
Visualizing Complex Dynamics in Many-Core

Accelerator Architectures

Aaron Ariel, Wilson W. L. Fung, Andrew E. Turner and Tor M. Aamodt

University of British Columbia,

Vancouver, BC, Canada

aaronariel@hotmail.com {wwlfung,aturner,aamodt}@ece.ubc.ca

Abstract—While many-core accelerator architectures, such
as today’s Graphics Processing Units (GPUs), offer orders
of magnitude more raw computing power than contemporary
CPUs, their massive parallelism often produces complex dynamic
behaviors even with the simplest applications. Using a fixed
set of hardware or simulator performance counters to quantify
behavior over a large interval of time such as an entire application
execution run or program phase may not capture this behavior.
Software and/or hardware designers may consequently miss out
on opportunities to optimize for better performance. Similarly,
significant effort may be expended to find metrics that explain
anomalous behavior in architecture design studies. Moreover,
the increasing complexity of applications developed for today’s
GPU has created additional difficulties for software developers
when attempting to identify bottlenecks of an application for
optimization. This paper presents a novel GPU performance
visualization tool, AerialVision, to address these two problems.
It interfaces with the GPGPU-Sim simulator to capture and
visualize the dynamic behavior of a GPU architecture throughout
an application run. Similar to existing performance analysis tools
for CPUs, it can annotate individual lines of source code with
performance statistics to simplify the bottleneck identification
process. To provide further insight, AerialVision introduces a
novel methodology to relate pathological dynamic architectural
behaviors resulting in performance loss with the part of the
source code that is responsible. By rapidly providing insight
into complex dynamic behavior, AerialVision enables research
on improving many-core accelerator architectures and will help
ensure applications written for these architectures reach their
full performance potential.

I. INTRODUCTION

The slowing rate of single-thread performance growth for

superscalar microprocessors has resulted in widespread in-

terest in using many-core accelerators, such as Graphics

Processing Units (GPUs) [23], [24], to accelerate non-graphics

applications. These many-core accelerators use simple in-order

cores and focus on throughput instead of latency to deliver raw

computing power exceeding the teraFLOP barrier [3], [32]

– orders of magnitude higher than what contemporary CPUs

can achieve (tens of gigaFLOPS per core). A growing number

of applications are being written with the explicit parallelism

required to harness such architectures. The challenges of

programming these architectures has driven efforts to make

GPUs easier to use for non-graphics applications [2], [21],

[28], [31].

In particular, the Compute Unified Device Architecture

(CUDA) programming model [28], [31], an easy-to-learn

extension of the ANSI C language introduced by NVIDIA

Streaming Multiprocessor

Memory
Port

Streaming Multiprocessor

Memory
Port

Interconnection Network

DRAM
Channel

DRAM
Channel

DRAM
Channel

Global Memory
Local Memory

Constant Memory
Texture Memory

Streaming Multiprocessor
Thread Block
Thread Block

RF
RF

Shared
Memory

Constant
Cache

Texture
Cache
Memory
Port

Fig. 1. Example of a many-core accelerator architecture: The CUDA GPU.

Corporation, has been used to accelerate many applications

with the GPU. Figure 1 illustrates the underlying GPU many-

core accelerator architecture exposed by the CUDA program-

ming model. It consists of multiple processing cores, called

streaming multiprocessors (SM), connected to multiple DRAM

channels through an interconnection network. The programmer

specifies blocks of parallel threads, each of which runs scalar

code. Each SM is capable of running roughly one thousand

of these threads, interleaving their execution in the pipeline

to help cover the long latencies of memory operations. In-

side the SM, individual threads are grouped into warps for

synchronous execution using single instruction, multiple data

(SIMD) hardware. This can be achieved using a hardware stack

to support differing control flow among threads in a warp [22].

This execution model has been dubbed a single instruction,

multiple thread (SIMT) model [23] to distinguish it from the

more traditional SIMD model. Parallel threads in each block

are launched to a single SM as a single unit of work. They may

synchronize with each other and communicate through shared

memory, a fast, on-chip scratchpad memory located within the

SM. Each thread also has access to its own private memory

space, called local memory, as well as to a public memory

space, called global memory, that are both located in off-chip

DRAM memory. All threads have access to constant memory

and texture memory, which are read-only memory spaces with

on-chip caches. The CUDA Programming Guide [28], [31]

contains more details on the distinct usage of each memory

space. A GPU with tens of SMs can concurrently execute up

to several hundred warps (thousands of threads), and generate

hundreds of concurrent memory requests. This throughput-

oriented design coupled with highly-parallel software allows

the GPU to dedicate more of its silicon area to function units

compared to a latency optimized CPU.

While many real world applications benefit tremendously

from current GPU architectures, the massively-parallel nature

of GPUs may produce complex dynamic behavior resulting in

reduced throughput even with simple applications. Warps are

interleaved in a fine-grained multithreaded manner and threads

in different blocks run asynchronously with each other. Tradi-

tional software tuning techniques with performance counters

that capture only the overall behavior of a GPU application

may miss optimization opportunities that underlie the complex

dynamic behaviors possible on such a system. Changes to

the GPU architecture or to the application can perturb this

complex behavior and can affect the overall performance. Any

a priori fixed set of (simulator or hardware based) performance

counters may not provide insight into these changes. Figure 2

shows the frequency of global memory write operations to

each DRAM channel over time (darker color means more

data written) for the CUDA application transpose (one of the

CUDA SDK benchmarks [30]). It illustrates just one example

of the above: the effect of intermittent congestion at each

DRAM channel that results in an underutilization of available

DRAM bandwidth. The lower bits (bits 8 to 10) of the

address are used to partition the memory space across different

DRAM channels. This scheme distributes memory accesses to

successive 256-byte memory chunks across the eight DRAM

channels of the simulated system to reduce the likelihood of

congestion at a specific DRAM channel [18] (more details

on the simulation setup are provided in Section III-A). While

each DRAM channel is equally utilized overall, intermittent

congestion results in lowered throughput. Metrics measuring

the utilization of each channel would not have indicated this.

In any given research scenario a detailed measurement metric

could be developed to quantify a particular behavior (e.g.,

a measure of dynamic channel imbalance in this example),

and/or a software developer with a detailed understanding

of the application may already have significant insight into

how their application behaves. However, narrowing down

the causes of performance degradation suffered by a new

application or architecture can be time consuming.

The need for performance visualization during processor

architecture design and software tuning has long been rec-

ognized. SimpleScalar [11] has a visualizer for inspecting the

pipeline timing of individual instructions [42]. Intel VTuneTM

is a standard tool for software developers to access hardware

performance counters for application tuning [20]. Other ma-

jor integrated development environments (IDEs) also provide

similar functionality [8], [20], [38]. Recently, NVIDIA has

released the CUDA Visual Profiler, which accesses hardware

0

4
0

0
0

8
0

0
0

1
2

0
0

0

1
6

0
0

0

2
0

0
0

0

2
4

0
0

0

2
8

0
0

0

3
2

0
0

0

3
6

0
0

0

4
0

0
0

0

4
4

0
0

0

4
8

0
0

0

5
2

0
0

0

5
6

0
0

0

6
0

0
0

0

6
4

0
0

0

6
8

0
0

0

7
2

0
0

0

7
6

0
0

0

8
0

0
0

0

Cycle

0

1

2

3

4

5

6

7

D
R

A
M

 C
h
a
n
n
e
l

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.60

G
lo

b
a
l
M

e
m

o
ry

 W
ri

te
 p

e
r

C
y
cl

e

Fig. 2. Intermittent DRAM congestion concealed with traditional perfor-
mance counter. See Section III-C for more detail.

performance counters in their GPUs and provides coarse-

grained performance counter feedback helpful for identify-

ing bottlenecks [29]. The IBM Performance Debugging Tool

(PDT) [10] and Cetra [27] are visualization tools for the

Cell processor. Tuning and Analysis Utilities (TAU) [37],

Open|SpeedStops [1], and HPCToolkit [33] are performance

analysis tool suites for large scale parallel applications.

