
Stripes: Bit-Serial Deep Neural Network Computing
Patrick Judd∗, Jorge Albericio∗, Tayler Hetherington†, Tor M. Aamodt†, Andreas Moshovos∗

∗ Department of Electrical and Computer Engineering
University of Toronto

{juddpatr,jorge,moshovos}@ece.utoronto.ca

† Department of Electrical and Computer Engineering
University of British Columbia
{taylerh,aamodt}@ece.ubc.ca

Abstract—Motivated by the variance in the numerical precision
requirements of Deep Neural Networks (DNNs) [1], [2], Stripes
(STR), a hardware accelerator is presented whose execution time
scales almost proportionally with the length of the numerical
representation used. STR relies on bit-serial compute units and
on the parallelism that is naturally present within DNNs to
improve performance and energy with no accuracy loss. In
addition, STR provides a new degree of adaptivity enabling
on-the-fly trade-offs among accuracy, performance, and energy.
Experimental measurements over a set of DNNs for image
classification show that STR improves performance over a state-
of-the-art accelerator [3] from 1.30x to 4.51x and by 1.92x on
average with no accuracy loss. STR is 57% more energy efficient
than the baseline at a cost of 32% additional area. Additionally,
by enabling configurable, per-layer and per-bit precision control,
STR allows the user to trade accuracy for further speedup and
energy efficiency.

I. INTRODUCTION

Deep neural networks (DNNs) are the state-of-the-art tech-
nique in many recognition tasks such as object [4] and speech
recognition [5]. DNNs comprise a feed-forward arrangement
of layers, each exhibiting high computational demands and
parallelism which are commonly exploited with the use of
Graphics Processing Units (GPUs). However, the high com-
putation demands of DNNs and the need for higher energy
efficiency motivated special purpose architectures such as the
state-of-the-art DaDianNao (DaDN) which was reported to be
up to 330x more energy efficient than a GPU [3]. As power
tends to be the limiting factor in modern high-performance
designs, it is essential to achieve better energy efficiency in
order to improve performance further under the given power
constraints [6].

This work presents Stripes (STR), an implementation of a
DNN performance improvement technique that 1) is com-
plementary to existing techniques which exploit parallelism
across computations, while 2) improving energy efficiency,
and 3) enabling accuracy vs. performance trade offs. STR
goes beyond parallelism across computations and exploits
the data value representation requirements of DNNs. STR is
motivated by the observation that the precision required by
DNNs varies significantly not only across networks but also
across the layers of the same network [1], [2]. Most existing
implementations rely on a one-size-fits-all approach, using the
worst-case numerical precision for all values. For example

most software implementations use 32-bit floating-point [7],
[8], [9] while accelerators and some recent GPUs use 16-bit
fixed-point [3], [10], [11].

Rather than using a fixed precision for all layers, STR in-
stead allows per-layer selection of the precision used providing
a new dimension upon which to improve performance. To
do so, STR’s execution units are designed so that execution
time scales linearly with the length, in bits, of the numerical
precision needed by each layer. STR is presented as an ex-
tension to the state-of-the-art accelerator DaDN. Since DaDN
uses a 16-bit fixed-point representation, STR would ideally
improve performance at each layer by 16/p where p is the
layer’s required precision length in bits. This is done by using
serial-parallel multiplication where the computational time is
determined by the length of the serial input. To compensate
for the longer compute latency, both the reduced circuit size
and abundance of parallel computation in DNNs are exploited
to increase compute throughput.

Beyond offering a new dimension upon which to improve
DNN execution performance, using bit serial computations en-
ables static and on-the-fly energy, performance, and accuracy
trade offs. By reducing precision an application may choose
to reduce accuracy in exchange for improved performance
and energy efficiency. This capability would be useful, for
example: 1) on a battery operated device where a user or the
operating system may opt for sligthly reduced accuracy in
exchange for longer up time, or 2) under strict time constraints
where an application may opt for a less accurate but timely
response.

Experiments demonstrate that over eight DNNs, STR im-
proves performance by 1.92x, and energy efficiency by 57%
on average without any loss in accuracy at an overall area
overhead of 32%. When small accuracy losses are acceptable
further improvements are possible and demonstrated. For
example, when an up to 1% loss in relative accuracy can
be tolerated, STR improves performance by 2.08x and energy
efficiency by 68% on average. Finally, this work demonstrates
that STR improves performance over a decomposable unit
approach similar to that used in multimedia instruction set
extensions, e.g., [12].

The rest of the paper is organized as follows: Section II
corroborates the per-layer precision requirement variability
of DNNs motivating STR, Section III explains the key idea
behind STR using a simplified example, Section IV reviews978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

Relative Accuracy
100% 99%

Per Layer Ideal Per Layer Ideal
Network Neuron Precision in Bits Speedup Neuron Precision in Bits Speedup
LeNet 3-3 5.33 2-3 7.33
Convnet 4-8-8 2.89 4-5-7 3.53
AlexNet 9-8-5-5-7 2.38 9-7-4-5-7 2.58
NiN 8-8-8-9-7-8-8-9-9-8-8-8 1.91 8-8-7-9-7-8-8-9-9-8-7-8 1.93
GoogLeNet 10-8-10-9-8-10-9-8-9-10-7 1.76 10-8-9-8-8-9-10-8-9-10-8 1.80
VGG M 7-7-7-8-7 2.23 6-8-7-7-7 2.34
VGG S 7-8-9-7-9 2.04 7-8-9-7-9 2.04
VGG 19 12-12-12-11-12-10-11-11-13-12-13-13-13-13-13-13 1.35 9-9-9-8-12-10-10-12-13-11-12-13-13-13-13-13 1.57

TABLE I: Per Convolutional layer neuron precision profiles needed to maintain the same accuracy as in the baseline (100%)
and to reduce it within 1% of the baseline (99%). Ideal: Potential speedup with Stripes over a 16-bit baseline.

the operation of convolutional layers and the DaDN design,
Section V presents Stripes in detail, Section VI demonstrates
STR’s benefits experimentally, Section VII reviews related
work, and Section VIII concludes.

II. MOTIVATION

To motivate STR this section estimates the performance
improvements that may be possible if execution time scaled
proportionally with the length of the numerical representation.
In more detail, this section shows: 1) most of the execution
time in DNNs is taken by convolutional layers which are the
layers that STR targets, 2) the numerical precision needed
varies across layers and networks, 3) significant performance
potential exists if execution time could scale with precision,
and 4) having execution time depend on precision enables
further performance improvements provided that a loss in
accuracy is acceptable. Section VI describes the experimental
methodology.
1) Convolutional Layers Take Most of the Execution
Time: STR targets the convolutional layers of DNNs since,
for the selected networks, 85% of the overall time during
classification is taken by these layers on DaDN.
2) Numerical Precision Requirements Vary Across and
Within Networks: Table I shows the required per-layer neuron
precisions (precision profiles) for a set of DNNs while main-
taining 100% relative classification accuracy with respect to
a full precision implementation. The methodology for finding
these precision profiles is described in Section VI-A.

