. We achieve this by ter-
minating raygen shaders after a thread issues its trace ray
instruction to the RT unit, allowing the GPU to reclaim the
CUDA cores and launch new threads / raygen shaders from
already queued up Cooperative Thread Arrays (CTAs). To
take advantage of the increase in concurrent rays, we imple-
ment dynamic treelet queues in the GPU’s RT unit to group
up rays that access the same treelet together, achieving better
cache locality and reduced miss rates. During later phases of
ray traversal when rays diverge more, treelet queues end up
underpopulated and it becomes inefficient to process rays
in treelets. We propose to group up these underpopulated
treelet queues and traverse them regularly instead. How-
ever, this leads to a sharp decrease in SIMT efficiency due
to varying BVH node access counts from different rays. We
apply warp repacking to regroup active rays together into a
new warp, boosting SIMT efficiency and performance. With
all optimizations, virtualized treelet queues achieve up to
2.55% better path tracing performance under usage scenarios
comparable to video games on ray tracing capable GPUs.
We make the following contributions in this paper:

e We propose a ray virtualization technique to increase
the number of concurrent rays in flight (Section 3.1).

e We design a dynamic treelet queue architecture on
modern ray tracing capable GPUs, improving ray trac-
ing performance by dynamically switching between
traversal modes (Section 3.2).

e We find maintaining high SIMT efficiency is crucial
to traversal performance with treelets and propose
to group up underpopulated treelet queues and warp
repacking to achieve this goal (Section 4.4, 4.5).

2 Background and Motivation

This section provides an overview on ray tracing and the
Vulkan ray tracing API, the baseline GPU and RT unit ar-
chitecture, and prior work on treelets. We also discuss the
challenges of implementing treelets on GPUs.

2.1 Ray Tracing and Modern Ray Tracing APIs

We first describe ray tracing at a high level and then discuss
how modern ray tracing APIs handle ray tracing on GPUs.

2.1.1 Ray Tracing Overview. Ray tracing, specifically
path tracing, renders images by tracing light rays through
a scene to simulate the physical behavior of light. Primary
rays are traced initially from the camera’s viewpoint through
each pixel on the screen and are tested for intersections with
scene geometry. When an intersection is found, the ray’s
color is computed based on the material properties of the
intersected object and the light sources in the scene. Further
secondary rays can be generated from the intersection point
to render reflection, refraction, and shadows. This is repeated
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Figure 2. Vulkan Ray Tracing Pipeline.

until a maximum depth is reached or the ray’s contribution
to the final image is negligible.

2.1.2 Modern Ray Tracing APIs. Modern ray tracing
APIs such as Vulkan and DXR define a ray tracing pipeline
to handle the different GPU shader stages during ray tra-
versal [2]. Figure 2 shows the Vulkan ray tracing pipeline,
but DXR follows a similar structure. When the host program
invokes ray tracing kernels on the GPU, the ray generation
(raygen) shader first executes to generate rays. Next, the
traceRayEXT() function is called in the raygen shader to
trace rays through the scene’s acceleration structure to find
ray intersections. The acceleration structure (AS) is a bound-
ing volume hierarchy (BVH) tree consisting of hierarchical
axis-aligned bounding boxes (AABBs) encapsulating scene
geometry to reduce search complexity. Rays traverse through
the BVH tree’s internal nodes, usually in depth-first order
and intersect with AABBs until reaching leaf nodes. Ray-
triangle intersection tests are performed at the leaf nodes
where rays intersect with scene geometry but intersection
shaders can be used for custom intersection tests. Anyhit
shaders are optional shaders that execute when a ray inter-
sects with a geometry object. After traversal is complete,
depending on whether the ray intersected with geometry
or not, either the closest hit shader or the miss shader is
executed and the thread returns to the raygen shader where
the traceRayEXT() function was called.

2.2 GPU and RT Unit Architecture

GPUs are massively parallel processors optimized for through-
put. Figure 3 shows the organization of a GPU consisting
of multiple streaming multiprocessors (SMs) connected to
the memory system through an interconnect. GPU kernels
are executed by threads that are grouped into multiple co-
operative thread arrays (CTAs). The host processor issues
kernel invocations to the kernel management and dispatch
unit which sends the CTAs to the CTA scheduler. The CTA
scheduler assigns CTAs to available SMs where each CTA is
processed as warps which are groups of 32 threads that exe-
cute in lockstep or single instruction multiple thread (SIMT)
fashion. Each SM contains multiple execution units or CUDA

cores responsible for executing shader instructions of the
assigned CTA. Each SM also has its own L1 cache and reg-
ister file which are connected via a crossbar. All SMs share
the L2 cache which resides in multiple memory partitions
connected through an interconnect.

For modern GPUs, each SM also contains a ray tracing
accelerator to offload the traceRayEXT() function from the
CUDA cores and speed up BVH traversal and ray intersection
tests. In this work, we build upon the RT unit architecture
in Vulkan-Sim [28] which is a cycle-level simulator for the
Vulkan ray tracing pipeline that has been microbenchmarked
against real GPU hardware with a correlation of 95.7%.

Figure 3 illustrates the baseline RT unit architecture in
Vulkan-Sim. After the raygen shader issues the traceRayEXT ()
function to the RT unit, the ray information of threads in
the warp is written to each ray buffer entry in the warp
buffer, including the ray ID, ray origin and direction, and
its status. Each ray buffer also records the current traver-
sal stack and treelet stack which was proposed by Chou et
al. [8] to support the treelet traversal order that we will use
to enable treelet queues. Each cycle the RT unit processes a
warp from the warp buffer and the memory scheduler pushes
a BVH address to the memory access queue to fetch from
memory. When data is returned to the RT unit’s response
FIFO, rays perform intersection tests with the fixed function
operation units and traversal results are written back to the
warp buffer. A warp is completed when all rays in the warp
finish traversal and resume execution in the raygen shader.

