
Kilo TM Correctness: ABA Tolerance and

Validation-Commit Indivisibility

Wilson W. L. Fung Inderpreet Singh Tor M. Aamodt
wwlfung@ece.ubc.ca isingh@ece.ubc.ca aamodt@ece.ubc.ca

Department of Computer and Electrical Engineering

University of British Columbia

May 24, 2012

1 Summary

Kilo TM is a hardware transactional memory (TM) system proposed for GPU architec-
tures [1]. In Kilo TM, each transaction detects the existence of conflicts with other trans-
actions via value-based conflict detection [2, 3]. With value-based conflict detection, each
transaction buffers its writes to memory in a write-log and saves the values of its reads from
memory in a read-log during execution. Upon its completion, the transaction compares the
saved values of its read-set with the latest values in memory before it commits. We refer
this comparison as validation. Any difference between the saved value and the latest value
in memory indicates the existence of a conflict. Kilo TM uses value-based conflict detection
because it avoids direct communication between transactions, and it does not require any
essential on-chip storage (Kilo TM uses on-chip storage to improve commit parallelism).
More details regarding the design of Kilo TM are available in our paper for the 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 2011) [1].

A general concern for the correctness of value-based conflict detection is the possibility
of subtle bugs due to the ABA problem. We show that value-based conflict detection can
tolerate the ABA problem, and like NOrec [3], we can create a logical order for Kilo TM in
which validation and commit of each transaction are indivisible.

1.1 Tolerance to the ABA Problem

Examples of ABA problems have been found for published non-blocking algorithms. These
generally result from an implicit assumption that atomicity of a high-level operation on a
concurrent data structure can be inferred as long as the value of a guard variable is the

1



same after a sequence of low-level instructions (that implements the operation). This fallacy
results in subtle bugs [4].

We argue a TM system with value-based conflict detection is not vulnerable to the ABA
problem as long as it ensures that each transaction’s read-set has observed a consistent
view of memory (i.e. conflict detection is not comparing values with a partially committed
transaction).

Consider a TM system with address-based conflict detection (full knowledge of which
locations have been modified by other transactions). If any location read by a committing
transaction has been changed and restored to its original value since the transaction originally
read it, aborting the transaction and rerunning it instantaneously with the updated memory
would yield the same result (same addresses and values in its write-set). This situation
summarizes the behavior of a transaction in Kilo TM that has passed value-based conflict
detection where other conflicting transactions changed and then restored values during the
transaction execution. Committing the transaction directly without rerunning it effectively
serializes it behind the last committed transaction. This requires the transaction’s read-
set to observe a consistent view of memory and commit before other transactions update
locations in the transaction’s write-set, which is achieved as shown below.

1.2 Logical Validation-Commit Indivisibility

In Kilo TM, each transaction TX is given a unique commit ID prior to validation and commit,
and this ID defines the commit order of TX . TX will obtain a new commit ID for each
execution attempt (i.e. a new ID is assigned every time TX was aborted). Given two
transactions TX and TY with commit ID X and Y , where X < Y , Kilo TM’s implementation
guarantees the following partial ordering:

• Validation of each word w by TY always happens after any write to w by TX .

• Any write to w by TY always happens after any write to w by TX .

• Validation of w by TX always happens before any write to w by TY .

These guarantees order validations and writes at each memory location (word) in ascending
commit order.

With this per-word order, it can be shown that transactions committed by Kilo TM
satisfy conflict serializability [5]: All conflict relations produced from the accesses at each
word will obey the commit order. Hence, a conflict graph created from these conflict relations
is always acyclic.

Conflict serializability implies a logical timeline in which validation and commit of each
transaction are indivisible (performed without being interleaved by other transactions). The
logical timeline also implies that validation of each transaction always observes a consistent
view of memory.