In this paper, we present a novel performance visualization

tool, AerialVision. It provides a high-level graphical represen-

tation of performance events of CUDA applications running

on the GPGPU-Sim simulator [9] at greater detail than existing

hardware performance counter-based tools for GPUs. It also

provides the ability to attribute microarchitecture events to

individual lines in the application source code and a novel

mechanism to relate these two levels of detail (a capability not

present in current hardware based GPU profilers). In particular,

this paper makes the following contributions:

• It presents a novel extensible visualization tool, AerialVi-

sion, to interface with GPGPU-Sim [9] for hardware and

software design exploration on massively multithreaded,

many-core accelerator architectures. Leveraging the capa-

bilities of matplotlib [13], it can create publication quality

figures useful for explaining complex behavior in many-

core accelerator architectures (all data plots presented in

this paper were created by AerialVision).

• It proposes a new methodology for correlating global

runtime behavior to the source code that was running

concurrently in the program.

• Using several case studies it demonstrates that:

– Visualizing the dynamic behavior of a CUDA ap-

plication can help identify non-trivial, intermittent

performance bottlenecks.

– Attributing performance statistics to individual lines

of source code can simplify the process of applying

existing optimization guidelines to CUDA applica-

tions.

AerialVision will enable architecture researchers to explore

novel approaches to improve the cost-effectiveness and utility

of many-core accelerator architectures more quickly. It will

also help CUDA application developers understand perfor-

mance bottlenecks at a finer granularity than existing tools.

The source code for AerialVision along with a detailed usage

(a) Time-lapse view

(b) Source code view

Fig. 3. AerialVision

manual are distributed with GPGPU-Sim1.

The rest of this paper is organized as follows. Section II

introduces AerialVision and describes its key features in

detail. Section III describes the implementation and simulation

methodology used in this paper and presents several case

studies highlighting the key features of AerialVision. Sec-

tion IV discusses related work on performance visualization

and performance tuning. Section V concludes the paper.

II. VISUALIZING THE DYNAMIC BEHAVIOR OF

THOUSANDS OF THREADS

AerialVision is a standalone tool, written in the Python

scripting language that reads in a trace file produced by

GPGPU-Sim version 2.1.1b (or later) along with CUDA pro-

gram source and PTX assembly. The trace collection overhead

is small: simultaneously collecting all 51 metrics currently

supported in one simulation results in a 13% slowdown to

simulation speed, and each sample interval is only 3.4 kB

on average including PC-histogram data (described in Sec-

tion II-C) or 605 B without the PC-histogram (by default a

sample is created every 1000 cycles). AerialVision offers two

different views for the user to analyze dynamic behavior: A

time-lapse view and source code view. The time-lapse view

1www.gpgpu-sim.org

0 200000 400000 600000 800000 1000000
0

100
200
300
400
500
600
700
800

G
lo

b
a
l
IP

C

0 200000 400000 600000 800000 1000000
0
5

10
15
20
25
30
35

A
v
g
 M

e
m

Q
 O

cc

0

5
2

0
0

0

1
0

4
0

0
0

1
5

6
0

0
0

2
0

8
0

0
0

2
6

0
0

0
0

3
1

2
0

0
0

3
6

4
0

0
0

4
1

6
0

0
0

4
6

8
0

0
0

5
2

0
0

0
0

5
7

2
0

0
0

6
2

4
0

0
0

6
7

6
0

0
0

7
2

8
0

0
0

7
8

0
0

0
0

8
3

2
0

0
0

8
8

4
0

0
0

9
3

6
0

0
0

9
8

8
0

0
0

1
0

4
0

0
0

0

Cycle

0
1
2
3
4
5
6
7

D
R

A
M

 C
h
a
n
n
e
l

0
4
8
12
16
20
24
28

A
v
g
 M

e
m

Q
 O

cc

Fig. 4. Example illustrating basic plot formats provided by time-lapse view.

(shown in Figure 3(a)) allows the user to plot several per-

formance metrics versus time so they may be compared. The

source code view (shown in Figure 3(b)) displays performance

statistics associated with individual lines in the application

source code which helps guide the user toward bottlenecks

in the source code that may require optimization.

In the rest of this section, we describe the key features of

AerialVision. This section gives an overall understanding of

the tool. We consider how these capabilities can be used by

considering case studies in Section III.

A. Time Lapse View for Global Dynamic Statistics

Figure 4 illustrates three of the plot formats the time-

lapse view supports (two other formats will be described

subsequently). The time lapse view uses matplotlib [13],

an open-source Python library, to generate individual plots

from the input traces. AerialVision allows the user to place

multiple subplots on the same window to simultaneously

view different metrics, as well as to perform side-by-side

comparisons between runs generated with different hardware

and/or software optimizations. The plots can be zoomed and

panned to improve legibility. The time-lapse view provides

simple line plots for statistics aggregated across the whole

GPU, such as the global dynamic IPC shown in the top plot in

Figure 4. Statistics that relate to individual hardware units can

be visualized using multi-line plots. For example, the average

memory queue occupancy2 for each DRAM channel is shown

in the middle plot of Figure 4.

Intensity plots have occasionally been used to display

performance-related data for multiple parallel hardware units

versus time (e.g., Figure 2 in the work by Meng et al. [26]).

To provide a clearer presentation of the statistics of individ-

ual units while maintaining a global view across all units,

AerialVision can display the statistics of each unit over time

using such a parallel intensity plot. For example, the bottom

plot of Figure 4 also displays the average memory queue

occupation for each DRAM channel shown in the middle

2In the GPGPU-Sim microarchitecture model, memory requests generated
by each SM are sent to an out-of-order memory controller associated with the
DRAM channel containing the data. The average memory queue occupancy
measures the average number of requests that reside in the request queue
inside the memory controller on any cycle during the sampling period.

0

6
0
0
0
0

1
2
0
0
0
0

1
8
0
0
0
0

2
4
0
0
0
0

3
0
0
0
0
0

3
6
0
0
0
0

4
2
0
0
0
0

4
8
0
0
0
0

5
4
0
0
0
0

6
0
0
0
0
0

6
6
0
0
0
0

7
2
0
0
0
0

7
8
0
0
0
0

8
4
0
0
0
0

9
0
0
0
0
0

9
6
0
0
0
0

1
0
2
0
0
0
0

1
0
8
0
0
0
0

1
1
4
0
0
0
0

1
2
0
0
0
0
0

Cycle

0

500

1000

1500

2000

2500

3000
D

y
n
a
m

ic
 W

a
rp

 C
o
u
n
t

Fetch Stalled

W0

W1:4

W5:8

W9:12

W13:16

W17:20

W21:24

W25:28

W29:32

Fig. 5. Runtime warp divergence breakdown.

plot, but using a parallel intensity plot instead. From the

parallel intensity plot, one can observe that there are moments

in the program execution (e.g., between cycles 416000 and

468000) when the memory queue in DRAM channel #4 is full

(represented by darker shading) and memory queues in other

DRAM channels are poorly occupied (lighter shading). The

ability to discover such intermittent performance bottlenecks in

the microarchitecture can provide insights to the programmer

or architect that may be useful in optimizing the application

or hardware.