These precision profiles highlights a key property: Numer-
ical precision requirements vary not only across networks
but also across the layers of the same DNN [1], [2]. This
property allows the representation length to be tuned per layer
without a loss in accuracy and has been used to simplify
hardwired DNN implementations [2] and to reduce memory
footprint [13]. STR exploits this property to improve compute
performance and energy efficiency by using bit-serial compute
units whose execution time scales proportionally with the
numerical precision.
3) Precision Variability Could Improve Performance: To
motivate STR, the “Ideal Speedup” column in Table I re-
ports the performance improvement that would be possible
if execution time scaled linearly with the neuron precision

length. Specifically, given that the baseline design uses a 16-bit
fixed-point representation, the reported speedups are calculated
assuming that execution time is p/16 for convolutional layers
when using a neuron representation of p bits. The potential
speedup varies from 1.35x (VGG19) to 5.33x (LeNet) and is
2.29x on average.
4) Enabling Accuracy vs. Performance Trade-offs: Further
reductions in precision are possible if a loss in accuracy is
acceptable. As an example, Table I shows how the precision
requirements can be further relaxed when an up to 1% drop
in relative accuracy is acceptable. Performance improvements
increase and vary from 1.57x (VGG19) to 7.33x (LeNet), and
are 2.54x on average. Further trade offs between accuracy and
numerical precision, and thus performance improvements, are
possible as Section VI-E demonstrates.

Section VI will demonstrate that STR achieves within 2%
of the ideal performance reported in this section.

III. STRIPES’ APPROACH: A SIMPLIFIED EXAMPLE

This section presents a simplified example illustrating the
concept behind STR’s design. The computations of a DNN
can mostly be broken down into inner products. As such,
DNN accelerators, like DaDN are specialized for inner product
computation.

Figure 1a shows a simplified inner product compute unit
(IP) processing vectors A = (1, 0) (neurons) and B = (1, 3)
(synapses). The example assumes a fixed numerical represen-
tation length of two bits for all values. A conventional compute
unit would use bit-parallel multipliers and would in a single
cycle compute the inner product of A and B, (1×1, 0×3), or
(1, 0). The two products are then added through a bit-parallel
adder to calculate the final inner product A ·B = (1). In total,
the input bandwidth of this unit is 8 bits per cycle (2 neurons
of 2 bits per cycle and 2 synapses of 2 bits per cycle), and its
output bandwidth is 2 bits per cycle.

Figure 1b shows a Serial Inner Product unit (SIP) where
A’s values have been transposed and are now processed
bit-serially over two cycles (this example assumes unsigned
numbers for simplicity and Section V-C discusses support for
signed numbers). During the first cycle, the most significant
bit from each A value is ANDed with the corresponding B
value producing two 2-bit results (0, 0). These two results

01

+
0

1

<<

LSB

00

1

1

MSB

+

A
0

0

1

x
+

0

1

0

0

x

1

1

LSB

MSB

A
1

B
0

B
1

A
0

A
1

B
0

B
1

(a) (b)

01

+

0

1

<<

00

1

1

+

A
0

A
1

B
0

B
1

(c)

+

<<

+

11

01

A’
0

A’
1

Fig. 1: Implementing an inner product in hardware. (a) Bit-
Parallel Computation: Fixed numerical representation length
for both A and B and execution time is constant independent
of A’s representation. (b) Bit-serial computation for A: Exe-
cution time depends on A’s length. (c) Bit-serial computation
for A and A’ matching (a)’s throughput.

are added together producing a partial output (0). During the
second cycle, the next set of bits from A are ANDed with the
corresponding B values, and the two 2-bit results (3, 0) are
added to the partial output after shifting the latter by a single
bit. Since A’s elements are processed bit-serially, it now takes
two cycles to compute the inner product. In general, execution
time is now proportional to the bit-width of A’s values and as
long as there is enough precision in the accumulator and the
adders, a range of A precisions can be naturally supported.
This is a crucial step towards designing a convolutional layer
execution unit whose execution time scales linearly with the
input precision as per the discussion of Section II.

However, overall output bandwidth has now been reduced
to half. Whereas the baseline unit would compute the inner-
product in one cycle, the bit-serial design takes two cycles
when A needs the full two-bit precision. Fortunately, there
is abundant parallelism in the convolutional layers of DNNs
which STR exploits to offer at least the same computational
bandwidth as the conventional bit-parallel design.

In our example, the unit could process another pair of
neurons A′ in parallel as long as the inner product A′ ·B is also
needed. Figure 1c shows the unit reading one bit from each of
the elements of the A and A′ vectors for a total of 4 neuron
bits per cycle, the same input neuron bandwidth as the baseline
design. Since B is used for both inner-products, the input
synapse bandwidth remains at 4 bits per cycle. This approach
can be successful only as long as there is sufficient reuse of
one of the synapse inputs (B in our example). Fortunately, as
the next section will explain in detail, convolutional layers do
exhibit such reuse.

IV. BACKGROUND

This work presents Stripes as a modification of the state-
of-the-art DaDianNao (DaDN) accelerator [3]. Accordingly,
this section provides the necessary background information:
Section IV-A reviews the operation of convolutional layers,

and Section IV-B reviews the baseline accelerator design and
how it implements convolutional layers.

A. Convolutional Layer Computation

The input to a convolutional layer is a 3D array. The layer
applies N 3D filters in a sliding window fashion using a
constant stride S to produce an output 3D array. The input
array contains Nx × Ny × I real numbers, or neurons. The
layer applies N filters, each containing Fx × Fy × I real
numbers, or synapses. The layer outputs a Ox × Oy × N
neuron array (its depth is the filter count). The neuron arrays
can be thought of as comprising several features, that is, 2D
arrays stacked along the i dimension, each corresponding to
an output feature. The output has N features, each produced
by a different filter. Applying the filter identifies where in the
input each feature appears. To calculate an output neuron, one
filter is applied over a window, a sub-array of the input neuron
array that has the same dimensions as the filters Fx×Fy × I .
Let n(x, y, i) and o(x, y, i) be respectively input and output
neurons, and sf (x, y, i) be synapses of filter f . The output
neuron at position (k, l, f) is calculated as:

o(k, l, f)︸ ︷︷ ︸
output
neuron

=

Fy−1∑
y=0

Fx−1∑
x=0

I−1∑
i=0

sf(y, x, i)︸ ︷︷ ︸
synapse

×n(y + l× S, x+ k× S, i)︸ ︷︷ ︸
input neuron︸ ︷︷ ︸

window
(1)

There is one output neuron per window and filter. The filters
are applied repeatedly over different windows moving along
the X and Y dimensions using a constant stride S to produce
all the output neurons. Accordingly, the output neuron array
dimensions are Ox = (Ix−Fx)/S+1, Oy = (Iy−Fy)/S+1,
and Oi = N .

In the rest of this paper, the term brick is used to refer to
a set of elements continuous along the i dimension of a 3D
neuron or synapse array, e.g., n(x, y, i)...n(x, y, i+15). Bricks
will be denoted by their origin element with a B subscript,
e.g., nB(x, y, i).