2 Outline of Proof

The remainder of this document contains a proof of Kilo TM correctness. The proof begins
with defining a memory value-location framework that is used to represent the values ob-
served and produced by each transaction. This framework is then used to model a general

2



ABA problem scenario specific to TM systems that employ value-based conflict detection.
The proof for Theorem 1 uses this framework to show that such TM systems can tolerate the
ABA problem, under the assumptions that validation and commit of each transaction are
indivisible, and validation is done on a consistent view of memory. To show that Kilo TM
satisfies these assumptions, Claim 1 to 6 are used to prove Lemma 1 and Lemma 2, which
together show that accesses from transactions to each word are ordered by ascending com-
mit IDs. From this per-word ordering, Lemma 3 shows that validation performed by each
transaction accesses a consistent view of memory. Then, Lemma 4 shows that accesses from
transactions satisfy conflict serializability [5], which means there exists a logical timeline in
which validation and commit of each transaction is indivisible. Finally, Theorem 2 combines
Lemma 3 and Lemma 4 to show that Kilo TM satisfies the assumptions for Theorem 1.
Therefore, Kilo TM can tolerate the ABA problem.

3 Memory Value-Location Framework

for the ABA Problem

Transactional memory (TM) provides the programmer with the abstraction that transactions
are executed in some serialization order. In this serialization order, transactions are executed
serially one after another. Each transaction T advances the memory state from the original
state observed by T , MO, to a new state MN . We denote this transition from MO to MN

with MO → MN .
Each memory state is defined by the value at every location in the entire memory space

M (i.e. a mapping from each address in M to its value). A memory state MX is equivalent
to another memory state MY if the value at each location in MX is equal to the value at the
corresponding location in MY . For the rest of this discussion, we use subscripts to denote
subsets of locations within a memory space and superscripts to denote different memory
states (i.e. values at a set of memory locations). For example, MR is a subset of memory
locations (not values) of the memory space M , ML is the values in every location in the
entire memory space M , and ML

R is the set of address-value pairs for the memory locations
(addresses) in MR with values from the memory state ML. We call ML

R a partial memory
state.

For each transaction TX , the entire memory space M is divided into the following subsets:
MR,X = The memory locations read by TX as it executes (Read-Set).
MW,X = The memory locations written by TX when it commits (Write-Set).
MA,X = MR,X ∪MW,X = The memory locations that are accessed (either read or

written) by TX .
MI,X = M−MA,X = Memory locations that are ignored (neither read nor written)

by TX .
MRW,X = MR,X ∩MW,X = Memory locations in TX ’s Read-Set that are also part of

its Write-Set.
MRO,X = MR,X −MRW,X = Memory locations that are only read by TX .
MWO,X = MW,X −MRW,X = Memory locations that are only written by TX .

Notice MI,X , MRW,X , MRO,X and MWO,X are all disjoint sets, and M = MI,X ∪ MRW,X ∪
MRO,X ∪MWO,X .

3



During execution, each transaction TX observes the partial memory stateMO
R,X = MO

RO,X∪
MO

RW,X , and writes to addresses in MW,X , producing the new partial memory state MN
W,X =

MN
WO,X ∪ MN

RW,X . In the mean time, other transactions may have committed, advancing
the latest global memory states to ML = ML

R,X ∪ML
W,X ∪ML

I,X . With value-based conflict
detection, the transaction checks to see if ML

R,X = MO
R,X before it commits. If the two partial

memory states are indeed equivalent, TX commits by advancing the partial memory state in
its write-set from ML

W,X to MN
W,X . This appends the serialization order with a new transition

(ML → MN).

3.1 ABA Problem

The ABA problem manifests in non-blocking algorithms, where multiple threads may operate
on a data structure simultaneously, and the atomicity of each operation is presumed to be
guaranteed via success of one or more atomicCAS operations. Many non-blocking algorithms
rely on the following assumption: If the value of a guarding variable has not been modified
since it was last read, then no other threads have modified the data structure, and thus
this thread has performed the current operation in isolation. This assumption ignores the
possibility that several other operations may have occurred in between, first modifying the
guard variable to other values, then restoring the original value before the current thread
uses atomicCAS to check the variable’s value. The fallacy in this assumption is how the
ABA problem manifests in various non-blocking algorithms, resulting in subtle bugs that
are hard to detect [4, 6].

