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Motion planning is a computationally intensive and well-studied problem in autonomous robots. However,
motion planning hardware accelerators (MPA) must be soft-error resilient for deployment in safety-critical
applications, and blanket application of traditional mitigation techniques is ill-suited due to cost, power, and
performance overheads. We propose Collision Exposure Factor (CEF), a novel metric to assess the failure
vulnerability of circuits processing spatial relationships, including motion planning. CEF is based on the insight
that the safety violation probability increases with the surface area of the physical space exposed by a bit-flip.
We evaluate CEF on four MPAs. We demonstrate empirically that CEF is correlated with safety violation
probability, and that CEF-aware selective error mitigation provides 12.3×, 9.6×, and 4.2× lower dangerous
Failures-In-Time rate on average for the same amount of protected memory compared to uniform, bit-position,
and access-frequency-aware selection of critical data. Furthermore, we show how to employ CEF to enable
fault characterization using 23,000× fewer fault injection (FI) experiments than exhaustive FI, and evaluate
our FI approach on different robots and MPAs. We demonstrate that CEF-aware FI can provide insights on
vulnerable bits in an MPA while taking the same amount of time as uniform statistical FI. Finally, we use the
CEF to formulate guidelines for designing soft-error resilient MPAs.

CCS Concepts: • Computer systems organization → Reliability; Robotics.
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1 INTRODUCTION

Autonomous robots are increasingly used for real-time and safety-critical tasks, including medical
care [26, 42], autonomous driving [122, 126], and home assistance [67, 136]. The size of autonomous
robots market is expected to grow by 4× from 2022 to 2030 [14, 58]. As autonomous robots are
becoming an integral part of our lives, it is crucial to ensure that an autonomous robot does not
collide with other objects, and thereby harm the safety of its surroundings.

Motion planning allows an autonomous robot to navigate and reach its end goal safely without
collisions. Therefore, motion planning is key to the many tasks performed by autonomous robots,
including navigation, object manipulation, footstep planning, and full-body movement. It has been
an area of study since the 1970s [66, 70], and is today one of the key research topics in robotics.
For example, motion planning constitutes about ∼10% of the total publications in top robotics
conferences [2, 3] (ICRA-2022 had 931 papers, 115 of which were in motion planning). Motion
planning has also received significant attention from industry, with an increasing number of patents.
For example, the number of patents granted every year by the United States Patent Office (USPTO)
on collision detection and motion planning has increased by 8× from 2015 to 2022 [39, 127].

The computational and real-time demands of motion planning exceed those provided by typical
CPUs. Recently, several approaches have been proposed to accelerate motion planning on different
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Fig. 1. The effect of soft errors on safety in autonomous robots.

hardware platforms, including GPUs [12, 35], FPGAs [7, 91, 113], and ASICs [10, 77, 89, 112, 114,
139]. Motion Planning Accelerators (MPAs) have achieved impressive performance gains and are
being adopted in industry [28, 102, 106]. However, the use of MPAs in robotics applications has
significant safety implications. For example, the IEC 61508 [57] provides functional safety standards
for electronic systems used in applications such as robotics in terms of allowable dangerous failure
rate per hour (Section 2.3). In modern systems, errors induced by particle strikes and radiation, or
soft errors, make up the majority of SRAM and register-level faults [84, 116]. Hence, soft errors are
a major threat to safety standards compliance in MPAs used in robotics. Furthermore, due to their
transient nature, soft errors cannot be eliminated during the design and test phases of a chip, and
hence need runtime mitigation.

There have been many studies on the effects of soft errors on CPUs, GPUs, and FPGAs [31, 32, 38,
47, 49, 64, 75, 76, 88, 94, 96–98, 110, 123, 124, 128, 131], deep learning accelerators [53, 54, 74, 78,
101, 108, 125, 134], and autonomous vehicle systems [11, 56, 61–63, 135]. However, their impact
on accelerators for robotics has not been studied. Application-agnostic blanket error mitigation
techniques such as error-correcting codes (ECC) and dual/triple modular redundancy (DMR/TMR)
can increase the area, cost, and power by 12%-125% (Table 5), and degrade the performance of
these hardware accelerators. With consumer applications driving growth of robotics, the electronics
controlling these systems will become increasingly cost-sensitive [23, 37, 93]. Furthermore, any
increase in the MPA’s power consumption significantly reduces a mobile robot’s operation time
as MPAs suitable for real-time motion planning can contribute to 15%-50% of its total power
consumption [69, 79, 91]. While there has been work on sensor and actuator faults in robotics [22],
there has been no study of the reliability of MPAs in the presence of soft errors. To the best of our
knowledge, we are the first paper on characterizing and improving the reliability of MPAs.

In this paper, we study soft errors in the collision detection module (CDM), which is the largest,
most energy-consuming, and safety-critical component in MPAs [7, 77, 89, 114]. We find that CDMs
in these accelerators consist of on-chip storage elements to store the information about space that the
robot passes through for possible motions. These storage elements account for more than 97% of the
sequential elements (based on our RTL synthesis experiments), and so we focus on it in this paper.
Figure 1 shows the effect of soft errors in the CDM. In the error-free scenario (Figure 1a), the robot
navigates safely to the end goal. However, in Figure 1b, a soft error causes the MPA to misidentify a
path taken by the robot as safe, thereby resulting in a collision. This mis-identification is due to an
error modifying the geometric representation of the space that the robot passes through.

Prior work has explored memory and register file designs that allow flexible partition into protected
and non-protected regions for incorporating selective error mitigation in systems using CPUs and
GPUs [16, 86, 133, 140, 141]. These techniques protect only the most vulnerable data and do so
by placing it in protected memory. A challenge with applying such an approach to error mitigation
is that it requires accurate and fast identification of the most critical data. One approach is to use
exhaustive fault injection (FI) to identify storage bits that exhibit the highest resilience improvement
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when protected from soft errors. Unfortunately, exhaustive FI can take up to 24,000 CPU hours for a
typical MPA (Section 6.1.1). Such high FI time overhead for error mitigation each time the MPA
is reconfigured for a different task or robot introduces practical deployment challenges. For fully
autonomous robots, the MPA’s storage data can be generated or modified at runtime [34, 52, 60],
requiring runtime characterization of vulnerable data for selective error mitigation. Also, as noted in
earlier work [88] exhaustive FI is an inefficient way to gain insight during architecture design.

Prior work on FI techniques for CPUs and GPUs [31, 32, 49, 76, 92, 124, 131] has obtained
significant reductions in the FI time. These FI tools and techniques are targeted towards specific
languages, Instruction Set Architectures (ISA), or CPU/GPU system simulators and often exploit
the microarchitecture or ISA to reduce the FI time and estimate the failure probability (Section 8).
However, these techniques cannot be directly applied to robotic accelerators that use specialized mi-
croarchitectures and instruction sets. Thus, there is a need for techniques that efficiently characterize
the effect of soft errors in robotics applications. Architectural Vulnerability Factor (AVF) has been
widely used to define the vulnerability of a structure and can be measured using an analytical method
such as Architecturally Correct Execution (ACE) analysis [88] or FI [73]. Directly applying AVF
methodology such as ACE analysis to MPAs requires considering the positions of obstacles in the
environment, thus leading to the need to run a large number of simulations to accurately estimate the
fraction of time a hardware storage element contains an ACE bit.

To overcome these challenges, we introduce a novel heuristic, Collision Exposure Factor (CEF)
that depends only upon the accelerator and robot, not on the environment. Other heuristics, such as bit
position [74] and access-frequency [68, 83] have been proposed to find critical bits for deep learning
accelerators and embedded applications, respectively. However, our analysis shows that considerable
variation exists in the failure probabilities of bits with the same access-frequency or bit position in
MPAs. In contrast, our approach provides a higher reduction in the overall failure probability as our
proposed heuristic is more accurate at finding critical bits in the MPAs (Section 6.2).