2.3 Prior Work On Treelets

While ray tracing seems embarrassingly parallel as every ray
can be processed independently, implementing it on parallel
architectures is challenging, primarily due to the large BVH
sizes and memory divergence. Secondary rays are incoherent
and access very different parts of the BVH tree, and coupled
with the fact that the entire tree is too large to be fully stored
in on-chip caches causes frequent off-chip memory accesses
and high cache miss rates.

To address these challenges, prior work proposed various
memory optimization techniques to improve ray tracing per-
formance. Aila et al. [5] proposed to subdivide the BVH tree
into smaller subtrees, or treelets (such as in Figure 4), that fit
in the processor’s cache to reduce memory traffic. To benefit
the most from loading a treelet, they prioritize executing rays
that will traverse the same treelet first before fetching a new
treelet. They achieve this using dynamically allocated queues
per treelet in memory to group up rays that will traverse
the same treelet which resulted in significant memory traffic
reduction. This treelet approach is similar in motivation to
tile-based rendering where an entire scene is subdivided into
tiles and rendered separately to reduce working set sizes and
improve cache locality. While their simulated architecture
resembled the resources of a GPU, one major limitation is
they did not consider nor simulate memory latency. With
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Figure 3. Baseline RT Unit Architecture of Vulkan-Sim [28] with modifications to support treelet traversal order [8]. Additional
hardware to enable the proposed dynamic treelet queues are highlighted in red.

ray tracing being latency-bound [13], data placement in dif-
ferent parts of the memory hierarchy greatly impacts overall
performance. For example, Aila et al. assumed ray data and
traversal stacks are stored in DRAM, whereas in modern
ray tracing GPUs, this data is stored directly on-chip in the
RT unit’s warp buffer for quick access. As treelet queues
increase auxiliary memory traffic (treelet queues, ray data,
traversal stacks) significantly as noted by Aila et al., it may
offset the BVH memory traffic reduction when implemented
on a modern GPU with ray tracing acceleration.

Shkurko et al. [30] implemented treelet queues by reor-
ganizing memory accesses into treelet and ray data streams.
They coordinate loading both data streams from DRAM so
that the treelet data is loaded alongside the rays that will tra-
verse that treelet. This improved traversal performance and
reduced DRAM energy on their custom MIMD-based acceler-
ator, however Shkurko et al. suffer from a much higher mem-
ory bandwidth requirement due to needing to constantly
fetch ray data from DRAM. However, the MIMD architec-
ture used by Shkurko et al. is fundamentally different from
a programmable GPU as MIMD threads do not need to con-
sider SIMT divergence and can execute independently. In
our work, we find that managing SIMT efficiency of warps
is crucial for treelet queues to be effective on a GPU. Addi-
tionally, ray data on modern GPUs is stored in the RT unit
instead of in DRAM so streaming ray data is costly.

Chou et al. [8] is the closest work to ours that explores
how to adopt the treelet concept to a GPU with ray tracing
acceleration. They proposed a prefetching scheme that first
identifies the most popular treelet amongst all rays in each
RT unit and prefetches that treelet entirely into the cache,
resulting in a 30% speedup in ray tracing performance. Chou
et al. modified BVH traversal to follow a treelet traversal
order using two stacks: a current stack for traversal within a
treelet, and a treelet stack to track pending treelets that a ray
needs to visit. A ray traverses all nodes within its current
stack first before moving on to the next treelet in the treelet

OO0 © 0

Figure 4. Example of a BVH tree divided into treelets with 4
max nodes. Nodes of the same color are in the same treelet.

stack. By comparing the treelets at the front of each ray’s
treelet stack amongst rays in the RT unit, the RT unit can
determine which treelet to prefetch next. However, Chou
et al. do not fully implement the treelet queue concept as
proposed by Aila et al. [5] as Chou et al. still allow different
threads within the RT unit to traverse different treelets. This
results in low SIMT efficiency within a warp as rays in the
same warp can be traversing different treelets and poten-
tially thrashing the cache especially if rays in the RT unit are
spread across multiple different treelets evenly, causing the
prefetcher to constantly switch between prefetching differ-
ent treelets. Chou et al. also mention that 43.5% prefetches
are never used as it is impossible to know which nodes within
a treelet will be visited by a ray, costing memory bandwidth.

2.4 Motivation

To understand whether treelets are viable for GPUs, for this
section only, we construct a simple standalone analytical
model to estimate the potential performance gain of adopting
treelets on GPUs for just ray traversal at different degrees of
concurrent rays in flight before diving into the actual design
details. For the rest of the paper, we evaluate our proposal on
Vulkan-Sim, a detailed cycle-level simulator and not with this
analytical model. We hypothesize that with more concurrent
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Figure 5. Potential speedup of treelets in LumiBench with
increasing concurrent rays from analytical modeling. Work-
loads are listed in Table 2.

rays in flight, more rays can reuse the fetched treelet data,
reducing memory accesses and lowering traversal latency.

To get these estimates, we first record every BVH memory
access made by each ray during ray traversal as input to the
analytical model. We do not model any caching of BVH nodes
for both the baseline and treelet queues to simulate every
access being a miss. With this assumption, the cycles needed
to traverse every ray in the baseline RT unit roughly equals
the total amount of nodes traversed by every ray multiplied
by the memory latency. For treelet queues, we introduce the
concept of concurrent rays, where all concurrent rays are
processed in the same batch and rays in the same batch can
reuse the fetched treelet data at no latency cost once fetched.
The cycles required for treelet queues will be the product of
the number of unique treelets in each batch of concurrent
rays, the number of nodes in a treelet, memory latency, and
the total number of ray batches. Supporting more concurrent
rays in a batch reduces the total number of unique treelets
the GPU has to fetch and reduces cycle count.