3.2 Potential ABA Problem in Transactional Memory

In the context of value-based conflict detection employed in Kilo TM, we consider the po-
tential for ABA problems in the following form. A set of transactions TABA = {T1, . . . TL}
have committed in between time t1, when transaction TX first started to read its read-set
MR,X (observing state MO

R,X from MO, the memory state before any transaction in TABA

commits), and the time t2, when TX is validating its read-set against the latest global mem-
ory state. We assume that transactions are weakly isolated [7] and ignore non-transactional
writes in this discussion. Transactions in TABA advance the global memory state from MO

through a series of memory states and eventually to ML. ML is not necessarily equivalent
to MO, but the part that belongs to TX ’s read-set is equivalent: M

O
R,X = ML

R,X . Value-based
conflict detection performed by TX will observe that its read-set has not been changed, and
TX “assumes” no conflicting transaction has committed between t1 and t2 (i.e. the values in
MR,X appear to have never been modified in this window). Subsequently, TX commits by
advancing ML

W,X to MN
W,X , whereas the intended transition (one that would have occurred

if TX has executed in isolation without the presence of transactions in TABA) is from MO
W,X

to MN
W,X . This intended transition (MO → MN) violates the existing serialization order

because the latest memory state is ML. A TM system with address-based conflict detection
will regard this as a conflict. In such a system, TX will be restarted to resolve this conflict.
However, we will show that this restart is not needed.

4



3.3 Tolerance to the ABA Problem

The following proof shows that committing TX directly in the situation described in Sec-
tion 3.2 will result in the same serialization order in which TX detects the conflict and reruns
itself starting at time t2. In other words, TM systems employing value-based conflict de-
tection can tolerate the ABA problem by yielding the same memory state transition as TM
systems employing address-based conflict detection.

Theorem 1. Directly committing TX in the situation described in Section 3.2 will result
in the same serialization order in which TX detects the conflict and reruns itself instantly
starting at time t2.

Proof. Assume that the TM system employs a separate mechanism other than value-based
conflict detection that is not prone to the ABA problem. TX , upon detecting the conflict at
time t2, aborts itself and restarts immediately. Let T 1

X be this new instance of TX . T
1

X will
observe its read-set from ML. Since ML

R,X = MO
R,X , T

1

X will produce the identical write-set
partial memory state MN

W,X as TX . If T 1

X finishes executing instantaneously with no other
transactions committing in between, its commit will advance the partial memory state in
MW,X from ML

W,X to MN
W,X and T 1

X will transition the global memory state from ML to
MN = (MN

I,X ∪MN
RO,X ∪MN

W,X). Values in (MI,X ∪MRO,X) remain unchanged between ML

and MN (i.e. MN
I,X = ML

I,X and MN
RO,X = ML

RO,X). Committing TX at time t2 would have
produced the same transition (ML → MN): ML

W,X is advanced to MN
W,X , while values in

(MI,X ∪MRO,X) remain unchanged. Therefore, as committing either TX or T 1

X results in the
same transition, the programmer cannot discern between the two instances of execution.

The above proof made two assumptions:

Assumption 1. TX commits immediately after value-based conflict detection, such that no
other transactions can commit in between to advance the memory state away from ML.

Assumption 2. The value-based conflict detection performed by TX is comparing the orig-
inal read-set state MO

R,X against a consistent view of the global memory state ML
R,X . Here

consistent view means that during conflict detection, ML
R,X is not advanced to another mem-

ory state by the commit of another transaction (i.e. ML
R,X is the part of the memory state

that exists in between the commits of two transactions).

We proceed to demonstrate that Kilo TM, despite its distributed design, satisfies both
assumptions.