The CEF estimates the vulnerability factor of memory bits storing spatial information. The 3D
model data of the swept spaces of a robot’s possible motions play a key role in real-time collision
detection and motion planning, and is stored in the on-chip memory. Each bit in the on-chip storage
helps specify the bounds of some motion’s swept space. We define a bit’s critical space as the
region excluded from the swept space if that bit changes value due to a fault. A bit-error can lead to
erroneous collision detection and safety violations if an obstacle overlaps with this bit’s critical space.
To account for this violation, CEF of a bit is defined as the surface area of that bit’s critical space
exposed to obstacles due to a soft error. The CEF is defined for a memory bit, and the probability of
a fault in a bit resulting in a safety violation monotonically increases with its CEF value. Thus CEF
values of memory bits can be used to estimate their relative vulnerability factors. In contrast, AVF
estimates the failure probability due to soft error for a structure, and not in individual bits.

The probability of a fault in a bit resulting in a safety violation depends upon the environmental
characteristics (e.g., average size and number of obstacles). By considering the entire swept space
of the robot’s motion, the CEF decouples the effects of the robot model and the environment on
safety violations, and the safety violation probability of a bit monotonically increases with its CEF
value. CEF can be calculated once for a given MPA and robot without needing to consider obstacles
in the environment (which might be highly dynamic). The underlying reason this separation is
possible is that, in the most widely used approaches for real-time motion planning, a robot has a
fixed set of possible short motions that are precomputed independently of obstacle positions [72].
During operation a subset of these motions is selected to navigate to a given goal depending upon
obstacle positions. For purposes of fault analysis we decouple these steps by assuming a conservative
distribution (e.g., uniform) on where objects will appear. We show empirically that the CEF computed
this way independent of the environment is positively correlated with the average failure probability.
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Fig. 2. (a) shows the spatial poses and motion of a 2D robot with three degrees of freedom (x, y, z)
(figure reproduced from [112]), (b) represents these poses and motion in the robot’s C-space, and (c)
shows a motion set in the C-space. (d) shows a motion set for a robot with two DOFs. The figure
highlights a path between c1 and c2 in the presence of an obstacle in c-space (left) and physical space
(right).

Further, we propose a CEF-aware error mitigation technique to selectively protect values with
higher CEF in an MPA’s on-chip storage. Finally, we propose a two-phase FI methodology: Phase 1 FI
to find the CEF of all the bits (for a given robot and MPA), and Phase 2 FI to find the relation between
the CEF and failure probability with fault site pruning. Uniform statistical FI-based characterization
of the CDM provides similar speedup over exhaustive FI as CEF-aware FI (Section 6.1.1). However, it
does not find the safety-violation probability of an individual bit nor does it find relative vulnerability
of different bits, which is needed for error mitigation. In CEF-aware FI, on the other hand, decoupling
the two FI phases allows efficient calculation of the safety-violation probability for every bit in the
CDM. In summary, we make the following contributions in this paper:

• Establish the necessary conditions for safety violations (i.e., collisions), and propose Collision
Exposure Factor (CEF), a reliability metric for CDM storage elements.

• Propose an efficient CEF-aware error mitigation technique that selectively protects values
with higher CEF, and compare it to uniform, exhaustive FI, bit position-aware, and access-
frequency-aware application of DMR, TMR, and ECC techniques for four CDM designs.

• Propose a two-phase FI methodology using the CEF of storage elements for fault site pruning
to reduce FI time by orders of magnitude.

Our results show that CEF-aware selective error mitigation results in 12.3×, 9.6×, and 4.2×
lower failure rate for the same amount of protected memory compared to uniform, bit position, and
access-frequency-aware selection of critical data. Further, CEF-aware FI reduces the FI time by
23,000× with minimal loss of accuracy, and finds the failure rate of the MPA and individual bits.
Finally, we study the impact of architectural design parameters on resilience and error mitigation
overheads, and demonstrate the potential for designing resilient MPAs architectures using the CEF.

2 BACKGROUND AND MOTIVATION

This section briefly summarizes relevant background information on motion planning, general CDM
architecture, and safety in robotics. Then, we summarize the limitations of current FI methodologies,
and discuss the need for application-specific reliability metric and FI methodology for MPAs.

2.1 Motion Planning

The objective of motion planning is to compute a collision-free path for a robot. Motion planning is
performed in the robot’s configuration space (C-space), which has the same number of dimensions
as the robot’s degrees of freedom (DOFs). Figure 2a shows a planar robot with three DOFs, while
Figure 2b represents its C-space. Each dimension of the C-space represents the range of angles of a
joint of the robot. The point c1 with coordinates (x1, y1, z1) in the C-space corresponds to the pose
c1 in Figure 2a. Similarly, edge e12 represents the robot’s motion from c1 to c2. The complexity of
motion planning increases exponentially with the robot’s DOFs [109]. Thus, approximate methods
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(a) (b) (c)

Fig. 3. (a) shows the swept space of a robot motion, (b) represents the voxelization of the swept space
(explained in Section 2.2), and (c) shows an obstacle that overlaps with the swept space of this motion.

such as probabilistic roadmaps [65] are widely used [71, 109] over the last 20 years. Many hardware
accelerators [7, 77, 89, 90, 113, 139] have been proposed for these algorithms.

2.1.1 Probabilistic roadmaps. Probabilistic motion planning consists of two phases. In the pre-
processing stage, a graph, called a motion set, is constructed in the robot’s C-space. Figure 2c and
Figure 2d give examples of motion sets for a robot with three and two DOFs, respectively. The nodes
in the graph correspond to the robot’s spatial poses, and an edge between close-by nodes represent
motion generated by a local planner (e.g., linear interpolation between two poses) from one pose to
another. Motion set consists of collision-free poses and motions of the robot for given environment.
In the query phase, a path search algorithm (e.g., Dijkstra’s algorithm) is used to find a path between
given start and end poses using the precomputed motion set. A path consists of one or more motions
from the motion set. The probabilistic roadmap is a multi-query method, i.e., the same motion set is
used to perform motion planning for multiple start and goal poses.

Leven and Hutchinson [72] proposed a real-time motion planning approach based on probabilistic
roadmaps for a dynamic environment and is also used by MPAs [46, 77, 89, 90, 113, 139]. In this
approach, the motion set is generated for an obstacle-free environment. At runtime, collision detection
is performed to find collision-free motions in this set for a given placement of obstacles. The path
search module considers collision-free motions to find a feasible path between the start and end pose
in the resulting collision-free motion set graph. For example, in Figure 2d, an obstacle in the robot’s
environment makes some of the motions in the motion set flagged as “colliding motion”, which are
avoided by the path search module to find a path between c1 and c2.

The information about the swept space of each motion in the motion set is stored in the memory to
facilitate real-time collision detection. Swept space of a motion is the space occupied by a robot as
the given motion is followed. For example, as shown in Figure 3a and Figure 3b, a motion’s swept
space is discretized, and its 3D model is stored. As shown in Figure 3c, the motion’s swept space
is checked for overlap with obstacles for collision detection at runtime. Several motion planning
approaches propose to modify this motion set at runtime [34, 52, 60]. For these approaches, the
swept spaces of new motions are generated at runtime outside of the critical path.