B. Runtime Warp Divergence Breakdown

Warp divergence, a phenomenon particular to GPU archi-

tectures from NVIDIA and AMD, occurs when threads inside

a warp (or wavefront, in AMD terminology) take different

control paths after a branch. Since SIMD hardware lacks the

ability to process multiple control paths in a single clock

cycle, a diverged warp executes instructions from different

control paths on different cycles by masking off a subset

of the functional units [22]. This serialization can lead to

significant underutilization of the SIMD hardware in a many-

core accelerator and is typically the performance bottleneck in

control-flow intensive applications. To assist application devel-

opers wishing to understand the performance impact induced

by warp divergence, the time-lapse view in AerialVision also

provides the warp divergence breakdown for the simulated

CUDA application versus time in addition to the simple line

plots and the parallel intensity plots described in Section II-A.

Figure 5 shows the runtime warp divergence breakdown for

MUMmerGPU [36]. Each warp issued for execution during the

sampling period is classified into different categories according

to the number of active threads in the warp. For example,

category W1:4 includes all warps with one to four active

threads. Category W0 denotes the idle cycles in each SM when

all the warps in the SM are waiting for data from off-chip

memory; whereas category Fetch Stalled denotes the cycles

when the fetch stage of an SM stalls, preventing any warp

from being issued that cycle. This plot is similar to the “active

thread count distribution time series” presented by Fung et al.

in their analysis of pathological behavior associated with one

of their proposed warp scheduling policies [15].

The runtime warp divergence breakdown gives a clear

view of the degree of warp divergence in an application, as

well as its effect on the overall performance. The runtime

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

3
5
0
0
0

4
0
0
0
0

4
5
0
0
0

5
0
0
0
0

5
5
0
0
0

6
0
0
0
0

6
5
0
0
0

7
0
0
0
0

7
5
0
0
0

8
0
0
0
0

8
5
0
0
0

9
0
0
0
0

9
5
0
0
0

1
0
0
0
0
0

1
0
5
0
0
0

Cycle

156
195
234
273
312
351
390
429
468
507
546
585
624
663
702
741
780
819
858
897
936
975

1014
1053
1092
1131
1170
1209
1248

P
T
X

 S
o
u
rc

e
 L

in
e
 #

0

60

120

180

240

300

360

420

480

540

600

T
h
re

a
d
 C

o
u
n
t

Fig. 6. PC-Histogram of a SM running ray tracing. White = Instruction has
not been touched by any thread during the sampling period. Color = One or
more threads have touched the instruction during the sampling period.

breakdown in Figure 5 indicates that MUMmerGPU suffers

from a high degree of warp divergence (during much of its

runtime warps are in the W1:4 category). In addition, it shows

that MUMmerGPU suffers from large memory latencies. This

plot suggests that to achieve peak performance MUMmerGPU

would need to reduce branch divergence and memory band-

width bottlenecks. Each of these bottlenecks are separately

addressed by mechanisms proposed by Fung et al. [15] and

Tarjan et al. [41], but a unified approach has yet to be found.

C. From Runtime Behavior to Source Code Level Analysis

A third type of analysis that the time-lapse view provides is

called the PC-Histogram. The PC-Histogram is a time series

of histograms, representing the portion of the program that

the threads have touched during a given sample period. A

thread is considered to have touched an instruction after the

instruction has been fetched in the pipeline (i.e., scheduled).

The instruction continues to be considered touched by the

thread until a new instruction is fetched by that thread. This

series of histograms are displayed as a 2D color intensity plot,

with X-axis being time, Y-axis being the program code layout

linearly (in ascending PTX source line number or CUDA

source line number), and the color intensity representing the

number of threads that have touched the portion of the program

in the sample period.

The PC-Histogram provides a collective view of how

threads are traversing through the program over time. There

are two ways to use this feature. First, if threads are not making

forward progress they will show up as a horizontal line on the

PC-Histogram plot (indicating that there are threads stuck at a

single instruction for an extended period). The PC-Histogram

of a SM running ray tracing [25] (shown on Figure 6) shows

that some threads are stuck at the PTX instruction at line 419,

585 and 1181 (indicated by the dark arrows in Figure 6). A

brief inspection of the PTX source code indicates that these

are loop exits where threads in a diverged warp wait for

other threads running extra iterations of the loop. The PC-

Histogram also shows that even with a simple round-robin

warp scheduler, most threads do not execute together.

Second, when put alongside plots of other runtime per-

formance statistics, the PC-Histogram provides a powerful

linkage between observed dynamic behavior and the corre-

TABLE I
PERFORMANCE STATISTICS AVAILABLE IN SOURCE CODE VIEW

Execution Count The number of times this PTX instruction is executed by a thread in the simulator.

Total Pipeline Latency The total number of SM pipeline cycles experienced by all the threads executing this PTX instruction. The SM pipeline cycles

experienced by a thread are the number of cycles it spends in the SM pipeline.

Total Exposed Off-Chip Memory Latency The total number of cycles where a long latency off-chip memory read operation prevents a warp from being issued and no

other warp is available to issue.

DRAM Traffic The number of memory accesses to DRAM (global/local memory access and texture/constant cache misses) generated by warps

executing this PTX instruction.

Non-Coalesced Global Memory Access The number of non-coalesced global memory accesses generated by warps executing this PTX instruction. When divided by

Non-Coalesced Warp Count, the result measures the average number of memory requests issued by a warp each time this

instruction is executed.

Non-Coalesced Warp Count The number of dynamic warps executing this PTX instruction that generate non-coalesced memory accesses.

Shared Memory Access Cycle The total number of SM pipeline cycles spent accessing shared memory by warps executing this PTX instruction. When divided

by the next measure, the result measures the average number of bank conflicts experienced by this line of code.

Shared Memory Warp Count The number of dynamic warps executing this PTX instruction and accessing the shared memory.

Branch Divergence The number of dynamic warps that diverge after executing this PTX branch instruction.

AB

C

Fig. 7. Source Code View for Source Level Performance Analysis.

sponding source code. We will explore this in more detail

with a case study in Section III-E.

D. Annotating Source Code with Performance Statistics

While the ability to visualize performance metrics of an

application versus time provides detailed insight into causes

of performance degradation, the source code view, shown in

Figure 7, augments this by annotating the source code with

aggregate performance statistics (similar in style to tools like

VTuneTM [20]). The source code view consists of three parts.

The code viewer (labeled A in Figure 7) displays the source

code that is being analyzed. The user has the choice of viewing

statistics associated with lines in PTX assembly code or CUDA

source code. The statistics viewer (labeled B in Figure 7)

displays the performance statistics associated with the lines

of source code displayed on the code viewer. The type of

statistics displayed in this viewer can be specified by the

user. The navigation graph (labeled C in Figure 7) plots the

performance statistics against their location in the source code.

It provides an overview of the statistics throughout the whole

program. Right-clicking on a bar in the navigation graph will

bring the code viewer and the statistics viewer to the location

of the program corresponding to the horizontal position of the

cursor on the plot. This feature allows the user to navigate the

program according to the statistics to find the source code of

interest.