3.4 Inconsistent Read-Set

While TX can possibly have observed an inconsistent view of memory (e.g. partially com-
mitted states from transactions in TABA) during its execution, Theorem 1 holds as long as
TX ’s observed read-set equals to ML

R,X . TX may also observe inconsistent values from a
single memory location. In Kilo TM, each transactional load appends the value read from
global memory into a linear read-log (if it is not accessing the transaction’s write-set) [1].
The inconsistent values observed from a single memory location by TX will create multiple
read-log entries that contain different values for a single location. During value-based conflict

5



detection, only one of the values will match with the one in ML
R,X . The mismatched entry

will cause TX ’s validation to fail (subsequently aborting TX). TX may enter an infinite loop
due to the inconsistent view of memory. To ensure that TX is eventually aborted, Kilo TM
employs a watchdog timer to trigger a validation for TX [1].

4 Transaction Components in Kilo TM

In Kilo TM, each transaction, TX , is comprised of the following sequence of operations:

TX = R(r1) . . . R(rm) Rv(r1) . . . Rv(rm) W (w1) . . .W (wn)

• R(r1) is a read operation from word r1, and MR,X = {r1 . . . rm} is the read-set of TX .

• Rv(r1) is a validation operation on word r1, ensuring that the value obtained by R(r1)
equals the value in global memory. (This is the operation that performs value-based
conflict detection.)

• W (w1) is a write operation to word w1, and MW,X = {w1 . . . wn} is the write-set of TX .
The write operation is performed only while TX commits, and it updates the value of w1

in global memory.

When there are multiple transactions involved, the notation Rv(TX , w) denotes the valida-
tion operation on word w for transaction TX ; whereas notation Rv(TX) denotes all of the
validation operations required by TX .

TX is executed on a single SIMT core [1]. The core interacts with a set of commit units
(one in each memory partition) to validate and commit TX . The following messages are sent
between the commit units and the core that executes TX :

• Vk(TX) = (pass/fail) is the validation outcome for TX at commit unit k. Vk(TX) = pass if
validation operations performed on each word w contained in commit unit k for TX , where
w ∈ MR,X , all succeed; otherwise, Vk(TX) = fail. This message is sent from each commit
unit k to the core running TX .

• F (TX) = (pass/fail) is the final outcome for TX . F (TX) = pass if all validation outcomes
received by the core Vk(TX) = pass; otherwise, F (TX) = fail. This message is sent from
the core to each commit unit. Write operations W (TX) are only performed if F (TX) =
pass.

4.1 Commit ID and Commit Order

Prior to validation and commit, a transaction T is given a unique commit ID. This ID defines
the commit order of T . A transaction with lower commit ID has an earlier commit order
than those with a higher commit ID. Namely, given transactions TX and TY with commit
ID X and Y respectively, X < Y ⇐⇒ TX <t TY . Here <t denotes the commit order.
Each transaction will obtain a new commit ID for each execution attempt (i.e. a new ID is
assigned every time the transaction was aborted).

The commit order limits how a transaction may appear in the serialization order. Let
ML be the latest memory state, and TX and TY be two transactions, with TX <t TY , that
are ready to commit. Only one of the following can happen:

6



• Both TX and TY commit, resulting in transitions ML → MX1 → MY 2, where MX1 is the
memory state from ML after TX has committed and MY 2 is the memory state from MX1

after TY has committed.

• Only TX commits, resulting in transition ML → MX1, where MX1 is the memory state
from ML after TX has committed.

• Only TY commits, resulting in transition ML → MY 1, where MY 1 is the memory state
from ML after TY has committed.

• Neither TX nor TY commits, resulting in no transition.

Notice that transitions ML → MY 1 → MX2 (MX2 is the memory state from MY 1 after TX

has committed) is not allowed. This restriction is enforced by Claim 2 below. This allows Kilo
TM to handle transactions with write-after-write conflicts by ordering their commits without
synchronizing among different commit units (instead of aborting one of them). RingSTM [8]
also uses this policy to handle write-after-write conflicts.

5 Partial Orderings Provided by Kilo TM

Kilo TM’s implementation provides a set of partial orderings that we present in the following
claims. The following discussions on the validity of these claims assume that the reader is
familiar with the implementation of Kilo TM. An in-depth description of Kilo TM’s imple-
mentation can be found in Section 4.5 of the MICRO 2011 paper [1]. These claims will be
used to show that Kilo TM satisfies both Assumption 1 and Assumption 2 required for ABA
problem tolerance (Theorem 1). We denote these partial orderings with <P . Given two
events/operations A and B, A <P B means A happens before B in real time.

