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Abstract—FPGAs are being deployed in datacenters to enable
improved energy efficiency and application acceleration. This
paper explores whether FPGA designs can be improved to make
them more effective in this new role. We explore the properties
of applications after high-level synthesis has been applied and
note that for irregular applications, a large fraction of FPGA
resources may be consumed implementing finite state machines.
For many applications the resulting state machines have states
with a single successor and limited fan-out degree. We propose a
mixed-grained logic block architecture exploiting these properties
that can be integrated into current FPGA architectures, which
reduces the area of the next state calculation in FSMs by more
than 3× in average without impacting performance.

I. INTRODUCTION

Technology scaling challenges motivate use of hardware
accelerators, such as Field Programmable Gate Arrays (FP-
GAs), for cloud computing [1], [2]. Microsoft and Baidu have
deployed FPGAs [3], [4], [5], and Amazon is offering FPGA
instances in Amazon Web Services [6]. The acquisition of
Altera by Intel [7], leading to FPGAs closely tied to CPUs,
will likely encourage this trend.

The flexibility of FPGA lookup-tables (LUTs) incurs area,
performance and power overheads relative to ASIC de-
signs [8]. To bridge the gap, FPGAs include hard blocks,
such as fixed and/or floating-point multiplier/accumulator and
SRAM blocks [9]. The hard blocks in current FPGAs predate
the trend towards using FPGAs inside datacenters. Moreover,
while traditionally FPGAs were programmed with hardware
design languages (HDLs), high-level synthesis (HLS) now
achieves usable quality-of-results and is increasingly used for
hardware design [10]. Thus, the question arises whether new
coarse-grained operations would benefit future FPGAs. This
paper argues finite state machines (FSMs) are good candidate
for hard blocks as, depending upon workload and HLS tool,
FSMs can represent a large portion of a circuit. While HLS
from OpenCL input can efficiently use dataflow pipelines with
small FSMs when sufficient thread-level parallelism exists,
it is unclear if OpenCL is a good match for all datacenter
workloads. Instead, this paper focuses on HLS from C/C++.
FSMs for such workloads can represent a large fraction of total
area in cases where controlling the datapath requires a large
number of states and control signals [11]. FSMs generated
during synthesis from C/C++ tend to have many states with a
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Fig. 1. Histograms showing number of successors in application schedule
flow graph (a proxy for HLS generated FSMs using some existing HLS tools).
Methodology in Section II.

single successor as a consequence of their control data flow
graph (Figure 1). To exploit this we propose an FSM block
including a small RAM coupled to an adder.

Other works have also looked at accelerators for FSMs. Dlu-
gosch et al. [12] propose a memory-based automata processor
for automata-driven applications such as pattern matching and
regular expressions. These applications are entirely defined as
state machines. In contrast, this work focuses on FSMs that
are generated by high-level synthesis tools. Here the FSM
is only a portion of the application and acts as a controller
for a datapath. These FSMs have different characteristics
resulting in different architectures. Garcia-Vargas et al. [13]
propose using memory units to implement next state and
output calculation for every state. They reduce the size of
the memory by multiplexing the FSM inputs to choose the
set of active inputs at each state. Our FSM block also reduces
memory size by exploiting the fact that typically only a subset
of inputs are relevant in a given state. We further optimize
memory size using an input encoder that exploits the fact that
not all the combinations of active inputs contribute to different
choices of next state.

We evaluate our proposed FSM block by detecting and
extracting FSMs as standalone circuits from applications and
compare them against baseline FSMs implemented purely in
FPGA soft logic with/without memory blocks. We show that
our proposed FSM block can reduce the area of the next state
generation logic in FSMs by more than 3× without impacting
performance. An expanded version of this paper appears in
the corresponding masters thesis [14]. We make the following
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contributions:
• We highlight dominant HLS generated FSM properties.
• We propose a state encoding technique and FSM block

architecture to exploit these properties.
• We evaluate these and find area and critical path delay

reductions of 70% and 45% respectively averaged across
the evaluated FSMs.