2.2 Collision Detection Module (CDM)

The collision detection step is the most time- and energy-consuming in motion planning and takes up
to 99% of the total runtime on a CPU [12]. As collision detection must be performed in real-time
with low latency to ensure safety in an environment with dynamic obstacles, MPAs typically dedicate
more than 85% of their total area to accelerate collision detection [77, 89, 90], making the CDM
the most vulnerable component in an MPA. An erroneous collision detection can potentially lead
to a collision between the robot and an obstacle in its surroundings, making collision detection
safety-critical. Many approaches have been proposed to accelerate collision detection on different
hardware platforms. The architecture proposed by Murray et al. [91] uses specialized combinational
circuits for a given motion set, but it is not reconfigurable to different motion sets at runtime. In

ACM Transactions on Cyber-Physical Systems (Just Accepted)



6 Deval Shah, Zi Yu Xue, Karthik Pattabiraman, and Tor M. Aamodt

Collision
detection

logic

CDC1

Obstacle occupancy
(from perception)

Collision ouput (to path search module)

Collision
 outputPrecomputed Swept space

of a motion (from DRAM)

On-chip 
memory (SRAM)

or Registers

CDC1 CDC1

Fig. 4. Architecture of a Collision Detection Module (CDM).

contrast, GPU-based collision detection acceleration [12, 35] provides high flexibility, but it is not
energy-efficient. Configurable collision detection hardware accelerators [7, 10, 77, 89, 90, 113, 139]
provide a balance between flexibility and performance/energy-efficiency. We focus on the fault
characterization of such reconfigurable CDMs of four MPAs, which we refer to as A1 [91], A2 [89],
A3 [77], and A4 [139] (Section 5.2) throughout this paper.

Figure 4 illustrates the architecture of a generic configurable CDM. The CDM consists of multiple
collision detection circuits (CDCs) to check multiple motions for collision in parallel. Each CDC
consists of on-chip memory/registers to store a motion’s swept space, and exploits inter- and intra-
query data reuse. The on-chip storage can be configured for different motions at runtime. Based on
our synthesis experiments, the on-chip memory to store swept spaces constitutes more than 97%
of the sequential elements and ∼ 50% of the total area in CDMs. Earlier work on FPGA-based
accelerators [89] uses combinational logic to encode swept-space data. However, most programmable
CDMs have a high fraction of sequential elements dedicated to on-chip storage for spatial data [77,
89, 90, 139]. We also verify this using RTL synthesis of these programmable CDMs (architecture
explained in Section 5.2). Therefore, we focus on the on-chip memory for fault characterization, and
do not consider the effect of soft errors in combinational logic in this work.

The key design consideration of CDMs is the geometric representation used to store swept
spaces in the memory. Several representations for storing the 3D model have been proposed for
motion planning, including polygonal meshes [5], bounding box hierarchies [40, 130], voxels [114],
and octrees [59]. These approaches differ in storage requirements, representation accuracy, and
computational complexity. All CDM hardware accelerators studied in this work use either grid-based
or octree-based representations (explained in Section 3.1) as these representations are less compute-
and memory-intensive. For both representations, the swept space of a motion is discretized into
fixed-size cubes known as voxels. Voxelized swept space is then stored using a set of structures
specific to the representation used. At runtime, a perception sensor module senses obstacle occupancy
information, converts it to voxels, and sends it to the CDCs. The CDCs perform collision detection
for stored motions and send the output to the path search module. Note that the proposed metric CEF
is applicable regardless of the geometric representation used.

2.3 Functional Safety in Robotics

Safety is a crucial consideration in robotics. Hence, the failure rate of circuits used in robotics
applications, including MPAs, is an important factor. The FIT rate of a circuit (where 1 FIT is one
failure/billion hours) consisting of multiple components can be computed using Equation (1) [74, 88].

FIT = ∑
i∈components

Si ×SDCi ×FITRaw (1)

FITRaw is the raw FIT rate defined in FIT/Mb and depends upon multiple factors including technology
node, ambient conditions, and elevation [105]. Si is the number (in Mb) of sequential elements/latches
in component i. SDCi is the probability of a fault in component i affecting the application output.
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Table 1. Comparison of complete and selective ECC. The die cost calculation is based on the equation
provided in [55] (Chapter 1.6). The wafer cost, yield, and impurity factors are for 16nm technology
node [18, 25, 119].

No ECC Full ECC Selective ECC (SIL 2) Selective ECC (SIL 3)
Total area (mm2) 450 502.5 454.5 469.8

Cost/die ($) 59.9 70.0 60.8 63.6

IEC 61508 [57] defines an international safety standard for safety-critical electronic systems. This
standard is based on the risks of failure and defines four Safety Integrity Levels (SIL). Each SIL
expresses the upper bound on the average frequency of dangerous failures per hour (PFH) [82]. SIL 1
is the least stringent, while SIL 4 is the most stringent. The maximum allowable PFH rate decreases
by three orders of magnitude from SIL 1 (10−5) to SIL 4 (10−8). Note that the IEC 61508 standard
considers the entire electronic system, not only the MPA.

One approach to make circuits soft error-resilient for certifiable safety is to use hardware error
mitigation techniques on storage, which incurs high cost/power/performance overheads. Autonomous
vehicles and robotics industries typically have shallow profit margins. For example, the profit margin
per unit is under $1000 for several automobile industries [137]. Electronic systems contribute up to
40% to the total cost of a car [24, 100] (at the time of writing). Hence cost-effective solutions to make
MPAs more reliable are imperative [23]. The overheads for complete protection of storage structures
increase with their size. In such a case, the protection may be sacrificed entirely if the area/power
overheads are over budget. In comparison, selective protection is flexible and provides safety with
less overhead than complete protection of storage structures by protecting only the most vulnerable
data. Table 1 compares the die area and cost for complete and selective ECC for the A3 [77]. As
shown in Table 1, selective ECC can reduce the cost by 10% for SIL 3 (∼ 1% increase in the profit
margin). While the table compares only the die cost, an increase in the die area has a cumulative
effect on the total cost of an electronic system, amplifying the need for selective error mitigation.

2.4 Fault Injection (FI)

In a circuit, a soft error can occur at any location and time. Assuming a single-bit error model, where
only one bit is affected by a soft error in the component, exhaustive fault characterization typically
requires A × B FI runs. In this equation, A is the number of fault sites in space, and B is the number
of fault sites in time. A is determined by the number of bits, and B is determined by the application’s
total execution cycles and the number of possible inputs to the application. Unfortunately, this
requires very high numbers of FI runs. In MPAs, different combinations of obstacle positions (input
to collision detection) add to the number of FI runs, making the space even larger.

Accelerators’ fault characterization is typically carried out by statistical FI experiments [19, 33, 48,
49, 73, 74]. Statistical FI performs random sampling in the fault space and allows to tune the number
of FI experiments as per the required confidence of the estimated failure rate for a system [73].
Often, statistical FI is performed per component to find the safety-critical components in a circuit.
However, the CDM component occupies more than 85% of the area in an MPA and mainly consists
of sizable on-chip storage structures to store swept spaces. Hence, selective error mitigation of CDM
requires a strategic approach to determine the safety-critical data in the on-chip storage. Further,
the number of FI runs needed for statistical FI increases with a decrease in the probability of a bit
error resulting in an output error, i.e., the failure probability of a component [73]. Typical CDMs
have a low overall failure probability (∼ 0.3%) which increases the number of FI runs required when
using uniform random statistical FI (Section 6.1.1). Therefore, it would be beneficial to develop an
application-aware FI strategy in which the sites for FI are strategically selected.
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Table 2. Summary of frequently used acronyms
CEF Collision Exposure Factor
MPA Motion Planning Accelerator
CDM Collision Detection Module
CDC Collision Detection Circuits- A CDM consists of multiple CDCs
SIL Safety Integrity Level (Section 2.3)

SDC-C Silent Data Corruption leading to False-negative collision detection (Section 3)
CDF Collision Detection Failure rate per billion hours (Section 4.3)

A1-A4 CDMs studied in this work

3 RELIABILITY METRIC FOR MOTION PLANNING

In this section we explain how erroneous collision-detection outcomes can lead to safety-critical
events, then describe Collision Exposure Factor (CEF) in detail, and finally discuss how to apply
CEF to building resilient MPAs. Table 2 summarizes the frequently used acronyms in this work.