B. Baseline System

We demonstrate STR as an extension over the DaDianNao
(DaDN) accelerator [3]. Figure 2a shows a DaDN tile. Each
DaDN chip comprises 16 tiles. Each tile has a synapse buffer
(SB) which provides 256 synapses per cycle, one per synapse
lane. The tile also has an input neuron buffer (NBin) which
provides 16 neurons per cycle, one per neuron lane, and an
output neuron buffer (NBout) which can accept 16 output
neurons per cycle. The computational logic is called the
Neural Functional Unit (NFU), or unit. Every cycle, each NFU
produces a brick oB(q, w, f) of partial output neurons. The
NFU does so by processing one input neuron brick nB(x, y, i)
and 16 synapse bricks, one from each of 16 filters: sfB(k, l, i)
through sf+15

B (k, l, i). For this purpose, the NFU has 16
neuron lanes and 16 filter lanes each with 16 synapse lanes for
a total of 256 synapse lanes. Each neuron lane is connected

Synapse

Lane 0

Synapse

Lane 15

SB (eDRAM)

NBin

x

x

f

NBout

+
Filter

Lane 0

Filter

Lane 15

x

x

+ f

from central

eDRAM

to central

eDRAM

Synapse

Lane 0

Synapse

Lane 15

Neuron

Lane 0

Neuron

Lane 15

16

IP0

IP15

(a)

SIP(0,0)

Synapse

Lane 0

Synapse

Lane 15

SB (eDRAM)

NBin

NBout

Filter

Lane 0

Filter

Lane 15

from central

eDRAM

to central

eDRAM

Synapse

Lane 0

Synapse

Lane 15

Neuron

Bit Lane 0

Neuron

Bit Lane 15

n0

n15

n0

n15

Neuron Bit

Lane 240

Neuron Bit

Lane 255

Window

Lane 0

Window

Lane 15

+

+

1

1

16

16

+
SR

+

16

16

1

1

SIP(15,0)

SIP(15,15)SIP(0,15)

f

(b)

Fig. 2: a) DaDianNao Tile. b) Stripes Tile.

to 16 synapse lanes, one from each of the 16 filter lanes. A
synapse lane multiplies its synapse with an input neuron and
the 16 products from all synapse lanes of a filter are reduced
into a partial sum. In all, the filter lanes each produce a partial
sum per cycle, for a total 16 output neurons per unit. We refer
to the logic associated to the production of one output neuron
as an inner product unit (IP). Once a full window is processed
the 16 resulting sums are fed though a non-linear activation
function, f , to produce 16 output neurons. Each IP contains
sixteen 16-bit multipliers, a 16 input adder tree and an adder
to add the tree out put to a previously computed partial sum
from NBout.

DaDN’s main goal was minimizing off-chip bandwidth
while maximizing on-chip compute utilization. It does this
with 32MB of on chip eDRAM distributed as 2MB chuncks
(SB), one per NFU. Overall, a DaDN node can process up
to 256 filters in parallel, 16 per unit. All inter-layer neuron
outputs except for the initial input and final output are stored
in shared, 4MB central eDRAM, or Neuron Memory (NM).
Off-chip accesses are needed only for reading the input image,
the synapses once per layer, and for writing the final output.

Processing starts by reading from the external memory the
first layer’s synapses, and the input image. The synapses are
distributed over SBs and the input is stored into NM. Each
cycle an input neuron brick, nB(x, y, i), is broadcast to all
units. The layer’s output neurons are stored through NBout to
NM and then fed back through the NBins when processing
the next layer. Loading the next set of synapses from external
memory can be overlapped with the processing of the current
layer as necessary.

V. STRIPES

This section describes the Stripes design. Figure 3 shows
an overview of the complete DaDN and STR systems. Both
systems use a fat tree interconnect that connects 256 bits to
each tile, either by broadcasting 256 bits or distributing 4096

Tile 0

NM
NM

Tile 0

Dispatcher

Reducer

(a) (b)

Tile 15
Tile 15

Reducer

256 bits 256 bits

Fig. 3: Overview of the system components and their commu-
nication. a) DaDN. b) Stripes.

bits across the 16 tiles. Nm stores neurons in 16-bit words
regardless of the precision used. STR introduces a Dispatcher
unit to read neurons from NM using the existing bit-parallel
interface while broadcasting them to the tiles bit-serially. Each
STR tile uses a Reducer unit before writing the output neurons
to NM.

The rest of this section is organized as follows: Section V-A
discusses the approach STR uses to enable bit-serial processing
of neurons while matching or exceeding DaDN’s performance.
Section V-B describes the organization and operation of STR’s
tiles. Section V-C describes the core bit-serial inner-product
units used in the tiles. Section V-D describes the Dispatcher,
and Section V-E describes the Reducers. Section V-F describes
how STR implements the non-convolutional layers, and Sec-
tion V-G concludes the description of STR by explaining how
the per layer precision information is communicated. Finally,
Sections V-H and Section V-I compare STR’s approach with
increasing the number of tiles and with using decomposable
units respectively.

A. Processing Approach

Since STR uses bit-serial computation for neurons, it needs
to process more neurons in parallel than DaDN to maintain
performance when the baseline precision is used. Specifically,
in the worst case, STR needs 16 cycles to calculate a product

involving a 16-bit neuron. Given that a DaDN tile processes
a 16 neuron brick in parallel, STR needs to process 16 bricks,
or 256 neurons in parallel. The parallelism of convolutional
layers offers a multitude of options for processing neurons in
parallel. STR opts to process 16 windows in parallel using
a neuron brick from each window so that the same 16
synapses from each of the 16 filters can be used to calculate
16 × 16 output neurons in parallel. For example, for a layer
with a stride of 2 an STR tile will processes 16 neuron
bricks nB(x, y, i), nB(x + 2, y, i) through nB(x + 31, y, i)
in parallel, a single bit per neuron per cycle. In this case,
assuming that the tile processes filters fi though fi+15, after
p cycles it would produce the following partial output neurons:
oB(x/2, y/2, fi), through oB(x/2 + 15, y, fi), or a pallet of
16 output neuron bricks that are contiguous in the scan order
of the (x, y) plane. Whereas DaDN would process 16 neuron
bricks over 16 cycles, STR processes them concurrently but bit-
serially over p cycles. If p is less than 16, STR will outperform
DaDN by 16/p, and when p is 16, STR will match DaDN’s
performance.

B. Tile Organization and Operation

As Figure 2b shows, each STR tile is organized as follows:
the tile’s NBin is logically organized in 16 window lanes,
each a group of 16 bit-serial neuron lanes for a total of 256
neuron lanes. Each window lane processes one of the 16
input neuron array windows. The SB is identical to DaDN
and is logically organized in 16 filter lanes, each containing
16 synapse lanes. The SB and NBin connect to an array of
16 × 16 Serial Inner Product (SIP) units, where each SIP is
responsible for one output neuron. The SIP(f ,w) at row f and
column w processes filter lane f and neuron window w. The
SB filter lane f connects via a bus to all SIPs along row f ,
whereas the NBin window lane w connects via a bus to all
SIPs along column w. Each SIP accepts as input 16 neuron
bits and a synapse brick which is latched onto a synapse
register (SR). The SR is needed to support fully connected
layers as Section V-F explains. The figure shows simplified
SIPs and a more complete description is given in Section V-C.
Each SIP contains an adder tree for a total of 256 adder trees
whereas DaDN requires only 16, one per IP. It may seem
that would increase area considerably for STR, however, each
DaDN IP requires 256 multipliers, whereas STR requires none.
Section VI will show that the STR’s inner product compute
area overhead is 107% compared to DaDN.

Processing in a tile proceeds in phases of p cycles cycles
each, where p is the precision of neurons in bits. At the first
cycle of a phase, SB provides 16 bricks of 16-bit synapses,
one brick per filter. Each SIP latches its corresponding synapse
brick in its SR. Every cycle, NBin provides 256 neuron bits
and each neuron bit is bit-wise ANDed with 16 synapses,
one per SIP along the same column. Each AND operation
produces a 16-bit term. Thus, each SIP calculates 16 terms
corresponding to one filter and one window. The SIP sums
its 16 terms into a partial output neuron using a dedicated
16-input adder tree. For the remaining p − 1 cycles of a

+

+

max

<<1
i_nbout

o_nbout

1 0

MSB

16

x16

neuron

1(n0)

Synapse
1(n15)

16

n
e
g

n
e
g

1(n15)

16

Synapse

1(n0) MSB

<<

prec

Fig. 4: SIP components.

phase, each SIP shifts its partial output neurons by one bit,
while accumulating another 16 terms implementing bit-serial
multiplication. After p cycles, an output neuron pallet, that is
256 16-bit partial output neurons, is produced in full.