II. HLS GENERATED FINITE STATE MACHINES

High-level synthesis tools use the control/data flow graph
(CDFG) of a given program to generate an RTL design
composed of datapath and controller. The datapath corresponds
to operations and data flow in the program while taking the
available FPGA resources into account [10]. The controller is
an FSM constructed after performing scheduling and binding.
Below, we define and analyze specific characteristics of FSMs
that can be exploited to design a custom FSM block that
better utilizes the silicon area. In Section IV, we present HLS
generated RTL designs showing that these characteristics are
prevalent in HLS generated FSMs.

A. FSM Properties

1) Low Fan-Out Degree: The degree of a graph’s vertex is
the number of edges incident to the vertex. In directed cyclic
graphs (DCGs) vertex degree can be broken into fan-in degree
(the number of incoming edges of a vertex) and fan-out degree
(the number of outgoing edges of a vertex).

2) Abundance of Branch-Free Paths: We define a branch-
free path of a DCG to be a directed path where each vertex
(with any number of fan-in edge) has exactly one fan-out edge.
For FSMs with long branch-free paths, consecutive states can
be assigned consecutive state encoding values so that only an
increment operation is needed for next state calculation.

B. Sources of Branch-free Paths

1) Operation Latency: We find that multi-cycle operations,
such as divide and multiply, lead to states that belong to
branch-free paths as often they are pipelined to run in par-
allel with independent operations. Directing these operations
requires control signals at each cycle, which leads to additional
branch-free states since there are no conditional operations and
the operation latency is known in advance.

2) Data Dependency: To understand the impact of data
dependency on scheduling, we performed an experiment to
mimic the behaviour of an HLS scheduler by constructing a
simplified equivalent FSM of a given program from its CDFG.
We evaluated 12 SPEC CPU 2006 Integer benchmarks [15]
and 19 MachSuite benchmarks [16] using LLVM [17].

First, the program’s CDFG is constructed. Then, as-soon-as-
possible (ASAP) scheduling is performed under the assump-
tion that there is unlimited hardware and that all instructions
execute in a single cycle. This results is what we call a
schedule flow graph, which is a simplified equivalent FSM
of the input program where each schedule cycle corresponds
to an FSM state. Finally, we measure the fan-out degree.

(a) High-level view of the specialized FSM architecture.

(b) Next state generation block.

Fig. 2. Specialized FSM architecture.

The results are shown in Figure 1. Over 85% of states in
SPEC CPU 2006 Integer and MachSuite benchmarks (both
non-optimized and -O2 optimized) have only one possible next
state. Thus, their HLS generated FSMs would contain many
branch-free paths.

III. A MIXED-GRAINED ARCHITECTURE FOR FINITE
STATE MACHINES IMPLEMENTATION

A. FSM Hard Block Architecture

Our proposed architecture (Figure 2a) is made up of fine-
and coarse-grained logic connected via hard (or flexible
FPGA) routing. Next state calculation is implemented in the
coarse-grained logic using accumulator and memory units. The
accumulator unit handles next state calculations for branch-
free paths. The memory unit stores the remaining states’ next
state information along with metadata described below.

The following sections describe each component of the
FSM block in more detail. A detailed view of the next state
generation block is shown in Figure 2b.

1) Input Sequence Encoder Unit: Often only a subset of
input signals impact the state transitions in each state of an
FSM. These inputs are referred to as active inputs. Each
state in FSMs extracted from our benchmarks (Table I) have
between 3 and 56 inputs, but only 0 to 5 are active inputs.
Moreover, the FSMs we examined have a maximum fan-out
degree of 4, which means some combinations of active input
values lead to the same next state. Thus, for these FSMs the
choice of next state can be made with only 2 bits (log2(max
number of reachable states)) instead of 5 (max number of
active inputs). To achieve this we implement an encoder as a
boolean function that maps a large FSM input sequence to a
smaller encoded input sequence that is sufficient to select the



Fig. 3. Memory content

reachable next states. This results in a significant reduction in
the size of the memory unit used for next state calculations as
we avoid storing don’t care data for unreachable states. The
configurable input sequence encoder is implemented using soft
logic on a LUT-based cluster as part of the conventional FPGA
architecture.