Specialized accelerators, such as a CDM, obtain efficiency by replacing long sequences of software
instructions with specialized hardware. Such accelerators may perform computations under the
supervision of a command processor via an ISA interface (e.g., Google’s TPU [29]), and/or may
start computation triggered by an event such as the arrival of a new frame of data in a buffer [21].
While an error originating in the accelerator could potentially propagate to the command processor
and thereby result in erroneous operation (e.g., hang or system software crash) this paper focuses on
Silent Data Corruption (SDC) within the CDM that can result in the robot colliding with an object.

Given a motion set and the current positions of obstacles, collision detection finds motions that
may lead to collisions. A bit-flip can lead to erroneous collision detection. A false-positive outcome
can lead to a poor (longer) path or the motion planner’s inability to find a path, in which case the
robot may get stuck. We perform fault injection experiments to measure the probability of a soft
error resulting in a false-positive outcome; this gives an upper bound on the probability of the motion
planner’s inability to find a path due to soft errors. We find that the motion planning failure rate
increases by up to 0.001% for 1 second/motion planning query [99] and 45nm technology node due
to soft error induced false positive outcomes, which is significantly lower than the failure rate of
probabilistic motion planning algorithms (5−10% [99]). Further, a simple mechanism such as using
a watchdog timer to refresh the corrupted on-chip data can be employed to avoid such cases. We do
not focus on false-positive outcomes in this work, as their impact on the motion planning failure rate
is very low, and safety standards do not consider false-positives but only safety violations.

We define an SDC-C as an event involving a false-negative result when performing collision
detection for a proposed motion and an object (i.e., a colliding motion is misidentified to be collision-
free even though sensors detected an object the proposed motion would collide with if chosen during
path search). Similar to AVF, SDC-C probability gives a probability of raw error in a memory bit
becoming an error in motion planning (i.e., false-negative collision detection). Since, in general, an
obstacle might appear anywhere in the environment, a naive (but expensive) approach to estimate
SDC-C probability is to simulate many sample environments, each with randomly placed obstacles.
Below we consider a more efficient approach suitable, for example, during CDM architecture design.

3.1 Collision Exposure Factor (CEF)

To analyze the errors that can occur in a CDM circuit and their effect on SDC-C probability, we
focus on bit changes that can lead to false-negative collision detection. Specifically, we consider
the impact of a change in a single bit used to represent a portion of a motion’s swept space. As
mentioned in Section 2.2, swept spaces of the motions are stored in CDM memory or registers and
used to find possible collisions with the obstacles. Each bit in the on-chip storage helps specify the
bounds of some motion’s swept space. We define the critical space of a bit as the region excluded
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Fig. 5. Analyzing impact of bit flips in a CDM. (a) represents the swept space of a motion stored in
CDM, (b)-(d) represent box-based CDM (A2), and (e)-(g) represent octree-based CDM (A3). CEF
values are normalized to the surface area of one face of a voxel.

from the swept space if that bit changes value due to a fault. This region represents a part of the
swept space that can potentially lead to false-negative collision detection if an obstacle overlaps with
the critical space and does not overlap with the remaining swept space. We then define the collision
exposure factor (CEF) of a bit as the surface area of that bit’s critical space exposed to obstacles. If
the geometric representation uses voxelized space, the CEF can be normalized to the surface area of
one face of a voxel. In our evaluation (Section 6.1), reported CEF values are unitless. The CEF values
for different accelerators (A1-A4) are on the same scale as the same normalization factor is used.

Figure 5 illustrates the critical space of specific bits due to single-bit errors for different geometric
representations. Figure 5a represents the swept space of a motion. Geometric representation methods
convert the swept space to a set of structures, such as voxels (used in A1 described in Section 5.2),
boxes (used in A2), or octree nodes (used in A3 and A4). Each of these structures is encoded into
bits and stored in the on-chip storage of the CDM. For example, a voxel structure is stored using its
coordinates, a box structure is stored using the coordinates of the diagonal voxels, and an octree node
structure is stored using a custom data structure described below. A bit flip caused by a soft error
would modify the space represented by the structure in different ways depending on the location of
the bit in the structure and the geometric representation.

Figure 5b shows a box-based representation of the swept space, where four boxes are required to
cover the swept space. Since space is divided into four voxels in x, y, and z directions, a total of six
(log24×3) bits are used to store a coordinate. The highlighted box is represented with coordinates
(x1,y1,z1) and (x2,y2,z2) of the diagonal voxels, before any error is introduced. In Figure 5c,
flipping a specific bit causes the value of y1 to increase by one voxel. As the voxel highlighted in red
is now excluded from the box, and no other box covers the voxel, it becomes part of the bit’s critical
space. A soft error in this bit results in the exclusion of the critical space from swept space; hence the
collision detection circuit fails to detect a collision if an obstacle occupies this critical space, leading
to an SDC-C. In contrast, in Figure 5d, a bit flip causes y2 to decrease, but this bit flip is masked and
does not impact the CDM’s output as other boxes cover the voxels exposed.
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Figure 5e shows the octree representation of the same swept space. In this representation, the root
node and all partially occupied nodes are stored in memory using a tree data structure. Each node
in the tree contains two fields: “status” and “next addr”. The status field contains an entry for
each octant within the node indicating whether that octant is empty, partially or fully occupied. Only
partially occupied octants are further divided. The next addr field contains the start address of an
array holding the resulting children nodes. For example, in Figure 5e, the node stored in memory at
address 0 contains only one partially occupied octant, and the node containing information about
it is stored at address 1. In Figure 5f, a bit flip in the node at address 0 modifies the status of a
particular octant to be “fully empty”, thereby adding all the voxels in that octant to the critical space.
In Figure 5g, a bit flip in the node at address 1 modifies the status of an octant to “fully occupied”,
resulting in a false-positive rather than a false-negative. In this case, motions that would not lead to a
collision may be disallowed. However, this false-positive outcome does not result in potential for a
collision (an SDC-C). Therefore, this voxel (highlighted in green) is not a part of the critical space.

For a given erroneous bit, it is more likely that an obstacle occupies its critical space and results
in an SDC-C as the exposed surface area of this critical space increases. Hence, intuitively, the
SDC-C probability of a bit increases with its CEF value (Section 6.1.2). Note that the CEF of a bit is
independent of the position of the obstacles in the environment. The CEF captures the probability
of obstacles appearing in critical space and decouples the effect of a soft-error and exact position
of obstacles on SDC-C probability. While the CEF definition assumes a uniform distribution of
obstacles, it can also be extended to nonuniform distributions. For example, the CEF value can
be scaled by the estimated probability of obstacles occupying the critical space for a nonuniform
distribution of obstacles in the environment.

