
Throughput-Effective On-Chip Networks for Manycore Accelerators

Ali Bakhoda
ECE Department

University of British Columbia
Vancouver, Canada

Email: bakhoda@ece.ubc.ca

John Kim
CS Department

KAIST
Daejeon, Korea

Email: jjk12@kaist.edu

Tor M. Aamodt
ECE Department

University of British Columbia
Vancouver, Canada

Email: aamodt@ece.ubc.ca

Abstract—As the number of cores and threads in manycore
compute accelerators such as Graphics Processing Units (GPU)
increases, so does the importance of on-chip interconnec-
tion network design. This paper explores throughput-effective
network-on-chips (NoC) for future manycore accelerators that
employ bulk-synchronous parallel (BSP) programming models
such as CUDA and OpenCL. A hardware optimization is
“throughput-effective” if it improves parallel application level
performance per unit chip area. We evaluate performance of
future looking workloads using detailed closed-loop simulations
modeling compute nodes, NoC and the DRAM memory system.
We start from a mesh design with bisection bandwidth balanced
with off-chip demand. Accelerator workloads tend to demand
high off-chip memory bandwidth which results in a many-
to-few traffic pattern when coupled with expected technology
constraints of slow growth in pins-per-chip. Leveraging these
observations we reduce NoC area by proposing a “checker-
board” NoC which alternates between conventional full-routers
and half -routers with limited connectivity. Checkerboard em-
ploys a new oblivious routing algorithm that maintains a
minimum hop-count for architectures that place L2 cache
banks at the half -router nodes. Next, we show that increasing
network injection bandwidth for the large amount of read reply
traffic at the nodes connected to DRAM controllers alleviates
a significant fraction of the remaining imbalance resulting
from the many-to-few traffic pattern. The combined effect
of the above optimizations with an improved placement of
memory controllers in the mesh and channel slicing improves
application throughput per unit area by 25.4%.

Keywords-NoC; Compute accelerator; GPGPU

I. INTRODUCTION

The bulk-synchronous parallel (BSP) programming
model [44] is attractive for manycore compute accelerators
since it provides relatively simple software scalability as the
number of cores increases with Moore’s Law. Languages
such as CUDA [35], [38], OpenCL [19], and recently pro-
posed programming models for future accelerator architec-
tures [16] embody the BSP model. In this paper, we explore
the on-chip network design space for compute accelerators.
Our goal is to find NoC designs for future manycore acceler-
ator architectures employing BSP-like programming models
that provide the best performance per unit area cost—those
that are throughput-effective.

Highly multi-threaded applications running on multi-core
microprocessors have coherence traffic and data sharing

C0	

re
qu

es
t n

et
w

or
k	

C1	

Core injection	

bandwidth 	

C2	

MC input	

bandwidth	

MC output	

bandwidth	

Core input	

bandwidth 	

C0	

C1	

Cn	

C2	

re
pl

y
ne

tw
or

k	

Cn	

MCm	

MC1	

MC0	

Figure 1. Many-to-Few-to-Many On-Chip Traffic. C nodes are the
compute cores and the MC nodes are the memory controllers/memory.

0.0012 

0.0014 

0.0016 

0.0018 

0.0020 

190  210  230  250  270  290  310 (C
hi
p 
A
re
a)

‐1
  [
1/
m
m

2]
 

Average Throughput [IPC] 

Thr. Eff. (SecHon IV) 
 Ideal NoC LESS AREA  

HIGHER THROUGHPUT 

2x BW 

Balanced  
Mesh (Sec. III) 

Figure 2. Throughput-Effective Design Space. “Balanced Mesh”: bisection
bandwidth balanced to off-chip DRAM bandwidth (Section III); “Thr. Eff.”:
mesh network optimized for many-to-few-to-many traffic (Section IV); “2x
BW”: mesh with double channel width.

resulting in significant core-to-core communication. In con-
trast, accelerator applications written in a BSP style [7], [16]
tend to organize communication to be local to a group of
threads that can execute on hardware units that are located
close together and have less communication between threads
in different groups even when coherence is supported [16],
[17]. Consequently, as the number of pins on a chip is
growing only 10% per year [14], the net effect of increases in
transistor density on accelerator architectures is an increas-
ingly many-to-few traffic pattern [2] with many compute
cores sending traffic to a few memory controller (MC) nodes.
Using detailed closed-loop simulation, we identify how
the many-to-few-to-many traffic causes another performance
bottleneck. A high level diagram of this communication
pattern is illustrated in Figure 1.

An implication of this is the following. Starting from a
baseline mesh topology with bisection bandwidth balanced
to effective off-chip memory bandwidth (labeled “Balanced

Mesh” in Figure 2) application throughput can be increased
while maintaining a regular interconnect topology by naively
increasing channel bandwidth. The “2x BW” data point
in Figure 2 shows the impact this has on throughput-
effectiveness (IPC/mm2). This figure decomposes through-
put per unit chip area as the product of application level
throughput (measured in scalar instructions per cycle–
IPC) on the x-axis and inverse area (1/mm2) on the y-
axis1. Curves in this figure represent constant throughput-
effectiveness (IPC/mm2) and design points closer to the top
right near “Ideal NoC” are better where an ideal NoC has
infinite bandwidth, zero latency, and zero interconnect area.
In contrast, the point “Thr. Eff.” results from modifying
the baseline NoC to take advantage of the many-to-few-to-
many traffic—resulting in a design closer to the throughput-
effectiveness of an ideal NoC than alternative designs.

The contributions of this paper are:

• We present a limit study on the impact of on-chip
networks across a wide range of compute accelerator
applications—identifying the impact of on-chip com-
munication on overall performance. Based on our anal-
ysis, we show how conventional network improvements
(such as reducing router latency) do not significantly
improve overall performance while simply increasing
channel width results in significant performance gains
but with a large area increase. Consequently, we pro-
pose simultaneously considering the effect of the inter-
connect on parallel application level performance and
chip area to find interconnects which are throughput-
effective.

• We identify that the many-to-few-to-many traffic pattern
of manycore accelerators (more compute nodes than
MCs) creates a traffic imbalance and show how the
overall system performance is directly correlated with
the injection rate of the few MC nodes.

• Based on the above observations, we propose a
throughput-effective design that includes a novel
checkerboard network organization using half -routers
with limited connectivity to reduce the on-chip network
area while having minimal impact on performance.
The throughput-effective design also includes a multi-
port router structure to provide additional terminal
bandwidth on the few routers connected to the MCs that
improves system performance at minimal area cost.

The rest of this paper is organized as follows: Section II
summarizes background information, Section III identifies
important insights into NoC behavior of manycore ac-
celerator architectures, Section IV describes our proposed
NoC, Section V describes experimental results, Section VI
summarizes related work and we conclude in Section VII.

1Average throughputs are for benchmarks in Table I, described in
Section II, using configurations described in Section V. The area estimates
are from Section V-F assuming 486mm2 is used for compute nodes.