2) Accumulator Unit: After applying our proposed state
encoding, the next state calculation for branch-free states can
be performed using an accumulator as described below:

• Adder: An adder increments the current state to calculate
the next state in the branch-free path.

• Control logic: As memory addresses used in the FSM
block RAM are distinct from the state encoding for
branch-free paths two metadata registers are used to
determine the end of a branch-free path and the next state
after the final state in each branch-free path. In detail, the
control logic contains the following: A Path Final State
Register used to mark the ending state of a branch-free
path. A Branch Address Register set to the memory
address of the next state following the end of the branch-
free path. A Comparator used to compare the path final
state register with the accumulator. If they are equal, the
next state is set to the Branch Address Register.

3) Memory Unit: For states that do not belong to a branch-
free path, next state values and metadata are stored in the
memory unit. To avoid adding a cycle for next state calcula-
tion, an asynchronous memory block is used. Figure 3 shows
the content of a row in the memory unit. It has four main
fields: (1) Next State Value, (2) Path Final State, (3) Branch
Address, and (4) State Control bit. Fields (1) and (4) always
have a valid value, however, fields (2) and (3) will only be
valid if the next state is a part of a branch-free path. In this
case, the contents of these two fields are inserted into the
registers in the accumulator unit, as described previously. The
last field (4) is used to determine if the source of the next state
value should be the accumulator unit or the memory unit and
is inserted into the control unit register described below.

The depth of the memory unit depends on the number of
non-branch-free states while the width depends on the next
state plus metadata that corresponds to Figure 3.

4) Control Unit: Responsible for selecting the source of
the next state between the accumulator unit and memory unit.

5) State Decoder: Provides an optional binary to one-hot
decoder at the output of this block to enable more efficient
conversion if required by the rest of the circuit and reduce the
decoding logic for the output calculation.

B. FSM Soft Implementation

In addition to the proposed FSM hard block, we propose a
soft IP core that uses FPGA soft-logic and existing embedded
memories on FPGAs to implement the equivalent functionality

of the FSM hard block. In this approach, the synthesis tool is
responsible for mapping the FSM description to the FSM soft
IP. However, as will be discussed in Section IV, this approach
is not as efficient as using our proposed hard block due to the
overhead of large and configurable FPGA block RAMs.

C. State Assignment

The state assignment problem involves determining the
binary representation of states in an FSM such that each
state has a unique value [18]. The state encoding directly
affects the circuit area and performance as different encodings
result in different circuit complexity. We propose a novel
state assignment technique for FSMs targeting our FSM block,
which aims to minimize the FSM area by mapping as many
states to the accumulator logic as possible and by minimizing
the number of states that reside in memory, hence reducing
the complexity of the input encoder logic.

The proposed state assignment algorithm consists of two
main parts: (1) identifying the state categories and (2) perform-
ing state encoding separately on each state category. These
state categories are described below:

• Branch-free states: States with a fan-out degree of one
in non-overlapping branch-free paths. States belonging
to the overlapping portion of multiple branch-free paths
will have multiple state encodings. Thus, we refine any
overlapping paths such that each path is at least one
independent state away from each other.

• Independent states: All remaining states that either
have a fan-out degree greater than one (divergent states),
or refined states that initially belonged to overlapping
branch-free paths. These states are stored in memory
to keep the metadata required for transitioning to/from
divergent states or between branch-free paths.

Algorithm 1 for state assignment is described below:
• Step 1 (Identify divergent vertices): Add vertices with

a fan-out degree greater than one to D (line 9).
• Step 2 (Identify branch-free paths): Find all of the

branch-free paths between every two divergent vertices
and add them to Pnr (lines 10-15). Branch-free paths are
identified by traversing all consecutive vertices (by defi-
nition, with a fan-out degree of one) from the successor
of one divergent vertex to the next divergent vertex.

• Step 3 (Group branch-free paths): Add branch-free
paths that share a common termination divergent vertex
dk to Pk−nr, since this is a precondition for potential
overlapping paths (lines 16-19).

