
This is an update of the paper that appears in the Proceedings of the 5th Workshop on Multithreaded Execution, Architecture, and Compilation,
pages 23-34, Austin TX, December, 2001. It includes minor text changes and revised results.

23

Abstract
We study the dynamic stream of slices (i.e., slice traces) that lead to
branches that foil an existing branch predictor and to loads that
miss and measure whether these slices exhibit locality (i.e., repeti-
tion). We argue that this regularity can be used to dynamically
extract slices for an operation-based predictor that speculatively
pre-computes a load address or branch target (i.e., an outcome)
rather than directly predicting the outcome based upon the history
of outcomes. We study programs from the SPEC2000 suite and find
they exhibit good slice locality for these problem loads and
branches. Moreover, we study the performance of an idealized oper-
ation-based predictor (it can execute slices instantaneously). We
find that it interacts favorably with an existing sophisticated out-
come-based branch predictor, and that slice locality provides good
insight into the fraction of all branch mispredictions it can poten-
tially eliminate. Similar observations hold for operation-based
prefetching of loads that miss. On average slice locality for
branches and loads was found to be above 70% and 76% respec-
tively when recording the 4 most recent unique slices per branch or
load over a window of 64 committed instructions, and close to 68%
and 71% for branches and loads respectively when we look at slices
over a window of up to 128 committed instructions. The idealized
operation predictor was found to correct approximately 74% of
branch mispredictions or prefetch about 67% of loads that miss
respectively (slices detected over a window of 64 instructions). At
the same time, on average, the branch operation predictor mispre-
dicts less than 0.8% of all branches that are correctly predicted by
an existing branch predictor.

1 Introduction
Recently, the prospect of generalized operation-prediction has

been raised as a way of boosting accuracy over existing outcome-
based predictors. In operation prediction we guess a sequence of
operations, or a computation slice that can be used to pre-compute a
performance critical outcome (e.g., load address or branch target).
This is in contrast to outcome-based predictors that directly predict
outcomes exploiting regularities in the outcome stream. Since oper-
ation prediction does not require any regularity in the outcome
stream, it has the potential of predicting outcomes that foil existing
outcome-based predictors (in section 2, we provide an example that
illustrates the potential of operation prediction).

Several recent proposals have shown that slice-based precompu-
tation (the mechanism operation-prediction uses for predicting out-
comes) can be used to successfully prefetch memory data, and may

potentially be used to pre-compute hard to predict branches
[4,9,15,16,10,11,12,17]. In this work, we study program behavior to
understand why operation-prediction works or may work for pre-
dicting otherwise hard to predict program events.

We build on the experience with outcome-history-based dynamic
prediction and study whether typical programs exhibit the behavior
necessary for operation history-based prediction to be successful.
We explain that, in a way that parallels outcome-based prediction,
operation predictors can be built to exploit regularities in the opera-
tion (i.e., computation) stream. For example, previous work has
shown that sufficient locality, or repetition exists in the value stream
of many programs. This program characteristic is what facilitates
outcome-based value prediction. In this work we study a set of pro-
grams from the SPEC2000 suite to determine whether sufficient
repetition exists in the slices used to calculate performance critical
outcomes that otherwise foil existing outcome-based predictors.
This program characteristic is necessary (but not sufficient as we
explain in section 2) if history-based operation prediction is to be
successful. We restrict our attention to mispredicted branches and to
loads that miss and study how much repetition, or locality exists in
the operation streams that lead to them. To the best of our knowl-
edge, no previous work on the dynamic locality characteristics of
such slices exist. With few exceptions and as we explain in section
4, related proposals approach slice pre-execution as an alternate
execution model, where the compiler orchestrates slice generation
and pre-execution. While compiler directed slice pre-execution is
an interesting and viable option, dynamic slice detection and execu-
tion can have its own advantages (e.g., binary compatibility).
Accordingly, we believe it is an important alternative that deserves
attention.

Our study provides the foundation necessary for understanding
whether programs exhibit some of the behavior necessary for opera-
tion prediction. Moreover, our results provide insight on what kind
of operation predictors we should be considering if we are to
achieve a desired accuracy and coverage. For example, our study
shows how successful a last-operation predictor can potentially be
or whether pattern-based operation predictors may be necessary. A
last-operation prediction would simply record the slice used to cal-
culate a branch or load and use it the next time around to pre-calcu-
late the branch or the load address. Such a predictor can be
successful only if slices tend to repeat multiple times. Alternatively,
a pattern-based operation predictor can exploit patterns in slice
occurrence, e.g., slice S1 appears always after slice S2, and so on.
While more complex, a pattern-based operation predictor could

The Predictability of Computations that Produce Unpredictable Outcomes

Tor Aamodt Andreas Moshovos Paul Chow

Department of Electrical and Computer Engineering
University of Toronto

{aamodt,moshovos,pc}@eecg.toronto.edu

24

offer better accuracy and coverage over a last-operation one. How-
ever, in this work we restrict our attention to analyzing the potential
of operation prediction. Specifically, the predictors we studied pre-
compute their slices instantaneously. An actual predictor would
require some time to execute through the predicted slice, hence it
may not be able to pre-execute the slice early enough for prediction
purposes. Further work is necessary to determine whether this is
possible. Yet, in previous work we have shown that a simple predic-
tor for loads that miss can successfully pre-execute loads that miss
often for a set of pointer-intensive applications [9].

Our results indicate that performance critical slices exhibit high
locality, more so for loads that miss. In particular, we find that aver-
age slice locality for branches and loads is above 70% and 76%
when we record up the 4 most recent slices per branch or load
respectively over a window of 64 committed instructions and close
to 68% and 71% for branches and loads respectively when we look
at slices over a window of up to 128 committed instructions. Our
idealized operation predictor can correctly predict about 74% of
mispredicted branches and accurately prefetch 67% of loads that
miss (slices detected over a window of 64 instructions). At the same
time, on the average the branch operation predictor mispredicts less
than 0.8% of all branches that are correctly predicted by an existing
branch predictor. Overall, we find that coverage (e.g., the fraction of
branches that get a correct prediction from the operation predictor
but an incorrect prediction from the existing outcome-based predic-
tor) is highly correlated to the locality exhibited by the correspond-
ing slices.

The rest of this paper is organized as follows. Section 2 reviews
operation prediction, how it relates to outcome-based prediction,
and the various choices existing when dynamically extracting
slices. Section 3 presents our locality and accuracy results. In Sec-
tion 4, we discuss related work explaining how operation prediction
relates to other recently proposed slice-based execution models.
Finally, Section 5 summarizes our findings and offers concluding
remarks.

2 Operation Prediction Basics
In this section we review operation prediction, explain how it

relates to existing outcome-based predictors, and discuss what
requirements exist for operation prediction to be successful. In sec-
tion 2.1, we discuss some of the choices that exist in dynamically
extracting slices and explain the choices made for the purposes of
our study.