II. BASELINE ARCHITECTURE

In this section we describe our baseline manycore acceler-
ator architecture and on-chip interconnect. Manycore accel-
erators can be classified along several dimensions: SIMT2

versus SIMD, degree of multithreading per core, support
for caching and coherence, and the granularity at which
heterogeneity is introduced. We study a generic architecture
with some similarities to NVIDIA’s Fermi [36] and GeForce
GTX 280, but our baseline is not meant to be identical to
any specific GPU. We believe our conclusions are applicable
to other architectures. We employ benchmarks written in
CUDA [35], [38], which is similar to the open standard
OpenCL [19]. Many of the benchmarks we use (see Table I)
are “dwarves” [4] from Rodinia [7].

Our baseline architecture is illustrated in Figures 3, 4, and
5. Figure 3 illustrates the overall chip layout showing the
placement of compute nodes and memory controller nodes.
In this work, we assume a 2D mesh topology with the
memory controllers (MCs) placed on the top and the bottom
rows, similar to the topology and layout used in Intel’s 80-
core design [46] and Tilera TILE64 [47] processors.

Current GPUs often use a crossbar with concentration (to
share a single port among several cores) as the number of
ports is small. As the number of cores increases, scalability
of this approach will be limited. In addition, prior work [5],
which included a crossbar comparison, showed that for the
workloads we consider performance is relatively insensitive
to topology. Thus, we chose a 2D mesh topology since it
provides a very regular, simple and scalable network [6].

Each compute node is illustrated in Figure 4. We assume
8-wide SIMD pipelines that execute “warps” (NVIDIA
terminology; similar to “wavefronts” in AMD’s terminology)
consisting of 32 scalar threads executed over four clock
cycles. Each compute core maintains a dispatch queue
holding up to 32 ready warps (representing up to 1024 scalar
threads). In a hardware implementation the large register
files would be implemented with banks and bank conflicts
might be mitigated using hardware that reorders operand
accesses [31] (labeled OC in Figure 4). Memory operations
(loads and stores) to global memory (visible to all threads
on all cores) go through a memory divergence detection
stage (DD) that attempts to “coalesce” memory accesses
from different scalar threads within a warp that access a
single L1 cache line so that only one request is made per
cache block miss. In line with recent manycore architectures
such as Sun Niagara [24] we place shared L2 cache banks
adjacent to the MCs. The L1 data caches are writeback write-
allocate and dirty L1 cache lines are flushed to the L2 under
software control (e.g., software managed coherence [16],
[36]). Applications also employ a software managed “shared

2Single-instruction multiple thread (SIMT): groups of scalar threads
execute on a SIMD pipeline using stack-based mechanisms to selectively
enable or disable processing elements without need for compiler generated
predication [8], [30].

Figure 3. Compute accelerator showing layout of compute
node routers and MC node routers in baseline mesh. Shaded
routers on top and bottom are connected to MCs.

Dispatch
Queue
(Warps)

OC

DD

L1 D$ S .

SIMT
stacks

L1 I$

Router

Compute
Node

Figure 4. Compute Node

L2 bank

Memory
Controller

GDDR3Off-Chip GDDR

MC
Node

Router

Figure 5. Memory Controller
Node

0.50

0.75

1.00

0.50

0.75

1.00

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

 L
ev

el
 T

hr
ou

gh
pu

t/C
os

t

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Le

ve
l T

hr
ou

gh
pu

t

Bandwidth Limit of Ideal Interconnect
[fraction of off-chip DRAM bandwidth]

Application Level Throughput
Application Level Throughput/Cost

Bisection bandwidth
of baseline mesh

Figure 6. Limit study showing bisection bandwidth of a mesh with
16B channel size can achieve 93% application level throughput (IPC)
of a network with infinite bandwidth while maximizing application level
throughput per unit estimated area cost.

memory” (S). Addresses are low-order interleaved among
MCs every 256 bytes [13] to reduce hot-spots [40].

III. CHARACTERIZATION

In this section we analyze characteristics of BSP applica-
tions written in CUDA on the baseline architecture described
in Section II using closed-loop execution driven simulations
(see Section V-A for configuration details). We start by
identifying the bisection bandwidth required to achieve a
balanced NoC design when considering the heavy off-
chip demands of accelerator workloads. Then, we classify
our applications by the intensity of on-chip traffic they
generate and their application level throughput sensitivity
to interconnect optimizations.

A. Balanced Design

We first size the bisection bandwidth of our network with
the aim of finding a balanced design. Bisection bandwidth
is a key parameter limiting network throughput. It is defined
as the minimum bandwidth over all cuts that partition the
network with equal number of nodes in each half [10].
Starting from a system with bisection bandwidth that is
“too low” may significantly limit application throughput
for memory bound applications (which should instead be
limited by off-chip bandwidth) while a system with bisection
bandwidth that is “too high” may waste area.

Figure 6 plots two curves: One curve (square markers)
is the harmonic mean throughput (IPC) of our benchmarks

assuming realistic timing models for compute nodes and
memory nodes, but a zero latency network with limited
aggregate bandwidth. This network has zero latency once
a flit is accepted, but it limits the number of flits accepted
per cycle by enforcing the bandwidth limit specified on the
x-axis. Here, bandwidth is total flits transmitted across the
network, expressed as a fraction of peak DRAM bandwidth.
A packet is accepted provided the bandwidth limit has not
been exceeded. Multiple sources can transmit to a desti-
nation in one cycle and a source can send multiple flits in
one cycle. Application level throughput is normalized to that
obtained with an infinite bandwidth zero latency network.
The slight improvements beyond the point where bisection
bandwidth is equal to DRAM bandwidth (1.0 on x-axis) is
due to the presence of L2 caches.

The other curve (diamond markers) shows this throughput
divided by an estimated chip area. Chip area here includes
compute node area and NoC area. NoC area is estimated to
be proportional to the square of the channel bandwidth [6].
Although higher network bandwidth continues to increase
performance, when normalized to cost, an optimal design
from a performance per area perspective occurs at around
bisection bandwidth ratio of 0.7-0.8. In addition, since
performance is generally limited by off-chip bandwidth due
to a lack of locality in the workloads and considering the
activate/precharge overheads of switching DRAM pages,
network bandwidth with 70-80% of peak off-chip DRAM
bandwidth also provides a balanced network design. Based
on this bisection bandwidth ratio, we determine that this
ratio approximately corresponds to a 2D mesh network with
16-byte channels3.

3In Figure 6, the interconnect transfers at most N flits/cycle at in-
terconnect clock frequency (iclk). The x-axis in Figure 6 is x =
N [flits/iclk] ·16 [B/flit] ·602 [MHz (iclk)]
1107 [MHz (mclk)] ·8 [# MC] ·16 [B/mclk] where mclk is the DRAM clock
frequency. At the marked location (x = 0.816), N is 12 flits/iclk. Hence,
link size is 12 (N) times flit size (16 B) divided by 12 (bisection of a
36-node mesh has 12 links) equals 16B per channel. Clock frequencies are
from Table II.