In STR, The 64 entry NBout is distributed across SIP
columns, with 4 entries per column. The activation function
unit is moved to the output of NBout, since the activation
function is only applied to the full sum before it is written
back to NM.

C. SIP: Bit-Serial Inner-Product Units

In the described implementation, STR tiles produce 256
output neurons concurrently over multiple cycles. Each output
neuron computation is an inner product. Whereas the baseline
design calculates this inner product 16 input neurons and 16
synapses at a time, STR does so differently. For each output
neuron and at each cycle, 1 bit from each of 16 input neurons
along with 16 synapses are combined.

Multiplying neurons bit-serially is straightforward where
the neuron is fed serially and the synapse is fed in-parallel.
Specifically, given an input neuron n of length p bits, n’s
binary representation is

∑p
b=0 nb × 2b, where nb is n’s bth bit.

Given a synapse s, the multiplication s × n can be rewritten
as

∑p
b=0 2

b × nb × s. This leads to a circuit implementation
where nb × s is an AND, multiplication with 2b is a shift
and the summation is performed with an accumulator over p
cycles.

To apply this naively to DaDN, we could simply convert
each of the parallel multipliers to serial ones. However, we
can simplify this design using the commutative property of
addition as described by White [14]. Formally, the terms of the
inner product of Equation (1) can be reorganized as follows
where nb the bth bit of n and Ni = 16 is the size of the
vectors.

Ni−1∑
i=0

si × ni =

Ni−1∑
i=0

si ×
p−1∑
b=0

nb
i × 2b =

p−1∑
b=0

2b ×
Ni−1∑
i=0

nb
i × si

(2)

In terms of logic, this shows that we can first perform the
reduction on the products nb

i × si with an adder tree, and
then perform the shift and accumulate on the resulting sum.
This simplifies the serial inner product unit by moving the

Dispatcher

16-1 16-1
…

256b 256b

Neuron Memory

…

…
x16

256b 256b
Shuffler

0 15

1b … x256

Transposer

256b

1b

…

1b

Fig. 5: Dispatcher.

shifted accumulator from each of the 16 inputs in the adder
tree to just one on the output. Figure 4 shows the resulting
serial inner product circuit. To support signed 2’s complement
neurons, the SIP must subtract the synapse corresponding to
the MSB from the partial sum when MSB is 1. This is done
with negation blocks for each synapse before the adder tree. To
support inner products larger than Ni data is read back from
NBout and used to initialize the accumulator. Each SIP also
includes a comparator (max) to support max pooling layers.
At the output of the SIP a shifter is used to align the partial
sum with the output of the adder tree on the first cycle of the
next serial inner product computation. The amount of shifting
depends on the precision of the input.

D. Dispatcher: Supplying Input Neurons

DaDN’s neuron memory broadcasts a brick, that is 16 16-
bit neurons, or 256 bits per cycle to all tiles and each tile
processes the same brick over different filters. STR needs to
also broadcast 256 bits per cycle to all tiles, but where each
bit corresponds to a different neuron. STR currently opts to
maintain the same neuron storage container format in central
neuron memory (NM) as in DaDN aligning each neuron at a
16-bit granularity. A Dispatcher unit is tasked with reading
neurons from NM and feeding them to the STR tiles bit-
serially. Section V-D1 describes how neurons are read from the
NM, and Section V-D2 describes how the Dispatcher combines
the raw neuron data from the NM and feeds them serially to
the tiles.

1) Reading the Neurons from NM: Reading the necessary
neurons from NM is best understood by first considering a
layer using a unit stride. In this case, at each cycle, the STR
units need to be fed with bits from 16 bricks, contiguous along
the x dimension: nB(x, y, i)), nB(x+1, y, i) through nB(x+
15, y, i). Provided that these 16 neuron slices can be read in
parallel, all the dispatcher has to do, is feed them bit serially
over the next p cycles. To enable reading the 16 bricks in
parallel STR maps them on consecutive locations in NM. In
many cases, this will result in the 16 bricks being stored onto
the same NM row. In this case, the dispatcher can read them
all in a single cycle (given that the 2MB NM comprises several
subarrays, reading 256 neurons in parallel is feasible).

0,0,0-15 1,0,0-15 2,0,0-15 …

…

0,0,0-15 2,0,0-15 …

Row 0

Row 1

Shuffler

Neuron Memory

Transposer

0,0,0

2,0,0
0,0,15

2,0,15

…

…

NBin

MSBLSB

Dispatcher

x
i

y

Window 0Window 1

Fig. 6: Memory mapping of elements from different windows.

Depending on the input neuron array y dimension, the 16
bricks may spread over two NM rows (this is similar to
reading a misaligned block from a data cache). In this case,
the dispatcher will have to read and combine the appropriate
bricks from up to two rows over two cycles before it can feed
the STR tiles. As long as p is at least 2, the next set of 16 bricks
will not be needed until p cycles have elapsed. Accordingly,
the whole process can be pipelined and thus the STR units can
be kept busy all the time.

Figure 6 shows an example with two windows and stride
of 2. When the stride S is more than one, the 16 bricks could
be spread over R = min[S + 1, 16] rows. Accordingly, the
dispatcher will have to read R rows over R cycles before
feeding the next set of 256 neurons to the tiles. As long as R
is less than p there will be enough time to keep the units busy
all the time. Only when R is more than p the units will have to
stall for R−p cycles. It may be possible to reduce the number
of rows that the dispatcher needs to read by mapping bricks
to NM taking into account the stride. However, as Section VI
will show, such stalls were observed only for one layer of
LeNet and only for 2% of the time. Accordingly, this is left
for future work.

2) Dispatcher Design: As the previous section described,
given a layer stride S, the dispatcher needs to read up to
max[S+1, 16] rows, one per cycle to collect 16 bricks. Given
these 16 bricks, the dispatcher then needs to send one bit from
each of the 256 neurons they contain, for a total 256 bits per
cycle, over p cycles to the STR tiles.

As Figure 5 shows, the dispatcher is composed of two parts:
a Shuffler and a Transposer. The Shuffler reads 16 bricks from
NM and the Transposer communicates them bit-serially to the
tiles. The dispatcher needs to communicate a new set of 16
bricks every p cycles.
Shuffler: The Suffler’s goal is to collect the 16 bricks that
are needed to keep the STR units busy over p cycles. The
collection of the next group of 16 bricks, can be overlapped
with the processing of the current group, hence the Shuffler
needs to collect a 16 brick group every p cycles.

Each cycle, the Shuffler reads a row of 256 neurons from
NM. Given that bricks are stored contiguously in NM every
row contains 16 bricks, however, these many not all be the
bricks currently needed. A 16-to-1 multiplexer per output
brick is sufficient to select the appropriate brick when that
appears on the input row. Accordingly, the Shuffler comprises

16 16-to-1 256-bit (one brick of 16 neuron 16-bit containers)
multiplexers. The input neurons are collected on 256 16-bit
registers organized in groups of 16, one per input brick. Once
the Shuffler has collected all 16 bricks, it transfers them to the
input registers of the Transposer.
Transposer: The Transposer converts the neurons read from
memory by the Shuffler to serial bit streams. Once the shuffler
has collected all 16 bricks, it writes them bit-parallel into 256
16-bit registers. Each register provides a 16-bit write port, and
a single-bit read port. Over the next p cycles, the Transposer
outputs one bit per neuron for a total of 256 bits per cycle.
These are broadcast to all NFUs using the same interconnect
as in DaDN.