Consider the example code fragment of figure 1(a). It is an infi-
nite while loop containing a switch statement. What particular tar-
get the switch statement will follow depends on the value read from
the uni-dimensional buffer. First, consider how an outcome-based
predictor will attempt to predict the branch that implements the
switch statement. Such a predictor will observe the outcome stream
of this branch (and possibly of other branches also). That is, it will
observe the various targets taken by the switch statement during
successive iterations of the while loop. It will try to associate each
target occurrence with an appropriate target history, that is a
sequence of past targets that preceded the one in question. The hope
is that next time the same target history appears, the same target will
follow. For example, such a predictor may observe that when the
targets for “A” and “B” appear, then with high probability the target
for “C” appears. This predictor may then guess “C” every time “A”

and “B” appear in sequence. Essentially, the outcome-based predic-
tor builds a tabular, approximate representation of the program’s
function by observing the values (outcomes) it generates. Outcome-
based prediction is successful if the outcome-stream exhibits suffi-
cient repetition, a property commonly referred to as locality. In our
example code, repetition will exist only to the extent that the data
stored in the buffer array follows some repeatable pattern. Opera-
tion prediction offers the potential of predicting outcomes that do
not necessarily follow a repeatable pattern. Rather than trying to
guess the program’s function based on the values it produces, it
directly observes the computation stream, attempting to exploit any
regularities found there. Returning to our switch statement example,
let us now take a closer look at what happens during execution time.
Figure 1(b) shows how the switch statement is implemented in
pseudo-MIPS machine code. When the code of part (a) executes,
the computation stream will contain repeated appearances of the
computation slice shown in part (b). While the target computed by
each slice may be different, we can observe that the actual slice
remains constant. Operation prediction builds on this observation
and attempts to dynamically identify such slices and use them to
pre-compute outcomes that otherwise foil outcome-based predic-
tors. As we explain in section 4, operation prediction has existed in
restricted form for years. For example, stride-based prefetchers or
value predictors are examples of specialized operation prediction
where the actual slice or class of slices is built in the predictor
design.

In this work we are concerned with generalized operation predic-
tion where the slices are dynamically extracted and predicted. Fol-
lowing a generalization of the model proposed by Moshovos et al.,
[9], an operation predictor for our example would identify the “jr”
(instruction 7) as a problematic control flow instruction, or as a tar-
get instruction. At commit time, it will extract the computation slice
that lead to the particular instance of the target instruction as shown
in part (b). This slice, will contain only the instructions that contrib-
uted to the calculation of the actual target. Note that these instruc-
tions are not necessarily adjacent in the dynamic instruction trace (a
mechanism for extracting such slices has been proposed [9]). This
slice will be stored in a slice cache where it will be identified by the
lead instruction (i.e., the oldest one, instruction 1 in our example).
Next time the lead instruction appears in the decode stage, the slice
will be executed as a separate scout thread. Provided that the scout
thread completes before the appropriate instance of the target
instruction appears, the processor may use its result to predict the
target. The aforementioned steps for operation prediction parallel
those for outcome-based prediction. In operation prediction the unit
of prediction is a slice while in outcome-based prediction it is an
outcome. Accordingly, detecting a slice and storing it in the slice
cache is equivalent to observing an outcome and recording it in a
prediction table. Executing a scout thread is equivalent to probing
the prediction table.

The operation predictor described uses history-based prediction
concepts. Such a predictor observes the slices of otherwise unpre-
dictable results. If these slices tend to follow a repeatable pattern
then it may be possible to use the past history of appearances to
accurately predict the slices of future instances and hence pre-com-
pute otherwise unpredictable outcomes. The same principle under-
lies many existing outcome-based predictors where instead of
exploiting regularity in the slice stream we instead exploit regular-
ity in the outcome stream (e.g., values, addresses and branch direc-

25

tions). For history-based operation prediction to be successful it is
necessary to have sufficient regularity in the computation, or slice
stream of the instruction we want to predict. Moreover, the slices so
identified must be able to execute and complete before the main
thread needs the prediction itself. In this work we focus mainly on
the first requirement. In particular, we study the slice locality char-
acteristics of some SPEC2000 programs focusing on branches that
are mispredicted by an outcome-based branch predictor and on
loads that miss.

Before we present our results it is necessary to re-iterate why
scout threads may be able to run-ahead of the main thread and to
comment on how operation-prediction relates to outcome-based
prediction. Scout threads may be able to pre-calculate a result
because: (1) The main thread includes all other intervening instruc-
tions which need to be fetched, decoded and executed. (2) The main
thread also may be stalled due to intervening control-flow miss-pre-
dictions. Since scout threads do not include any control flow, they
may proceed undisturbed. Finally, while operation prediction may
be able to predict outcomes that do not exhibit regularity, it does
need to calculate these outcomes. Outcome-based prediction for-
goes this calculation replacing it with a straightforward table
lookup. Hence, whenever outcome regularity exists outcome-based
prediction may be preferable over operation prediction.

2.1 Slices and Slice Locality
Before defining and measuring slice locality we must be clear

about how we define a slice. Conceptually, a slice may include
instructions that appear long in advance (e.g., thousands of instruc-
tions) of the target instruction. Moreover, a slice could be defined to
contain arbitrary control-flow and memory dependences (to adhere
to the static definition of a computation slice). With this definition,
the slice for each instance of the “jr” instruction in figure 1 would
include all preceding instances of instruction 1 (updates of the
buffer pointer), plus all instructions that wrote the corresponding
data element of the buffer array (this may include instructions past a
system call). Such a definition is impractical for our purposes.
Accordingly, our slice definition stems from a practical implemen-
tation of a slice detector [9] and of the sketch of how an operation
predictor could work discussed earlier. In the rest of this section we
explain the choices we made in defining and extracting slices, and
then we present our definition of slice locality.

Slice Detection Window: In searching for instructions to con-
struct a slice, we consider only those instructions that appear within
a fixed distance from the target instruction. In particular, we extract

slices using a fixed length slice detection window or slicer. The
instructions in the slicer form a continuous chunk of the dynamic
instruction trace. Only committed instructions enter the slicer.
When a target instruction is committed, its slice is extracted using a
backwards data-flow walk which eliminates all operations that do
not directly contribute to the target outcome. Slicer size affects slice
length and therefore it impacts slice locality and the ability to pre-
execute slices early enough. While a shorter slicer may result in
fewer shorter slices per target instruction and hence in higher repeti-
tion in the dynamic slice stream, the distance between the target and
lead instructions in these slices could be small. Consequently, it
may be harder for those slices to run-ahead of the main thread. For
this reason we experimented with various slicers of 32, 64, 128, and
256 instructions.

Control-Flow: Besides how far back we look in the dynamic
instruction trace, a second choice in detecting slices is whether we
include intervening control-flow instructions. In this study we do
not. Slice detection occurs over a chunk of the dynamic instruction
trace. Since this is a trace, it only includes a specific control-flow
path and does not contain the parts of the static slice that would
appear on other control-flow paths. Accordingly, from a practical
standpoint it is convenient to ignore any intervening control flow
instructions. Later on we explain, that the implied control flow path
(i.e., the directions of all intervening branches at detection time) can
be used to select the appropriate slice for prediction.