Figure 5 plots the estimated performance gains of treelets
as we increase the number of concurrent rays across Lu-
miBench scenes. As the number of concurrent rays increases,
the potential gain from treelets due to memory savings also
increases and can reach 3 to 4x speedup for most scenes.
WKND and SHIP stand out for having the smallest BVH
sizes and having higher chances of rays traversing similar
treelets. While these are rough estimates, they motivate the
need to support a large number of concurrent rays in flight
on a GPU for a performant treelet queues implementation.

3 Virtualized Treelet Queues

This section presents the high-level design of virtualized
treelet queues on GPUs. The goal is to enable efficient ray
traversal on GPUs by increasing the number of concurrent
rays in flight and using treelet queues to extract more data
reuse opportunities. To achieve this, our design consists of
two main parts: ray virtualization and treelet queues, which
we will expand upon in the following sections.

Time Example Baseline SM with 1 CTA slot

Raygen traceRayEXT() | Shading
Raygen | traceRayEXT() I Shading I
Time Ray Virtualization
I Raygen traceRayEXT() | QShading
Raygen traceRayEXT() | Shading
Raygen traceRayEXT() | Shading
Raygen | traceRayEXT() | Shadingl

Figure 6. Example of ray virtualization in a GPU with one
CTA slot per SM.

3.1 Ray Virtualization

Ray virtualization aims to increase the number of concur-
rent rays processed by the RT unit. In the baseline system,
threads executing the raygen shader issue their ray to the
RT unit and are stalled until the RT unit completes ray tra-
versal. The raygen shader cannot be terminated after issuing
rays to the RT unit since ray traversal results are used for
shading afterwards. The anyhit, intersection, closest hit and
miss shaders are also called from the raygen shader after
traversal. Without terminating the raygen shader, the GPU
cannot issue more new rays due to CTA scheduling hard-
ware constraints. Due to the above, the RT unit can only
trace a limited amount of concurrent rays bounded by the
number of warp slots in the RT unit’s warp buffer and the
number of concurrent threads processed by the CUDA cores.
To support more concurrent rays, the GPU needs to handle
the execution of more concurrent CTAs and increase the
RT unit’s warp buffer size, both of which require high area
overheads. However, since threads are stalled after issuing
their traceRayEXT () function to the RT unit, we can exploit
this to reclaim stalled CTAs and launch new raygen shaders
to increase the number of concurrent rays in flight.

Figure 6 shows a simplified example of ray virtualization
in a GPU with one CTA slot compared to a baseline system.
For simplicity, only one SM is processing the CTAs and there
is only one warp per CTA. Initially, both GPUs launch their
first CTA to an SM which executes the raygen shader. Af-
ter the raygen shader issues the traceRayEXT() function
to the RT unit, threads in the baseline GPU stall until the
RT unit completes all ray traversals in the warp (Figure 6
top). Once done, the warp continues raygen shader execution
to perform shading calculations using the traversal results.
With ray virtualization (Figure 6 bottom), the GPU can ter-
minate the raygen shader after all threads in the CTA issue
traceRayEXT() to the RT unit, and reclaim the CTA slot.
This is similar to what Intel has done on their ARC GPUs
from their high-level description [1], but instead of using it
to reorder hit shaders after traversal, we adopt it to enable
more concurrent rays in flight for treelets. While the RT unit
processes the rays of the just terminated CTA, the GPU can
launch new raygen shaders by issuing pending CTAs to the



freed up CTA slot (@), increasing the number of concur-
rent rays in the RT unit. The extra ray data from the newly
launched raygen shaders can be stored in either dedicated
partitions of the cache or in the register file for quick access
by the RT unit. This process repeats until no more CTAs re-
main to be processed. Meanwhile, as rays complete traversal
in the RT unit (@), warps can resume execution if any CTA
slots of the SM are free. We prioritize resuming CTAs that
have completed traversal in the RT unit to avoid queuing up
too many rays and running out of resources. However, ray
virtualization alone does not provide much benefits as the
RT unit is still limited by the warp buffer size.

3.2 Dynamic Treelet Queues

To benefit from increased concurrent rays from ray virtual-
ization, the second part of our design is the treelet queues. In
ray tracing, there are two ways to organize traversal which
we refer to as ray stationary and treelet stationary. Tradi-
tional ray tracing architectures are Ray Stationary, where
the same rays are kept on-chip and the RT unit fetches BVH
nodes from memory, prioritizing ray data reuse at the cost
of BVH locality. In contrast, treelet approaches such as Aila
et al. [5] are Treelet Stationary, where a treelet is kept
on-chip and rays are fetched from memory to reuse the same
treelet, trading off reduced BVH loads for increased ray data
loads. The best choice of approach changes throughout the
different phases of ray tracing execution so we propose to
dynamically switch between both modes, maximizing data
reuse and avoiding costly ray data fetches when possible.

Next, we describe the operation of dynamic treelet queues
at a high level as depicted in Figure 7. The operation of dy-
namic treelet queues can be roughly split into three phases in
chronological order: an initial traversal phase in ray station-
ary mode, a treelet stationary mode, and a final phase in ray
stationary mode. In the Initial Traversal Phase as warps of
rays enter the RT unit, they traverse the BVH tree in ray sta-
tionary mode until rays within a warp start to diverge past a
threshold (@). We start with ray stationary mode since rays
are coherent initially and would exhibit high cache hit rates
and low memory divergence with either traversal mode, and
also avoids the overhead of fetching ray data.