E. Reducers: Writing the Output Neurons

STR’s NFUs produce output neurons in DaDN’s 16-bit
fixed-point format. The Reducer units serve a dual purpose:
1) they convert to the precision needed by the output layer,
and 2) they write the output neuron bricks to NM.

Writing the output neurons back to NM uses the same inter-
connect as in DaDN. The only difference is that since STR out-
performs DaDN, it exhibits higher output neuron bandwidth
demand. Fortunately, since calculating an output neuron re-
quires processing a full input neuron window, there is enough
time to meet this demand with the existing interconnect.
Specifically, while DaDN produces a single output neuron
brick, or 16 output neurons concurrently (e.g., oB(x, y, fi)),
STR produces a pallet, or 16 bricks, (e.g., oB(x, y, fi)) through
oB(x+15, y, fi)). This pallet needs to be stored contiguously
in the NM address space as expected by the Dispatcher when
processing the next layer. STR’s tiles send a single brick at a
time as in the baseline and take multiple cycles to write all
16. Since the tiles write a single brick per cycle, and since
bricks never span an NM row, there is no need for supporting
misaligned brick writes.

STR’s computational throughput is increased by roughly
16/p over DaDN. If a layer is relatively small, it is in principle
possible to need extra cycles to drain all output neurons.
However, even in the baseline output neurons typically take
hundreds of cycles to be computed as producing an output
neuron requires processing a full input neuron window. Ac-
cordingly, there is sufficient time to write all output bricks.

F. Executing Other Layers

Fully Connected: DaDN computes fully connected (FC)
layers as a convolution layer where the filter dimensions match
that of the input neuron array. In this case there is only one
window necessitating a different data access and execution
schedule to match DaDN’s performance. When processing a
convolutional layer, the synapses are read only once every p
cycles. To process an FC layer, the unit can load synapses
in a round-robin fashion, one SIP column per cycle via the
single SB read port and bus, keeping all SIPs busy processing
neurons. For example, with reference to Figure 2b, a unit can
load 256 synapses to SIP(0,0)..SIP(0,15) in cycle 0, then load
the next 256 synapses to SIP(1,0)..SIP(1,15) in cycle 1, etc.

Cycle 0:
SIP(0,0)...SIP(0,15): latch s0B(0, 0, 0), ..., s

15
B (0, 0, 0)

via window lane 0: receive bit 0 of nB(0, 0, 0)
Cycle 1:

SIP(0,0)...SIP(0,15):
via window lane 0: receive bit 1 of nB(0, 0, 0)

SIP(1,0)...SIP(1,15): latch s0B(1, 0, 0), ..., s
15
B (1, 0, 0)

via window lane 1: receive bit 0 of nB(1, 0, 0)
...
Cycle 15: Fully Utilized

SIP(0,0)...SIP(0,15):
via window lane 0: receive bit 15 of nB(0, 0, 0)

SIP(1,0)...SIP(1,15):
via window lane 1: receive bit 14 of nB(1, 0, 0)

...
SIP(15,0)...SIP(15,15): latch s0B(15, 0, 0), ..., s

15
B (15, 0, 0)

via window lane 15: receive bit 0 of nB(15, 0, 0)
Cycle 16: Fully Utilized

SIP(0,0)...SIP(0,15): latch s0B(0, 0, 16), ..., s
15
B (0, 0, 16)

via window lane 0: receive bit 0 of nB(0, 0, 16)
...
SIP(15,0)...SIP(15,15):

via window lane 15: receive bit 1 of nB(15, 0, 0)

TABLE II: Processing an FC layer: The first 17 cycles.

The loading of synapses can be overlapped with processing
neurons by staggering the neuron stream to synchronize with
the loading of synapses. This mode of operation (Round robin
synapse loading and staggered neurons streams) only requires
modification to the control. Table II shows an example, illus-
trating how synapse loading and computation is overlapped.
This approach improves performance for FC layers when
batching is used, a common strategy when synapse bandwidth
becomes a bottleneck. Batching computes each layer over
multiple images at a time, so that synapses can be reused
for neurons from different images. In this case, each synapse
loaded to an SIP would be used for p × b cycles, where b
is the batch size. There is a small overhead from staggering
the neuron streams, which is 0.16% of the layer runtime on
average. The potential for further improving performance by
accelerating FC layers is small since they account for a small
fraction of the overall execution time. Furthermore, the current
trend in DNNs is for reducing or eliminating the number of FC
layers, e.g., [15]. While there is no performance improvement
over DaDN when processing a single image, using a shorter
precision in the FC layers can be used to reduce power as only
16/p SIPs are needed to keep up with the bandwidth of SB.
This can being exploited by either power-gating or data-gating
the remaining SIPs. We leave the evaluation of this as future
work.
Other Layers: For pooling layers neurons are transmitted
bit-parallel from NM and bypass the adder tree in the SIPs.
The dispatcher is only designed to broadcast serial data at
256 bits/cycle whereas pooling layers read 4096 bits/cycle as
neurons are distributed across tiles. Max pooling is supported
with comparators in the SIPs. Average pooling is supported
by accumulating neurons in the SIPs and using the activation
unit to scale the result. Local response normalization layers

require the use of the inner product units but due to the
limited bandwidth of the dispatcher, cannot be serialized while
matching the baseline performance. We leave an efficient
implementation of this layer type for future work.

G. Communicating the Per Layer Precisions

This work assumes that the per layer precisions are pre-
calculated using a method such as that described in Sec-
tion VI-A and provided along with the network’s other meta-
data such as the dimensions, padding and stride of each
layer. Several complete profiles of per layer precisions can
be supplied by the DNN to enable accuracy vs. performance
trade-offs at run-time. This metadata information is read by
the STR controller and used to control the operation of the
units, the Dispatcher and the Reducers.

H. STR vs. More Bit-Parallel Units

Since the convolutional layers are highly parallel, improving
DaDN’s performance is possible by exploiting parallelism by
adding more tiles. As Section VI shows, STR increases tile
area by 35%. Assuming ideal performance scaling, we could
instead use this extra area to introduce an additional 35% more
bit-parallel compute bandwidth. In reality, ideal scaling will
not be possible as it may not be possible to keep all neuron
lanes busy. For example, a DaDN chip can be fully utilized
only as long as there are multiple of 256 filters in a layer (16
filters in each of the 16 tiles). As a result, depending on the
layer, there are cases where units are underutilized and having
more units will make such cases more common.

Even under the unrealistic assumption that DaDN’s perfor-
mance can be scaled by 35% with the same area overhead as
STR, Section VI shows that STR outperforms this alternative
and thus offers a better area vs. performance scaling. Further-
more, STR’s approach enables static or run-time performance
vs. accuracy trade offs which are not possible with the baseline
design.

I. STR vs. Decomposable Processing Units

A common approach to gaining performance from reduced
precision is to use decomposable multipliers and adders [12]
[16] [17]. For example, a 16-bit adder can easily be configured
as two 8-bit adders with minimal overhead. This approach is
commonly used in multimedia instruction set extensions of
general purpose processors [12]. Since this does not increase
latency of each operation it is simple to increase computational
throughput.