One approach is to use the volume of the critical space (CS volume) as a reliability metric.
However, the exposed surface area gives a measure of the area of critical space through which
obstacles can overlap only with the critical space and not the rest of the swept space, leading to an
SDC-C. In contrast, CS volume does not differentiate between the surface area exposed to obstacles
and the surface area touching the remaining swept space. Hence CEF performs better than CS volume
as a reliability metric (Section 6.2). For a given motion set of the robot and accelerator, the CEF of

Algorithm 1 CEF measurement (Phase 1 FI)
Input: Motion set, Swept data, Swept voxels, CDM;
Output: bit info = {bitID: (CEF, Critical space)};
1: for Motion ∈ Motion set do
2: bits = Swept data(Motion)
3: voxels = Swept voxels(Motion)
4: for b ∈ bits do
5: Critical space = ∅
6: Collision vector = FI(CDM, bits, voxels, b)
7: for (v, collision) ∈ (voxels, Collision vector) do
8: if ¬ collision then
9: Critical space = Critical space ∪ v

10: end if
11: end for
12: CEF = CalculateCEF (Critical space, voxels)
13: bit info[b]= (CEF, Critical space)
14: end for
15: end for

all the bits can be calculated using Algorithm 1. The algorithm works by considering each possible
motion in turn (Line 1). For a given motion, Swept data returns the storage bits used to represent
its swept space (Line 2), and Swept voxel returns the voxels in the swept space of that motion
(Line 3). The loop between Line 4 and 14 considers each bit in the Swept data. The CDM takes
precomputed swept space (i.e., bits) and obstacle occupancy voxels as inputs and performs collision
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detection (Figure 4). The storage elements of the CDM are initialized with bits. To find the critical
space an FI run is performed setting voxels as the obstacle occupancy voxels input to the CDM
(Line 6). Specifically, a fault is injected into a low-level (e.g., RTL model or microarchitectural
simulator) model of the CDM at bit b (Line 6). The CDM outputs a Collision vector containing
collision detection output for each voxel in voxels. To find the critical space, each bit of the
Collision vector is checked (Lines 7-11). For an error-free run, the CDM detects collision for
all the voxels in the swept space (i.e., voxels). However, for an FI run, a voxel v is added to the
Critical space if the CDM does not detect a collision (Line 8 and 9). CEF is then calculated by
measuring the exposed surface area of the Critical space (Line 12). Note that the CEF is obtained
without the need to consider a potentially unbounded set object placements. Thus the number of FI
runs to measure CEF using Algorithm 1 is orders of magnitude lower than exhaustive FI in which for
each bit, multiple FI runs need to be performed with a large number of environment scenarios.

As presented above, Algorithm 1 assumes an RTL or architecture model for the CDM. We note that
the resulting reliance upon fault injection to determine CEF could be avoided provided an analytical
model is available to compute the critical space on Lines 5 to 12. Such a model could be used to
analyze CEF without performing FI prior to the development of RTL model or architecture simulators.
However, we use FI to measure CEF, so the proposed Algorithm 1 can be used across different
accelerators. Algorithm 1 is proposed for CDMs that use a voxelized representation of spatial
data and output collision decisions (A1-A4). The majority of the collision detection acceleration
approaches for robotics use voxelized representation as it consumes less memory and computational
resources compared to polygonal mesh-based representation [27]. However, the concept behind CEF
is applicable regardless of the underlying design parameters, and Algorithm 1 to measure the CEF
needs can be modified for a different CDM. For example, for a triangle meshes-based representation
of swept space, Line 5-12 can be replaced by a geometry-based calculation of the exposed surface.

MPA is a part of complex systems such as autonomous vehicles. Fault Tree Analysis (FTA) is
often used to analyze the failure probability of the overall system by constructing a logic tree of the
failure events of subsystems [107]. The proposed metric CEF, being close to the application domain,
can easily be integrated with the FTA of the overall system. CEF is useful for CDMs that dedicate a
significant area to storage structures for spatial data. Earlier work on FPGA-based accelerators [89]
uses combinational logic to encode spatial data. Combinational logic is known to be less prone to soft
errors compared to sequential elements [36]. However, the definition of CEF applies to erroneous
combinational logic gates if needed.

3.2 CEF-aware Error Mitigation

For a fixed budget of area/power overhead, selective protection of the most vulnerable bits provides
the optimal reduction in the failure rate. Selective error mitigation in storage structures can be
implemented by reliability-aware data placement to partially protected memory. However, this
requires efficient ways to identify vulnerable data as the data can be generated/modified at runtime.
We find that the CEF of a bit gives a measure of its impact on the SDC-C probability of the CDM
(Section 6.1.2). Therefore, we can use information about the CEF of each bit in an input design to
selectively apply error mitigation techniques such as ECC, DMR/TMR, and strike suppression. This
reduces the cost of providing resilience compared to blanket protection of all the bits.

Different structures such as voxel (A1), box (A2), and octree node (A3 and A4) are stored in the
on-chip storage of the CDM depending upon the geometric representation method used. CEF-aware
error mitigation is performed by placing structures with higher CEF in the protected storage regions.
In our evaluation, the sum of CEFs over all the bits in a structure is used as its CEF. Because CEF of a
bit gives a measure of its SDC-C probability, CEF-aware data placement results in a higher reduction
of the overall failure rate for a given fraction of protected storage compared to other heuristics
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Fig. 6. CEF-aware FI

(Section 6.2). The CEF measurement is done offline or outside of the critical path using Algorithm 1
after motion set generation.

Selective error mitigation can also be used to guide the accelerator design process. At the accel-
erator design stage, the designer can perform CEF-aware FI (Section 4.2) for a set of target robots,
motion sets, and the expected number of obstacles in the environment to find the distribution of CEF,
SDC-C probability of bits, and the failure rate of the system without any error mitigation. Based on
this information, a designer can determine the required fraction of protected memory for a given
failure rate requirement or achievable failure rate for a given area/power budget for error mitigation.

4 CEF-AWARE RELIABILITY CHARACTERIZATION

SDC-C probability and the failure rate measurements are important to find the error mitigation
requirements for certifiable safety. Exhaustive FI to find the SDC-C probability of all the bits takes a
long time (Section 2.4). In this section, we first explain the fault model and demonstrate how to use
the CEF to enable a hierarchical fault analysis methodology that reduces the number of FI runs.

4.1 Fault Model

In the CDMs studied in this work, on-chip SRAM/latches that store the swept space of motions
account for 97% of the on-chip sequential elements (based on our synthesis results). Our fault model
assumes transient single-bit faults in this SRAM/latches. The faults are uniformly distributed in time
and space. Only 3% of on-chip sequential elements are used for meta-data (e.g., counters, address
register, and finite state machine). These microarchitecture-specific registers are not subjected to
CEF in our experiments as they can be characterized and protected with low overheads using latch
hardening techniques such as strike suppression or redundant node [111].

4.2 CEF-aware FI

We propose a two-phase CEF-aware FI (shown in Figure 6), a technique to speed up FI for MPAs.

Phase 1: CEF measurement (Environment independent). For a given motion set 1 and fault
model 2 , Phase 1 performs microarchitecture- or RTL-level FI 3 to find the CEF and critical
space of each bit in the swept space data. Algorithm 1 is used for this phase. The number of FI runs
for this phase is limited to the number of bits in swept space data of all the motions in the robot’s
motion set. The CEF and critical space of all bits are stored to be used in the next phase 4 . Note
that environmental information, such as the position of obstacles or the robot, is not needed for this
phase, as CEF does not depend upon the environment.