Claim 1. At each commit unit, given transactions TX and TY , where TX <t TY , a write to
a memory location w performed by a transaction TX always happens before validation of the
same location w performed by a transaction TY . In our notation, W (TX , w) <P Rv(TY , w).

Proof. In Kilo TM’s implementation, transactions always perform hazard detection in com-
mit order. Each commit unit can speculatively validate each memory location in the read-set
of TY (MR,Y ) as the corresponding read-log entry arrives at the unit. Later in hazard detec-
tion, if the unit detects (via address-based conflict detection) that TX is writing to any part of
MR,Y , the unit will revalidate the entire read-set of TY after TX has finished committing.

Claim 2. Let TX and TY be transactions with TX <t TY . If a memory location w is in the
write-sets of both TX and TY , writes to w by transaction TX always happen before writes to
w by transaction TY . Namely, W (TX , w) <P W (TY , w).

Proof. This is enforced at the commit stage in each commit unit. This ordering is guaranteed
by issuing the write operations of each passed transaction in ascending commit order. The
GPU memory subsystem in our architecture can reorder accesses to different locations to
optimize for bandwidth, but it maintains the ordering of accesses to the same location.

Claim 3. At each commit unit, the write operations for a transaction TX are only commenced
after the commit unit has received the final outcome F (TX) of TX from the core. Namely,
F (TX) <P W (TX).

7



Proof. This is enforced at the finalizing outcome stage in each commit unit.

Claim 4. The transaction will not send out the final outcome F (TX) to commit units until
it has received validation outcomes Vk(TX) from all commit units for the transaction. For
each commit unit k that contains any location in the read-set of TX , Vk(TX) <P F (TX).

Proof. This is enforced by the Kilo TM implementation at each SIMT core.

Claim 5. At each commit unit k that contains any location in the read-set of TX , the vali-
dation outcome Vk(TX) is sent after all validation operations are done. Namely, Rv(TX) <P

Vk(TX).

Proof. This is enforced at the finalizing outcome stage in each commit unit.

Claim 6. At each commit unit, the write operations for a transaction TX are only commenced
after the commit unit has received the final outcomes F (TY ) from all transactions TY with
earlier commit order if the commit unit contains any location in either read-set or write-set
of TY (MA,Y ). I.e. For all transaction TY with (TY <t TX) and the commit unit that contains
any location in MA,Y , F (TY ) <P W (TX).

Proof. This is enforced at the finalizing outcome stage in each commit unit. At each commit
unit, the commit unit entry that corresponds to a transaction TY waits for the final outcome
F (TY ) before proceeding to the commit stage. TY stalling at the finalizing outcome stage
will forbid any transaction with a younger commit ID (e.g. TX) to proceed to the next stage,
even after F (TX) has been received by the unit. Since write operations are only issued in
commit stage, this stalling behavior enforces Claim 6.

6 Per-Word Access Ordering

Lemma 1 and 2 illustrate how Kilo TM orders accesses (validations and writes) to each
memory location (word) in ascending commit order. This ordering is used in Lemma 3
to prove that all validation operations for a given transaction TX are comparing against a
consistent view of ML

R,X (Assumption 2).

Lemma 1. Let TY be a transaction. For each memory location w in MRW,Y , validation
operation(s) to w by TY always happen before write operation(s) to w by TY .

Proof. Let tC be the time when TY starts sending the final outcome F (TY ) to each commit
unit from the core. By Claim 5, all the validation operations of w by TY (Rv(TY , w)) at each
commit unit k have to happen before the unit replies with the validation outcome Vk(TY )
back to the core. By Claim 4, all of these outcomes have to arrive at the core before TY sends
out F (TY ), i.e. before tC . The same commit unit k will receive F (TY ) at a time tK > tC .
By Claim 3, any write operation to w in MRW,Y by TY (W (TY , w)) has to happen after tK .