Table I
BENCHMARKS

Name Abbr. Name Abbr. Name Abbr.
AES Cryptography [5] AES Separable Convolution [37] CON MUMmerGPU [5], [7] MUM

Binomial Option Pricing [37] BIN Nearest Neighbor [7] NNC LIBOR Monte Carlo [5] LIB
HotSpot [7] HSP Black-Scholes Option Pricing [37] BLK Fast Walsh Transform [37] FWT

Neural Network Digit Recognition [5] NE Matrix Multiplication [41] MM Scalar Product [37] SCP
Needleman-Wunsch [7] NDL 3D Laplace Solver [5] LPS Streamcluster [7] STC

Heart Wall Tracking [7] HW Ray Tracing [5] RAY Kmeans [7] KM
Leukocyte [7] LE gpuDG [5] DG CFD Solver [7] CFD

64-bin Histogram [37] HIS Similarity Score [7] SS BFS Graph Traversal [7] BFS
LU Decomposition [7] LU Matrix Transpose [37] TRA Parallel Reduction [37] RD

Scan of Large Arrays [37] SLA Speckle Reducing Anisotropic Diffusion [7] SR
Back Propagation [7] BP Weather Prediction [5] WP

0%
50%

100%
150%
200%
250%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG SS TRA SR WP MUM LIB FWT SCP STC KM CFD BFS RD HM

Sp
ee

du
p

LL LH HH

Figure 7. Speedup of a perfect interconnection network over baseline. LL, LH, HH: First character denotes low or high speedup with perfect NoC;
second character denotes low or high memory demand.

B. Network Limit Study
Next we perform a limit study to measure the performance

benefits of a perfect interconnect (zero latency and infinite
bandwidth) versus our baseline mesh with 16B channel size.
Figure 7 shows the speedup of a perfect network over the
mesh with 16B channel bandwidth and a 4-stage router
pipeline and a 1-cycle channel delay (5-cycle per hop delay)
with the parameters in Table III.

We divide applications into three groups using a two
letter classification scheme. The first letter (H or L) denotes
high or low (greater or less than 30%) speedup with a
perfect network. The second letter (H or L) denotes whether
the application sends a heavy or light amount of traffic
with a perfect network: accepted traffic, averaged across all
nodes, is greater than or less than 1Byte/cycle. All of our
applications fall into one of three groups: LL, LH, and HH.
Applications in LL place little demand upon the network.
Studying the source code of these applications and their
detailed simulation statistics we find they have been heavily
optimized to group related threads together on a compute
node and make good use of the software managed scratchpad
memory and/or achieve high L1 hit rates. There is no HL
group since applications with low memory access are not
likely to get a speedup with a better network. Despite the
mesh having sufficient bisection bandwidth (Figure 6) the
speedup of a perfect network versus our realistic baseline
mesh is 36% across all benchmarks, 87% across HH bench-
marks and 42% across the Rodinia [7] benchmarks. We
explore the reasons for this below.

The LL and HH applications behave as expected: applica-
tions that make low use of memory are expected to have low
sensitivity to network performance and conversely for those
with heavy traffic one would expect to see high speedups.
The LH group has a relative high memory usage but its

0%
50%

100%
150%
200%
250%
300%

0.001 0.01 0.1 1 10

Pe
rf

ec
t N

oC

 S
pe

ed
up

Memory Injection Rate of Perfect NoC (flits/cycle/node)

HH
LH LL

Figure 8. Perfect network speedup versus memory node injection rate

performance does not increase much with a perfect network.
Detailed analysis shows these benchmarks achieve close to
the peak performance indicating that the interconnect is not
the bottleneck with the exception of NNC, which has an
insufficient number of threads to fully occupy the fine-grain
multithreaded pipeline or saturate the memory system.

Figure 8 plots perfect network speedup versus average
memory controller node injection rate. Speedups are cor-
related to the memory controller injection rate (or the
MC output bandwidth shown in Figure 1) suggesting the
presence of a bottleneck on the read response path. We
address this bottleneck in Section IV-D.

C. Router Latency and Bisection Bandwidth

In this section we show that aggressive router latency
optimizations [26], [28], [33], [39] do not provide significant
performance benefits for our workloads. Figure 9 shows that
replacing the 4-cycle baseline routers with aggressive 1-
cycle routers results in fairly modest speedups ranging from
no speedup to at most 7% (harmonic mean speedup is 2.3%
for all benchmarks). Figure 10 compares the network latency
of these two configurations; y-axis is the network latency
reduction of using 1-cycle routers over 4-cycle baseline
routers. These figures show that an aggressive router can
decrease network latency but this improvement in network
performance does not necessarily translate into overall per-
formance benefits for these workloads. For example, the

0%
20%
40%
60%
80%

100%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG SS TRA SR WP MUM LIB FWT SCP STC KM CFD BFS RD HM

Sp
ee

du
p

2x Bandwidth
1-Cycle Router

LL LH HH

Figure 9. Impact of scaling network bandwidth versus latency. Solid bars: channel size 32 versus 16, Hashed bars: 1-cycle versus 4-cycle router latency.

0.5
0.6
0.7
0.8
0.9

1

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG SS TRA SR WP MUM LIB FWT SCP STC KM CFD BFS RD

N
oC

 L

at
en

cy
 R

at
io

Figure 10. Interconnection latency reduction of using 1-cycle routers over baseline 4-cycle routers

network latency of HIS is reduced by approximately 2×
with an aggressive router but this only results in a 3%
performance improvement. In contrast, network bandwidth
is an important metric as it impacts the overall throughput of
the network. By increasing the network channel bandwidth
by a factor of 2× (from 16B to 32B), a 27% speedup is
achieved over the baseline with 16B channels as shown in
Figure 9. However, high-bandwidth NoC designs are very
costly in terms of area as we show in Section V-F. Given the
baseline mesh was designed to have a bisection bandwidth
within 7% of that required to achieve the performance of
perfect a network, the data in Figure 9 is again strongly
suggestive of an imbalance in the network. Next, we show
that one of the reasons is the traffic pattern.

D. Many-to-Few-to-Many Traffic Pattern

The compute accelerator architectures we study presents
the network with a many-to-few-to-many traffic—with many
compute nodes communicating with a few MCs. As shown
earlier in Figure 1, the MC bottleneck is not only caused
by the ratio of many cores to few MCs (28/8 in our
simulations), but also caused by the difference in packet
sizes. As a result, by simulating a closed-loop system with
all components modeled, we also identify how the many-to-
few-to-many traffic pattern causes a bottleneck in addition
to the bottleneck caused by the many-to-few pattern. The
traffic sent from compute cores to MCs consists of either
read requests (small 8-Byte packets) or, less frequently,
write requests (large 64-Byte packets) while the traffic from
MCs to compute cores only consists of read-replies (large
64-Byte packets). This creates an imbalance in injection
rates—on average the injection rate (bytes/cycle) of an MC
is 6.9× higher than a compute core. The higher injection
rates of memory response data returning from the MCs
creates bottlenecks in the reply network that can stall the
MCs. This problem is shown in Figure 11 which shows the
fraction of the time MCs are stalled (i.e. cannot process
requests) because the reply network cannot accept packets
from MCs—resulting in MCs being stalled up to 70% of the
time for some of the HH benchmarks.

IV. THROUGHPUT-EFFECTIVE NETWORK DESIGN

In this section we leverage the insights from the analysis
in Section III to design throughput-effective NoCs for many-
core accelerators. We describe the checkerboard network
organization which uses half -routers to reduce network cost
while exploiting the many-to-few traffic pattern characteris-
tics. In addition, it also enables a staggered MC placement
to avoid creating hotspots. To address the many-to-few
traffic imbalance, we describe a simple yet effective router
microarchitectural extension to the checkerboard network
with multi-port routers at the few nodes that increases the
terminal bandwidth of these nodes. We also extend the
checkerboard network with channel slicing to create two
parallel networks and further reduce cost.