Once rays start diverging, they are spread across more
treelets and the RT unit switches to Treelet Stationary
Mode (@). Memory-diverged warps are terminated and
write their rays to the corresponding treelet queues based on
what treelets they need to traverse next. Once a treelet queue
accumulates enough rays, the RT unit starts processing it by
fetching ray data for rays in the queue to the warp buffer and
treelet data to the L1 cache. Since rays in the queue will only
access nodes in that treelet, cache accesses should always
hit and reduce off-chip memory accesses. Rays traverse the
treelet until they reach the boundary of the treelet and are
pushed to the next treelet queue based on which treelet they

intersect next. A queue is emptied before switching to the
next treelet queue to maximize reuse.

This process repeats until the largest treelet queue falls
below a certain threshold, usually during the later half of
ray traversal when rays are too diverged or there are not
enough rays to fill up the queues. At this point, it is no longer
beneficial to remain in treelet stationary mode as there are
not enough rays to make use of fetching an entire treelet (€).
We group up the stray rays in the underpopulated treelet
queues to form warps and these warps are processed in Ray
Stationary Mode until all rays in it finish traversal.

4 Proposed Architecture

This section describes the architectural changes to support
ray virtualization and treelet queues in hardware (Section 4.1
and 4.2). To reduce the latency of loading data from memory
for treelet queues, we discuss how to preload treelet and ray
data in Section 4.3. However, we find that a naive treelet
implementation is ineffective in the later half of traversal as
rays start diverging more, and we propose grouping up un-
derpopulated treelet queues (Section 4.4) and warp repacking
(Section 4.5) to address this issue.

4.1 Ray Virtualization Implementation

As discussed in Section 3.1, ray virtualization increases the
number of concurrent rays seen by the RT unit through
reclaiming CTA slots of an SM once threads issue their
traceRayEXT() function. We will now describe the imple-
mentation of ray virtualization in more detail.

When the host program invokes a ray tracing kernel, the
raygen shader kernel, which consists of multiple CTAs (a
collection of threads), is launched on the GPU. CTAs are
scheduled by the GPU’s CTA scheduler and bound to differ-
ent SMs for execution and each SM has a limit on how many
CTAs can execute concurrently. Warps in the raygen shader
first generate rays and then issue them to the RT unit with
the traceRayEXT() function. Once all threads in the CTA
submit their rays, the CTA can be terminated allowing new
CTAs to be launched. To resume the terminated CTA later
when its rays have finished traversal, we allocate memory
and store the CTA’s state which includes the registers of
every thread and SIMT stack of all warps in the CTA. The
kernel management unit also needs to store a table of termi-
nated CTA IDs with their allocated CTA state address and
size. Once a CTA is terminated, a new CTA can be launched
on the SM until all raygen shader CTAs are issued or the
desired number of concurrent rays is reached.

While new CTAs are executing, the RT unit traverses
the submitted rays of the terminated CTAs. When all rays
from a CTA complete traversal, the CTA can now resume.
However, the baseline GPU can only launch CTAs from the
CTA scheduler and not from an SM’s RT unit. To support this,
in Figure 3 we introduce an additional path from each SM’s
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Figure 7. Dynamic treelet queue overview. Each triangle is a treelet and boxes above each treelet are its treelet queue.

RT unit to the CTA scheduler, allowing the RT unit to inject
ready-to-resume CTAs back into the GPU’s CTA scheduler
and signal it to prioritize the injected CTAs. Once an SM is
available for the injected CTAs to resume, the CTA’s state
needs to be restored by loading each thread’s register data
and SIMT stacks from memory. We quantify the performance
impact of CTA resuming in Section 6.6. Afterwards, the CTA
can continue execution from where it left off.

4.2 Dynamic Treelet Queue Implementation

To take advantage of increased concurrent rays from ray
virtualization, we introduced dynamic treelet queues in Sec-
tion 3.2. Figure 8 shows RT unit changes to enable treelet
queues highlighted in red. When warps issue rays to the
RT unit, the ray data is stored in memory and resides in a
reserved portion of the L2 cache (). Warps also enter the
RT unit’s warp buffer to begin their Initial Traversal Phase
(@). Once a warp’s rays start to diverge, the warp is termi-
nated the RT unit updates the Treelet Count Table in the
Treelet Controller by incrementing the ray count for a cor-
responding treelet that each terminated ray needs to traverse
next (@)). To identify what rays belong in which treelets, the
treelet controller also updates the Treelet Queue Table
in the L1 cache with the ray IDs and inserts them into the
corresponding treelet queue entry (@). Figure 9 shows the
layout of the treelet queue table. Each entry stores a treelet
address, a ray count, and an array of ray IDs that belong in
the treelet up to 32 rays. We choose 32 rays per entry as the
whole array of rays can form a full warp. To insert a ray into
the treelet queue, the treelet controller finds the correspond-
ing treelet queue entry and appends the ray ID to the array.
If a treelet queue entry is full, duplicate treelet entries are
allowed in the table. The treelet queue table is implemented
as a hash table and collisions are handled with chaining. We
use a simple hash function that XORs groups of 2 LSB bits or
4 MSB bits of the treelet address and in our experiments the
max collisions for a key is only two. The treelet controller
has a state machine to handle reads and modifications to the
table. Since the maximum concurrent rays in an RT unit are
determined by the degree of ray virtualization, the treelet

queue table can be sized to accommodate most of the rays in
the RT unit by dividing the maximum rays by the warp size.
If the table overflows, which can happen when too many
treelets queues are underpopulated, excess entries are stored
in memory and fetched when needed.