• Step 4 (Apply path refinement): Apply the path refine-
ment algorithm on each group of branch-free paths with
a common termination vertex in Pk−nr, giving priority
to the longest paths (line 21). The result is the subset
of refined branch-free paths, Pk−r, and the subset of
independent states, Ik, that are no longer part of the
refined paths (details of this algorithm are omitted due
to the page limit).

• Step 5 (Update state categories-1): Add the subset of
refined paths, Pk−r, and independent vertices, Ik, to the
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Fig. 4. State encoding and path refinement example.

final set of refined branch-free paths, Pr and independent
vertices, I (line 22).

• Step 6 (Update state categories-2): Add the divergent
vertices, D, to the list of independent vertices I. Set I
indicates all of the vertices (states) that will be mapped
to the memory unit (line 24).

• Step 7 (State assignment-1): For the final set of indepen-
dent vertices, I, assign incremental values to the vertices
(states) starting from zero (lines 25-28).

• Step 8 (State assignment-2): For each branch-free path
in Pr, assign incremental values to the consecutive ver-
tices (states). The starting state value for the first branch-
free path is one greater than the last independent state
assigned in step 7. All remaining paths start one greater
than the last state value of the previous path (lines 29-33).

Next, we present an example highlighting proposed path
refinement and state assignment algorithms on a given FSM.
Figure 4a illustrates part of an FSM state transition graph
between two divergent vertices with the original state encod-
ing. The dotted arrow between states S8 and S19 indicates
the existence of more branch-free states in between. In step
1, we add the states with a fan-out greater than one, S0
and S20, to the set of divergent states (shown in red in
Figure 4a). In step 2, we find all the branch-free paths
that start from the successors of S0 and end at S20. This
step results in two paths, P1 =< S5, S6, ..., S19 >, and
P2 =< S1, ..., S4, S8, ..., S19 >. In step 3, P1 and P2 are
identified as potential overlapping paths, since they share the
common terminating state, S20. We apply the path refinement
algorithm in step 4, which results in preserving the longer
path, P2, and terminating P1 by cutting the path at S7, one state
before it starts to overlap with P2. S7 becomes an independent
state that will be mapped to memory to hold the metadata
to transition between P1 to P2. In step 5 and 6, the refined
paths will be added to the list of non-overlapping paths and
S7 is added to the independent states (shown in Figure 4b).
Finally, we perform the state assignment on each category
according to steps 7 and 8 of the algorithm. The result of the
state assignment algorithm is shown in Figure 4b.

Algorithm 1 State Assignment
Input: Gfsm = (V,E) → FSM state transition graph
Output: Ge−fsm = (V,E) → FSM state transition graph

with the applied state encoding
1: Pnr → Set of non-refined branch-free paths
2: Pr → Set of refined branch-free paths
3: Pk−nr → Set of non-refined branch-free paths that share

common terminating divergent vertex dk (Pk−nr ⊂ Pnr)
4: Pk−r → Set of refined branch-free paths after applying

refinement algorithm on Pk−nr (Pk−r ⊂ Pr)
5: I → Set of independent vertices
6: Ik → Set of independent vertices found after applying

path refinement algorithm on Pk−nr

7: D → Set of divergent vertices
8: Si → Set of successors of divergent vertex di

9: D = find divergent vertices(Gfsm)
10: for all di ∈ D do
11: for all sj ∈ Si do
12: path sj = trav path until divergent(sj ,D)
13: Pnr = Pnr ∪ path sj
14: end for
15: end for
16: for all dk ∈ D do
17: path group dk = paths share end vertex(Pnr, dk)
18: Pk−nr = Pk−nr ∪ path group dk
19: end for
20: for all dk ∈ D do
21: (Pk−r, Ik) = path refinement(Pk−nr)
22: Pr = Pr ∪ Pk−r; I = I ∪ Ik
23: end for
24: I = I ∪ D
25: state val = 0
26: for all vi ∈ I do
27: encode memory states(vi, state val++)
28: end for
29: for all Pi ∈ Pr do
30: for all vj ∈ Pi do
31: encode branch-free states(vj , state val++)
32: end for
33: end for

IV. EVALUATION

This section presents our methodology and evaluation of
our proposed FSM architecture.