A. Checkerboard Network Organization

Although the many-to-few traffic pattern creates chal-
lenges, it also provides opportunities for optimization—for
example, there is no all-to-all communication among all
nodes in the system. Based on this observation, we propose
a checkerboard NoC to exploit this traffic pattern and reduce
the area of the NoC. Figure 12 shows a 6×6 configuration of
the checkerboard network where routers alternate between
full-routers shown with solid shaded squares and half -
routers drawn with hatching. A full-router provides full
connectivity between all five ports in a 2D mesh while a half-
router (shown in detail in Figure 13) limits the connectivity
as packets can not change dimensions within the router.
The router microarchitecture is similar to a dimension-sliced
microarchitecture [18] but in a dimension-sliced router,
packets can change dimensions while we limit this capability
to further reduce the complexity of the router. While the
injection port and the ejection port of a half-router are
connected to all ports, the East port only has a connection
to the West port and similarly, the North port is connected
only to the South port. By taking advantage of half-routers,
the router area can be significantly reduced. For example, in
a full-router, the crossbar requires a 5×5 crossbar 4 while

4Since a packet arriving on a given port can not depart through the same
port, the crossbar will actually be a 4×5 crossbar.

0%
20%
40%
60%
80%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG SS TRA SR WP MUM LIB FWT SCP STC KM CFD BFS RD

%
 s

ta
lle

d

Figure 11. Fraction of time injection port at MCs are blocked preventing data read out of DRAM from returning to compute nodes.

(a) General restrictions (b) Case 1: YX routing (c) Case 2: Checkerboard routing

Half Router

Compute Core

Router

Memory Controller

Router

Figure 12. Checkerboard Mesh On-chip Network routing examples. Dashed lines are examples of XY routes prevented by half-routers (hatched); alternate
feasible routes are solid. Dark shaded nodes are MC routers.

Ejection

Injection

North

South

EastWest

Figure 13. Half-router connectivity

the half-router only requires four 2×1 muxes (two for each
dimension) and one 4×1 mux for the ejection port, resulting
in approximately 50% reduction in area (detailed analysis
shown in Section V-F).

The checkerboard layout does present some limitations
in terms of communication (and routing) because of the
limited connectivity of the half-routers. Regardless of the
routing algorithm (minimal, adaptive, or non-minimal), a
packet with a full-router source and a full-router destination
that are an odd number of columns or rows away cannot be
routed, as illustrated in Figure 12(a), since the packet cannot
turn at a half-router. However, by exploiting the many-to-few
traffic pattern, the communication between full-routers can
be removed by placing the MC nodes at half-routers. Thus,
all full-routers represent a compute node and this routing
limitation of the checkerboard layout does not become a
problem for these manycore accelerator architectures. In
addition, as the data in Section III-D suggests, an injection
rate imbalance between MCs and compute cores creates hot-
spots in the baseline network in which the MCs are placed in
neighboring locations on top and bottom of the chip. Thus,
the checkerboard network can also exploit a staggered MC
placement [2], [5]. Similarly, in architectures with large last

level on-chip caches, if the cache banks are restricted to half-
routers they can be accessed by all compute nodes. Miss
traffic at these banks can reach MC nodes from the cache
banks provided both cache banks and MC are also placed at
half-router nodes since half routers can route to other half-
routers (as described below).

However, if cache banks are placed on the same tiles
as the compute cores, the checkerboard organization will
restrict cache-to-cache communication as full-routers cannot
communicate with all other full-routers. In this case packets
would need to be routed to an intermediate half-router (either
minimally or nonminimally) and be ejected or removed from
the network—before being reinjected into the network and
being routed to their destination, thus doubling the network
load5. However, prior work has shown that for accelerator
applications written in BSP style languages supporting co-
herence, cache-to-cache communication is relatively infre-
quent [16], and hence we expect the impact of this routing
on overall performance to be minimal.

B. Checkerboard Routing Algorithm and Flow Control

We assume a baseline dimension-ordered routing (DOR)
using XY-routing in the proposed checkerboard network.
However, because of the limited connections of the half-
routers, XY-routing cannot route a packet for the following
two traffic patterns:
Case 1: Routing from a full-router to a half-router which is
an odd number of columns away and not in the same row.
Case 2: Routing from a half-router to a half-router which is
an even number of columns away and not in the same row.

5This is different from randomized routing algorithms such as
Valiant [45] routing where packets are routed to an intermediate node but
packets do not need to be removed from the network at the intermediate
node.

FF
H

F

1.053 0.847

0.95

H
F

0.95
FF

2

2

1.9

1.9

Figure 14. Layout example. Normal (left): F=full-router; Checkerboard
(right): H=half-router, F=full-router. Area savings of 10% with two tile
layouts assuming (for illustration only) a 75% reduction in half-router and
full-routers are 25% of a normal tile.

If YX routing is used as the baseline routing algorithm,
similar routing restrictions exist as well.

For Case 1, since a packet cannot “turn” or change dimen-
sions at a half-router, YX routing can be used instead of XY
routing and thus, the packet turns at a full-router as shown
in Figure 12(b). For Case 2, neither XY nor YX routing
can be used to route packets because of the limitations of
half-routers (Figure 12(c)). As a result, an additional turn is
needed to route the packet from the source to its destination
by first routing to an intermediate, full-router node and then,
routing to the destination. A random, intermediate full-router
is selected within the minimum quadrant containing the
source and destination that does not share the same row as
the source and is not an odd number of columns away from
the source. Thus, checkerboard routing (CR), occurs in two
phases—in the first phase, YX routing is used to route to the
intermediate node and in the second phase, XY routing is
used to route minimally to the destination. The CR routing
is similar to a 2-phase ROMM routing [34] discussed in
Section VI but differs as the random intermediate node is
restricted to a full router and each phase needs to be done
with a different DOR routing. We implement this routing
algorithm with a single extra bit in the header which is set
upon injection and tells all the routers on the way that this
packets must be YX routed.

To avoid circular dependencies and routing deadlock, two
virtual channels are needed in the checkerboard routing,
similar to O1Turn routing algorithm [42]. The YX routing
is done using one VC while XY routing uses another VC.
Additional VCs to avoid protocol deadlock are still needed.
Although the checkerboard network requires additional VCs,
the reduction in router area is substantial as shown in
Section V-F. Reducing overall chip area with this design
may require layout modifications like those illustrated in
Figure 14. This figure assumes for illustration and clarity
purposes, a 75% reduction in the area of a half-router and
a full-router that is initially 25% of a tile leading to a 10%
area reduction in chip area.

C. Double Network—Channel Sliced Network

The area footprint of NoC can be further reduced using
channel slicing. For a network with a given bisection band-

Memory
Controller

West

East

North

SouthEjection

InjectionMemory
Controller Router

Router

West
East

North

SouthEjection

Injection

(a) Normal router

Memory
Controller

West

East

North

SouthEjection

InjectionMemory
Controller Router

Router

West
East

North

SouthEjection

Injection

(b) With 2 injection/ejection ports
Figure 15. Router connections

width with each channel having a bandwidth b, our baseline
uses a single physical network. However, since router area is
proportional to O(b2), it can be reduced by taking advantage
of channel slicing [10]: creating a double network6, each
with a channel bandwidth of b/2. Our channel slicing
technique increases the serialization latency of large packets
(write requests and read replies) but as we showed earlier
these accelerator architectures are not sensitive to a slight
increase in latency.