Phase 2: SDC-C probability measurement. A bit flip might lead to an SDC-C depending upon the
position of obstacles as shown in Section 3. Since for a dynamic environment, obstacles can appear
anywhere in the space, a large number of FI runs with random environmental scenarios are required
to measure the SDC-C probability of a bit with statistical significance. In our experiments, the
representative environment scenarios are generated using apriori information about the environment,
such as the distribution and average number/size of the obstacles. In Phase 2, we use the CEF
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information gathered in Phase 1 to speed up the fault analysis. As mentioned, there is a strong
(positive) correlation between the CEF and SDC-C probability (Section 6.1.2). Thus, we can speed
up the FI experiments many-fold by performing FI for only a subset of bits with a given CEF value
to measure the approximate SDC-C probability for all bits with the same CEF. The CEF information
gathered in Phase 1 is used to group bits with equal CEF values together 5 . Then, for each CEF
value, M bits are selected at random 6 . Finally, using multiple sample environment scenarios 7
and FI simulations 8 , the SDC-C probability for each CEF value is measured 9 . Note that M is
a tunable parameter in the above heuristic. We use the analytical model in Leveugle et al. [73] to
determine the value of M to measure SDC-C probability with the required confidence level and error
margin. The CEF-aware sampling, while being faster than exhaustive FI, may introduce inaccuracies
due to the approximations it makes. However, the accuracy can be increased by increasing the value
of M - we evaluate this trade-off in Section 6.1.1.

To speed up the FI simulation, we further exploit the fault propagation in the studied CDMs. All the
accelerators studied in this work use a geometric representation that divides the space into voxels. For
a given motion and environment scenario, a non-empty subset of swept space and obstacle occupancy
voxels signify potential collision. Thus the effect of a bit flip can be captured by storing the erroneous
swept space voxels of the corresponding motion, instead of performing slow microarchitectural and
RTL simulations for multiple environmental scenarios. Simple set operations can be used to find
the SDC-C probability. For a given bit flip, an FI simulation is used to find the erroneous swept
space (i.e., set of voxels) using Algorithm 1. Line 3 of the Algorithm 1 is modified to use the set of
all environment voxels as voxels. Similarly, Lines 8 and 9 are modified to measure the erroneous
swept space (i.e., colliding voxels). For each environment scenario, the subsets of obstacle occupancy
voxels and erroneous and error-free swept space are measured. If the erroneous subset is empty, but
the error-free subset is non-empty, the bit flip will result in an SDC-C. The same strategy is used
for exhaustive, statistical, and CEF-aware FI. While we focus on FI to measure CEF and SDC-C
probability, we believe that an analytical model can be used to replace the multiple runs and find the
relation between critical space and SDC-C probability. We defer this to future work.

Equation 2 is used to calculate the SDC-C probability of a CDM. Here bitsCDM is the set of all
bits stored in the CDM’s on-chip memory. CEF(x) is the CEF value of bit x, and P(SDC-CCEF(x)) is
the SDC-C probability for the CEF value CEF(x).

P(SDC-CCDM)≈ 1
|bitsCDM|

×

[
∑

x∈bitsCDM

P(SDC-CCEF(x))

]
(2)

Table 3 compares the different phases of CEF-aware FI with exhaustive and uniform random
statistical FI approaches for CDM fault characterization and error mitigation. We also use CEF and
CEF-aware FI to analyze and compare the effects of microarchitectural design parameters of the
CDM, and to derive the principles of resilience-aware MPA design (Section 7).

4.3 Collision Detection Failure (CDF) Rate Calculation

As mentioned in Section 2.3, safety standards provide an upper bound on the frequency of dangerous
failures (e.g., collision in motion planning). We combine Equation (1) and Equation (2) to measure
the Collision Detection Failure rate per billion hours (CDF) for CDMs as below:

CDFCDM = |bitsCDM|×P(SDC-CCDM)×FITRaw ×α (3)

Here, the parameter α is set to N/2 for CDMs with inter-query data reuse, else it is set to 1,
as explained below. In the MPAs we study, the on-chip data is typically reused across multiple
executions of the same application [45, 89, 114, 139] to reduce the DRAM-bandwidth requirement
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Table 3. Comparison of different fault injection (FI) approaches.

Exhaustive FI Uniform random CEF-aware FI

statistical FI Phase 1
(CEF measurement)

Phase 1 + Phase 2 (SDC-C
measurement)

Description

Performs FI on all
combinations of bits

and environment
scenarios

Samples a few
combinations of bits

and environment
scenarios to perform FI

Performs
environment-agnostic FI
to measure CEF of all the

bits (Algorithm 1)

Samples a few
combinations of

environmental scenarios
and bits for each CEF
group and performs FI

Number of FI runs 1010 7×106 106 7×106

FI time 24,000 hours 2-4 hours 1-2 hours 2-4 hours
Measures overall failure rate Y Y N Y( 2.5% error)
Finds vulnerable bits for
selective error mitigation Y N Y(Approx.) Y(Approx.)

Measures SDC probability of
different bits Y N N Y(Approx.)

and data movement. In such a case, a bit-flip due to a soft error will persist in the buffer and affect
multiple executions, until the buffers are reloaded, and the overall CDF rate of the system increases
due to data reuse. This is similar to bit-flips in configuration memory of FPGA [94], where a bit-flip
due to single-event upset persists and affects the application output until the configuration memory
is refreshed. A1, A2, A3scaled, and A4 accelerators reuse on-chip data across N (where N >> 1)
collision detection queries. A soft error can occur in any cycle during a collision detection query;
however, the bit will remain erroneous from the start (i.e., cycle 0) for subsequent collision detection
queries until the on-chip data is refreshed. Thus the average value of the number of collision detection
queries for which a bit will be erroneous from starting is approximately N/2, assuming all collision
queries take the same time. Hence, to measure the CDF rate for such CDMs, faults are injected at
cycle 0 in Phase 2, and the measured failure rate is scaled by α = N/2 to account for data reuse.
Whereas in A3, the on-chip data is refreshed for every collision detection query. For CDMs without
inter-query data reuse, α is set to 1, and the fault sites are uniformly distributed in time in Phase 2.

5 EXPERIMENTAL METHODOLOGY

5.1 Experimental Setup

Table 4 summarizes the robots used in our experiments. These robotic arms are representative of
widely used industrial robots [87, 104], and are also included in larger humanoid robots [4]. Because
we did not have access to the real robots, we use the Klampt [51] software simulator to simulate the
robot’s movements and the environment- this has also been used in prior work [50, 91, 114].

The environment size for a robot is determined by its reach, and the environment is discretized
into a grid of 32×32×32 voxels. For each robot, we generate a motion set with 16,384 poses and
32,768 motions, using Leven and Hutchinson’s strategy [72], similar to prior work [91]. We use
uniform motion sets in all our experiments, i.e., poses are distributed uniformly in the C-space. The
uniform distribution of poses is assumed in the absence of any prior information about the robot’s
task and fixed obstacles in the environment. However, this information can be used to build a motion
set with a nonuniform distribution of poses, where more poses are concentrated in the region of
interest [129]. We also evaluate CEF on a nonuniform motion set in Section 6.1.2.

Table 4. Robots used for fault characterization.

Robot Degrees of
freedom Reach in one direction Mechanical power

(W)
Kinova Jaco2 [69] 7 90 cm 25

Programmable Universal Machine for Assembly (PUMA) 761 [138] 6 150 cm 30
AL5D [79] 4 27 cm 12
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Table 5. Accelerators studied. We list power and area for each accelerator from the paper and report
suitable error mitigation and accelerator area overhead to protect on-chip memory. We use information
gathered from our synthesis of RTL models about the fraction of CDM area and power consumed by the
on-chip memory to calculate the overall CDM area and power overheads. ECC overheads do not include
the area /power of decoder and encoder circuits.