Memory Dependences: Another choice regarding slices is
whether we follow memory dependences including stores and their
parents. Conceptually, the following tradeoffs exist: Including
memory dependences may allow us to look further in the past, cap-
turing a lead instruction that appears further away from the target.
Moreover, including memory dependences may improve slice accu-
racy since, if a memory dependence exists, we will be waiting
appropriately for the corresponding data. However, since memory
dependences may be changing over time, including them could
result in incorrect slices. As we found that the impact on locality
was typically quite small, we restrict our attention to slices that fol-
low memory dependencies.

Slice Size: Slices with only one instruction (the target), are
always discarded in this study, as the practical implementation dis-
cussed earlier cannot use them to any benefit. We could also choose
to restrict our attention to those slices that contain at most a fraction
of all instructions in the slicer. While including more instructions
may allow us to capture an earlier lead instruction, at the same time
it has several, potentially negative implications: First, it reduces the

Figure 1: A switch statement whose target behavior depends on the data stored within the buffer
array. (b) The computation slice that calculates the target during run-time.

while (true)
...
switch (*buffer++)
{
 case “A”: ...
 ...
 case “Z”: ...
 ...
}

(a)

...
1: addu rbuffer, rbuffer, 1
...
2: lb rchar, 0(rbuffer)
3: sll rchar, rchar, 2
4: lui rtable, Table31...16

5: addu rtable, rtable, rchar

6: lw rtarget, Table15..0(rtable)
7: jr rtarget

..
(b)

iter i

iter i+1

lead

target

26

chances of pre-executing the resulting slice in time. Second, it may
increase slice detection latency and complexity. Finally, more space
is required to store longer slices. At the extreme, we could include
all instructions in the slice detection window, however, the chances
of actually pre-executing such a slice are rather slim. We have
experimented with two choices: Not restricting the number of
instructions (e.g., up to 64 instructions may appear in a slice
detected using the 64-entry slicer), and only considering those slices
that contain as many instructions as the 1/4 of the slicer entries (i.e.,
32, 16 and 8 for the 128-, 64- and 32-entry slicers). Restricting slice
size results in fewer slices being detected.

Comparing Slices: Slices contain multiple instructions. For this
reason and in contrast to outcomes, there are several ways in which
two slices can be compared for the purposes of measuring locality.
In this study, we consider two slices identical if they are lexically
identical. That is, if they contain the same instruction sequence.
With this definition two slices may be considered equivalent even if
the PCs of individual instructions may differ. This definition is both
practical and it accommodates identical slices that may appear on
different control-flow paths. For the purposes of locality measure-
ments we ignore the implied control flow in slices. So two slices
that are lexically identical but appear on different control flow paths
and have different implied control flow will be considered the same.

Slice Locality: For unrestricted slices (i.e. for any length, even
slices containing just the target operation), we can now define slice-
locality(n) of a target instruction as the relative frequency with
which a detected slice was encountered within the last n unique
slices detected by preceding executions of the same static instruc-
tion. Slice-locality(1) is the relative frequency that the same slice is
encountered in two consecutive executions of a target instruction. A
high value of slice-locality(1) suggests that a simple, “last slice
encountered”-based predictor could be accurate. For values of n
greater than 1, slice-locality(n) is a metric of the working set of
slices per instruction. Formally, it is the relative frequency with
which the same slice was detected within the last n unique slices
detected for the specific instruction, assuming there is always a
slice. When excluding slices due to the restrictions considered ear-
lier, slice-locality(n) is the relative frequency that a given branch or
loads’s slice both meets the restriction criteria, and was seen in the
last n unique slices that also matched the criteria. While a small
working set does not imply regularity, we will later explain that it
may be possible to execute all these slices in parallel and then select
the appropriate one based on the implied control flow.

Detection Context: In practice, having identified a problem
instruction, one might detect a slice and record it independent of the
whether the underlying outcome based predictor was correct, or
choose to record a slice only when a misprediction or cache miss
actually occurs. The difference is that an outcome may only be hard
for the outcome-based predictor to anticipate when following the
implied control-flow of a small subset of all slices seen. We have
measured the impact on locality as viewed from mispredicted
branches and cache misses under both circumstances and conclude
that statistically there is a benefit to waiting for a mispredicted tar-
get branch, or load that misses, when detecting slices for a particu-
lar static branch or load. Except where stated otherwise (i.e., in
Section 3.2.3) all measurements reported in this paper are based
upon the latter approach.

3 Measurements
We start by detailing our methodology in section 3.1. In Section

3.2, we report our slice locality analysis first for branches (Section
3.2.1) and then for loads (Section 3.2.2). Here we are interested in
determining whether sufficient locality exists in the slice stream of
mispredicted branches or of loads that miss. This is a property of the
program (and of the underlying slice detection mechanism). In Sec-
tion 3.2.3 we explore the impact of the detection context on slice-
locality. In Section 3.3, we study how a specific operation predictor
interacts with an existing outcome-based predictor for branches and
how well it predicts the addresses of loads that miss. The operation
predictors we studied execute slices instantaneously when a lead
instruction is encountered. Our goal is to understand the potential of
slice prediction. Further work is necessary to develop realistic pre-
dictors where slice execution takes some time. Our results provide
the insight necessary to do so in a well educated manner.

3.1 Methodology
We have used the programs from the SPEC2000 suite shown in

table 2. All programs were compiled with gcc (-O2 -funroll-loops -
finline-functions) for the MIPS-like Simplescalar instruction set
(PISA). We have used the test input data sets. To obtain reasonable
simulation times, we skipped the initialization phase and warmed
up the caches and the branch predictor for the next 25 million
instructions. The actual number of instructions skipped (i.e., func-
tionally simulated) is shown in table 2. Our measurements were
made over the next 300 million instructions. In table 2, we also
report the L1 data cache miss rates and the branch prediction accu-
racies (direction and target address). In the interest of space, we use
the labels shown in table 2 in our graphs. To obtain our measure-
ments we have modified the Simplescalar 3 simulator. Our base
configuration is an 8-way dynamically-scheduled superscalar pro-
cessor with the characteristics shown in table 1. Our base processor
has a 12 cycle minimum pipeline.

3.2 Slice Locality
In this section we study the locality of slices first for branches

and then for loads. For branches, we focus on those dynamic
instances that are mispredicted by the underlying outcome-based
predictor and study whether locality exists in their slice stream. This
is necessary if history-based operation-prediction is going to be suc-
cessful. For loads, we focus on those dynamic instances that miss in
the data cache. In both cases we examine only the slices that lead to
mispredictions, or cache misses, respectively (except in Section
3.2.3 were the impact of the detection context is more closely exam-
ined).

Measuring locality in the way we do here allows us to avoid any
artifacts that a specific implementation of operation prediction may
introduce. Later in section 3.3, we study models of specific opera-
tion predictors.