When considering the characteristics of neural networks [1],
decomposable units have three constraints that disadvantage
them: 1) Decomposable units are typically constrained to
power-of-2 precisions, meaning they cannot yield all of the
potential benefit of variable reduced precision. For example,
a layer requiring only 9 bits would still need to use 16.
2) Decomposable units require both inputs to be the same
width. In the case of neural networks these are the weights and
the neurons, weights typically require more than 8 bits [1] and
as a result many layers will not see improvement. 3) Finally,

if the baseline multipliers and adder trees were decomposable,
the largest precision of the data and weights would have
to be chosen for each layer. Section VI-F demonstrates that
STR outperforms an variant of the DaDN design with ideal
decomposable units.

VI. EVALUATION

This section evaluates STR’s performance, energy and area
and explores the trade-off between accuracy and performance.
It also compares STR with a parallel, decomposable compute
engine. This section mostly focuses on the execution of
convolutional layers, and reports overall network performance
at the end.

A. Methodology

Numerical Representation Requirements Analysis: The
best per layer precision profiles are found via the methodology
of Judd et al. [1] . Caffe [9] was used to measure how
reducing the precision of each convolution layer affects the
network’s overall top-1 prediction accuracy over 5000 images,
that is, how often the network correctly classifies the input.
The network definitions and pre-trained synaptic weights are
taken from the Caffe Model Zoo [18].

While Judd et al., considered fixed point numbers as having
I ≥ 0 integer and F ≥ 0 fractional bits, we explore dropping
some of the less significant integer bits by parameterizing
numbers as the MSB bit position, M , relative to the binary
point, and the number of bits, N . This is an exponential search
space problem with M,N ∈ [0, 16] per layer and multiple
layers. Our heuristic approach was: 1) Find the best per
layer M profile using gradient descent, iteratively decreasing
M by one bit, one layer at a time. 2) Given a fixed M -
profile, explore the space of N -profiles, again using gradient
descent. In both steps per layer analysis is used to determine a
good starting point. Table I reports the corresponding results.
Further exploration or a different search strategy may lead to
better profiles.
Performance, Area and Energy: Both the DaDN and STR
systems were modelled using the same methodology for con-
sistency. A custom cycle-accurate simulator models execution
time. Computation was scheduled as described by Chen et
al. [19]. The logic components of the both systems were
synthesized with the Synopsis Design Compiler [20] and laid
out with Cadence Encounter with the TSMC 65nm library.
The circuit is clocked at 980MHz. Post layout power and area
measurements are reported. Power estimation was done using
activity from gate level simulations with 100 sets of random
neuron and synapse input values. The NBin and NBout SRAM
buffers were modelled using CACTI [21]. The eDRAM area
and energy were modelled with Destiny [22]. Both Single
and Batch (each layer computed concurrently for multiple
images) runs are performed. The batch size is chosen such
that all images fit inside NM to avoid spilling neurons off-
chip which would penalize performance and energy in both
STR and DaDN.

lenet conv alex nin google vggM vggS vgg19 geo
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

5.
3

5.
3

STR Ideal

Fig. 7: Speedup for precision profiles with 100% relative
accuracy over DaDN and the ideal speedup.

B. Performance Improvement

Figure 7 reports STR’s performance relative to DaDN for
the precision profiles in Table I. Since batch processing does
not impact the performance of convolutional layers in either
DaDN or STR, the reported results are applicable to both.
For the 100% profile, where no accuracy is lost, STR yields,
on average, a speedup of 2.24x over DaDN. In the best
case, LeNet which requires only 3 bits of precision in each
layer the speedup is 5.33x, whereas VGG19 exhibit the least
speedup, 1.35x, mostly due to its high precision requirements.
In general, performance improvements follow the reduction in
precision and are in line with the ideal speedup in Table I. The
differences are due to the neuron lane under-utilization, which
in the worst case is 7% (NiN). On average STR achieves a
speedup that is within 2% of the ideal.

C. Area Overhead

Over the full chip, STR requires 122.1mm2, compared to
92.4mm2 in DaDN, an overhead of 32%. The Dispatcher
accounts for 1% of the total area. Considering a single tile,
STR increases area by 35%. While the 256 SIPs per tile in
STR increase area by 107% compared to DaDN’s 16 IP units,
the SB takes up a significant portion of the tile area resulting
in the much lower per tile and overall chip area overhead.

D. Energy Efficiency Improvement

This section compares the energy efficiency of STR and
DaDN. Energy Efficiency, or simply efficiency for a system
NEW relative to BASE is defined as the ratio EBASE/ENEW of
the energy required by BASE to compute all of the convolution
layers over that of NEW. To facilitate direct comparisons across
all cases we use the energy of DaDN in single image mode
as the numerator in all efficiency measurements reported in
Figure 8.

Focusing on single image mode, the average efficiency im-
provement with STR across all networks for the 100% profiles
is 3.92x, ranging from 7.27x in the best case (LeNet) to 2.62x
in the worst case (VGG19). Ignoring secondary overheads,
efficiency primarily depends on the reduction in precision

lenet conv alex nin google vggM vggS vgg19 geo
0

1

2

3

4

5

E
ff

ic
ie

n
cy

7.
3

Base Batch Base WT STR

Fig. 8: Energy efficiency. Comparing STR with 100% profiles
to DaDN batch mode and DaDN with window tiling normal-
ized to DaDN in single image mode.

length per layer since the energy savings are primarily derived
from processing fewer neuron bits. Secondarily, the energy
savings come from reducing the number of SB accesses which
in STR occur only every p cycles.

Motivated by the reuse of synapses over multiple windows
in STR, we evaluate an improved processing schedule for
DaDN that interleaves the processing of multiple windows,
via tiling in the scheduler, to match the synapse reuse seen
in STR. The “BASE WT” bars report the efficiency of this
window tiling approach which proves more efficient than the
originally suggested schedule, but is less efficient than STR.

Batching improves energy efficiency in DaDN as synapses
are reused over multiple images and thus SB reads are less
frequent. However, the benefits from processing fewer neuron
bits in STR far exceed those from synapse reuse. Window tiling
in the DaDN improves efficiency by 2.50x. Since window
tiling is not restricted by the size of NM, it allows for
larger energy savings compared to batching in DaDN. When
compared to the most efficient schedule in the baseline, STR
is 57% more energy efficient.

E. Trading Accuracy for Performance

This section considers an approximate computing approach
to improve performance by lowering precisions to the point
where they start affecting overall network accuracy. By using
serial computation and per layer neuron precisions STR en-
ables the ability to fine-tune the accuracy and performance
trade-off. Since performance does not depend on whether
batching or single image mode is used, the results in the
remaining sections are applicable to either processing mode.

Figure 9 shows the trade-off between network accuracy and
speedup. The graph plots performance relative to the 100%
profile performance of Figure 7 in order to show the perfor-
mance vs. accuracy trade-off more clearly than normalizing
over DaDN. Each point in the graph corresponds to a precision
profile on the Pareto frontier of accuracy vs. performance.
Attention is limited to profiles above 90% accuracy relative
to the baseline, since accuracy drops off quickly below 90%

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Speedup

90%

92%

94%

96%

98%

100%

R
e
la

ti
v
e
 A

cc
u
ra

cy
lenet

conv

alex

nin

google

vggM

vggS

vgg19

Fig. 9: Additional performance improvements possible when
an accuracy loss is acceptable. Speedup is reported over the
STR 100% relative accuracy profile.

lenet conv alex nin google vggM vggS vgg19 geo
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p
e
e
d
u
p

5.
3

5.
3

7.
2

7.
3

STR 100% Ideal 100% STR 99% Ideal 99%

Fig. 10: Speedup for precision profiles with 100% and 99%
relative accuracy over DaDN and the corresponding ideal
speedups.