The traffic in the double network can be load-balanced
with a dedicated double network where each network is used
for a different class of traffic – one network carries request
packets and the other network carries reply packets. With
a dedicated double network, no extra virtual channel (VC)
is needed to avoid protocol deadlock while with a single
network, VCs are needed for protocol deadlock avoidance.

D. Multi-port Routers for Memory Controller Nodes
To help reduce the bottleneck at the few nodes with

many-to-few-to-many traffic pattern (shown in Figure 1), we
propose a simple change to the routers attached to the few
MC nodes: adding additional injection/ejection ports from/to
the MC and creating a multi-port router microarchitecture.
These additional ports do not increase the network bisection
bandwidth or any network channel bandwidth but instead,
increase the terminal bandwidth by providing more injec-
tion/ejection bandwidth from/to the MC nodes. Figure 15(a)
shows connection of a conventional router in a 2D mesh
network and Figure 15(b) shows the proposed multi-port
router microarchitecture with additional injection/ejection
ports. Selection of the ports at multi-port routers can be
done in a simple round-robin fashion.

Note that only the routers connected to the MC nodes
change. When adding extra ejection ports, we leverage the
fact that an MC is servicing requests from many compute
cores; as packets destined to different compute cores get in
the MC router, they will start traveling in different directions
towards their destination. This technique would not improve
performance if the MC had to service a single compute core
for a long time since we are not increasing the bandwidth
of the links between routers.

V. EXPERIMENTAL RESULTS

In this section we present experimental results for our
throughput-effective interconnect optimizations. We start by

6Balfour and Dally [6] proposed MeshX2 topology which creates two
parallel networks which increases cost. Our approach differs slightly as
we partition the network – thus, comparing networks with same bisection
bandwidth.

Table II
SIMULATION PARAMETERS

Parameter Value

Number of Compute(Shader) Cores 28
Number of Memory Channels 8

MSHRs / Core 64
Warp Size 32

SIMD Pipeline Width 8
Number of Threads / Core 1024
Number of CTAs / Core 8

Number of Registers / Core 16384
Shared Memory / Core 16KB

Constant Cache Size / Core 8KB
Texture Cache Size / Core 8KB

L1 Cache Size / Core 16KB
L2 Cache Size / MC 128KB
Compute Core Clock 1296 MHz

Interconnect & L2 Clock 602 MHz
Memory Clock 1107 MHz

GDDR3 Memory Timing tCL=9, tRP =13, tRC=34
tRAS=21, tRCD=12, tRRD=8

DRAM request queue capacity 32
Memory Controller (MC) out of order (FR-FCFS)

Branch Divergence Method Immediate Post Dominator [11]
Warp Scheduling Policy Round Robin among ready warps

Table III
BASELINE INTERCONNECT CONFIGURATION

Topology Mesh
Routing Mechanism DOR
Routing Latency 4
(number of router pipeline stages)
Channel Latency 1
Flow Control Virtual Channel based on Wormhole
Virtual Channels 2
Buffers per Virtual Channel 8
Allocator iSLIP
Input Speedup 1
Channel width (Flit size) 16 bytes

Table IV
ORION 2.0 CONFIGURATION

Technology 65nm
Crossbar type Matrix
Buffer Type SRAM
Wire Layer Intermediate
Wire Spacing Single

Table V
ABBREVIATIONS

DOR Dimension Order Routing
CP Checkerboard Placement
CR Checkerboard Routing
TB Baseline Top-Bottom Placement
2P 2 injection port MCs
BW Bandwidth

describing our simulation setup, then explore the impact of
MC placement, the impact of checkerboard router design,
the impact of separate physical networks, and finally the
impact of multi-port routers at the MC nodes.

A. Methodology

We use a modified version of GPGPU-Sim [5], a detailed
cycle level simulator modeling a contemporary GPU running
compute accelerator workloads. The modifications we made
include adding support for a limited number of MSHRs per
core, proper modeling of memory coalescing according to
the CUDA manual [38], using Booksim 2.0 [1] instead of
Booksim 1.0, and adding support for some undocumented
(by NVIDIA) barrier synchronization behavior required by
LE and SS benchmarks (barriers synchronize at the level of
warps rather than scalar threads in NVIDIA GPUs [48]).

Table II and III show our hardware parameters. Con-
figuration abbreviations are listed in Table V. We modeled
half routers with a 3-stage pipeline, though we found the
performance impact of one less stage was negligible. While
we are interested in future designs, we chose parameters
similar to GeForce GTX 280 except for the addition of
caches which more closely represent per thread resources
on Fermi. We do this to aid in estimating area overheads of
compute portions of the overall accelerator. We use ORION
2.0 [15] for network area estimation; Table IV shows the cor-
responding configuration options. The benchmarks used in
simulation are listed in Table I. We simulate all benchmarks
to completion to capture distinct phases of the benchmarks.

B. Checkerboard Placement (CP)

Figure 16 shows the performance impact of moving the
MC nodes from the top-bottom configuration in Figure 3
to the staggered locations shown in Figure 12, but still
maintaining full routers and DOR routing. This placement
of the MCs benefits from less contention [2] and by itself

results in an average speedup of 13.2% compared to baseline
top-bottom placement. We chose this particular placement by
picking the best performing placement after simulating sev-
eral valid checkerboard placements (but did not exhaustively
simulate all valid placements).

For applications with low injection rates at the MC nodes
(such as LL and LH applications), the MC placement has little
or no impact on overall performance since the contention
in the return network is not high. Note that WP’s loss of
performance (6%) is due to global fairness issues that slow
down a few of the compute cores. There are studies [29]
that tackle the global fairness in NoCs which are orthogonal
to the techniques we introduce in this paper.

C. Checkerboard Routing (CR)

Figure 17 shows the relative performance of DOR with
4 VCs (solid bars) and checkerboard routing with 4 VCs
(hashed bars) compared to the DOR routing with 2VCs.
Simulations show that using checkerboard network, with half
of the routers being half -routers, results in minimal loss
in performance (on average 1.1% reduction), compared to
the 2VC DOR network which requires all full-routers while
significantly reducing the network area. Although a different
routing algorithm is required in the checkerboard network, it
is still minimal routing (minimal hop count between source
and destination). Checkerboard network has minimal impact
on average network latency as it makes balanced use of the
virtual channels in each direction. For example, RD uses the
VC dedicated to YX routing for 60.1% of the total packets it
injects to the network. Thus, checkerboard network reduces
router area with minimal performance loss on average.

D. Double Network—Channel Sliced Network

As described earlier in Section IV, the traffic with a
double network is load-balanced with a dedicated double
network where each network is used for a different class of

-20%
0%

20%
40%
60%
80%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG SS TRA SR WP MUM LIB FWT SCP STC KM CFD BFS RD HM

Sp
ee

du
p LL LH HH

Figure 16. Overall speedup of using checkerboard placement of routers compared to baseline top-bottom placement (both configuration have 2 VCs).