Accelerator Representation Data
reuse #CDCs Power

(W)

Area
(mm2) Storage elements ECC area/power

overhead
TMR area/power

overhead

A1 [89, 114] Voxel Yes 32,768 N/A N/A Registers 20/16% 125/100%
A2 [89, 114] Box Yes 32,768 35 400 Registers 20/16% 125/100%
A3 [77] Octree No 128 0.47 1.7 SRAM 12/9% 100/75%
A3scaled [77] Octree Yes 32,768 121 450 SRAM 12/9% 100/75%
A4 [139] Flattened Octree Yes 32,768 20 - SRAM/DRAM 12/12% 200/200%

To measure the SDC-C probability, we perform FI with a set of 10,000 random environment
scenarios. Each sample environment contains 3− 12 cuboid-shaped randomly placed obstacles,
and the length/height/width of each obstacle is 5−20cm, which is consistent with other work on
motion planning and collision detection [77, 91]. We generate four sets of environments to study
the effect of the number of obstacles on the SDC-C probability (Section 6.1.2). We use the label
Dx (x ∈ [1,2,3,4]) to represent a set of 10,000 environment scenarios, where obstacles occupy an
average x% volume of the environment. The average number of obstacles increases with the value x.

5.2 Collision Detection Modules (CDM)

Table 5 summarizes the four accelerators studied in this work and overall CDM area/power over-
heads for complete protection of on-chip storage using ECC and TMR error mitigation techniques.
These constitute the only published work on ASIC-based programmable, real-time accelerators for
probabilistic roadmaps-based motion planning and collision detection, to the best of our knowledge.

We built microarchitectural simulators and RTL models of these CDMs ourselves as there was no
existing simulator. We use Verilog to build the RTL models and implement the combinational logic,
control logic, and on-chip memory as described in the prior work on the accelerators we studied
in this work [77, 89, 114, 139]. CDMs studied in this work consist of multiple (128-32768) CDUs.
Hence, though the overall area of a CDM is high, the design of the basic building block, CDU, is
simple and can be implemented accurately (100−200 lines of Verilog code). Each CDU consists of
storage elements for the swept space data and a collision detection circuit (CDC). Figure 7 represents
the architecture of CDCs for different accelerators studied in this work. Further, we implement
testbenches to verify the functionality and timing of the RTL models. We use a sample motion set,
and perform collision detection for 10,000 environmental scenarios for functional verification. We
further measure the timing of collision detection operation in terms of the number of cycles and
validate with the reported data in the prior work [77, 89, 114, 139].

We synthesized our RTL models using the Synopsys Design Compiler [1] and the OpenRAM
Memory Compiler [44] to estimate the area and power of storage elements in CDMs at 45nm
technology (FreePDK45 design library [118]). Because we are interested in the relative area and
power consumption of different storage elements and combinational circuits, the technology node’s
choice should not significantly impact the results. We build the microarchitectural simulators with
Python. We model all sequential elements accurately in our microarchitectural model, and verify the
collision detection output of these models for 10,000 environmental scenarios.

A1 (Base accelerator): This architecture was proposed by Murray et al. [89], and is based on the
earlier proposed accelerator for FPGAs [91]. A motion’s swept space is stored in registers using the
3D Cartesian coordinates of each voxel in the swept space. Figure 8a and 8b show how a swept space
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(a) A1 (b) A2 (c) A3/A4

Fig. 7. CDU architecture block diagram for different CDMs.
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Fig. 8. Voxelization and voxel/box based representation example in 2D. (a) Represents a robot and
its motion in 2D. Shaded voxels represent the voxelized swept space. (b) Swept space is stored using
coordinates (x,y) of individual voxels. (c) Contiguous voxels are combined into boxes and stored using
diagonal voxels’ coordinates (striped voxels). L and U represent lower and upper diagonal voxels; darker
regions represent overlapping of multiple boxes.

is converted to voxels. The collision detection circuit compares the obstacle occupancy voxels with
each voxel in the swept space to find if the motion is in collision with obstacles (Figure 7a).

A2 (Spatial locality-aware accelerator): This architecture, proposed by Murray et al. [89] and
Sorin et al. [114], is an optimization of A1. There is a significant degree of spatial locality in the
voxels in a swept space; hence, contiguous voxels are merged into a larger box. A box can be
represented by the coordinates of two diagonal voxels. Figure 8c gives an example. The CDC checks
if an obstacle occupancy voxel is inside any of these boxes for collision detection (Figure 7b).

In A1 and A2, all on-chip registers are read in parallel by the collision detection logic instead of
using a memory array with limited read ports. This design choice provides significant speedup. Thus
all storage elements in A1 and A2 are treated as individual registers that can be protected using a
latch protection technique (e.g., DMR or TMR).

A3 (Octree-based accelerator): This architecture was proposed by Lian et al. (2018) [77], and
uses the octree structure to store the motion’s swept space (shown in Figure 9 and explained in
Section 3). Collision detection is performed by traversing the tree to find if obstacle occupancy voxels
overlap with the swept space. Figure 7c represents the architecture of CDC for A3.

The proposed design of A3 uses 128 CDCs, where motions in the motion set are processed for
collision detection in batches. Hence, there is no inter-query on-chip data reuse, which results in
significant DRAM bandwidth requirement [139]. For comparison, we also study a scaled-up version
of A3, called A3scaled, where the number of CDCs is equal to A1 and A2 (32,768), and on-chip
data is reused across multiple collision queries, reducing DRAM memory traffic. While the SDC-
C probabilities for both A3 and A3scaled are equal, their failure rates (CDF) are different due to
differences in the sizes of their components and the value of N (Equation 3).

A4 (Flattened octree-based accelerator): This architecture was proposed by Yang et al. [139],
and proposes processing-in-memory for collision detection with a flattened octree-based represen-
tation of the swept space. In the flattened octree-based representation, multiple levels of the trees
can be flattened in a single level. For example, if all the levels of a 5-level tree are flattened, the
resultant tree consists of a single root node with 32,768 children nodes, where each child node is 1 or
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Fig. 9. Octree representation (figure reproduced from [77]). (a) represents the spatial division of the
swept space, and (b) represents the corresponding Octree structure (A3).

0 specifying occupancy of a single node. Such representation consumes more storage but facilitates
efficient processing-in-memory, reducing data-movement overhead significantly.

5.3 Fault Injection (FI)
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Fig. 10. CEF values measured
by microarchitectural FI and
Verilog RTL-level FI for differ-
ent CDMs.

We use microarchitectural simulators for FI, as RTL-level FI was
very slow. We use Dell EMC R440 CPU nodes. However, to validate
the FI accuracy of our microarchitectural simulators, we perform
10,000 FI runs (uniformly distributed in space and time) on the mi-
croarchitectural and RTL models. For RTL-level FI, we use Cadence
Incisive Functional Safety Simulator [15]. For microarchitectural FI,
a fault is injected, and collision detection is performed. Figure 10
shows that the CEF values measured with microarchitectural FI and
RTL-level FI have a 100% correlation accelerators A1-A4.

For CEF-aware FI, we determine the value of M (number of
samples) per CEF group required to measure the SDC-C probability
with 95% confidence level and 2.5% error margin [73]. The SDC-C
probability and population size of the highest CEF group are used to determine the value of M, as
these bits contribute the most to the overall SDC-C probability. In our experiments, the value of M
is 2× 106, 2× 105, 15× 103, and 2× 106 for A1, A2, A3 and A4 respectively. We represent soft
errors as single-bit flips in hardware registers, which is consistent with most other papers studying
the effects of soft errors [8, 20, 32, 132]. While we focus on single-bit flips, Equation (2) can be
extended to accommodate a multi-bit fault model. We defer this to future work.