A. Experimental Setup

1) Benchmarks: Two sets of C/C++ benchmark sets de-
veloped for use with HLS tools are used to assist with the
design and evaluation of our proposed architecture. The first,
MachSuite [16], is a collection of benchmarks for evaluating
accelerator design and customized architectures. The second,
HLS datacenter benchmarks, is an in-house benchmark set
consisting of selected functions identified as representing
a significant portion of execution time in the open source



applications Lucy [19] (search), SQLite [20] (database), and
BZIP [15] (compression). The functions in this set are meant to
be somewhat representative of workloads one would encounter
inside a datacenter. To accommodate our HLS synthesis flow,
portions of these functions were re-written to replace unsup-
ported language features. We convert the benchmarks from
C/C++ to Verilog HDL using Vivado HLS and use one-hot
encoding for all generated FSMs to ensure that the baseline
FSMs have the most area-efficient implementations.

2) FSM Extraction: To evaluate our proposed mix-grained
architecture, we extract the FSMs from each benchmark while
preserving the original state encoding. This is achieved as
follows: We use the Yosys synthesis tool [21] to synthesize
each benchmark to an RTL netlist. We then use the FSM
detection and FSM extraction passes provided in Yosys to
detect and extract the FSMs in KISS [22] format. We have
developed an FSM generator in C++ which, given an FSM
described in KISS, generates the Verilog HDL code for the
FSM that conforms to the standard syntax used by Vivado
HLS. Using this flow, we can extract the FSM from any
benchmark and generate a stand-alone RTL design that de-
scribes this state machine. We preserve the original one-hot
encoding generated by Vivado HLS during both steps of the
FSM extraction such that the extracted standalone FSM has
the identical state encoding as the original HLS-generated
encoding. Statistics of the FSMs extracted from MachSuite
and data center benchmarks are shown in Table I.

3) Baseline FPGA architecture: We use the architecture
file k6 frac N10 40nm provided in VTR [23] as the base-
line FPGA architecture. We selected the simple architecture
without any hard block as the baseline to minimize the area
overhead of unused hard blocks that will not benefit the FSM.

4) Area and Delay Model: For the hard FSM block,
the memory unit is modelled using the Artisan synchronous
SRAM compiler [24]. The RTL design has been synthesized
using the Synopsis Design Compiler (DC) vH-2013.03-SP5-
2 [25] with the TSMC 65nm library. The area estimation
obtained from DC are pre place-and-route. We estimate the
routing area of the next state generation block, which is not
calculated by the Synopsys DC as follows: We exclude the
area of the RAM (since the internal routing is modelled by the
SRAM compiler), then we multiply the area of the remaining
units, which is reported by DC, by a factor of 2×. Note that
with this approach, we are overestimating the area of the block,
since the routing inside the next state generation unit is very
limited. Thus, the presented area estimations are conservative.

The delay of the next state generation block is obtained
from the DC and multiplied by a factor of 1.6× to reflect
the impact of place and route [26]. The area and delay of the
input sequence encoder is obtained from VTR by mapping
the encoder onto the baseline architecture. We then use the
following formula (also used by VTR) to convert the logic and
routing area reported by VTR in Minimum Width Transistor
Area (MWTA) to um2 for 65nm technology (λ = 65):

1 ∗MWTA = 60 ∗ (λ)2,

TABLE I
CHARACTERISTICS OF THE FSMS EXTRACTED FROM MACHSUITE AND

HLS DATACENTER BENCHMARKS.