The performance statistics used by the source code view

are collected as the application is simulated by GPGPU-

Sim. The simulator tracks statistics for each PTX instruction.

AerialVision uses debug information (.loc tags) in the PTX

assembly code to aggregate the statistics collected for each

PTX instruction into its associated statement in the CUDA

source code. Table I lists the performance statistics currently

available in source code view. AerialVision also provides the

ability to visualize the ratios of two different performance

statistics. For example, the ratio of Non-Coalesced DRAM

Traffic and Non-Coalesced Warp Count reveals the average

number of non-coalesced memory accesses generated by each

warp executing a PTX instruction. This feature gives the user

the ability to uncover further insights from existing statistics.

The case studies presented in Section III-D will illustrate

how the source code view can help simplify performance

tuning.

III. CASE STUDIES

In this section, we present several case studies that demon-

strate the usage of the features described in Section II. The

case studies presented in Section III-B and Section III-C

demonstrate how AerialVision can assist hardware architects

in design exploration. Section III-D and Section III-E present

case studies illustrating the usefulness of AerialVision as an

aid for software designers to uncover performance bottlenecks

in an application. Note that our focus here is illustrating

the potential of the tool rather than generating radical new

insights into many-core accelerator architecture challenges or

uncovering novel software optimizations.

A. Methodology

The data presented in this section (and throughout the paper)

were collected by running CUDA applications on GPGPU-

Sim [9]. Table II and III show the configuration we used

with GPGPU-Sim for simulating a GPU microarchitecture

similar to NVIDIA’s Quadro FX 5800 (measured to have a

0.9 correlation coefficient versus real hardware on a set of

kernels from the CUDA SDK).

We have extended GPGPU-Sim in version 2.1.1b to collect

various runtime performance statistics and output them to a

log file at regular intervals. Many of these statistics existed

in earlier versions of GPGPU-Sim but were only reported as

aggregate statistics at the end of simulation. All statistics are

collected in one run of the simulator. In addition, aggregate

per-static instruction performance statistics are saved into a

separate PTX instruction profile written at the end of the

TABLE II
SIMULATED HARDWARE CONFIGURATION

Shader Core Frequency 325 MHz

Interconnect Frequency 650 MHz

DRAM Memory Bus Frequency 1300 MHz

Number of Shader Cores 30

Warp Size 32

SIMD Pipeline Width 8

Number of Threads / Core 1024

Number of Thread Blocks / Core 8

Number of Registers / Core 16384

Shared Memory / Core 16 kB (16 banks, 2 access/cycle/bank)

Constant Cache Size / Core 8 kB (2-way set assoc. 64B lines LRU)

Texture Cache Size / Core 64 kB (2-way set assoc. 64B lines LRU)

Number of Memory Channels 8

GDDR3 Memory Timing tCL=9, tRP =13, tRC =34

tRAS=21, tRCD=12, tRRD=8

Bandwidth per Memory Module 8 (Bytes/Cycle)

DRAM request queue capacity 32

Memory Controller out-of-order (FR-FCFS [34])

Branch Divergence Method Immediate Post-Dominator [14]

Warp Scheduling Policy Round-Robin among ready warps

TABLE III
INTERCONNECT CONFIGURATION

Topology Crossbar

Routing Mechanism Destination Tag

Routing Delay 1

Virtual Channels 1

Virtual Channel Buffers 8

Virtual Channel Allocator iSLIP

Alloc Iters 1

VC Alloc Delay 0

Input Speedup 1

Flit Size (Bytes) 32

0
3
6
9
12
15
18
21
24
27S

M
(B
a
se
lin

e
)

0
3
6
9
12
15
18
21
24
27

S
M
(H
G
)

0

1
3
1
0
0
0

2
6
2
0
0
0

3
9
3
0
0
0

5
2
4
0
0
0

6
5
5
0
0
0

7
8
6
0
0
0

9
1
7
0
0
0

1
0
4
8
0
0
0

1
1
7
9
0
0
0

1
3
1
0
0
0
0

1
4
4
1
0
0
0

1
5
7
2
0
0
0

1
7
0
3
0
0
0

1
8
3
4
0
0
0

1
9
6
5
0
0
0

2
0
9
6
0
0
0

2
2
2
7
0
0
0

2
3
5
8
0
0
0

2
4
8
9
0
0
0

2
6
2
0
0
0
0

Cycle

0
3
6
9
12
15
18
21
24
27S

M
(H
G
+
T
o
u
t)

0
4
8
12
16
20
24
28
32

IP
C

0
4
8
12
16
20
24
28
32

IP
C

0
4
8
12
16
20
24
28
32

IP
C

Fig. 8. Dynamic IPC of each SM for LIBOR with two different inter-
connection arbitration schemes. Top: Baseline Parallel Iterative Matching
arbitration. Middle: Hold-Grant arbitration proposed by Yuan et al. to preserve
row locality of memory access [44]. Bottom: Hold-Grant with time-out
mechanism.

simulation. After AerialVision reads in these files, the user

can interactively select which statistics to visualize.

B. Identifying Starvation due to Interconnection Arbitration

Yuan et al. proposed a new Hold-Grant arbitration scheme

for on-chip interconnection networks to preserve the row

locality of memory accesses across the interconnect [44].

This scheme, combined with a banked FIFO in-order DRAM

scheduler, achieves up to 91% of the performance obtainable

with an out-of-order FR-FCFS (first-ready first-come-first-

serve) DRAM scheduler for a crossbar network [34]. When

applied to a ring network, however, the Hold-Grant arbitration

scheme was not as effective. The worst performing benchmark

on a ring network with the Hold-Grant arbitration was LIBOR;

most other benchmarks see slight performance improvements

over a ring network with the baseline arbitration mechanism,

parallel iterative matching (PIM).

LIBOR performs Monte Carlo simulations based on the

London Interbank Offered Rate market model [16]. The ap-

plication accesses the local memory space of each thread fre-

quently and is hence memory-bound, making this an excellent

benchmark for evaluating any memory system improvement.

To better understand the performance of LIBOR using

Yuan et al.’s proposed mechanism, we started from their

modified version of GPGPU-Sim [43], extended it to support

AerialVision, and reran several simulations. Figure 8 shows

the dynamic IPC of each SM for Hold-Grant (with and

without time-out) and the baseline PIM arbitration mechanism.

The middle part of the figure shows that, while most of

the SMs finish their assigned work faster with Hold-Grant,

one of the SMs (specifically, SM #8) suffers from starvation

(inside box). This behavior can be removed with a time-out

counter (bottom part of figure) which Yuan et al. evaluated

while conducting their research [43]. The bottom part of the

figure shows that, with the time-out mechanism, execution

behavior looks almost the same as the baseline in that SM

#8 no longer experiences any starvation. While performance

is slightly better with the time-out mechanism (which would

involve additional hardware), it is roughly the same as the

baseline. From the performance difference alone it may not

be obvious whether starvation was occurring without the time

out mechanism. In the context of highly multi-threaded many-

core architectures such performance effects can especially be

masked by thread scheduling effects [9]: Small changes can

cause one SM to finish a CTA (group of threads) earlier or

later resulting in a different distribution of work to SMs at

the end of a kernel. While introducing random perturbations

and running each configuration several times is one way to

analyze systems susceptible to such scheduling effects [6],

AerialVision provides a systematic way to easily visualize

intermittent behavior that may be localized to a portion of

a many-core accelerator architecture and to a limited part of

the execution time. As in this example, it can uncover behavior

masked by other effects.