3.2.1 Branch Slice Locality
Figure 2 reports the weighted average of slice-locality(n) for

those branches that are mispredicted by the underlying outcome-
based branch predictor. To calculate slice-locality(n), the distribu-
tions for each static branch are weighted by the relative number of
outcome-based mispredictions associated with that branch, and so
the overall figure naturally emphasizes those static branches which
are mispredicted most often. We report locality in the range of 1

27

(bottom bar) through 4 (top bar) and for a variety of slicer configu-
rations. To identify the slicers we use an “NSM” naming scheme.
“N” is the size of the slicer, i.e., 256, 128, 64 or 32. “S” can be
either “U” (unrestricted) or “R” (restricted) and specifies whether
we restrict slice size to up 1/4 of total number of instructions in the
slicer or not. Finally, “M” signifies that slices include memory
dependencies. For example, 64UM corresponds to a slicer with 64
entries that can produce slices of up to 64 instructions and that is
capable of following memory dependences. 32RM is a slicer that
has 32 entries and that can detect slices that include only up to 8
instructions and that can follow memory dependences. We have
experimented with various slicer configurations. In the interest of
space we report the following seven from left to right: 256RM,
128RM, 64RM, 32RM, 64UM, and 32UM.

Before we present our results it is important to emphasize that
while high locality is desirable, any locality may be useful for
improving branch prediction accuracy. This is because we measure
locality only for mispredicted branches. As we will show in section
3.3, even when little locality exists, it can positively impact overall
branch prediction accuracy.

With unrestricted slices, in all cases but gzip and mesa, using a
shorter slicer results in higher locality with the average locality
going from 89.6% to 93.2% comparing 64UM to 32UM. With
restricted slices and a short detection window (32RM) there is much
lower locality compared to unrestricted slices (32UM), and further-
more, the locality increases going from a 32-entry slicer to a 64-
entry slicer, on average from 65% to 71%. This result suggests that
many slices have more than 8 instructions that are close to the target
instruction. This result corroborates the observation by Zilles and
Sohi that many operations that directly contribute to the computa-
tion of the target are clustered close to the target operation [15]. As
we use a fixed ratio of 1/4 to restrict slices, a shorter slicer is penal-
ized more heavily than a longer one. Indeed, for a 256-entry slicer
(256RM) we see the dominant trend is again a decrease in locality
for longer slices.

On the average, slice-locality(4) is about 61% with the 256RM
slicer and rises to about 68%, and 71% for the 128RM and 64RM
slicer, while falling back to 65% for the 32RM slicer. More impor-
tantly, most of the locality is captured even if we can record a single
slice per instruction. In particular, slice-locality(1) is approximately
41%, 46%, 50% and 50% for the 256RM, 128RM, 64RM and
32RM slicers. This suggests that a last-slice-based predictor may be
quite successful.

As we move towards larger slicers, locality usually drops. In the
worst case of vpr, slice-locality(1) drops to about 10% with the
256RM slicer. For several programs the drop of locality with
increased slicing windows is a lot less dramatic and slice-locality(1)
remains well above 40% for 256RM for half the benchmarks. How-
ever, a larger slicer does not necessary result in lower locality. In
particular, for gzip and mesa locality(1) increases as the slicer is
increased from 32 to 64 entries, even for unrestricted slices. This
anomaly has been studied and appears to occur for two reasons: The
dominate effect is due to slices for return operations that are mispre-
dicted by the baseline return address stack mechanism which does
not repair itself when speculative calls and returns are squashed.
These slices typically include only one or two instructions: the
return operation, and occasionally the jump-and-link operation that
stores the return address in register r31. As we only allow slices
with more than one operation, shorter slices are penalized. We
expect that using a more sophisticated RAS implementation (e.g.,
[19]) would largely eliminate this effect. However, a more subtle
effect results from intervening control flow: A larger slicer allows
us to look through more instructions when detecting a slice, and
hence capture longer slices. Normally, this tends to strongly reduce
slice locality because the number of implied control flow paths
leading up to the target multiplies as additional basic blocks appear
in the slicer. However, a longer slicer may also increase locality
when a slice skips over a segment of instructions that fluctuates in
length due to intervening control flow. With a short slicer, the ear-
lier part of the slice may be evicted occasionally. With a longer

Base Processor Configuration

 Branch Predictor 64K GShare + 64K bimodal with
64K selector, 64 entry RAS

 Fetch Unit Up to 8 instr. per cycle. 64-entry Fetch Buffer
Non-blocking Fetch

 Instruction Window Size 128 entries FU Latencies same as MIPS R10000

 Issue/Decode/Commit BW 8 instructions / cycle Main Memory Infinite, 100 cycles

 L1 - Instruction cache 64K, 2-way SA, 32-byte blocks,
3 cycle hit latency

 L1 - Data cache 64K, 4-way SA, 32-byte blocks,
3 cycle hit latency

 Unified L2 256K, 4-way SA, 64-byte blocks,
16 cycles hit latency

 Load/Store Queue 64 entries, 4 loads or stores per cycle
Perfect disambiguation

Table 1: Base configuration details. We model an aggressive 8-way, dynamically-scheduled superscalar processor having a 128-entry
scheduler and a 64-entry load/store queue.

Benchmark Label Inst. Skipped MR BPA Benchmark Label Inst. Skipped MR BPA

164.gzip gzp 101 M 3.1% 92.3% 183.equake eqk 359 M 2.7% 90.9%

175.vpr vpr 33 M 2.6% 91.7% 188.ammp amp 100 M 28.3% 99.1%

176.gcc gcc 200 M 0.9% 91.1% 197.parser prs 144 M 2.3% 90.9%

177.mesa msa 101 M 0.7% 99.9% 255.vortex vor 102 M 0.7% 98.5%

179.art art 1,686 M 43.9% 98.5% 256.bzip2 bzp 100 M 3.9% 97.4%

181.mcf mcf 50 M 5.3% 90.2% 300.twolf twf 188 M 6.2% 84.9%

Table 2: Programs used in our experimental evaluation. MR is the L1 data miss rate. BPA is the branch prediction accuracy
(direction+target). We simulated 300 million committed instructions after skipping the initialization phase.

28

slicer, the whole slice may still appear in the slicer. In table 3 we
report the average instruction distance between the lead and the tar-
get instructions and the average instruction count per slice. We
define instruction distance as the number of intervening instruc-
tions (including the lead) in the original instruction trace. In the
interest of space we restrict our attention to the 256RM, 128RM,
68RM and 32RM slicers. These two metrics provide an indication
of whether the slices could potentially run-ahead of the main thread
(of course, this can only be measured using an actual implementa-
tion of an operation predictor). Overall, slice instruction count is
relatively small and remains small even when we move to longer
slicers. Moreover, the lead to target instruction distances are on the
average considerable, especially with the 256RM slicer.

Table 3 also reports the average number of stores and register
live-ins per slice. The number of stores is a metric of the number of
memory dependences in each slice, while the live-ins is a measure
of the cost of spawning a speculative slice. The number of memory
dependencies detected tends to grow with slicer size (similar to
observations by Zilles and Sohi [15]), however, for the slicer sizes

studied here, the number of dependencies detected was small. Fur-
thermore, the average number of live-ins is always less than four.