70%
80%
90%

100%
110%
120%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG SS TRA SR WP MUM LIB FWT SCP STC KM CFD BFS RD HM

R
el

at
iv

e

Pe
rf

or
m

an
ce

 CP DOR 4VC
CP CR 4VC

Figure 17. Relative performance (IPC) of DOR with 4 VCs (solid bars) and checkerboard routing with 4 VCs (hashed bars) compared to DOR routing
with 2 VCs; all with checkerboard placement(CP). Higher bars mean better performance.

-7%
0%
7%

14%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG SS TRA SR WP MUM LIB FWT SCP STC KM CFD BFS RD HM

Sp
ee

du
p

Figure 18. IPC speedup of using two physical networks with channel width 8B (each network has 2VCs) compared to a single network with channel
width 16B with 4VCs (both have checkerboard routing and checkerboard placement and 8 buffers per VC).

traffic—one network dedicated to read/write requests and the
other network dedicated to replies. Conventionally, channel
slicing is beneficial if combined with the reduction of the
network diameter [10], [22]; however we utilize channel
slicing without reducing network diameter to reduce network
area (Section V-F). In addition to the area savings in the
router crossbar (taking advantage of quadratic dependency
of crossbar area on channel bandwidth) we also save buffer
area by keeping the number of VCs constant as we move
from single network to double network. The number of VC
buffers in the network remains constant but the amount
of storage of each VC buffer is reduced to half since the
channel width is also halved. Figure 18 shows the speedups
of the double over the single network. On average there
is no change in performance (around 1% speedup) while
providing area savings as we show in Section V-F.

One drawback of channel slicing is increased serialization
latency for large packets with narrower channels. This in-
crease in latency only impacts read reply and write request
packets since the small read request packets still fit in a
single flit. However, as shown earlier in Section III-C, the
additional latency has minimal impact on these workloads
and are tolerated by the compute cores.

E. Multi-port routers

Figure 19 shows the speedups of increasing terminal band-
width of MC routers by adding an extra injection port (left
bars), an extra ejection port (middle bars) and combination
of these changes (right bars) – as described in Section IV
and Figure 15(b). It can be seen that the speedups gained
by extra injection and ejection ports are orthogonal and add
up when combined. The highest speedups are gained by HH

benchmarks. The extra injection ports at MC routers reduces
the average fraction of execution time the injection ports
at MCs are blocked by 38.5% which provides additional
performance benefits.

Adding extra ejection ports to MC routers only helps a
few benchmarks such as TRA and FWT that are sensitive
to the delivery timing of requests to the FR-FCFS input
sorting queue in the MC. Their speedup is due to an increase
in DRAM row locality for these benchmarks which trans-
lates into higher DRAM efficiency7—e.g. FWT’s DRAM
efficiency goes from 57% to 65% with the addition of the
extra ejection port. We will not keep the extra ejection port
as part of our throughput-effective design since the speedups
it provides are limited to a few benchmarks.

Combining the optimizations introduced above (checker-
board placement, checkerboard routing, double network and
2 injection ports at MC routers) results in a 17% speedup
versus our baseline introduced in Section II as shown
in Figure 20. Compared with 36% speedup of a perfect
network, our throughput-effective network achieves roughly
half of the performance possible with a perfect network
while significantly reducing area.

Figure 21 plots open-loop latency versus offered load
for the combinations of checkerboard and multiple injection
ports evaluated earlier using closed-loop simulation for both
uniform many-to-few and hotspot traffic. For hot-spot traffic
20% of requests go to one MC as opposed to of 12.5%
(1/8) for uniform random. These open-loop simulations use
a single network with two logical networks for request and

7Defined as the percentage of time a DRAM chip is transferring data over
its data pins divided by the time when pending memory requests exist.

-5%
0%
5%

10%
15%
20%
25%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG SS TRA SR WP MUM LIB FWT SCP STC KM CFD BFS RD HM

Sp
ee

du
p

2 Injection Ports 2 Ejection Ports 2 Injection and 2 Ejection ports

Figure 19. IPC speedup of adding multi-port MC routers versus double network checkerboard.

-20%
0%

20%
40%
60%
80%

100%

AES BIN HSP NE NDL HW LE HIS LU SLA BP CON NNC BLK MM LPS RAY DG SS TRA SR WP MUM LIB FWT SCP STC KM CFD BFS RD HM

Sp
ee

du
p

Throughput Effective

Figure 20. IPC speedup of combining checkerboard placement and routing with double network and two injection port MCs versus baseline top-bottom
with DOR.

0
20
40
60
80

100

0 0.02 0.04 0.06 0.08 0.1 0.12

La
te

nc
y

Injection Rate (flits/cycle/node)

2x-TB-DOR
CP-CR-2P
CP-CR
CP-DOR
TB-DOR

(a) Uniform Random Many-to-Few-to-Many

0
20
40
60
80

100

0 0.02 0.04 0.06 0.08 0.1
La

te
nc

y
Injection Rate (flits/cycle/node)

2x-TB-DOR
CP-CR-2P
CP-CR
CP-DOR
TB-DOR

(b) Hotspot Many-to-Few-to-Many

Figure 21. Latency versus network throughput for different architectures. The few nodes (8 MC nodes) inject 4-flit packets while the compute nodes
inject 1-flit packets i.e., only read traffic is simulated. The overall network throughput is limited because of the many-to-few-to-many bottleneck.

reply traffic. These figures show that combining checker-
board placement (CP), checkerboard routing (CR) and two
injection ports at the MC (2P) improves performance by
increasing saturation throughput versus the baseline top-
bottom placement (TB). The double bandwidth counterpart
of baseline (2x-TB) is also shown for reference. The largest
contributors to performance for uniform random traffic are
the placement of MCs and increasing injection ports at
the MCs (note read response packets are larger than read
request packets). For the hot-spot traffic the improvements
of MC placement are more moderate while adding the extra
injection ports at MCs improves performance significantly
by alleviating the bottlenecks created by hot-spot traffic.
Although addresses are low-order interleaved among MCs
every 256 bytes [13] to reduce hot-spots we have observed
that temporary hot-spots happen in closed-loop simulations.

F. Area Analysis

We use ORION 2.0 [15] to estimate area of various router
architectures and network topologies. As shown earlier,
aggressive investments to reduce router latency do not result
in substantial overall performance improvements. Table VI
provides the area estimates for the designs we evaluated.
We use the GTX280’s area, 576mm2 in 65nm, as our
baseline. Then we estimated the area of “compute” parts
by subtracting the total estimated area of our baseline mesh
network from the GTX280’s area (486mm2). Assuming the
compute area does not change, we estimate the total chip
area for other network configurations (last column of table).
The first row shows the area of baseline mesh with channel

width of 16 bytes and the second row a mesh with channel
width of 32 bytes. As expected, a quadratic increase in the
router area happens by doubling the channel width. The high
area overhead of the mesh with channel width 32 bytes,
which is 53% of GTX280’s area, makes it impractical to
build. By exploiting half-routers, which occupy only 56%
of the area of a full-router, the checkerboard network results
in a significant reduction in total router area of 14.2%
(comparing sum of router area numbers which are 59.2mm2

in 65nm for checkerboard and 69mm2 for baseline router).
By further taking advantage of the quadratic dependency, the
double network reduces the area further by 37%. Table VI’s
last row shows the area of the configuration with 2 injection
ports at MC nodes; it increases the router area overhead
only by 1%. In this design, the eight half-routers connected
to MCs have 2 injection ports instead of 1.