While rays in the warp buffer traverse, the treelet con-
troller identifies the largest treelet in the treelet count table
and adds it to the list of current treelets if it has enough
rays and does not exceed the maximum allowed concurrent
processed treelets (@). This design parameter depends on
the warp buffer size and how large treelets are sized rela-
tive to the cache size. Once a treelet is added to the list of
current treelets, the treelet controller loads the treelet from
memory to the L1 cache and fetches ray data from the L2
cache (@). Ray data loads bypass the L1 cache to avoid evict-
ing treelet data. The returned ray data is stored in the warp
buffer to form a treelet warp (@). Once all rays in a treelet
warp traverse to the boundary of a treelet or finish traver-
sal, the treelet controller updates the treelet count table and
treelet queue table to reflect the current treelet queue state.
Traversal is done when the treelet count table is empty.

4.3 Treelet and Ray Data Preloading

A large portion of the treelet queue overhead comes from
loading treelet and ray data when a treelet queue is initially
dispatched. One optimization to reduce this latency is to
preload the treelet into the L1 cache and preemptively fetch
ray data. The treelet controller monitors the treelet count ta-
ble and when the number of rays in the current treelet queue
falls below a threshold, it will send a preload request to fetch
the next largest treelet and the corresponding ray data of
the largest treelet queue. When preloading a new treelet and
its ray data, ideally they should arrive when all rays in the
current treelet queue have just finished, meaning the preload
needs to happen when the remaining traversal cycles of the
current treelet queue equals the memory latency. However,
we also do not want early preloads to evict existing treelet
data in the cache. With treelet queues, BVH accesses should
be cache hits and ray intersection tests have constant latency,
thus we can estimate a preload timing based on how many
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Figure 8. Treelet Queue Implementation.

Treelet Address Ray Ray IDs
(Duplicate treelets allowed) Count [(Max 32 rays per entry)
Treelet A 32 0,1,..31
Treelet A 32 32,33, ..,63
Treelet N 20 4064, ..., 4083

Figure 9. Treelet queue table layout to track what rays be-
long in which treelet.

warps worth of rays remain in the current treelet queue. The
estimated cycles required to process the remaining rays will
be the product of the number of remaining warps, the ray
intersection latency, and the average depth of a treelet (proxy
for nodes intersected per treelet).

An alternative idea to work around preloads evicting cur-
rent treelet data is to reserve a portion of the cache to hold
preloaded treelet data and use smaller treelets instead. For
example, sizing treelets to be half the cache size allows rays
to traverse one treelet while the next treelet is preloaded.
While smaller treelets lessen the opportunity for data reuse
since the treelet queues will be smaller, in practice we find
the benefit of treelet preloading outweighs this downside.
Ray data can also be preloaded similarly.

4.4 Grouping Underpopulated Treelet Queues

One major issue with treelet queues is that individual queues
can become underpopulated when the entire ray population
starts to further diverge later during ray traversal. Fetching
an entire treelet for an underpopulated treelet queue is inef-
ficient when these rays could instead fetch individual BVH
nodes in fewer memory accesses. This situation is identified

when the largest treelet queue falls below a certain threshold
and there are no more rays left in the current treelet queue to
further popular the treelet queues. At this stage, we switch
from treelet stationary to ray stationary mode and form
warps with rays in the underpopulated treelet queues. To
do this, the treelet controller selects treelet queues starting
from the first treelet count table entry to acquire enough rays
to fill up the warp buffer. Afterward, the RT unit traverses
those rays like the baseline until all of them have finished
traversal completely before fetching new rays to process.

4.5 Warp Repacking

While processing rays in underpopulated treelet queues,
some rays may finish traversal before others and sit idle.
Since a warp cannot terminate until its longest ray finishes,
SIMT efficiency is greatly impacted lowering memory level
parallelism and ray traversal performance. We address this
with warp repacking where when half (or a set threshold) of
the rays in a warp are inactive, the warp is terminated and
the treelet controller will fetch more rays from the under-
populated treelet queues to fill the warp up with new rays.
Repacking a warp with new rays is only made possible with
ray virtualization as the RT unit can easily fetch new rays
from memory. This is similar to the issue observed in the ray
predictor by Liu et al. [21] where rays that successfully pre-
dict the final hit point can terminate traversal early whereas
rays that mispredict need to perform ray traversal fully. This
causes the mispredicted rays to hold up the entire warp and
Liu et al. repack those rays into new warps to increase SIMT
efficiency. Since repacking is done entirely within the con-
text of the RT unit, there is limited data movement overhead
and can be done quickly. The data movement overhead of
our warp repacking technique primarily comes from loading
rays from memory to refill warps, which loads ray data from
memory to the warp buffer.

Our warp repacking technique is different from Liu et
al. [21] as we repack warps with new rays from memory
to increase SIMT efficiency and performance whereas Liu
et al. repack warps with rays that already exist inside the
warp buffer. Warp reformation methods such as Dynamic
Warp Formation [10] and Thread Block Compaction [9] are
also related to our warp repacking method but operate by
rearranging threads from different warps that are running
concurrently. This requires complex modifications to the
GPU register file to allow independent register file indexing
per lane. This is different and more complex and expensive
than warp repacking which merely fetches new rays from
memory to fill a portion of a warp when it contains many
inactive threads and is again solely contained within the RT
unit.



Table 1. Vulkan-Sim Configuration.