These results are encouraging as they suggest that relatively high
locality exists in the computation slices that lead to unpredictable
branches. Moreover, slices tend to be small in size (on the average),
spread over several tens of instructions of the original program.
Having shown that programs exhibit the locality necessary for oper-
ation prediction of otherwise mispredicted branches, in Section
3.3.1 we measure how an approximate operation predictor interacts
with the underlying outcome-based branch predictor.

3.2.2 Load Slice Locality
Figure 3 reports weighted average slice-locality(n) for those

loads that miss in the L1 data cache. The weighting of the distribu-
tion for each static load is based upon the frequency of misses for
that load. We report results for the same slicer configurations we
presented in section 3.2.1. We observe trends similar to those for
mispredicted branches but with locality being stronger. On the aver-
age slice-locality(1) is 62%, 62%, 55%, and 47% for the 32RM,

Figure 2: Weighted average slice-locality distribution for mispredicted branches (see text for description of weighting procedure). Range
shown is 1 (bottom) to 4 (top). We use a NSM scheme where N is the size of the detection window (256, 128, 64, or 32), S is “U” if no
restrictions on slice size are placed and “R” if we restrict slices to 1/4 of the slice detection window, and finally, “M” indicates that we follow
memory dependences in constructing slices.

Program
256-R-M 128-R-M 64-R-M 32-R-M

Dist. Cnt. LI #St Dist. Cnt. LI #St Dist. Cnt. LI #St Dist Cnt. LI #St

 gzp 202.3 23.4 3.06 2.92 90.1 14.2 2.75 1.09 42.1 7.2 2.14 0.35 16.4 4.3 1.93 0.15

 vpr 194.6 24.6 2.63 1.27 95.9 15.8 2.06 0.27 50.8 10.4 1.77 0.05 22.3 5.1 1.72 0.17

 gcc 199.0 18.2 1.92 0.98 93.3 11.7 1.54 0.45 41.9 7.6 1.28 0.18 17.8 4.7 1.15 0.05

 msa 164.3 8.0 1.29 0.01 77.2 5.7 1.33 0.00 43.0 4.6 1.36 0.00 16.2 3.6 1.31 0.00

 art 237.4 13.3 2.03 0.00 109.6 9.1 2.03 0.00 46.0 5.4 1.87 0.00 15.3 4.1 2.00 0.00

 mcf 208.4 28.0 1.90 0.29 100.0 16.8 1.76 0.12 43.3 8.5 1.66 0.04 17.2 5.2 1.59 0.00

 eqk 121.3 6.8 0.89 0.02 64.0 6.0 1.01 0.00 35.3 4.5 1.14 0.00 14.7 3.2 1.17 0.00

 amp 167.0 12.3 2.15 0.54 80.3 9.4 1.87 0.32 40.4 7.3 1.50 0.06 18.5 5.0 1.40 0.05

 prs 213.6 23.5 1.76 1.04 101.2 12.2 1.52 0.48 47.7 7.4 1.28 0.18 19.8 4.6 1.13 0.07

 vor 202.1 16.5 1.57 0.62 99.7 9.4 1.35 0.32 47.9 6.4 1.25 0.13 22.0 4.1 1.10 0.04

 bzp 215.8 33.7 3.66 0.82 103.5 19.4 3.12 0.15 48.3 9.8 2.39 0.00 23.3 5.7 2.13 0.00

 twf 131.7 16.4 2.00 0.21 74.3 13.2 1.93 0.10 44.5 9.0 1.88 0.06 20.3 4.8 1.73 0.03

Table 3: Branch slice statistics: Weighted average instruction distance (“Dist.”), instruction count (“Cnt.”), register live-ins (“LI”), and number of stores
(“#St”) for various slice detection setups. Each slice weighted by the number of mispredictions potentially corrected.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

gzp vpr gcc msa art mcf eqk amp prs vor bzp twf AVG

256RM
128RM

 64RM
 32RM

 32UM

 64UM

29

Figure 3: Slice locality distribution for loads that miss in the L1 data cache. Range shown is 1 (bottom) to 4 (top). We report results for the same slicer
configurations as in Figure 2.

Program
256-R-M 128-R-M 64-R-M 32-R-M

Dist. Cnt. LI #S Dist. Cnt. LI #S Dist Cnt. LI #S Dist. Cnt. LI #S

 gzp 226.9 28.6 3.53 3.61 101.3 17.5 3.20 1.23 41.2 7.8 2.08 0.40 19.1 4.5 1.21 0.02

 vpr 193.1 24.9 3.01 2.23 97.3 17.0 2.90 1.10 45.2 12.5 2.27 0.37 15.6 5.5 1.80 0.00

 gcc 205.0 19.8 1.65 1.03 101.1 11.7 1.48 0.51 47.2 6.9 1.30 0.18 21.2 4.3 1.16 0.04

 msa 224.3 8.0 1.03 0.00 109.9 4.9 1.05 0.00 44.8 2.8 1.04 0.00 18.1 2.0 1.01 0.00

 art 236.9 10.6 1.17 0.00 109.5 6.2 1.17 0.00 46.1 3.9 1.18 0.00 17.4 3.0 1.19 0.00

 mcf 230.1 29.6 1.44 0.01 109.1 14.1 1.78 0.01 47.2 7.9 1.78 0.00 14.8 4.9 1.69 0.00

 eqk 183.1 9.7 1.97 0.11 80.8 7.2 1.72 0.01 33.4 5.3 1.62 0.00 17.3 4.1 1.50 0.00

 amp 244.3 55.7 1.12 0.56 122.2 28.3 1.05 0.14 60.9 14.8 1.04 0.07 27.8 7.4 1.02 0.18

 prs 240.6 28.3 1.90 0.65 116.4 15.7 1.83 0.33 55.6 9.3 1.76 0.17 22.7 5.8 1.62 0.03

 vor 222.8 27.1 3.48 2.02 109.5 16.0 2.82 0.83 53.8 9.5 2.35 0.28 18.1 6.3 1.81 0.03

 bzp 216.2 15.4 2.18 0.17 100.7 10.2 2.13 0.05 42.1 7.7 2.09 0.00 15.5 4.4 1.81 0.00

 twf 123.7 12.3 1.84 0.05 61.8 10.1 1.81 0.01 40.6 7.5 1.65 0.08 22.4 5.0 1.47 0.04

Table 4: Load slice statistics: Weighted average instruction distance (“Dist.”), instruction count (“Cnt.”), live-in registers (“LI”), and

number of stores (“#St”) for various slice detection setups. Each slice weighted by the number of L1 cache misses potentially prefetched.