Overall, considering both the increase in throughput
and reduction in area, we improve throughput-effectiveness
(IPC/mm2) by 25.4% when comparing the checkerboard
network with checkerboard placement, 2 injection ports, and
double network versus our balanced baseline mesh.

VI. RELATED WORK

A. Accelerator Architectures

Rigel [16] is an accelerator that is fundamentally similar
to our architecture but provides a more flexible programming
model compared to CUDA and chooses a MIMD model
rather than SIMT. The Cell [23] architecture’s NoC design
is an example of making tradeoffs between network’s area
and latency. The Cell designers chose a ring over a crossbar

Table VI
AREA ESTIMATIONS (mm2). OVERHEADS ARE BASED ON GTX280’S AREA. A “/” SEPARATES DIFFERENT ROUTER TYPES FOR CONFIGURATIONS

THAT HAVE MORE THAN ONE ROUTER TYPE.
Area of Crossbar Buffer Allocator Area of Link Router % of NoC Total Chip
1 link Area Area Area 1 Router Area Sum Area Sum overhead Area

Baseline 0.175 1.73 0.17 0.004 1.916 21.015 69.00 15.63% 576
2x-BW 0.349 6.95 0.34 0.004 7.305 41.963 263.0 52.95% 790.948
CP-CR 0.175 0.83/ 0.34/ 0.004/ 1.18 / 21.015 59.20 13.9 % 566.2

1.73 0.34 0.015 2.10
Double 0.087 0.43/ 0.087/ 0.004/ 0.522/ 21.015 29.74 8.7 % 536.74
CP-CR 0.20 0.087 0.015 0.30
Double 0.087 0.43/ 0.087/ 0.004/ 0.522/ 21.015 30.44 8.93% 537.44
CP-CR 0.20/ 0.087/ 0.015/ 0.30/

2P 0.28 0.10 0.015 0.38

to meet their area and power constraints [25]. The choice
of centralized arbiters can limit scalability. UltraSPARC
T2 [43] microprocessor is a multithreading, multi-core CPU
that uses a crossbar interconnect. GPUs and Cell are related
to stream computing [3], [9].

B. Interconnection Networks

Increasing number of cores on a single chip has increased
the importance of networks-on-chip (NoC). However, much
of the research in NoC have focused on reducing network
latency by improving different aspects of NoC such as lower
latency router microarchitectures [26], [33], lower-diameter
topologies [6], [12], [21], or better flow control [27], [28].
However, as we showed in Section III, reducing latency does
not help to improve overall performance in compute accel-
erator applications but they are more sensitive to bandwidth.
Bufferless routing [32] was proposed to reduce network cost
by removing buffers but for applications with high traffic,
network throughput can be degraded.

On-chip networks for GPUs have been explored by
Bakhoda et al. [5] where impact of different network param-
eters are evaluated. This work builds upon their work, pro-
viding more in-depth analysis and proposing a cost-efficient
on-chip network architecture for accelerator architectures.
Yuan et al. [49] proposed a complexity-effective DRAM
access scheduling technique for manycore accelerators that
relies on modification to arbitration scheme in request path
of NoC. Abts et al. [2] studied alternative MC placements
for core-memory traffic; however, they did not show overall
performance benefits on applications but focused on latency
metrics and synthetic traffic patterns. The MC placement that
we use in this work leverages this prior work by staggering
the MC placement and shows how overall performance can
be significantly improved. Checkerboard routing is similar to
ROMM [34]. In 2-phase ROMM, a random node is selected
within the minimal quadrant and DOR routing is used to
route the packet to a random node in the first phase before
routing to the destination in the second phase.

Increasing the radix of the routers in on-chip networks
have been proposed [6], [21] to reduce the network diameter
and increase network performance, mainly through lower
latency. The multi-port approach differs as we only increase

radix across a few routers to minimize the impact on
complexity.

The proposed half-router shares some similarity to the
low-cost router microarchitecture [20]. However, unlike the
low-cost router microarchitecture which provides full con-
nectivity for XY routing, the routing is restricted in the half-
router to further reduce complexity.

VII. CONCLUSION

In this paper, we analyze the impact of communication
and on-chip network across a wide range of applications
in manycore compute accelerators. We describe how these
applications are not sensitive to latency but to bandwidth
and how the traffic pattern (mostly many-to-few-to-many)
creates a bottleneck in the on-chip network. To improve
the performance, we focus on throughput-effective on-chip
network where we optimize for higher application through-
put per area. To achieve a throughput-effective on-chip
network, we propose a checkerboard organization where we
exploit half -routers to reduce network cost with minimal
loss in performance. We further extend the checkerboard
network with multi-port routers to address the many-to-few-
to-many bottleneck and provide a throughput-effective mi-
croarchitectural technique to improve network performance
by increasing the terminal bandwidth of the network.

ACKNOWLEDGEMENTS

We thank Wilson W. L. Fung, Andrew Turner, Johnny
Kuan, Arun Ramamurthy, Minoo Jalali, and the anonymous
reviewers for their valuable feedback on this work. This
work was partially supported by the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES
[1] Booksim interconnection network simulator.

http://nocs.stanford.edu/booksim.html.
[2] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. H.

Lipasti. Achieving predictable performance through better memory
controller placement in many-core cmps. In Proc. IEEE/ACM Symp.
on Computer Architecture (ISCA), pages 451–461, 2009.

[3] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das.
Evaluating the Imagine Stream Architecture. In Proc. IEEE/ACM
Symp. on Computer Architecture (ISCA), pages 14–25, 2004.

[4] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubi-
atowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel,
and K. Yelick. A view of the parallel computing landscape. Commun.
ACM, 52(10):56–67, 2009.

[5] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt.
Analyzing CUDA Workloads Using a Detailed GPU Simulator. In
Proc. IEEE Symp. on Performance Analysis of Systems and Software
(ISPASS), pages 163–174, April 2009.

[6] J. D. Balfour and W. J. Dally. Design Tradeoffs for Tiled CMP On-
Chip Networks. In Proc. ACM Conf. on Supercomputing (ICS), pages
187–198, 2006.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In Proc. IEEE Symp. on Workload Characterization
(IISWC), pages 44–54, 2009.

[8] B. W. Coon and E. J. Lindholm. US Patent 7,353,369: System and
Method for Managing Divergent Threads in a SIMD Architecture,
2008.

[9] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn, J. Gum-
maraju, M. Erez, N. Jayasena, I. Buck, T. J. Knight, and U. J. Kapasi.
Merrimac: Supercomputing with streams. In ACM/IEEE Conf. on
Supercomputing, page 35, 2003.

[10] W. J. Dally and B. Towles. Principles and Practices of Interconnec-
tion Networks. Morgan Kaufmann, 2004.

[11] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic Warp
Formation and Scheduling for Efficient GPU Control Flow. In Proc.
IEEE/ACM Symp. on Microarchitecture (MICRO), 2007.