[1]. In all cases, additional performance improvements are
possible with reduced accuracy, and the networks exhibit a
knee in the accuracy vs. performance curve past which they
incur rapid performance losses. The rest of this section focuses
on the performance improvement possible when an up to 1%
accuracy loss is acceptable.

Figure 10 compares the speedup of the 99% and 100%
precision profiles from Table I relative to DaDN. By toler-
ating up to 1% relative prediction error, the average speedup
increases to 2.48x, an incremental speedup of 11%. Speedups
for the individual networks range from 1.56x for VGG19 to
7.23x for LeNet and generally follow the reduction in precision
lengths. NiN benefits the most as it is able to use much
smaller precisions in each layer when the accuracy constraint
is loosened. On average, the 99% profiles increase efficiency
to 68% over the most efficient baseline configuration.

With the 99% profile for LeNet, STR encounters the only
instance of Dispatcher stalls. In this case, the precision of the
first layer is 2 bits, thus the buffer is drained in 2 cycles. For
some sets of window data in NM the Dispatcher needs more

lenet conv alex nin google vggM vggS vgg19 geo
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p
e
e
d
u
p

5.
3

7.
2

STR-100% STR-99% DUN-100% DUN-99%

Fig. 11: Speedup for Serial vs. Decomposable compute units,
for 100% and 99% precision profiles.

than 2 cycles to read the data, causing the dispatcher to stall.
However, this situation is uncommon and only causes stalls
for 2% of the total runtime. In all other cases STR is able to
dispatch serial data continuously.

F. Decomposable Compute Units

This section compares STR to DUN, an ideal decomposable
variance of DaDN, as described in Section V-I and which
supports all power of 2 representation lengths up to 16. For
this comparison it is assumed that the NFU utilization is the
same for all precisions in DUN, e.g., a layer that performs 256
multiplications at 16 bits will perform 512 multiplications at 8
bits. In practice utilization will be worse for some layers due
to the alignment constraints imposed by DaDN.

Figure 11 compares the speedup achieved by STR and
the ideal DUN. With no accuracy loss DUN achieves 1.13x
speedup vs. 2.29x for STR on average, while when an up to 1%
accuracy loss is allowed DUN average speedup is 1.27x vs.
2.54x for STR. DUN is limited to profiles where the precision
of each layers is a power of two and the same for both neurons
and synapses. The size constraints of DUN severely limit its
performance benefits even under ideal assumptions.

G. Overall Performance

Figure 12 shows the overall speedup of STR for each
network when all convolutional, pooling and fully connected
layers are processed. Recall that DaDN spends 85% of the
time processing convolution layers, and for the other layers,
STR sees no speedup. As a result, for the 100% profiles, STR
improves overall network speed by 1.92x on average, from
1.3x for VGG 19 to 4.51x for LeNet. AlexNet, VGG M and
VGG S do not see much of the speedup from the convolution
layers since roughly a third of their time is spent loading
synapses from off chip for their large fully connected layers.
For the 99% profiles STR improves overall network speed by
2.08x on average, from 1.48x for VGG 19 to 5.73x for LeNet.

lenet conv alex nin google vggM vggS vgg19 geo
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p
e
e
d
u
p

4.
5

5.
7

100% 99%

Fig. 12: Overall network speedup for 100% and 99% profiles.

VII. RELATED WORK

Serial computation, reduced precision computation, and
neural network accelerator designs have been active areas of
research. To the best of our knowledge STR is the first work to
combine all three to improve performance on modern DNNs.
Serial Computation: Serial computation has been used ex-
tensively in research and practice. For example, Hillis’ Con-
nection Machine uses serial data paths, which reduces unit
throughput but decreases area, increasing multi-unit paral-
lelism [23]. Distributed Arithmetic (DA) [24], [25], [14]
uses an energy efficient bit-serial implementation of simpler
convolutions using small filters such as the 2D Discrete Cosine
Transform with a single 4×4 filter. Due to the small filter size,
DA precomputes all the possible filter weight combinations in
a 216 entry table. DA calculates an inner-product with 4 × 4
values by concatenating the same position bit from all input
values, indexing the table and adding the table values over
all bit positions over multiple cycles. DNN filters typically
contain thousands of synapses making this method impractical.

Rigid custom logic neural networks implementations use
bit-serial computation but they hardwire their layers and their
synapses [26]. Salapura et al., use bit-serial computation for
neural networks but use n − 1 bits for a values up to n, as
opposed to log2(n) bits, making it slower than 2’s complement
bit-serial multiplication [27].
Reduced Precision Computation: A common approach to
exploiting reduced precision is to simply turn off upper bit
paths improving energy [28], however this does not directly
improve performance. Kim et al. [29] use reduced precision
neurons (8 and 4 bits) and weights (2 bits) to reduce the
circuit size and memory requirements of a fixed hardware
realization of a neural network for phoneme recognition.
Sinha et al., use reduced precision in the serial input of
DA to improve performance in 2D image processing [24].
This precision is determined dynamically by detecting the
magnitude of the serial input to compute only the useful bits.
STR exploits DNN properties to determine the precision at a
larger granularity (per-layer) and offline avoiding any runtime
overhead. Furthermore, STR achieves smaller precisions since

it removes from the MSB and the LSB, introducing error
in the individual data values but still producing an accurate
prediction.
DNN Accelerators: Additional DNN accelerator designs have
been recently demonstrated. PuDianNao supports seven ma-
chine learning algorithms including DNNs [30], and ShiD-
ianNao is a camera-integrated low power accelerator [31].
Eyeriss [32] is a low power, real-time DNN accelerator that
exploits zero valued neurons by using run length coding for
memory compression and data gating zero neuron computa-
tions to save power.

The Efficient Inference Engine (EIE) [33] exploits an effi-
cient sparse matrix filter representation [34]. EIE targets fully
connected layers which have a large number of synapses used
each only once per image yielding 12x better efficiency on FC
layers than DaDN, while being 2x worse on convolution lay-
ers. Origami [35] presents a small, energy efficient accelerator
that yields 803 GOp/s/W.

While each of these accelerators offset similar or better
efficiency compared to DaDN, their performance is much
lower. It has not been demonstrated how these architectures
would scale to match the performance of DaDN. As such
we chose DaDN as our baseline for a high performance
accelerator. However, incorporating STR concepts in other
accelerators or GPUs is interesting future work which this
study motivates.
Software/Hardware Mixed Precision Approaches: Other
work on reduced precision neural networks uses hardware-
software co-design to design networks with more convenient
reduced precision data types such as 8- and 4-bit and even 1-
bit [2], [36], [10], [29], [37], [38]. By modifying the network
architecture and training the network with a target precision
these approaches can reduce the precision further without
sacrificing accuracy.

Further improvement may be possible by combining these
approaches with STR to allow finer control of the precision
profile. STR is a software agnostic approach that does not
constrain the design or training of these networks and has
the flexibility to adapt to off-the-shelf, pre-trained networks.