Figure 4: The effect of detection context on slice locality for branches (left) or loads (right): Detecting slices specifically when a branch was
mispredicted or load missed improves locality. Bars represent locality(4) for a 128-R-M detection mechanism. Darker bars are for detection
only on mispredict, or on cache miss, for branch slices and load slices respectively. Lighter bars represent the locality for slices of
mispredicted branches and loads that miss when slices are detected independent of whether there was a misprediction or cache miss.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 gzp vpr gcc msa art mcf eqk amp prs vor bzp twf AVG

256RM

128RM

 64RM

 32RM

 32UM

 64UM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gzp vpr gcc msa art mcf eqk amp prs vor bzp twf AVG
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gzp vpr gcc msa art mcf eqk amp prs vor bzp twf AVG

30

64RM, 128RM, and 256RM slicers. Recording up to 4 slices per
instruction results in a locality of 70%, 76%, 71% and 61% respec-
tively. For most programs, load slice locality is stronger than branch
slice locality was. In table 4 we also report the average lead to target
instruction distance, instruction count, register live-ins, and number
of included stores for load slices. Slice instruction distance
increases with the slicer size and is relatively large. Moreover, slice
instruction count remains relatively small even with the larger slic-
ers.

The results of this section are also encouraging as they show that
high locality exists in the slice stream of the loads that miss in the
L1 data cache. Overall, slicer size tends to play a dominant role in
determining locality. While restricting slice size has an impact on
locality for shorter slicers, its impact decreases with longer slice
detection windows.

3.2.3 Effect of Detection Context on Locality
Figure 4 reports the change in observed locality using a 128RM

detection mechanism when we allow slices to be added to the slice
cache independent of whether the underlying outcome-based pre-
diction mechanism was correct (in the case of branches), or there
was a cache hit (in the case of loads). Note that both sets of mea-
surements still represent only slices for branches that mispredict, or
loads that miss, and are again weighted by the frequency of mispre-
dictions and cache misses per static branch or load. We found that
detecting slices only for those dynamic instances of the target
instruction for which a misprediction, or cache miss event occurs
(as done in Sections 3.2.1 and 3.2.2) improved locality on average
by around 8% and 2% for branches and loads respectively. It only
decreased locality for mcf, and then only by 1% and 2% for
branches and loads respectively.

3.3 Accuracy and Interference with Outcome-
Based Prediction

In this section, we model specific operation predictors and study
their accuracy. We first explain how our branch operation predictor
works. A slice is detected after each branch that was mispredicted.
Detected slices are stored in an infinite slice cache where they are
identified by the lead instruction. Only up to 4 slices per lead
instruction can be present in the slice cache, however other than this
there is no restriction on the total number of slices in the cache.
Upon encountering a dynamic instance of the lead instruction we
spawn all slices that are associated with it. Note that these slices
may relate to the same, or different target operations. For the pur-
poses of this study, we assume that the resulting scout threads com-
plete instantaneously, however the outcomes of these threads are
not used immediately. Also, all register and memory values from
instructions before the lead are assumed to be available. The out-
come from slice execution is saved while the slice is matched-up to
the arriving flow of instructions. This matching is based upon
matching instructions and register dependences. A more practical
method would be to record the implied control flow of the slice
when it was detected and compare this to the observed control flow
after a slice has spawned, however, the latter technique does not
readily allow control independence. On average we found that 47%,
58%, and 72% of all branch slice executions are discarded for the
32RM, 64RM, and 128RM slice detection mechanisms. When and
if the target branch appears, if more than two slices have matched
up to the instruction stream we select the first slice that spawned, or

the most recently extracted slice if both spawned at the same time.
Most of the time there is only a single prediction available to be
consumed, if any (90%, 85%, and 80% for 32RM, 64RM, and
128RM respectively when executing branch slices).

3.3.1 Branches
To quantify the potential accuracy of our operation predictor for

branches and how it interacts with the underlying outcome-based
predictor we provide a breakdown of operation prediction for all
dynamic branches. We break down branches based on whether the
underlying outcome-based predictor correctly predicts the particu-
lar dynamic branch instance, on whether a prediction was available
from the operation prediction and on whether the latter, if available,
was correct. For ease of explanation we use a “vP” naming scheme.
“v” can be w(rong) or r(ight) and signifies whether the outcome-
based predictor correctly predicted the branch. “P” can be N(one),
W(rong) or R(right) and signifies whether no prediction was avail-
able from the operation predictor, and if there was one, whether it
was correct or not. For example, rN and rR correspond to branches
that were correctly predicted by the outcome-based predictor and
for which no prediction or a correct one was available from the
operation predictor respectively. Category rW corresponds to
destructive interference between operation and outcome-based pre-
diction, while category wR corresponds to constructive interference.
“rN”, “wN”, “rR” and “wW” do not impact the accuracy of the
outcome-based predictor. In our results we report “rW” and “rR” as
fractions measured over the total number of correctly predicted
branches by the outcome predictor. We also report “wW” and “wR”
as fractions measured over the total number of incorrectly predicted
branches by the outcome predictor. Ideally, “rW”, “wN” and “wW”
would all be 0%, in which case “wR” would be 100% (all previ-
ously mispredicted branches are now correctly predicted by the
operation-based predictor)

Figure 5 reports accuracy results for operation predictors that uti-
lize, from left to right, a 128RM, 64RM or a 32RM slicer. Part (a)
reports accuracy for correctly predicted branches (categories “rR”
and “rW”) while part (b) reports accuracy for mispredicted
branches (categories “wR” and “wW”). Categories “rN” and “wN”
are implied (missing upper part of the bars). In comparing the
results of two graphs we must also take into account the relative
fraction of correctly and incorrectly predicted branches (i.e., the
accuracy of the underlying outcome-based predictor). We do so
later in this section. In most cases, the operation predictors interact
favorably with the underlying outcome predictor since “rW” is in
most cases very small. In all programs, the operation predictor cor-
rectly predicts a large fraction of those branches that are mispre-
dicted by the underlying outcome-based predictor as shown in part.
(b) (category “wR”) while it incorrectly predicts very few (category
“wW”).

 On the average, ignoring timing considerations, the operation
predictor offers correct predictions for about 72%, 74% and 65% of
all mispredicted branches when the 128RM, 64RM or the 32RM
slicers are used respectively. On the average, the operation predic-
tion interferes destructively with the underlying outcome-based
branch predictor in very few cases. We re-iterate that in interpreting
he results of figure 5, one should also consider the relative fractions
of correctly versus incorrectly predicted branches. We report the
absolute change in prediction accuracy in addition to the outcome-
based branch predictor in table 5 (the branch prediction accuracy of

31

the outcome based predictor was reported in table 2). We observe
that in most programs the operation predictor helps the underlying
outcome-based predictor resulting in higher overall accuracy. In
some cases (e.g., mesa) where outcome-based prediction is very
high, the operation predictor actually harms overall accuracy. Since
in most cases, this destructive interference occurs for programs with
high branch accuracy, it may be possible to use a confidence mech-
anism (e.g., a counter with every slice) to filter out those slices that
lead to incorrect predictions very often or to simply disable opera-
tion prediction when outcome prediction is above a threshold. Such
an investigation is beyond the scope of this paper. Overall the frac-
tion of mispredicted branches that get a correct prediction from the
operation predictor is greater than the locality we observed in sec-
tion 3.2.1. Nevertheless, the trend in these two sets of values is sim-
ilar. The main reason they differ in magnitude is that we restrict the
number of slices to 4 per lead PC as opposed to 4 per target PC (this
restriction was placed since we need to associate slices with the lead
PC in this operation predictor). If the slices for a given target do not
all share the same lead operation, the number of slices captured can
exceed the four used when measuring locality. Indeed, the most
striking difference is exhibited for bzip where coverage increases
significantly for longer window size whereas locality(4) does not
(compare Figures 2 and 5b). Although not shown, in this case we
found the quantity wR+wW closely matched locality(n) in the limit
as n grows large (i.e., for values of n much larger than 4).