# Streaming Multiprocessors (SM) 16
Max Warps per SM 32
Warp Size 32
Max CTA per SM 16
Warp Scheduler GTO
# Registers / SM 32768

Instruction Cache
L1 Data Cache + Shared Memory

128KB, 16-way assoc., 39 cycles
16KB, Fully assoc. LRU, 39 cycles

L2 Unified Cache 128KB, 16-way assoc. LRU, 187 cycles
Core, Interconnect, L2 Clock 1365 MHz
Memory Clock 3500 MHz
# RT Units / SM 1
RT Unit Warp Buffer Size 1

5 Methodology

We extend Vulkan-Sim [28] to simulate our virtualized treelet
queue architecture. Vulkan-Sim is a cycle-based simulator
that models the Vulkan ray tracing pipeline and RT unit archi-
tecture. To model ray virtualization, we terminate a CTA after
all its threads have executed traceRayEXT () which offloads
ray traversal to the RT unit. The CTA state, thread registers,
and SIMT stack of all warps in the CTA are stored in mem-
ory. The number of saved registers is from running ptxas,
NVIDIA’s PTX shader assembler, on the raygen shader which
gives the maximum amount of required registers. This is a
conservative number as in practice, only live registers need
to be saved. When the CTA is ready to resume, the CTA is
injected back into the GPU’s CTA scheduler and loads are
issued to retrieve the saved state before the CTA is scheduled
to an SM for modeling timing overheads. We set ray virtual-
ization to allow up to 4096 rays in flight per SM. To simulate
treelet queues, we used the treelet partitioning code by Chou
et al. [8] and size treelets to be half the L1 cache size. This
allows storing two treelets in the L1 cache at a time, enabling
the RT unit to preload a treelet while currently processing
one. Ray data is held in the L2 cache in a reserved section,
and also stored in memory if evicted by other rays. Ray data
loads bypass the L1 to not evict treelet data. The data move-
ment latency and energy cost of warp repacking comes from
fetching rays from memory to refill warps, which loads ray
data from memory to the warp buffer. The latency is cap-
tured by memory loads in the timing model and load energy
is captured by Accelwattch in Vulkan-Sim.

Table 1 shows our simulated GPU configuration. We use
a warp buffer size of one according to the profiling from
Vulkan-Sim [28]. Cache latencies are referenced from the
NVIDIA RTX 3080 configuration in Accel-Sim [17]. While
modern GPUs feature much larger sizes than what we simu-
late (128KB L1, 72MB L2 for RTX 4090 GPU), BVH trees in
real-world applications are also much larger than our bench-
marks, reaching hundreds of MB and far exceeding the cache
capacity [4]. Prior works show it is possible to estimate the
performance of a full system through scale-model simulation
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Figure 10. Overall speedup of Virtualized Treelet Queues
(4096 concurrent rays) compared to Treelet Prefetching [8].

with good accuracy for both GPGPU workloads [29] and ray
tracing [12]. The baseline GPU uses the treelet traversal or-
der by Chou et al. [8]. We compare our proposal to Treelet
Prefetching [8] which is the most recent work employing
treelets on ray tracing capable GPUs and the implementation
is available.

5.1 Evaluation Benchmarks

We evaluate our proposal on scenes from LumiBench [22]
and Table 2 shows summary statistics of the scenes sorted by
BVH size. The BVH trees range from 13.18MB to over 1GB
in size and contain up to 20.6M triangles. We use a 4-wide
BVH tree built by Intel Embree [31] and is then repacked into
the BVH format from Benthin et al. [7] by Vulkan-Sim. We
simulate all scenes at 256x256 resolution at one sample per
pixel (SPP) with three max bounces or until the secondary
ray’s contribution to the final pixel color is too small. The
scenes are path traced where primary rays are traced from
the camera to the image pixel and secondary rays are traced
from the intersection point of the primary ray and scattered
based on the material at the hit point. While we are aware
most real-time ray tracing applications obtain the primary hit
point of a ray using rasterization and not by tracing primary
rays, the simulation framework provided by LumiBench and
Vulkan-Sim does not support rasterization. Also, low SPP
counts are often used in real-time ray tracing to achieve
interactive frame rates.

6 Results

Figure 10 shows the overall speedup of Virtualized Treelet

Queues with 4096 concurrent rays compared to Treelet Prefetch-

ing [8]. Scenes are sorted by ascending BVH size. Dynamic
treelet queues when combined with grouping underpop-
ulated treelet queues and warp repacking achieve a 95%
speedup over the baseline and outperforms treelet prefetch-
ing [8] by 43%. Two scenes have less speedup compared to
others. In SPNZA, SIMT efficiency is already high so our
optimizations of grouping underpopulated treelet queues
and warp repacking which boost SIMT efficiency are less
effective. CHSNT does not have high L1 miss rates in the
baseline so it benefits less from treelets.



Table 2. Summary of evaluation scenes from LumiBench [22].

Scenes BUNNY SPNZA CHSNT
BVH Size (MB) 13.18 22.84
Triangle Count 144.1K 262.3
Scenes SPRNG LANDS
————

5 - " )/ ’ l
BVH Size (MB) 177.96 303.48 648.48 1,328.23 1868.95
Triangle Count 1.9M 3.3M 1.6M 12.7M 20.6M

6.1 Treelet Stationary Phase Performance

To evaluate whether treelet queues and the treelet-stationary
mode are effective at improving the memory system perfor-
mance, we compare the L1 cache miss rates of BVH accesses
in the baseline GPU and treelet queues. Figure 11 shows
the L1 cache miss rate over time for the LANDS scene in
LumiBench. The blue line represents the L1 cache miss rate
of the baseline GPU operating in ray-stationary mode where
the cache miss rates start out high and plateau at around
60%. The red line shows the L1 miss rates of the RT unit if
it were to operate permanently in treelet-stationary mode.
Initially treelet queues provide a large reduction in cache
miss rates, going as low as 9% where almost every ray in the
RT unit is traversing the same treelet and each treelet fetch
is amortized over many rays. However, as rays diverge and
treelet queue sizes decrease, the cache miss rate increases
and eventually plateaus at around 75% to 80%, surpassing the
baseline GPU’s cache miss rate. This is because when treelet
queues are small, the RT unit fetches more BVH nodes than
required, leading to more cache misses. This suggests that
treelet queues are very effective but only when the queues
are large enough. The dashed vertical black line in Figure 11
indicates the threshold where the treelet queues start be-
coming underpopulated and the RT unit groups these treelet
queues together to process in ray-stationary mode to avoid
the high cache miss rates.