Putting it all together, all validation operations to w in MRW,Y by TY have to occur
before tC , which is before all write operations to w by TY . I.e. Rv(TY , w) <P tC <P tK <P

W (TY , w) ⇒ Rv(TY , w) <P W (TY , w).

8



Lemma 2. Let TX and TY be transactions with TX <t TY . For each memory location w,
operations (validation/write) to w by TX always happen before operations to w by TY , except
when both operations are validation.

Proof. This can be broken down into three separate orderings:

O1. W (TX , w) <P Rv(TY , w)

O2. W (TX , w) <P W (TY , w)

O3. Rv(TX , w) <P W (TY , w)

The first two orderings follow directly from Claim 1 and Claim 2 respectively. The final
ordering follows from Claim 4-6: At each commit unit k, the validation outcome of TX ,
Vk(TX), is only sent after all its validation operations are done (Claim 5), and the final
outcome F (TX) will only arrive after all validation outcomes have been received by the core
(Claim 4). By Claim 6, the write operations of TY will not be issued until the commit unit
has received F (TX). Putting it all together, let commit unit k be the unit containing location
w, Rv(TX , w) <P Vk(TX) <P F (TX) <P W (TY , w) ⇒ Rv(TX , w) <P W (TY , w).

7 Validation Against a Consistent View of Memory

Lemma 3. The value-based conflict detections (all validation operations) performed by TY

compare the original read-set state MO
R,Y against a consistent view of a global memory state

ML
R,Y .

Proof. Claim 2 (O2 in Lemma 2) specifies that each location in memory is written in as-
cending commit order. By O1 and O3 in Lemma 2, every validation by TY to a location w

in MR,Y is performed after all transactions with earlier commit orders have written to w and
before transactions with later commit orders write to w. The validation is also done before
TY writes to w itself (by Lemma 1). Hence, each validation Rv(TY , w) by TY will observe
the value of w that is written by the transaction with the latest commit order before TY ,
which is the same value of w in the memory state right after TY−1 commits (ML

R,Y ). Since
this applies to the validation of every w in MR,Y , the validation operations Rv(TY , w) for all
w in MR,Y are comparing against the same consistent view of global memory.

Comment: This can be explained in a simpler way via the commit IDs. Each commit
unit ensures that all validation operations of a transaction TX with CID = X are reading
from a memory state equivalent to the one right after TX−1 commits. Hence, TX is validating
against a consistent view of memory.

8 Logical Indivisibility of Validation and Commit

Kilo TM is designed to permit non-conflicting transactions to commit in parallel. This
means that memory state ML would likely be advanced to another memory state ML′

by the
commits of other transactions during the validation of TX and before TX can commit. This
seems to violate Assumption 1. However, with the per-word operation ordering illustrated

9



by Lemma 1 and 2, we can construct a logical timeline in which validation and commit of
each transaction are indivisible.

To construct such a logical timeline, we first define the validation and write operations
of a committed transaction TX as a mini-transaction:

CX = Rv(r1) . . . Rv(rm) W (w1) . . .W (wn)
Each transaction corresponds to a single mini-transaction. The commit order for each mini-
transaction is the same as its transaction counterpart. We show that operations performed
by these mini-transactions satisfy conflict serializability [5].

Lemma 4. The sequence of operations performed by any arbitrary mini-transactions with
Kilo TM satisfies conflict serializability.

Proof. Let be CX and CY be two mini-transactions with CX <t CY .
CX has read-set MR,X and write-set MW,X , and MA,X = MR,X ∪MW,X .
CY has read-set MR,Y and write-set MW,Y , and MA,Y = MR,Y ∪MW,Y .