3.3.2 Loads
Finally, we report accuracy for an operation predictor for load

addresses. The results are shown in figure 6 for predictors based on

the 128RM, 64RM and 32RM slicers. In part (a) we report results
for those loads that hit in the data cache, while in part (b) we report
results for the loads that miss in the data cache. The results of part
(a) are provided for completeness. These loads hit in the data cache,
so correctly predicting their addresses is not as important. We show
two categories: hR are the loads whose addresses are correctly pre-
dicted while hW are the loads whose addresses are incorrectly pre-
dicted. In an actual implementation hW may translate into cache
pollution. Overall, hW is negligible. In part (b) we report a break-
down of predictions for loads that miss in the data cache. Two cate-
gories are shown; mR includes the loads for whom the addresses are
correctly predicted while mW includes those that are not. Ideally,
mW would be 0% and mR would be 100%. In all cases, mW is
barely noticeable. Moreover, mR tends to be higher for shorter slic-
ers. We can observe that the accuracy of the operation predictor is
extremely high (mR vs. mW). Moreover, the operation predictor
offers correct predictions for many of the loads that miss in the data
cache. Overall the idealized operation predictor could correctly
prefetch 63%, 67% and 58% of the loads which otherwise miss for
the 32RM, 64RM and 128RM mechanisms, respectively. This cov-
erage is less than the locality we observed in section 3.2.2. Again,
this relates to the restriction of 4 slices per lead PC as opposed to 4
per target PC. In many programs, the same lead PC appears in the
slices for more than one target load. Accordingly, thrashing occurs
and coverage suffers. For example, consider a linked list where each
element is a structure with multiple fields. All loads that access each
field may be missing at the same time. All these loads will be get-
ting the base address of the element in question from the same
load..Consequently, their slices could have the same lead instruction

Figure 5: Interaction of operation branch prediction and outcome-based branch prediction. We report results for the following slice detection
mechanisms: 128-R-M, 64-R-M and 32-R-M. When outcome-based prediction: (a) Correctly predicted branches and (b) Mispredicted branches.

Program 128-R-M 64-R-M 32-R-M Program 128-R-M 64-R-M 32-R-M

gzp +3.3% +4.9% +3.9% eqk +5.5% +7.0% +7.0%

vpr +5.9% +5.3% +1.7% amp +0.6% +0.7% +0.6%

gcc +5.4% +6.9% +6.5% prs +4.8% +6.2% +6.3%

msa +0.1% -1.8% -1.8% vor +1.1% +1.3% +1.2%

art -1.7% +0.2% +0.2% bzp +1.9% +1.5% +1.1%

mcf +4.7% +6.7% +6.7% twf +5.4% +8.8% +9.6%

Table 5: Change in branch prediction accuracy with operation prediction over the base outcome-based predictor.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

wR wW

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

rR rW

(a) (b)

128RM

64RM

32RM

gzp vpr gcc msa art mcf eqk amp prs vor bzp twf AVGgzp vpr gcc msa art mcf eqk amp prs vor bzp twf AVG

32

and hence they will cause thrashing in the lead PC’s slice set. A
potential solution to this problem could be to allow more slices per
lead PC. Alternatively, we may opt for carefully selecting the loads
for which we detect slices and apply operation prediction (e.g., first
loads that misses per block as opposed to all loads that miss per
block).

The tradeoffs in load address prediction are quite different than
those for branch prediction. In load address prediction, an incorrect
prediction does not necessarily impact performance negatively. It
can only do so indirectly by increasing resource contention or by
polluting the data cache. Also, while we may predict the exact
address incorrectly, we may still predict the correct cache block
address correctly. Moreover, while it is desirable to have a high cov-
erage (that is to provide correct predictions for as many of the loads
that miss as possible), higher coverage may not translate into higher
performance for reasons that include the following: Two loads that
miss may be accessing the same block, accordingly, we may actu-
ally prefetch the block even if we do not correctly predict both of
them. Also, in some cases, performance may be limited by other
loads, hence correctly predicting a load address may have a negligi-
ble impact on performance.

4 Related Work
Operation prediction shares similarities with a number of

recently proposed multi-threaded models where a number of poten-
tially speculative, helper threads are used to enhance an otherwise
sequential, main thread. Simultaneous subordinate micro-threading
and assisted execution are two such proposals [2,13]. In the exam-
ple application of SSMT given in [2] the helper threads are imple-
mented in microcode and are used to enhance branch prediction.

Zilles and Sohi suggested extracting slices at compile time and
using them to pre-execute performance critical instructions [15,16].
Assuming compile-time extraction, they have demonstrated that
such slices can greatly improve performance, especially if they are
optimized. Farcy et al., proposed an operation predictor for
branches for a restricted class of branches [5]. Moshovos also sug-
gested the possibility of generalized operation prediction [8].
Moshovos et al., proposed slice processors, the first dynamic,
autonomous and generalized operation predictor-based prefetcher
and demonstrated that it can improve performance even when com-

pared to an outcome-based predictor [9]. Collins et al., demon-
strated a software-driven slice-based prefetcher for an EPIC-like
architecture [4]. In parallel with this work, Collins et al., also pro-
posed a dynamic slice pre-execution prefetcher where slices are
optimized and can be chained [17]. Annavaram et al., proposed a
non-speculative slice-based prefetching scheme where slices are
detected and pre-executed from the fetch buffer and demonstrated
that it can effectively prefetch data for a 4-way OOO core with a
64-entry scheduler [1]. Luk described a software-controlled
prefetching method based on slice pre-execution [6]. In the Specu-
lative Data-Driven Multithreading (SDDM) execution model, pro-
posed by Roth and Sohi, performance critical slices leading to
branches or frequently missing loads are pre-executed [12]. A regis-
ter integration mechanism is used to merge slice produced results
into the main thread and to filter out any incorrectly calculated val-
ues. As proposed, SDDM relies on a profiling phase and the com-
piler to build slices and to orchestrate their execution.

Some operation outcome predictors exist. Stride predictors are an
early example where the actual computation is built in the design.
Roth at al., proposed an operation predictor for recursive data struc-
tures [10], while Mehrotra et al., proposed operation predictors for
linked lists and arrays [7]. Roth at al., proposed an operation predic-
tor for indirect jumps [11]. In all aforementioned proposals, the
class of predictable operations is fixed in the design. Slipstream
Processors also use a helper thread to run-ahead of the main
sequential thread in effect pre-executing instructions [14]. The
helper thread is formed by removing predictable computations from
the main sequential thread. They study the dynamic creation of
chaining slices in which a slice can, in essence, re-spawn itself. A
similar chaining mechanism was proposed by Zilles and Sohi in
[16] based on hand-optimized slices. Finally, an Instruction Path
Coprocessor could potentially be used to support dynamic extrac-
tion and execution of slices [3].