C. Exploring Memory Address Space Mappings to Reduce

DRAM Contention

As discussed in Section I, a many-core architecture such as

a GPU usually employs multiple DRAM channels to supply

the memory bandwidth required to sustain thousands of in-

flight threads. Both the local and global memory space are

partitioned among multiple DRAM channels according to

a memory address mapping. The address of each memory

operation determines where the data will be placed in memory.

While this design satisfies memory bandwidth requirements in

theory, an application can under utilize the available memory

bandwidth with a memory access pattern that makes poor use

of a given address mapping by only accessing data in a subset

of DRAM channels at any given instant of time.

Although sometimes this behavior can be detected with tra-

ditional performance counters and fixed accordingly, this form

0

4
0

0
0

8
0

0
0

1
2

0
0

0

1
6

0
0

0

2
0

0
0

0

2
4

0
0

0

2
8

0
0

0

3
2

0
0

0

3
6

0
0

0

4
0

0
0

0

4
4

0
0

0

4
8

0
0

0

5
2

0
0

0

5
6

0
0

0

6
0

0
0

0

6
4

0
0

0

6
8

0
0

0

7
2

0
0

0

7
6

0
0

0

8
0

0
0

0

Cycle

0

1

2

3

4

5

6

7

D
R

A
M

 C
h
a
n
n
e
l

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.60

G
lo

b
a
l
M

e
m

o
ry

 W
ri

te
 p

e
r

C
y
cl

e

Fig. 9. Intermittent DRAM congestion removed with a different address
mapping.

0
1
2
3
4
5
6
7D

R
A

M
 C

h
a
n
n
e
l

0
50
100
150
200
250
300
350
400

#
 R

o
w

 A
ct

.

0
1
2
3
4
5
6
7D

R
A

M
 C

h
a
n
n
e
l

0
50
100
150
200
250
300
350
400

#
 R

o
w

 A
ct

.

0

1
2

0
0

0

2
4

0
0

0

3
6

0
0

0

4
8

0
0

0

6
0

0
0

0

7
2

0
0

0

8
4

0
0

0

9
6

0
0

0

1
0

8
0

0
0

1
2

0
0

0
0

1
3

2
0

0
0

1
4

4
0

0
0

1
5

6
0

0
0

1
6

8
0

0
0

1
8

0
0

0
0

1
9

2
0

0
0

2
0

4
0

0
0

2
1

6
0

0
0

2
2

8
0

0
0

2
4

0
0

0
0

2
5

2
0

0
0

Cycle

0
1
2
3
4
5
6
7D

R
A

M
 C

h
a
n
n
e
l

0
50
100
150
200
250
300
350
400

#
 R

o
w

 A
ct

.

Fig. 10. Dynamic DRAM row activation count of each DRAM channel for
BFS with three different address mappings. Top: DRAM channel specified by
bits 6 to 8. Middle: DRAM channel specified by bits 8 to 10. Bottom: DRAM
channel specified by bits 11 to 13, which shows the best performance of all
three mappings.

of underutilization can also happen intermittently. Figure 2

shown earlier in Section I shows the number of global memory

write accesses of transpose with a pathological memory access

pattern that leads to intermittent DRAM congestion. Figure 9

shows how this congestion is removed (resulting in a 23%

speedup) with a small change in the address mapping. The

modified mapping uses bits 6 to 8 to direct the access to

one of the eight DRAM channels in the system (instead of

bits 8 to 10). There are four banks in each DRAM, and

the bits used to map a memory access to a DRAM bank

remain unchanged. Both address mappings distribute memory

accesses to a relatively small memory footprint evenly among

the DRAM channels, so performance metrics counting the

overall accesses to each DRAM channel would show an even

distribution of work in both cases. Thus, intermittent conges-

tion may go unnoticed if only these metrics are measured.

To further illustrate how AerialVision can be used in archi-

tecture research, we highlight the fact that an address mapping

that works well for one application may not perform as well

for another application. Figure 10 shows the row activation

count over time for each DRAM channel for BFS (breadth-first

search) [17] with three different address mappings. The middle

parallel intensity plot indicates a high frequency row buffer

switching which reduces effective DRAM bandwidth leading

to sub-optimal performance. Applying the change in address

mapping that helped transpose spread memory accesses evenly

across all DRAM channels reduces row buffer locality (the

frequency of consecutive DRAM accesses hitting the same

0 57 114 171 228 285 342 399 456 513 570 627 684 741 798 855 912 969 1026 1083

CUDA Source Line #
0

5

10

15

20

25

30

35

#
 C

y
cl

e
s

p
e
r

W
a
rp Shared Memory Access Cycle per Warp (Initial Ver.)

0 57 114 171 228 285 342 399 456 513 570 627 684 741 798 855 912 969 1026 1083

CUDA Source Line #
0

5

10

15

20

25

30

35

#
 C

y
cl

e
s

p
e
r

W
a
rp Shared Memory Access Cycle per Warp (Revised Ver.)

Fig. 11. The average shared memory access cycle of each CUDA source line
for two versions of StoreGPU. Top: Initial version unaware of shared memory
bank conflicts. Bottom: Revised version with the bank conflicts optimized out.

row in a DRAM bank) further as shown in the top plot by

the darker shading. This results in lower performance. The

bottom plot in Figure 10 shows the row activation count for

BFS with a third address mapping that attempts to preserve the

row locality while using the higher bits to spread the memory

accesses across all DRAM channels. Performance improves

by 9% over the best address mapping for transpose.

AerialVision enabled us to find this improved mapping

quickly by providing a simple and easy to use interface to

visualize different statistics.

D. Identifying Performance Bottlenecks at the CUDA Source

Level

The case studies in the following sections demonstrate that

the source code view simplifies the process of applying exist-

ing tuning techniques for software developers. The causes of

the performance degradations discussed in these case studies

are well-documented by NVIDIA [31]. However, current GPU

hardware performance counters [29] may only provide coarse-

grained (per kernel launch) hints for the specific parts of

the code that are responsible for performance degradation,

whereas AerialVision can guide software developers to the

problematic source line quickly.

1) Shared Memory Bank Conflicts in StoreGPU: To support

concurrent shared memory accesses from threads in a warp, the

shared memory in each SM is divided into multiple memory

banks [31]. A single memory bank can only process one access

per cycle. Banks are organized such that successive 32-bit

words are assigned to successive banks. Concurrent shared

memory accesses from different threads in a warp can be

serviced simultaneously if they map to different banks. Con-

versely, when these concurrent accesses map to the same bank,

a bank conflict occurs and the accesses must be serialized,

stalling in the SM pipeline and creating a performance bot-

tleneck in the application. In our simulated GPU architecture,

there are 16 banks in the shared memory running at twice the

frequency of the pipeline. Each warp accesses shared memory

in two groups of 16 threads, consuming a total of two shared

memory cycles. This case study shows how the source code

view in AerialVision can be used to pinpoint the line of source

code causing shared memory bank conflicts in StoreGPU,

simplifying the optimization process for software developers.

StoreGPU is a CUDA application developed by Al-Kiswany

(a) The number of non-coalesced memory accesses generated by each CUDA source line.

0 19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380

CUDA Source Line #
0

50000

100000

150000

200000

250000

#
 D

y
n
a
m

ic
 I
n
st

r. Execution Count

(b) Execution count of each CUDA source line.