Benchmark Abbrev. States
Frac. of
memory

state
Inputs Max

fanouts

aes fsm1 as1 47 0.75 6 2
aes fsm2 as2 76 0.19 14 2

bckp fsm1 bp1 11 0.81 11 2
bckp fsm2 bp2 158 0.05 10 2
bckp fsm3 bp3 69 0.06 6 2
bfs b fsm bb1 8 0.38 7 3
bfs q fsm bq1 8 0.38 6 2
fft st fsm fs1 24 0.23 5 2
fft tr fsm1 ft1 17 0.30 8 2
fft tr fsm2 ft2 24 0.13 6 2
fft tr fsm3 ft3 219 0.06 14 2
fft tr fsm4 ft4 10 0.40 6 2
fft tr fsm5 ft5 66 0.04 5 2
gemm fsm1 gm1 10 0.50 8 2
kmp fsm1 kp1 7 0.30 4 2
kmp fsm2 kp2 10 0.40 6 2
md gr fsm mg1 15 0.47 10 2

md knn fsm mk1 98 0.02 5 2
sort m fsm1 sm1 4 0.75 5 2
sort m fsm2 sm2 7 0.43 5 2
sort r fsm1 sr1 15 0.60 11 2
sort r fsm2 sr2 6 0.33 4 2
sort r fsm3 sr3 6 0.33 4 2

spmv crs fsm spc 10 0.30 6 2
spmv elpk fsm spe 9 0.33 6 2

stencil fsm ste 4 0.50 4 2
viterbi fsm vit 8 0.50 6 2
lucy sh fsm lh1 71 0.02 3 2
sql ln fsm1 sl1 508 0.08 56 4
sql ln fsm2 sl2 7 0.29 6 3
sql ln fsm3 sl3 5 0.60 6 3
sql ln fsm4 sl4 10 0.60 10 3
sql ln fsm5 sl5 4 0.50 4 2
sql ln fsm6 sl6 4 0.40 4 2
lucy sn fsm ln1 25 0.12 5 2
lucy sv fsm lv1 12 0.67 10 4
bzip fsm1 bz1 72 0.16 19 3
bzip fsm2 bz2 41 0.17 11 2
bzip fsm3 bz3 67 0.21 28 4
bzip fsm4 bz4 17 0.35 9 3
bzip fsm5 bz5 43 0.05 4 2
bzip fsm6 bz6 61 0.16 19 3
bzip fsm7 bz7 36 0.36 13 2
bzip fsm8 bz8 117 0.21 34 3

sql gt fsm1 sg1 61 0.49 48 4
sql gt fsm2 sg2 12 0.50 9 2

For the soft FSM implementation, we use the architecture
file k6 frac N10 mem32k 40nm from VTR which provides
embedded memory units. We use the same formula above to
convert the VTR area numbers from MWTA to um2.

B. Sizing of the FSM Block

The first design decision is to select an FSM block size that
will accommodate the common FSM size, while reducing the
amount of wasted resources for smaller than average FSMs.
While evaluating different memory sizes, we found that the
memory unit is always the main contributor to the block area.



TABLE II
THE SIZING CONFIGURATION OF THE ELEMENTS OF THE NEXT STATE

GENERATION BLOCK.

Total Memory size 128x22 bits
Adder size 8 bits

State Register size 8 bits
Encoded Input Sequence size 2 bits

Thus, we can minimize the total area of our proposed FSM
block by choosing the proper memory size.

For our evaluated benchmarks, we collected the required
memory depth in terms of number of entries (independent
states multiplied by the maximum number of next reachable
states per state). For our workloads, 98% of the FSMs fit into
a depth of 128. Thus, for the remainder of our evaluation, we
selected a memory size with a depth of 128 entries.

The second design decision is the bit-width of the adder,
control registers, and encoding bits, which are dependent on
the total number of FSM states. All but one of our evaluated
benchmarks contains less than 256 states. As such, we use 8
bits to represent the states. Table II shows the size of the units
in the next state generation block.

To efficiently accommodate FSMs with a different number
of states and to avoid hard block under-utilization, we also
propose fracturable FSM hard blocks. The main idea behind
fracturable FSM blocks is to tailor the block size such that
it accommodates average sized FSMs while supporting com-
bination of multiple blocks such that they can accommodate
larger FSMs that do not fit into a single block. To map a larger
FSM to multiple smaller combined blocks, the FSM needs
to be partitioned into multiple sub FSMs and the architecture
should enable fast transition between these blocks. We use the
Fiduccia-Matheyses partitioning algorithm [27] to partition the
FSM, which due to the properties of the HLS generated FSMs,
results in a very low cut size between partitions. In the case
where there is a transition between two fracturable blocks,
we require a multiplexer before the state register in each sub
block to support inter-block state updates. We find that the
area overhead of splitting a larger FSM over two fracturable
blocks is negligible compared to the area improvement. The
data shown in Figure 7 includes the area overhead of the added
logic required to make the FSM blocks fracturable.