[12] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Express cube
topologies for on-chip interconnects. In Proc. IEEE Symp. on High-
Perf. Computer Architecture (HPCA), pages 163–174, 2009.

[13] M. Harris. UNSW CUDA Tutorial Part 4 Optimizing
CUDA. http://www.cse.unsw.edu.au/˜pls/cuda-workshop09/slides/
04 OptimizingCUDA full.pdf.

[14] Int’l Technology Roadmap for Semiconductors. 2008 Update.
http://www.itrs.net/Links/2008ITRS/Home2008.htm.

[15] A. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A Fast and
Accurate NoC Power and Area Model for Early-Stage Design Space
Exploration. In Proc. IEEE/ACM Conf. on Design Automation and
Test in Europe (DATE), April 2009.

[16] J. H. Kelm, D. R. Johnson, S. S. Lumetta, M. I. Frank, and S. Patel.
A task-centric memory model for scalable accelerator architectures.
IEEE Micro Special Issue: Top Picks 2010, Jan./Feb. 2010.

[17] J. H. Kelm, D. R. Johnson, W. Touhy, S. S. Lumetta, and S. Patel.
Cohesion: A hybrid memory model for accelerator architectures. In
Proc. IEEE/ACM Symp. on Computer Architecture (ISCA), Saint-
Malo, France, June 2010.

[18] R. Kessler and J. Schwarzmeier. Cray T3D: A New Dimension for
Cray Research. Compcon Spring ’93, Digest of Papers., pages 176–
182, 22-26 Feb 1993.

[19] Khronos Group. OpenCL - The open standard for parallel program-
ming of heterogeneous systems. http://www.khronos.org/opencl/.

[20] J. Kim. Low-Cost Router Microarchitecture for On-Chip Networks. In
Proc. IEEE/ACM Symp. on Microarchitecture (MICRO), pages 255–
266, 2009.

[21] J. Kim, J. Balfour, and W. Dally. Flattened Butterfly Topology for
On-Chip Networks. In Proc. IEEE/ACM Symp. on Microarchitecture
(MICRO), pages 172–182, 2007.

[22] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta. Microarchitecture
of a high-radix router. In Proc. IEEE/ACM Symp. on Computer
Architecture (ISCA), pages 420–431, 2005.

[23] M. Kistler, M. Perrone, and F. Petrini. Cell Multiprocessor Commu-
nication Network: Built for Speed. IEEE Micro, 26:10–23, 2006.

[24] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way
Multithreaded Sparc Processor. IEEE Micro, 25(2):21–29, 2005.

[25] D. Krolak. Cell Broadband Engine EIB bus.
http://www.ibm.com/developerworks/power/library/pa-expert9/,
Retrieved Sept. 2010.

[26] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, and N. Jha. A 4.6Tbits/s
3.6GHz Single-cycle NoC Router with a Novel Switch Allocator in
65nm CMOS. In Proc. IEEE Conf. on Computer Design (ICCD),
October 2007.

[27] A. Kumar, L.-S. Peh, and N. K. Jha. Token flow control. In Proc.
IEEE/ACM Symp. on Microarchitecture (MICRO), pages 342–353,
Lake Como, Italy, 2008.

[28] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jhay. Express virtual chan-

nels: Towards the ideal interconnection fabric. In Proc. IEEE/ACM
Symp. on Computer Architecture (ISCA), San Diego, CA, June 2007.

[29] J. W. Lee, M. C. Ng, and K. Asanovic. Globally-synchronized
frames for guaranteed quality-of-service in on-chip networks. In Proc.
IEEE/ACM Symp. on Computer Architecture (ISCA), pages 89–100,
2008.

[30] A. Levinthal and T. Porter. Chap - a SIMD graphics processor.
In Proc. Conf. on Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 77–82, 1984.

[31] J. E. Lindholm et al. United States Patent #7,339,592: Simulating
Multiported Memories Using Lower Port Count Memories (Assignee
NVIDIA Corp.), March 2008.

[32] T. Moscibroda and O. Mutlu. A case for bufferless routing in on-
chip networks. In Proc. IEEE/ACM Symp. on Computer Architecture
(ISCA), pages 196–207, 2009.

[33] R. D. Mullins, A. West, and S. W. Moore. Low-latency virtual-channel
routers for on-chip networks. In Proc. IEEE/ACM Symp. on Computer
Architecture (ISCA), pages 188–197, 2004.

[34] T. Nesson and S. L. Johnsson. ROMM Routing on Mesh and
Torus Networks. In Proc. ACM Symp. on Parallel Algorithms and
Architectures (SPAA), pages 275–287, 1995.

[35] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel
Programming with CUDA. ACM Queue, 6(2):40–53, Mar.-Apr. 2008.

[36] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi, September 2009.

[37] NVIDIA Corporation. NVIDIA CUDA SDK code
samples. http://developer.download.nvidia.com/compute/cuda/
sdk/website/samples.html.

[38] NVIDIA Corporation. NVIDIA CUDA Programming Guide, 3.0
edition, 2010.

[39] L.-S. Peh and W. J. Dally. A delay model and speculative architecture
for pipelined routers. In Proc. IEEE Symp. on High-Perf. Computer
Architecture (HPCA), 2001.

[40] G. F. Pfister and V. A. Norton. Hot-Spot Contention and Combining
in Multistage Interconnection Networks. IEEE Trans. on Computers,
c-34(10):943–948, 1985.

[41] S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S.-Z. Ueng, J. Strat-
ton, and W. W. Hwu. Program Optimization Space Pruning for a
Multithreaded GPU. In Proc. IEEE/ACM Symp. on Code Generation
and Optimization (CGO), pages 195–204, April 2008.

[42] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and M. Thottethodi. Near-
optimal worst-case throughput routing for two-dimensional mesh
networks. In Proc. IEEE/ACM Symp. on Computer Architecture
(ISCA), pages 432–443, 2005.

[43] Sun Microsystems, Inc. OpenSPARCTM T2 Core Microarchitecture
Specification, 2007.

[44] L. G. Valiant. A Bridging Model for Parallel Computation. Commun.
ACM, 33(8):103–111, 1990.

[45] L. G. Valiant and G. J. Brebner. Universal Schemes for Parallel
Communication. In Proc. ACM Symp. on Theory of Computing
(STOC), pages 263–277, 1981.

[46] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts,
Y. Hoskote, N. Borkar, and S. Borkar. An 80-Tile Sub-100-W
TeraFLOPS Processor in 65-nm CMOS. IEEE Journal of Solid-State
Circuits, 43(1):29–41, Jan. 2008.

[47] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal. On-Chip
Interconnection Architecture of the Tile Processor. IEEE Micro,
27:15–31, 2007.

[48] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos. Demystifying GPU Microarchitecture Through Mi-
crobenchmarking. In Proc. IEEE Symp. on Performance Analysis of
Systems and Software (ISPASS), pages 235–246, 2010.

[49] G. L. Yuan, A. Bakhoda, and T. M. Aamodt. Complexity Effective
Memory Access Scheduling for Many-Core Accelerator Architec-
tures. In Proc. IEEE/ACM Symp. on Microarchitecture (MICRO),
pages 34–44, Dec. 2009.