Fig. 12. MUMmerGPU in source code view.

et al. [5] which uses the GPU to accelerate the MD5 and

SHA1 hash calculations for chunks of data to be stored in a

distributed network. In the first implementation, each thread

fetches data directly from global memory and generates a

significant amount of redundant DRAM traffic because each

piece of data is accessed more than once. This limited the

speedup of StoreGPU to about 4× of its CPU counterpart3.

To reduce this redundant DRAM traffic, Al-Kiswany et al.

evaluated using shared memory in StoreGPU as a temporary

storage for the data chunk to be hashed by each thread.

While the use of shared memory did cut down redundant

DRAM traffic, the initial implementation laid out 64B chunks

of data processed by each thread in a contiguous manner in

shared memory and thus introduced significant bank conflicts.

Nevertheless this implementation manages to achieve a 1.5×
speedup over the original CUDA version [4]. It was not until

about a month after creating this implementation that Al-

Kiswany et al. noticed the significant inefficiencies due to

bank-conflicts in shared memory and revised the data layout

in shared memory to remove these bank conflicts [4]. The re-

vised implementation achieved another 3.2× speedup (overall

speedup of 5× over the original CUDA implementation).

With the source code view in AerialVision it is easy to locate

shared memory accesses causing bank conflicts (a common

concern for CUDA applications). Figure 11 shows the average

shared memory access cycle per warp attributed to each CUDA

source line for both implementations of StoreGPU. Many lines

of code show 32 accesses per bank per warp in the initial

3Using the sliding window configuration in StoreGPU [5].

shared memory implementation and the very same lines in

the revised implementation only show 2 accesses per bank per

warp. In the Quadro FX 5800 we configured GPGPU-Sim to

model, shared memory accesses from a warp with 32 threads

are split into 2 halves. Each half is serviced in parallel by

16 memory banks, so shared memory accesses from a warp

with no bank conflicts will generate 2 accesses per bank. A

performance counter measuring the number of bank conflicts

will be able to indicate the existence of bank conflicts whereas

the source level analysis tool in AerialVision can pinpoint the

line the source code causing the bank conflicts, simplifying

the optimization process for software developers. While the

CUDA Bank Conflict Checker can detect which lines cause

shared memory bank conflicts [30] it requires source level

modifications whereas AerialVision does not. Furthermore,

AerialVision can be extended to measure any other metric

of interest in a similar fashion (we currently measure the

performance metrics listed in Table I).

2) Non-Coalesced Global Memory Accesses in MUM-

merGPU: While the CUDA programming model allows

threads within a warp to have random access to global

memory, DRAM memory bandwidth can only be fully utilized

in the GPU hardware with coalesced memory accesses [31].

To achieve optimal memory performance, the GPU hard-

ware always attempts to coalesce global memory accesses

by threads of a half-warp (groups of contiguous 16 threads)

in hardware into a single DRAM transaction, known as a

coalesced access, to fully utilize the already scarce off-chip

DRAM bandwidth. Non-coalesced accesses can potentially

become the performance bottleneck of an application by

wasting DRAM bandwidth since the amount of data requested

5000 10000 15000 20000
0

200

400

600

800

1000
IP

C

 EndKern1

0 5000 10000 15000 20000

Cycle

80
90

100
110
120
130
140
150
160
170
180
190
200C

U
D

A
 S

o
u
rc

e
 L

in
e
 #

0
1500
3000
4500
6000
7500
9000
10500
12000
13500
15000

T
h
re

a
d
 C

o
u
n
t

Fig. 13. PC-Histogram example: Performance degradation associated with
line 186.

may be much less than the transfer size of the DRAM (16 to

32 bytes per burst for contemporary graphics DRAM). In this

case study, we present how AerialVision can help software

developers identify the lines in their source code that generate

non-coalesced accesses.

MUMmerGPU is a parallel pairwise local sequence align-

ment program that matches query strings consisting of DNA

nucleotides (A,C,T,G) to a reference string for purposes such

as genotyping, genome resequencing and metagenomics [36].

In this study we use MUMmerGPU 1.1.

Tarjan et al. recently noted that the input query strings

in MUMmerGPU 1.1 are laid out contiguously in memory,

leading to performance loss [41]. Since each thread in a warp

reads a separate input string from global memory, each query

string read operation from a warp generates non-coalesced

memory accesses that reduces the efficiency of the application.

Tarjan el al. uncovered this inefficiency via simulation and

rearranged the input query string in an interleaved layout to

remove this inefficiency.

While these non-coalesced accesses were eventually no-

ticed by an experienced GPU architect, the developers of

MUMmerGPU could have noticed such an inefficiency using

AerialVision. Figure 12(a) shows the number of non-coalesced

memory accesses generated per warp for each CUDA source

line in MUMmerGPU. The plot indicates that all of the source

lines (Line 111, 186 and 205) accessing the query strings

generate more than 5 memory accesses on average for each

warp (while each would generate only two with fully coalesced

accesses). With this plot, we also noticed some non-coalesced

accesses generated from the dereferencing of a pointer in

set result() at Line 36 and 37. However, we also checked the

execution count (shown in Figure 12(b)) and found that this

function is executed infrequently.

E. Identifying Performance Bottlenecks with a PC-Histogram

Figure 13 illustrates a novel feature of AerialVision—the

PC-histogram. The PC-histogram shows, for a given sample

period, which lines in the source code were executed. The

example illustrates how this feature can be used to identify

performance issues at the source code level in a more general

way than the source code annotation approach described in

the previous sections. This figure again shows the execution

of MUMmerGPU. The box highlights a region where perfor-

mance suddenly drops as can be seen in the upper plot (IPC).

The bottom plot (PC-histogram) shows that only a couple of

lines of code are executed for most of the execution time

during this region. These lines correspond to the non-coalesced

accesses identified in the earlier section. Note that, whereas the

source code annotation feature in the prior section requires

some knowledge of the particular performance problem, the

PC-histogram can identify lines of source code that are cor-

related to performance problems even if no metric has yet

been identified to measure the specific problem. We have used

the PC-histogram feature to identify additional optimizations

in MUMmerGPU (not shown). Specifically, we used it to

discover that texture memory accesses to the root of the tree-

based data structure in MUMmerGPU may cause imbalances

in DRAM utilization (eliminating this bottleneck is beyond the

scope of this paper).

IV. RELATED WORK

IBM Performance Debugging Tool (PDT) [10] is a user-

level tracer developed by IBM that records events specific to

the Cell processor during application execution. The tracing

mechanism of PDT is implemented by instrumenting the

libraries that implement the Cell SDK functionality. At each

traced event a PDT hook routine is called to send the trace data

to a global trace buffer in the main memory—an overhead that

may perturb the behavior of the measured application. With

AerialVision, the developers run their applications through

GPGPU-Sim. The extra instrumentation code in GPGPU-

Sim for collecting data for AerialVision may slow down

the simulation by about 13%, but the simulated application

behavior is not affected.

Cetra [27] is a collection of tools, complementary to PDT,

that provides a mechanism to obtain traces of the interactions

between the user application and the OS kernel on Cell. It

is designed to provide information on the runtime scheduling

decisions of the kernel-level scheduler. The captured traces are

post-processed into textual traces visualized by Paraver [12].

Cetra and AerialVision are both used to study global runtime

behavior of a parallel processor. Cetra captures OS-level task

management events such as contexts and context switching

overhead. Instead of capturing individual events that would

lead to a trace size explosion on a massively multithreaded

GPU architecture, AerialVision focuses on visualizing runtime

performance metrics that capture the aggregate effects of these

events. This allows AerialVision to serve the purpose of both

PDT and Cetra: the user can zoom out to grasp the overall

runtime behavior of an application without losing track of the

effects from the low-level events.