While treelet-stationary mode decreased cache miss rates,
the miss rate of the overall system increases after transition-
ing back to ray-stationary mode with warp repacking due
to ray data loading and CTA restores for ray virtualization.
Despite this, both SIMT efficiency and the amount of over-
lapped memory accesses double, which resulted in speedups
and are shown in the next sections.
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Figure 11. L1 cache miss rate over time under treelet-
stationary mode compared to the baseline RT unit for the
LANDS scene.
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Figure 12. Speedup of grouping underpopulated treelets.

6.2 Grouping Underpopulated Treelet Queues

Figure 12 shows a speedup of treelet queues with no op-
timizations and treelet queues that group underpopulated
queues into warps, compared to the baseline GPU. The queue
threshold specifies the minimum number of rays in a treelet
queue before it can be considered underpopulated. As a re-
sult, when we group underpopulated treelet queues into ray
stationary warps, we see a 8x performance increase over the
naive treelet queue implementation when using a threshold
of 128 rays. However, this optimization alone is not enough to
yield good treelet performance, being on average 5% slower
than the baseline and requires additional optimizations.
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Figure 13. Performance effects of warp repacking.

6.3 Warp Repacking

Figure 13 shows the speedup of warp repacking at different
repack thresholds. A threshold of 16 means if a warp has
less than 16 active rays, it will be repacked into a new warp.
Speedups are normalized to the baseline GPU (indicated by
the red line) and all variants group up underpopulated treelet
queues. Without warp repacking, treelet queues has a 5%
slowdown compared to the baseline. Warp repacking with
a 16-thread threshold provides an 84% speedup and a 22-
thread threshold at 95% speedup. Without warp repacking,
treelet queues cannot maintain high SIMT efficiency due
to the high variance in the number of BVH nodes each ray
needs to traverse. This causes some rays to finish traversal
earlier, leading to few active rays in a warp and lowering
memory level parallelism as there are fewer rays to issue
memory accesses from. This is evident from Figure 13b which
plots the SIMT efficiency of treelet queues with and without
warp repacking alongside the baseline. SIMT efficiency is
the ratio of active threads to the total number of threads
in a warp, 1 being a fully active warp. Both the baseline
and treelet queues without warp repacking have similar
SIMT efficiencies of 0.37 and 0.33, indicating that only 10 to
12 rays are active in a warp on average. By grouping rays
from underpopulated treelet queues, we may even worsen
the problem by potentially executing rays with distant hit
points together. Enabling warp repacking increases SIMT
efficiency up to 0.82 with a 22-thread threshold, which more
than doubles the baseline and correlates to the speedup.

6.4 Traversal Mode Breakdown

As mentioned in Section 3.2, dynamic treelet queues operate
in three phases: an initial traversal phase in ray stationary
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Figure 15. Ratio of ray intersection tests processed under
different ray traversal modes.

mode, a treelet stationary mode, and a final phase where un-
derpopulated treelet queues are processed in ray stationary
mode. Figure 14 shows the cycle ratio of the three phases
when both grouping underpopulated treelet queues and warp
repacking are enabled. The bar height is proportional to cy-
cles in the optimized system and not operations in baseline.
For all scenes, after a short initial traversal, the RT unit
spends the majority of cycles in ray stationary mode. The
large ray stationary cycle ratio is due to the high divergence
of rays in the later stages of traversal, causing treelet queues
to be underpopulated and inefficient to process. Additionally,
most rays in the ray stationary phase are secondary rays,
which there are less of compared to primary rays, making
it harder to populate treelet queues. This suggests treelet
queues are more beneficial in early stages of ray traversal and
more optimizations on improving ray stationary traversal
which contains mostly diverged rays is needed to further im-
prove performance. While the treelet stationary phase seems
short, it does not mean treelet queues are ineffective. We
experimented with skipping the treelet stationary phase by
setting the treelet queue threshold to zero and immediately
starting ray stationary phase and on average scenes took 4-6
times more cycles to complete compared to the baseline.

Figure 15 plots the ratio of ray intersection tests processed
under different traversal modes. The treelet stationary phase
processes up to 52% of ray intersection tests with an average
of 15%, while ray stationary mode processes the rest. This
ratio greatly depends on the scene and how divergent the
rays are. With more divergent rays such as tracing more ray
bounces, the treelet stationary phase is expected to process
fewer intersection tests. When tracing less divergent batches
of rays such as when tracing more samples per pixel, the
treelet traversal mode ratio increases.



6.5 Area Overheads

This section breaks down the size of various storage struc-
tures in our design. For the Treelet Count Table in the RT
unit, for each table entry we store a treelet address and its
corresponding ray count. Since our treelet is sized to half the
L1 cache size which is 8KB and the treelets can be packed
together in memory as suggested by Chou et al. [8], we only
need to save the most significant 19 bits of the treelet address.
To track ray counts for a maximum of 4096 rays, we need
12 bits. We track only treelets whose ray count exceeds the
underpopulation threshold as we process underpopulated
treelet queues in ray stationary mode. If the treelet count
table is full when inserting a new treelet, we evict the small-
est treelet queue and process those rays in ray stationary
mode later. In our experiments with a 127 ray threshold, the
maximum amount of treelet queues before switching to ray
stationary traversal did not exceed 549. Amongst those, only
a maximum of 13 queues exceeded the threshold at any given
time. Thus 600 entries is enough to capture treelet ray counts
and is a 2.2KB storage overhead in the RT unit.