Each memory location w that is accessed by both transactions (i.e. w is in (MA,X ∩MA,Y ))
will have the operations ordered according to the ordering defined by Lemma 1 and Lemma 2.
In all cases, the operations will produce the conflict relation (denoted by ordered pair
(Op(CA, w), Op(CB, w)) below, see definition 3.12 in Weikum and Vossen [5]) that aligns
with the commit order. Each conflict relation in turn creates directed edges for their corre-
sponding mini-transactions in a conflict graph (denoted by ordered pair (CA, CB) below, see
definition 3.15 in Weikum and Vossen [5]):

• Rv(CX , w) and W (CY , w) are always ordered in Rv(CX , w) <P W (CY , w), producing
conflict relation (Rv(CX , w),W (CY , w)) and conflict graph directed edge (CX , CY ).

• W (CX , w) and W (CY , w) are always ordered in W (CX , w) <P W (CY , w), producing con-
flict relation (W (CX , w),W (CY , w)) and conflict graph directed edge (CX , CY ).

• W (CX , w) and Rv(CY , w) are always ordered in W (CX , w) <P Rv(CY , w), producing
conflict relation (W (CX , w), Rv(CY , w)) and conflict graph directed edge (CX , CY ).

• Rv(CX , w) and Rv(CY , w) are freely ordered, but they produce no conflict relation.

Since every pair of mini-transactions has either no conflict, or produces conflict relation that
aligns with the commit order, the conflict graph created from the conflict relations among all
mini-transactions will not contain any cycle. Specifically, two transactions CA and CB with
CA <t CB can never have a directed path from CB to CA in the conflict graph. Therefore,
by theorem 3.10 in Weikum and Vossen [5], any sequence of operations performed by the
mini-transactions satisfies conflict serializability.

By Lemma 4 and the definition of conflict serializability (definition 3.14 in Weikum
and Vossen [5]), we can imply that any sequence of operations performed by the mini-
transactions with Kilo TM has a logically equivalent serial sequence. In this serial sequence,
operations performed by each mini-transaction are not interleaved by those from other mini-
transactions. This serial sequence forms a logical timeline in which validation and commit
of each transaction are indivisible.

10



9 Tolerance to ABA Problem (Kilo TM)

With Lemma 3 and Lemma 4 proving how Kilo TM satisfies Assumption 2 and Assumption 1
for Theorem 1, Theorem 2 follows:

Theorem 2. Kilo TM can tolerate the ABA problem.

Proof. Lemma 3 and Lemma 4 show that Kilo TM satisfies both assumptions for Theorem 1.
Hence, Kilo TM can tolerate the ABA problem.

References

[1] W. W. L. Fung et al., “Hardware Transactional Memory for GPU Architectures,” in
Proc. 44th Int’l Symp. on Microarchitecture (MICRO ’11), pp. 296–307, ACM, 2011.

[2] M. Olszewski et al., “JudoSTM: A Dynamic Binary-Rewriting Approach to Software
Transactional Memory,” in Int’l Conf. on Parallel Architecture and Compilation Tech-
niques, 2007.

[3] L. Dalessandro et al., “NOrec: Streamlining STM by Abolishing Ownership Records,”
in Proc. 15th Symp. on Principles and Practices of Parallel Programming (PPoPP 10),
pp. 67–78, ACM, 2010.

[4] M. M. Michael, “Practical Lock-Free and Wait-Free LL/SC/VL Implementations Using
64-Bit CAS,” in Proc. 18th Int’l Symp. on Distributed Computing (DISC 04), pp. 144–
158, Springer, 2004.

[5] G. WeiKum and G. Vossen, Transactional Information Systems: Theory Algorithms, and
the Practice of Concurrency Control and Recovery. Morgan Kaufmann, 2002.

[6] S. Doherty et al., “DCAS is not a Silver Bullet for Nonblocking Algorithm Design,” in
Symp. on Parallel Algorithms and Architectures, 2004.

[7] C. Blundell, E. C. Lewis, and M. M. K. Martin, “Deconstructing Transactional Semantics:
The Subtleties of Atomicity,” in WDDD, 2005.

[8] M. F. Spear et al., “RingSTM: Scalable Transactions with a Single Atomic Instruction,”
in Proc. 20thSymp. on Parallel Algorithms and Architectures (SPAA 08), pp. 275–284,
ACM, 2008.

11