Paraver [12] is a flexible trace analysis tool that allows

the user to visualize global behavior as well as inspecting

individual events in textual traces. Paraver trace generation

tools can capture hardware performance counters and events

from parallel applications written in OpenMP, MPI and Java

for visualization. Paraver’s graphic view layouts individual

runtime events associated with a particular hardware node in a

horizontal color stripe. This is similar to the parallel intensity

plots in the time-lapse view of AerialVision, except instead

of displaying each individual event, parallel intensity plots

display runtime performance metrics that capture the aggregate

effects of these events. In addition, Paraver cannot directly

expose performance statistics to the source code level for per-

formance tuning (an important feature of AerialVision which

allows users to pinpoint the bottlenecks of an application).

Tuning and Analysis Utilities (TAU) [37] is a performance

analysis tool framework for parallel Fortran, C++, C, Java, and

Python applications that uses source code and static binary

instrumentation. Open|SpeedShop (O|SS) [1] is a modular

open-source performance analysis tool framework that sup-

ports dynamic instrumentation for applications running on

Linux clusters. Both tools feature two modes of performance

data collection: profiling (or sampling experiment in O|SS)

that attributes sampled performance metrics to different parts

of an application for a performance overview, and tracing (or

tracing experiment in O|SS) that records individual events in

detail. Both tools provide flexible graphical user interfaces for

visualizing the collected data (ParaProf in TAU and a custom

python tool in O|SS). AerialVision’s time-lapse view attempts

to bridge between these two modes for many-core accelerator

architectures, in which browsing through individual events can

be overwhelming while aggregate performance metrics alone

fail to capture some important performance dynamics.

HPCToolkit [33] is a language-independent tool suite de-

signed to measure the performance of fully-optimized exe-

cutables generated by vendor compilers. Instead of relying on

compiler-generated debug information to map an instruction

to its associated source code line (what AerialVision currently

does in source code view), HPCToolkit analyzes the applica-

tion binaries directly to recover the program structure [40]. It

then correlates the statistically sampled performance metrics

with the source code structure and presents the metrics with

the associated source code. HPCToolkit has been applied to

petascale parallel systems [39].

The Intel Performance Tuning Utility (Intel PTU) [7] is a

performance analyzer enhanced with features to assist perfor-

mance tuning for parallel applications. Similar to the Intel

VTuneTM Performance Analyzer [20], Intel PTU interfaces

directly with the performance monitoring unit (PMU) on

Intel processors to provide low-overhead event sampling. The

sampled performance events, such as cache misses and branch

mispredictions, are presented to the user together with the

source code that causes the events. This allows the user

to discover hotspots in the application quickly and helps

focus their efforts into optimizing bottlenecks found in these

hotspots. Other IDEs also provide similar features [8], [38].

AerialVision is, to our best knowledge, the first tool providing

this feature for CUDA applications.

The Graphical Pipeline Viewer (GPV) [42], in conjunction

with the SimpleScalar tool set [11], provides a detailed view

for each instruction in the pipeline. GPV shows the pipeline

stage transitions and various architectural events associated

with each instruction. While GPV is useful for analyzing

details of an out-of-order superscalar processor with a small

window of in-flight instructions, a similar tool for a massively-

parallel architecture such as a GPU would require the user to

monitor the progresses of tens of thousands of in-flight instruc-

tions distributed in tens of cores simultaneously. Even if the

tool could provide an interface to do so, the sheer amount of

data would overwhelm the user. AerialVision instead focuses

on visualizing the global runtime behavior of the whole GPU.

Due to the complex, non-linear nature of GPUs, a method-

ology for optimizing CUDA applications has been an on-

going research topic. Ryoo et al. [35] have demonstrated

the complexity involved in optimizing applications on GPUs

and proposed a methodology for pruning the optimization

search space to speed up the process. Hong et al. [19] have

proposed a simple analytical model estimating the execution

time of CUDA applications to provide insights into identifying

performance bottlenecks for these applications.

NVIDIA has recently released the CUDA visual pro-

filer [29], a performance profiling tool exposing part of the

hardware performance counters in the GPU to CUDA software

developers. The CUDA visual profiler reports aggregate per-

formance statistics at the end of each kernel launch. The run-

time behavior of the profiled CUDA application is not exposed

with these performance statistics. Moreover, due to constraints

in the GPU hardware, the profiler can only target one of the

SMs in the GPU. To produce an accurate measurement, the

CUDA application needs to have reasonably homogeneously-

behaving thread blocks and to launch enough threads to keep

the GPU busy for an extended period so that the probed SM

gets a representative share of the overall workload. CUDA

applications with irregular workloads per thread block may

not be able to satisfy these requirements. AerialVision, on the

other hand, collects the runtime statistics of a CUDA appli-

cation running on GPGPU-Sim. Statistics from all simulated

hardware units contribute to the measurement.

V. CONCLUSIONS AND FUTURE WORK

Due to its complexity, optimization for many-core acceler-

ator architectures has been challenging for hardware/software

developers. As we have shown in the paper, subtle design

choices in a many-core architecture design can significantly

alter overall performance. Some of these design choices can

lead to intermittent inefficiencies (such as congestion and

starvation) in the system. Discovering these inefficiencies can

be non-trivial without a visual inspection of the runtime

behavior of the microarchitecture. In this paper, we presented

AerialVision, a novel GPU visualization tool interfaced with

the GPGPU-Sim simulator to provide hardware/software de-

velopers with insights on the performance bottlenecks of var-

ious CUDA applications. AerialVision provides a time-lapse

view for visualizing the global runtime behavior of various

CUDA applications on a many-core architecture. This feature

helps hardware and software developers identify sources of

dynamic and intermittent inefficiency. In part to help software

designers pinpoint bottlenecks in their applications, AerialVi-

sion provides a source code view that annotates individual

lines of source code with performance statistics. The PC-

Histogram provides an orthogonal feature that can pinpoint

intermittent inefficiencies in applications at the source code

level. The case studies presented in this paper demonstrated

that AerialVision provides a highly effective means for hard-

ware designers and software designers alike to search for

performance bottlenecks in applications running on massively-

parallel many-core architectures such as GPUs.

ACKNOWLEDGMENTS

We thank Johnny Kuan, Henry Wong, and the anonymous

reviewers for their valuable comments on this work. We

also thank Ali Bakhoda for his help in implementing part

of the interface between GPGPU-Sim and AerialVision and

his valuable feedback on this work. This work was partly

supported by the Natural Sciences and Engineering Research

Council of Canada.
REFERENCES

[1] “Open|SpeedShop.” [Online]. Available: http://www.openspeedshop.
org/wp/

[2] ATI CTM Guide, 1st ed., Advanced Micro Devices, Inc., 2006.
[3] Press Release: AMD Delivers Enthusiast Performance Leadership with

the Introduction of the ATI Radeon HD 3870 X2, http://www.amd.com,
Advanced Micro Devices, Inc., 28 January 2008.

[4] S. Al-Kiswany, “Personal Communication,” 2009.
[5] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and M. Ri-

peanu, “StoreGPU: Exploiting Graphics Processing Units to Accelerate
Distributed Storage Systems,” in Proc. 17th Int’l Symp. on High Perfor-
mance Distributed Computing, 2008, pp. 165–174.