VIII. CONCLUSION

Stripes demonstrates how reduced, per layer precision can
be used to improve performance and energy for DNNs.
Stripes’ approach enables support for per-layer, dynamically
configurable, fine-grained numerical precision which translates
directly to performance and energy benefits and enables dy-
namic trade offs between accuracy and performance/energy.

Demonstrating Stripes as a modification over a high-
performance DNN accelerator illustrates the validity of the
underlying approach: exploit precision variability via bit-serial
inner-product units while taking advantage of parallelism to
maintain compute bandwidth when the highest precision is
required. This work serves as motivation for applying the same
concepts over other accelerators or general purpose compute
engines such as GPUs.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments and
suggestions. We also thank the Toronto Computer Architecture
group members for their feedback. This work was supported
by an NSERC Discovery Grant, an NSERC Discovery Accel-
erator Supplement and an NSERC CGS-D3 Scholarship.

REFERENCES

[1] P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N. E. Jerger, R. Ur-
tasun, and A. Moshovos, “Reduced-Precision Strategies for Bounded
Memory in Deep Neural Nets, arXiv:1511.05236v4 [cs.LG] ,” arXiv.org,
2015.

[2] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep
convolutional neural networks for object recognition,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Apr. 2015, pp. 1131–1135.

[3] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning super-
computer,” in Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM
International Symposium on, Dec 2014, pp. 609–622.

[4] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
CoRR, vol. abs/1311.2524, 2013.

[5] A. Y. Hannun, C. Case, J. Casper, B. C. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y.
Ng, “Deep speech: Scaling up end-to-end speech recognition,” CoRR,
vol. abs/1412.5567, 2014.

[6] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-
ceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp.
365–376.

[7] AMD, “AMD GRAPHICS CORES NEXT (GCN). Whitepaper.” ”https:
//www.amd.com/Documents/GCN Architecture whitepaper.pdf”, 2012.

[8] I. Buck, “NVIDIA’s Next-Gen Pascal GPU Architecture to Provide 10X
Speedup for Deep Learning Apps,” ”http://blogs.nvidia.com/blog/2015/
03/17/pascal/”, 2015.

[9] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[10] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” CoRR, vol. abs/1502.02551,
2015.

[11] M. Courbariaux, Y. Bengio, and J. David, “Low precision arithmetic for
deep learning,” CoRR, vol. abs/1412.7024, 2014.

[12] A. Peleg and U. Weiser, “Mmx technology extension to the intel
architecture,” IEEE Micro, vol. 16, no. 4, pp. 42–50, Aug 1996.

[13] P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N. Enright Jerger,
and A. Moshovos, “Proteus: Exploiting numerical precision variability
in deep neural networks,” in Workshop On Approximate Computing
(WAPCO), 2016.

[14] S. White, “Applications of distributed arithmetic to digital signal pro-
cessing: a tutorial review,” IEEE ASSP Magazine, vol. 6, no. 3, pp. 4–19,
Jul. 1989.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015, arXiv:
1512.03385. [Online]. Available: http://arxiv.org/abs/1512.03385

[16] D. Tan, A. Danysh, and M. Liebelt, “Multiple-precision fixed-point
vector multiply-accumulator using shared segmentation,” in 16th IEEE
Symposium on Computer Arithmetic, 2003. Proceedings, Jun. 2003, pp.
12–19.

[17] L. Huang, S. Ma, L. Shen, Z. Wang, and N. Xiao, “Low-Cost Binary128
Floating-Point FMA Unit Design with SIMD Support,” IEEE Transac-
tions on Computers, vol. 61, no. 5, pp. 745–751, May 2012.

[18] Y. Jia, “Caffe model zoo,” https://github.com/BVLC/caffe/wiki/Model-
Zoo, 2015.

[19] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th international conference
on Architectural support for programming languages and operating
systems, 2014.

[20] Synopsys, “Design Compiler,” http://www.synopsys.com/Tools/
Implementation/RTLSynthesis/DesignCompiler/Pages.

[21] N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A tool to
understand large caches.”

[22] M. Poremba, S. Mittal, D. Li, J. Vetter, and Y. Xie, “Destiny: A tool for
modeling emerging 3d nvm and edram caches,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2015, March 2015, pp.
1543–1546.

[23] W. D. Hillis, “The connection machine,” Thesis, Massachusetts
Institute of Technology, 1985, 00682. [Online]. Available: http:
//dspace.mit.edu/handle/1721.1/14719

[24] A. Sinha and A. Chandrakasan, “Energy efficient filtering using adap-
tive precision and variable voltage,” in ASIC/SOC Conference, 1999.
Proceedings. Twelfth Annual IEEE International, 1999, pp. 327–331.

[25] T. Xanthopoulos and A. Chandrakasan, “A low-power DCT core using
adaptive bitwidth and arithmetic activity exploiting signal correlations
and quantization,” IEEE Journal of Solid-State Circuits, vol. 35, no. 5,
pp. 740–750, May 2000.

[26] T. Szabo, L. Antoni, G. Horvath, and B. Feher, “A full-parallel digital
implementation for pre-trained NNs,” in IJCNN 2000, Proceedings of the
IEEE-INNS-ENNS International Joint Conference on Neural Networks,
2000, vol. 2, 2000, pp. 49–54 vol.2.

[27] V. Salapura, “Neural networks using bit stream arithmetic: a space
efficient implementation,” in , 1994 IEEE International Symposium on
Circuits and Systems, 1994. ISCAS ’94, vol. 6, May 1994, pp. 475–478
vol.6.

[28] J. Park, J. H. Choi, and K. Roy, “Dynamic Bit-Width Adaptation in DCT:
An Approach to Trade Off Image Quality and Computation Energy,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 18, no. 5, pp. 787–793, May 2010.

[29] J. Kim, K. Hwang, and W. Sung, “X1000 real-time phoneme recog-
nition VLSI using feed-forward deep neural networks,” in 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2014, pp. 7510–7514.

[30] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng,
X. Zhou, and Y. Chen, “PuDianNao: A Polyvalent Machine
Learning Accelerator,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’15. New York, NY, USA:
ACM, 2015, pp. 369–381, puDianNao. [Online]. Available: http:
//doi.acm.org/10.1145/2694344.2694358

[31] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), Jun. 2015, pp. 92–104, shiDianNao.

[32] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne,
“Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Con-
volutional Neural Networks,” in IEEE International Solid-State Circuits
Conference, ISSCC 2016, Digest of Technical Papers, 2016, pp. 262–
263.

[33] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “EIE: Efficient Inference Engine on Compressed
Deep Neural Network,” arXiv:1602.01528 [cs], Feb. 2016, arXiv:
1602.01528. [Online]. Available: http://arxiv.org/abs/1602.01528

[34] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding,” arXiv:1510.00149 [cs], Oct. 2015, arXiv: 1510.00149.
[Online]. Available: http://arxiv.org/abs/1510.00149

[35] L. Cavigelli and L. Benini, “A 803 gop/s/w convolutional network
accelerator,” 2016.

[36] K. Hwang and W. Sung, “Fixed-point feedforward deep neural network
design using weights #x002b;1, 0, and #x2212;1,” in 2014 IEEE
Workshop on Signal Processing Systems (SiPS), Oct. 2014, pp. 1–6.

[37] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
Deep Neural Networks with binary weights during propagations,” ArXiv
e-prints, Nov. 2015.

[38] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural Net-
works with Few Multiplications,” arXiv:1510.03009 [cs], Oct. 2015,

arXiv: 1510.03009.