C. HLS Optimization Impact on FSMs

We evaluate the impact of HLS optimizations for area-
delay product minimization on the generated FSMs using HLS
directives obtained by Lo et al. following the model described
in [28]. We applied the HLS directive settings to 3 MachSuite
benchmarks: aes, backprop and sort radix. Figure 5 shows the
results averaged across the 3 MachSuite benchmarks. In this
figure, the x-axis indicates the number of fan-outs per state
and the y-axis indicates the fraction of total states that have
the corresponding fan-out degree. On average, the optimized
designs (opt) have a higher number of branch-free paths (fan-
out degree of 1) than the non-optimized designs (no-opt).

Fig. 5. Impact of applying HLS optimization directives on backprop, aes,
and radix sort benchmarks from MachSuite.

(a) FSM > 70 states (b) FSM ≤ 70 states

Fig. 6. Average area breakdown of the mix-grained FSM architecture for the
FSMs in Table I.

We found that the addition of HLS directives did not
significantly change the ratio of fan-out degrees 1 and 2 for
specific FSMs, but instead generated additional FSMs for
different parts of the same design, which, in the case of the
3 MachSuite benchmarks, contained a higher ratio of branch-
free paths. This is due to many HLS directives attempting to
exploit more parallelism, for example, by loop unrolling and
loop pipe-lining. This results in an increase in the number
of states to generate the control signals for the unrolled and
pipe-lined loops, adding more branch-free states in between
divergent states used to control the loops.

D. Area and Delay Improvement

First, we evaluate the area of each unit in the proposed
architecture. Figure 6 illustrates the area of each unit as
a fraction of the total area of the mix-grained architecture
averaged across all of the FSMs extracted from our evaluated
benchmarks. It can be seen that between 45% to 70% of the
area is consumed by the input sequence encoder. This amount
varies among benchmarks due to the variation in the number
of states that reside in memory across FSMs.

We found that by using our proposed state assignment
we were able to reduce the memory size used in the hard
block by up to 2× over the original state encoding, when
using the most area-efficient FSMs with one-hot encoding.
Additionally, since the independent state values start from zero
and are encoded before the branch-free states, there is a one-to-
one mapping between the independent state encoding and the
memory address space. Hence, no additional logic is required
to calculate the memory address from the state encoding.

Second, we compare the area that our proposed architecture
(hard block and soft FPGA IP core) consumes compared to
the baseline LUT-based implementation. Figure 7 shows the
result of this comparison (the x-axis is sorted in increasing
order based on the number of states in each FSM). Overall, as
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Fig. 7. Comparison between the area improvement of the soft vs hard specialized FSM architecture relative to the baseline.

the number of states in the branch-free paths increases, there
is also an increase in area saving.

The two vertical dashed lines marked by HB+ and SB+ in
Figure 7 indicate the FSM size after which mapping the FSM
to the specialized FSM architecture is beneficial for the hard
block and soft implementation respectively. HB+ indicate that
for FSMs with more than 10 states, the FSM hard block is
beneficial. In the extreme cases where the FSM only has a
few states, less than 10, the number of states on the branch-
free paths and the number of states to be stored in memory
are so limited that it does not justify the area overhead of
using the FSM hard block with a memory depth of 128. A
simple predictor based on the FSM size could be used during
the synthesis to decide whether the FSM should be mapped
to the proposed FSM hard block or should be implemented
using the soft logic on FPGAs. For soft implementation, SB+
indicates that for FSMs with more than 47 states, the FSM soft
IP core is beneficial. The existing FPGA block RAMs provided
in VTR FPGA models support up to 1024x32 bit memory
which is much larger than the required memory unit for
the FSM implementation. Additionally, block RAMs provide
higher flexibility by allowing different memory configurations.
Therefore, the overhead of using block RAMs compared to
our hard blocks makes them a less efficient option. However,
as can be seen in Figure 7, for the FSMs with large number
of states, our proposed soft IP core can still offer up to 3×
reduced area compared to the pure LUT-based baseline.