[6] A. R. Alameldeen and D. A. Wood, “Variability in architectural simu-
lations of multi-threaded workloads,” in Proc. 9th Int’l Symp. on High
Performance Computer Architecture, 2003, pp. 7–18.

[7] A. Alexandrov, S. Bratanov, J. Fedorova, D. Levinthal, I. Lopatin,
and D. Ryabtsev, “Parallelization Made Easier with Intel Performance-
Tuning Utility,” Intel Technology Journal, vol. 11, no. 4, 2007.

[8] Apple Inc., “Optimizing with Shark.” [Online]. Available: http:
//developer.apple.com/tools/shark optimize.html

[9] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
IEEE Int’l Symp. on Performance Analysis of Systems and Software

(ISPASS 2009), April 2009, pp. 163–174.
[10] M. Biberstein, U. Shvadron, J. Turek, B. Mendelson, and M. Chang,

“Trace-based Performance Analysis on Cell BE,” in IEEE Int’l Symp.

on Performance Analysis of Systems and Software (ISPASS 2008), April
2008, pp. 213–222.

[11] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,”
http://www.simplescalar.com, 1997.

[12] CEPBA, “Paraver - Parallel Program Visualization and Analysis tool -
REFERENCE MANUAL,” 2001.

[13] D. Dale, M. Droettboom, E. Firing, and J. Hunter, “Matplotlib User’s
Guide,” http://matplotlib.sourceforge.net/Matplotlib.pdf.

[14] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic Warp
Formation and Scheduling for Efficient GPU Control Flow,” in Proc.
40th IEEE/ACM Int’l Symp. on Microarchitecture, 2007.

[15] ——, “Dynamic Warp Formation: Efficient MIMD Control Flow on
SIMD Graphics Hardware,” ACM Trans. Archit. Code Optim., vol. 6,
no. 2, pp. 1–37, 2009.

[16] M. Giles and S. Xiaoke, “Notes on Using the NVIDIA 8800
GTX Graphics Card.” [Online]. Available: http://people.maths.ox.ac.uk/
∼gilesm/hpc/

[17] P. Harish and P. J. Narayanan, “Accelerating Large Graph Algorithms
on the GPU Using CUDA,” in HiPC, 2007, pp. 197–208.

[18] M. Harris, “UNSW CUDA Tutorial Part 4 – Optimizing
CUDA.” [Online]. Available: http://www.cse.unsw.edu.au/∼pls/
cuda-workshop09/slides/04 OptimizingCUDA full.pdf

[19] S. Hong and H. Kim, “An Analytical Model for a GPU Architecture
with Memory-Level and Thread-Level Parallelism Awareness,” Proc.
36th Int’l Symp. on Computer Architecture, vol. 37, no. 3, pp. 152–163,
2009.

[20] Intel Corp., “Intel VTuneT M Performance Analyzer.” [Online].
Available: http://software.intel.com/en-us/intel-vtune/

[21] OpenCL 1.0 Specification, 1st ed., Khronos Group, 2009.
[22] A. Levinthal and T. Porter, “Chap - a SIMD Graphics Processor,” in

Proc. 11th Conf. on Computer Graphics and Interactive Techniques
(SIGGRAPH ’84), 1984, pp. 77–82.

[23] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A Unified Graphics and Computing Architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[24] Marco Chiappetta, “ATI Stream Computing: ATI RadeonTM HD
3800/4800 Series GPU Hardware Overview.” [Online]. Available:
http://developer.amd.com/gpu/ATIStreamSDK/pages/Publications.aspx

[25] Maxime, “Ray tracing,” http://www.nvidia.com/cuda.
[26] J. Meng, D. Tarjan, and K. Skadron, “Leveraging Memory Level Par-

allelism Using Dynamic Warp Subdivision,” Department of Computer
Science, University of Virginia, Tech. Rep. CS-2009-02, 2009.

[27] J. Merino, L. Alvarez, M. Gil, and N. Navarro, “Cetra: A Trace and
Analysis Framework for the Evaluation of Cell BE systems,” in IEEE

Int’l Symp. on Performance Analysis of Systems and Software (ISPASS
2009), April 2009, pp. 43–52.

[28] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel
Programming with CUDA,” ACM Queue, vol. 6, no. 2, pp. 40–53, Mar.-
Apr. 2008.

[29] NVIDIA CUDA Visual Profiler, 1st ed., NVIDIA Corp., 2008.
[Online]. Available: http://developer.download.nvidia.com/compute/
cuda/2 3/toolkit/docs/cudaprof 2.3 readme.txt

[30] NVIDIA Corporation, “NVIDIA CUDA SDK code samples.”
[Online]. Available: http://developer.download.nvidia.com/compute/
cuda/sdk/website/samples.html

[31] NVIDIA CUDA Programming Guide, 1st ed., NVIDIA Corporation,
2007.

[32] Press Release: NVIDIA Tesla GPU Computing Processor Ushers In

the Era of Personal Supercomputing, http://www.nvidia.com, NVIDIA
Corporation, 20 June 2007.

[33] Rice University, “HPCToolkit.” [Online]. Available: http://hpctoolkit.
org/

[34] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory Access Scheduling,” in Proc. 27th Int’l Symp. on Computer

Architecture, 2000, pp. 128–138.
[35] S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S.-Z. Ueng, J. Stratton,

and W. W. Hwu, “Program Optimization Space Pruning for a Mul-
tithreaded GPU,” in Proc. 6th Int’l Symp. on Code Generation and

Optimization (CGO), April 2008, pp. 195–204.
[36] M. Schatz, C. Trapnell, A. Delcher, and A. Varshney, “High-

Throughput Sequence Alignment Using Graphics Processing Units,”
BMC Bioinformatics, vol. 8, no. 1, p. 474, 2007. [Online]. Available:
http://www.biomedcentral.com/1471-2105/8/474

[37] S. S. Shende and A. D. Malony, “The TAU Parallel Performance
System,” Int. J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 287–
311, 2006.

[38] Sun Microsystems, “Sun Studio Performance Analyzer.” [Online].
Available: http://developers.sun.com/sunstudio/

[39] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M. W. Fagan,
and M. Krentel, “Diagnosing Performance Bottlenecks in Emerging
Petascale Applications,” in ACM/IEEE Conference on Supercomputing

(SC’09). ACM, 2009, pp. 1–11.
[40] N. R. Tallent, J. M. Mellor-Crummey, and M. W. Fagan, “Binary

Analysis for Measurement and Attribution of Program Performance,”
in Proc. ACM SIGPLAN Conf. on Programming Language Design and

Implementation (PLDI’09), 2009, pp. 441–452.
[41] D. Tarjan, J. Meng, and K. Skadron, “Increasing Memory Miss Toler-

ance for SIMD Cores,” in ACM/IEEE Conference on Supercomputing
(SC’09), 2009.

[42] C. Weaver, K. C. Barr, E. Marsman, D. Ernst, and T. Austin, “Perfor-
mance Analysis Using Pipeline Visualization,” in Performance Analysis
of Systems and Software, 2001. ISPASS. 2001 IEEE Int’l Symp. on, 2001,
pp. 18–21.

[43] G. Yuan, “Personal Communication,” 2009.
[44] G. L. Yuan, A. Bakhoda, and T. M. Aamodt, “Complexity Effective

Memory Access Scheduling for Many-Core Accelerator Architectures,”
in Proc. 42th IEEE/ACM Int’l Symp. on Microarchitecture, 2009.