We store the complete ray data in memory, consisting of
the ray origin, ray direction, tmin and tmax values which is
32B per ray. Since the RT unit processes a maximum of 4096
concurrent rays, it totals 128KB and fits in the L2 cache. The
Treelet Queue Table (Figure 9) tracks treelet addresses and
their corresponding ray IDs and is stored in the L1 cache.
Each treelet address is 19 bits and each ray ID is 12 bits,
and we allocate 128 table entries to accommodate when all
4096 rays are in warps (such as when all rays are in the root
treelet). The total size of the treelet queue table is (19 + 32 X
12 bits) X 128 entries which is 6.29KB, meaning the L1 cache
fits both the treelet data and the treelet queue table.

6.6 Ray Virtualization Overheads and Energy

Ray virtualization suspends stalled CTAs to increase the
number of concurrent rays in flight. The primary overhead
of ray virtualization is the cost of storing the suspended
CTA state in memory and resuming CTAs by loading the
saved state before they can be executed. According to ptxas,
the raygen shader in LumiBench uses a maximum of 10
32-bit registers per thread. We also need to save a 32-bit
SIMT mask, a program counter (PC), and a reconvergence
PC per SIMT stack depth for each warp in the CTA. Figure 16
shows the overhead of ray virtualization is on average a
10% slowdown. Figure 17 shows the energy results with
and without virtualization compared to the baseline. Treelet
queues provides 60% in energy savings compared to the
baseline which is primarily from the reduced cycles needed
to complete the ray traversal. Ray virtualization consumes
11% of the total energy in our design, predominantly from
the increased memory accesses to save and load CTA states.
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7 Related Work
7.1 GPU Resource Virtualization

Prior research explored how to oversubscribe GPU resources
to improve performance. Yoon et al. [33] improved the perfor-
mance of GPGPU workloads due to hardware underutiliza-
tion. They proposed a virtual thread mechanism to schedule
CTAs up to the scheduling limit that bypasses hardware lim-
its. To handle CTA overscheduling, they swap out stalled
CTAs and swap in new CTAs, effectively increasing thread
level parallelism. Jeon et al. [16] proposed a GPU register file
virtualization scheme to accommodate more threads while
maintaining the same register file size. They allow multiple
warps to share the same registers by releasing dead registers
from a warp and reallocating them to another warp that is
scheduled later. Intel [1] also described their technique at a
high level, similar to what we call ray virtualization, where
they terminate raygen shaders after issuing traceRayEXT()
to enable sorted hit shader execution for better coherence
during their Games Developer Conference (GDC) 2022 talk.

7.2 Ray Traversal Acceleration

7.2.1 Ray Sorting. Sorting rays before traversal improves
ray coherency. Garanzha and Loop [11] sorted rays into
coherent packets based on ray origin and direction before
processing them. Moon et al. [25] sorted rays by their first
intersection point with the scene. Meister et al. [24] esti-
mate ray termination points to achieve better secondary
ray coherency. However these works suffer from high sort-
ing overhead, taking almost as long as ray traversal itself.
Treelet queues essentially achieve a similar goal by grouping
up rays based on their accessed treelet, but without the high
overhead.



7.2.2 Hardware Optimizations. Lu et al. [23] addressed
SIMT divergence in CUDA-based ray tracing by regroup-
ing rays with the same traversal state (internal nodes/leaf
nodes/inactive) together. We are inspired by Lu et al. to re-
group warps with many inactive rays during ray stationary
mode. Liu et al. [21] proposed a ray predictor to predict the
intersecting leaf node of a ray to skip BVH traversal. How-
ever, it only works well for anyhit rays and is challenging
to apply to closest-hit rays. We adopt their warp repacking
technique to improve SIMT efficiency for treelet queues.

7.3 BVH Tree Memory Optimizations

BVH compression and memory optimizations have been ex-
plored to reduce memory traffic and can be used in conjunc-
tion with our proposal for even larger performance improve-
ments. Gabor et al. [20] introduced a novel memory layout
and node addressing scheme to reduce the memory footprint
of child node pointers in the BVH. Ylitie et al. [32] presented
a compressed wide BVH layout reducing the size of the BVH
and memory traffic significantly. Benthin et al. [7] proposed a
different BVH compression method focused on compressing
leaf nodes and is the BVH layout used in Vulkan-Sim [28].
NVIDIA introduced a displaced micromesh engine in their
Ada Lovelace GPUs to reduce BVH build times and storage
costs, reporting 2X faster ray-triangle intersection tests [3].

8 Conclusion

This work explores how to efficiently implement treelet
queues on modern ray tracing capable GPUs. We propose
Virtualized Treelet Queues, an architecture that increases
the number of concurrent rays in flight and treelet queues
that dynamically switch between treelet and ray stationary
traversal modes to increase efficiency. We find that a naive
treelet implementation is ineffective as rays diverge quickly
and cause treelet queues to be underpopulated leading to low
SIMT efficiency. Through grouping underpopulated treelet
queues together and warp repacking to boost SIMT efficiency,
we achieve on average 95% speedup against a baseline GPU
with ray tracing acceleration.

Recent research have explored ways to accelerate general
purpose workloads on RT units by reformulating their algo-
rithms to fit the ray tracing pipeline, for instance database
indexing in RT-DBSCAN [26] and RTIndeX [15] and nearest
neighbor search in RTNN [34]. Since these modified work-
loads transform their data into a BVH tree and the search
query into a ray, this work can be potentially applied to ac-
celerate these workloads. With proposals from Ha et al. [14]
and Barnes et al. [6] that extend ray tracing accelerators in
GPUs to support more general tree traversal workloads, we
believe the hardware modifications and treelet queue opti-
mizations in this work in conjunction to accelerate general
tree traversal workloads on GPUs as well.
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