Similar to the area improvement, for FSMs with more than
10 states, the FSM hard block reduces the critical path delay
of the next state calculation by an average of 45%.

V. HAND-CODED VS HLS GENERATED FSMS

So far, we have primarily focused on exploring the proper-
ties of HLS generated FSMs and exploiting these properties
in our FSM block architecture to reduce the area of the next
state calculations. In this section, we extend our discussion to
the properties of FSMs hand-coded by hardware designers to
evaluate the potential benefits from our proposed architecture.

First, we need to understand how hand-coded FSMs differ
from HLS generated FSMs. We analyzed FSMs extracted from
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Fig. 8. Number of next possible reachable states per state.

21 hand-coded VTR benchmarks against the HLS generated
benchmarks in Table I and recorded the number of possible
next states for each state (Figure 8), as well as the type of
inputs (e.g. module port input, datapath input) that each state
transition depends on (Figure 9).

As can be seen in Figure 8, over 80% of the total states in
HLS generated FSMs only have a single next state in which
the state transition does not depend on any input, whereas only
32% of the total states for hand-coded FSMs have a single next
state. Additionally, almost 60% of the total state transitions in
hand-coded FSMs depend on datapath input. This difference
may be due to hardware designers partitioning FSMs into main
FSMs and counters. Since these counters mostly reside in the
datapath, we see a lower number of input-independent state
transitions for hand-coded FSMs.

As part of our future work, we plan to develop an algo-
rithm that detects and extracts explicit counters that may be
present in hand-coded RTL designs. These extracted counters,
along with the hand-coded FSM, can then be mapped to our
proposed FSM block. By doing so, implementation of hand-
coded FSMs can also benefit from our proposed architecture.

VI. RELATED WORK

Related work has focused on FSM area reduction. Tiwari
and Tomko mapped FSMs into SEMBs (synchronous embed-
ded memory block) in FPGAs to reduce power consump-
tion, area and routing overhead compared to flip-flop based
implementations [29]. Kolopienczyk et al. use RAM-based
implementations for Moore FSMs to reduce the number of
LUTs by using additional variables to replace part of the
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logical conditions [30]. Sklyarov proposed a technique for
FSM design with modifiable behavior requiring a limited
amount of FPGA resources [31]. Cooke et al. [32] looked at
overlay architectures for FSM implementation using memory
units with a focus on improving compilation time.

None of the above works looked at the specific properties of
FSMs generated by HLS tools that helped us reduce memory
size and efficiently handle FSMs with a large number of
states. This is important, as according to Senhadji-Navarro et
al., the number of resources used in block-RAM based FSM
implementations increases exponentially with increase number
of inputs and state encoding bits of an FSM [33].

Recent work has examined programmable FSM units in
network engines for packet processing and pattern matching
[34], [35]. These works are based on the (B)FSM [36] concept
which relies on the state transition rules to perform the next
state calculation. This enables them to limit the memory
growth by the number of transition rules. We target the similar
problem of optimizing the storage size, however, they target
a different class of applications. As such, our proposed FSM
block can offer even more memory savings by exploiting the
properties of the HLS generated FSMs.

VII. CONCLUSION

In this work, we analyzed the control-unit portion of RTL
designs (modelled by FSMs) that are generated by HLS tools.
HLS generated FSMs can account for a large fraction of the
total design area in applications where a large number of states
and control signals are required to control the datapath. We
show that these FSMs demonstrate common properties and
propose a novel mix-grained architecture that exploits these
properties to improve the total area for implementing the next
state calculation logic in FSMs. We introduce a new state
assignment technique that enables FSMs to better map to our
proposed architecture. We evaluate our proposed architecture
on a group of RTL designs generated by a commercial HLS
tool. Finally, we show that our proposed architecture can
reduce the area of the FSM next state generation logic by
more than 3× compared to a LUT-based FSM implementation
without impacting performance.
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