This study also appears in our recent technical report [18]. To the
best of our knowledge, no other work on the locality characteristics
of the slice stream of mispredicted branches or loads that miss
exists. Moreover, in their majority, most aforementioned slice-based
execution models rely on compile-time slice creation or manual
selection.

Figure 6: Breakdown of load address operation prediction. We report results for the following slicers: 128RM, 64RM and
32RM. (a) Loads that hit in the data cache. (b) Loads that miss in the data cache.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

mR mW

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

hR hW

gzp vpr gcc msa art mcf eqk amp prs vor bzp twf AVGgzp vpr gcc msa art mcf eqk amp prs vor bzp twf AVG
(a)

128RM
64RM

32RM

(b)

33

5 Conclusion
In this study we were motivated by the recently proposed opera-

tion-based prediction. Existing outcome-based predictors rely on
regularities in the outcome stream so that they can accurately pre-
dict a large fraction of the program’s outcomes. However, some out-
comes do not exhibit sufficient regularity. Operation prediction has
the potential of successfully predicting some of these outcomes.
Operation prediction looks for regularity in the computation stream
that produces outcomes that do not exhibit sufficient regularity. It
works by dynamically extracting the computation slices that lead to
such outcomes and by attempting to pre-execute them next time
around. For operation prediction to be successful, it is necessary
that the computation stream of such outcomes exhibits regularity.

Several works have demonstrated that operation prediction meth-
ods work or may work for branches or loads, In this work we study
program behavior and explain why operation prediction may work.
In particular, we studied the locality of the computations that lead to
otherwise unpredictable outcomes. We focused on loads and
branches and studied locality under various realistic assumptions
about slice detection. Moreover, we have studied models of opera-
tion predictors and how they interacted with an underlying out-
come-based predictor. Our results demonstrate that high locality
exists in the computation stream of unpredictable branches and of
loads that miss in the data cache. Moreover, we have shown that the
potential exists for operation prediction to boost accuracy over an
existing outcome-based branch predictor and of accurately predict-
ing the addresses of load references that would miss in the data
cache. To the best of our knowledge no previous work on the local-
ity of slices for mispredicted branches and loads exist.

While our results are promising we have not studied actual opera-
tion predictors taking timing into account. Nevertheless, we have
seen that slices tend to spread over large region of the original
instruction stream while they contain on the average few instruc-
tions. Moreover, our results remain valid and important as they
demonstrate that programs do exhibit the behavior necessary for
operation prediction to be successful. Further investigation is
required in tuning operation predictors so that they make use of
available resources effectively while being able to execute scout
threads early enough for providing predictions for modern high-per-
formance processors.

6 Acknowledgments
This research was supported by a Natural Sciences and Engineer-

ing Research Council of Canada (NSERC) research grant and by
research funds from the University of Toronto. Tor Aamodt was
supported by an NSERC PGS ‘B’ scholarship. We gratefully
acknowledge the comments and suggestions of the anonymous ref-
erees that helped improve this paper.

REFERENCES
[1] M. M. Annavaram, J. M. Patel, and E. S. Davidson. Data

Prefetching by Dependence Graph Pre-computation. In
Proc. 28th International Symposium on Computer
Architecture, July 2001.

[2] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt.
Simultaneous subordinate microthreading (SSMT). In Proc.
26th Intl. Symposium on Computer Architecture, pages 186-
195, May 1999.

[3] Y. Chou and J. Shen. Instruction path coprocessors. In Proc.
27th Intl. Symposium on Computer Architecture, pages 270-
281, June 2000.

[4] J. D. Collins, H. Wang, D. M. Tullsen, C. J. Hughes,
Y. Fong Lee, D. Lavery, and J. P. Shen. Speculative
Precomputation: Long-range Prefetching of Delinquent
Loads. In Proc. 28th International Symposium on Computer
Architecture, July 2001.

[5] A. Farcy, O. Temam, and R. Espasa. Dataflow Analysis of
Branch Mispredictions and Its Application to Early
Resolution of Branch Outcomes. In Proc. 31st Annual
International Symposium on Microarchitecture, Dec. 1998.

[6] C.-K. Luk. Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors. In Proc. 28th International Symposium on
Computer Architecture, July 2001.

[7] S. Mehrotra and L. Harrison. Examination of a memory
access clasification scheme for pointer-intensive and
numeric programs. In Proc. 10th Intl. Conference on
Supercomputing, Sept. 1997.

[8] A. Moshovos. Memory Dependence Prediction. Ph.D.
thesis, University of Wisconsin-Madison, Madison, WI,
Dec. 1998.

[9] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi. Slice
Processors: An Implementation of Operation-Based
Prediction. In Proc. International Conference on
Supercomputing, June 2001.

[10] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based
prefetching for linked data structures. In Proc. 8th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
115-126, Oct. 1998.

[11] A. Roth, A. Moshovos, and G. S. Sohi. Improving virtual
function call target prediction via dependence-based pre-
computation. In Proc. Intl. Conference on Supercomputing,
pages 356-364, June 1999.

[12] A. Roth and G. S. Sohi. Speculative Data-Driven
Multithreading. In Proc. 7th International Symposium on
High Performance Computer Architecture, Jan 2001.

[13] Y. Song and M. Dubois. Assisted execution. Technical
report, Technical Report CENG-98-25, Department of EE-
Systems, University of Southern California, Oct. 1998.

[14] K. Sundaramoorthy, Z. Purser, and E. Rotenberg.
Slipstream processors: Improving both performance and
fault tolerance. In Proc. 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems, Nov. 2000.

[15] C. Zilles and G. Sohi. Understanding the Backward Slices of
Performance Degrading Instructions. In Proc. 27th
International Symposium on Computer Architecture, pages
172-181, June 2000.

[16] C. Zilles and G. Sohi. Execution-Based Prediction Using
Speculative Slices. In Proc. 28th International Symposium
on Computer Architecture, June-July 2001.

[17] J. D. Collins, D.M. Tullsen, H. Wang, and J.P. Shen,
Dynamic Speculative Precomputation. To Appear In Proc.
34th International Symposium on Microarchitecture, Dec.
2001.

34

[18] Tor Aamodt, Andreas Moshovos, and Paul Chow, The
Predictability of Computations that Produce Unpredictable
Outcomes, Technical Report #TR-01-08-01, EECG,
University of Toronto, August 2001.

[19] K. Skadron, P.S. Ahuja, M. Martonosi, and D.W. Clark,
Improving Prediction for Procedure Returns with Return
Address-Stack Repair Mechanisms. In Proc. 31st Intl.
Symposium on Microarchitecture, pages 259-271, Nov.
1998.