5.4 CDF Rate Calculation

To calculate the CDF rate of the accelerators, we use Equation (3), where N is the expected number
of executions of the application before the bits are reloaded in on-chip storage, and its value depends
on the accelerator’s architecture and deployment. Reloading of data can be overlapped with collision
detection to hide the DRAM accesses latency. We set the value of N = 3600 for the accelerators with
inter-query data reuse (A1, A2, A3scaled, and A4), as the power overhead of DRAM accesses for
refreshing data after 3600 collision detection queries is within 1%. We use FITRaw = 177 FIT/Mb
(for 45nm CMOS [6]) in Equation (3). Note that while the choice of N and FITRaw affect the absolute
values of the CDF rate, they affect neither our fault characterization nor CEF-aware error mitigation.

6 EVALUATION

In this section we present our results for fault characterization (Section 6.1) and error mitigation
(Section 6.2) using CEF.

6.1 Fault Characterization

6.1.1 CEF-aware FI. In Section 4, we propose two-phase CEF-aware FI to reduce the number of FI
runs. In CEF-aware FI, instead of performing FI for all the bits for multiple environment scenarios, we
sample a subset from a group of bits with the same CEF value. This sampling introduces inaccuracies
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Fig. 11. Error versus speedup for different FI approaches.

in the measured SDC-C probability and CDF rates compared to exhaustive FI. Figure 11 shows the
speedup versus error of the calculated CDF rate for CEF-aware FI and uniform statistical FI. The
speedup is the ratio of the number of exhaustive FI runs to that of CEF-aware FI or uniform FI.

As can be seen from the figure, on average, CEF-aware FI achieves 23,000× speedup over
exhaustive FI (geometric mean) with 2.5% error margin. The vertical line represents the speedup for
error less than 2.5%. The error margin can be reduced further at the cost of more FI trials (Section 4).
Uniform statistical FI exhibits a similar speedup as CEF-aware FI over exhaustive FI. Note however
that uniform statistical FI cannot be used to find vulnerable bits for selective error mitigation (Table 3).
The speedup of CEF-aware FI over exhaustive FI is due to two reasons: (1) a significant fraction of
bits have CEF equal to 0, and hence have very low or 0 SDC-C probability. CEF-aware FI ignores
these bits for FI, (2) Only a few bits have high CEF and SDC-C probability, and hence contribute the
most to overall SDC-C probability. CEF-aware FI segregates such bits and requires fewer samples
to measure SDC-C. Phase 1 of CEF-aware FI consumes 1, 1, 2, and 1 CPU hours for A1, A2, A3,
and A4, respectively. Phase 2 of CEF-aware FI consumes less than 2 CPU hours for all accelerators.
In contrast, as per our experiments, exhaustive FI takes 24,000, 18,000, 22,000, and 20,000 CPU
hours for A1, A2, A3, and A4, respectively.

6.1.2 Evaluation of reliability metric. As discussed in Section 4, we propose the CEF as a reliability
metric for the MPA’s bits. We study the relationship between the CEF and the SDC-C probability of
different bits to demonstrate the validity of CEF metric. The SDC-C probability of entire CDM is
calculated using SDC-C probability of different CEF groups in Equation (2). We use the benchmarks
[D1-D4] (Section 5.1). Figure 12 shows the SDC-C probability of bits with different CEF values for
different accelerators, robots, and benchmarks. The CEF values are on the same scale for different
accelerators for a given robot. A3 has a higher range of CEF values than other accelerators, which is
also reflected in higher SDC-C values. Note that for A3, there is dispersion in SDC-C probability
for bits with high CEF values. This occurs as a fault in a bit in the next addr field adds a large
number of voxels in the represented swept space (green voxels in Figure 5g), which leads to positive
collision detection between obstacles and erroneous expanded swept space, and reduces SDC-C
probability for some bits with high CEF value. For all the benchmarks, the SDC-C probability of a
bit increases as its CEF increases, except for a few bits in A3. Note that as the obstacle occupancy
density increases, the SDC-C probability also increases, as there are higher chances that the soft error
in a CDM will result in a collision. Thus, even though the relation between SDC-C probability and
CEF is not linear, a monotonically non-decreasing relation demonstrates the validity of the CEF as a
reliability factor. The SDC-C probability of bits is thus strongly positively correlated with their CEF
values across benchmarks, which signifies that the CEF can be used as a reliability metric for MPAs.

Nonuniform motion set. We also validate the use of CEF as a reliability metric for a nonuniform
motion set. In such a motion set, the motions are nonuniformly sampled in space. Figure 13 shows
SDC-C probability versus CEF of bits for nonuniform motion sets. As shown in the figure, there is
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Fig. 12. SDC-C probability versus CEF of accelerator A1-A4 for Jaco2, AL5D, and Puma761 robot on
benchmarks D1-D4. Note that different plots have significantly varying ranges for the vertical axes.
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Fig. 13. SDC-C probability versus CEF of accelerator A1, A2, A3, and A4 for Jaco2 for a nonuniform
motion set. Note that different plots have significantly differing ranges for the vertical axes.

strong correlation between the SDC-C probability and CEF of bits, showing the validity of CEF for
nonuniform motion sets.

6.1.3 Characterization of CEF. To further understand the contribution of individual bits to the
overall SDC-C probability, we group the bits according to their CEFs, and plot the cumulative
distribution of bits in the CDM. Figure 14 shows that for all four CDMs, there is a high degree of
asymmetry in the distribution of bits according to the CEF. For A1 and A4, 20% and 99% of the
total bits have CEF equal to 0, respectively, and do not need to be protected. On the other hand, for
A2, only 20% of the total bits have CEF greater than 6 and significantly contribute to the overall
SDC-C probability. Thus, protecting only 20% bits can reduce the CDF rate by 60%, as we show
in Section 6.2. Similarly, in A3, only 15% of the total bits have a CEF greater than 10. We further
examine the CEF distribution asymmetry for each accelerator.

A1: In A1, each structure/variable stores a voxel using its coordinates to represent a part of the
swept space. A soft error in any bit of the coordinate will result in misrepresentation of that voxel,
and so bit position does not affect CEF range (Figure 15a).

A2: The effect of faults in different bits of coordinates is shown in Figure 15b. The CEF range of
bits decreases from the most significant bit (MSB) to the least significant bit (LSB), as a fault in the
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Fig. 14. Cumulative distribution of CEF of all bits. The vertical axis starts from 0.99 for A4 as more
than 99% of the bits have CEF equal to 0.
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Fig. 15. CEF characterization of bit position/SRAM address.

MSB is likely to result in a higher change in the box size represented by a pair of coordinates than
LSB. Thus, the number of bits with high CEF values increases from LSB to MSB. For example, the
ratio between the number of MSBs (bit4) and the number of LSBs (bit0) with CEF = 20 is 1000.

A3: We calculate the range of CEF for bits for different SRAM addresses, as shown in Figure 15c.
All nodes in the octree for a motion’s swept space are stored in the contiguous address space of the
SRAM; the nodes closer to the octree’s root node that divide the 3D space at a coarser granularity
are stored in the lower address range of SRAM. As can be seen, the CEFs of bits with lower SRAM
addresses are much higher than those with higher SRAM addresses. For example, the average CEF
of bits in SRAM address 0 is 9× that of the average CEF of bits in SRAM address 20.

A4: A flattened-octree consists of a node for each voxel in the environment. The swept space of a
motion in the motion set is a small fraction of the entire environment. Thus, most of the nodes in the
flattened octree are empty, and only a small fraction of nodes are occupied. An error in an empty
node representation results in false-positive and hence has CEF equal to zero. Due to this, more than
99% of the bits have CEF equal to 0 for A4.

In summary, for all four accelerators, the distribution of the bits as per CEF is highly asymmetric.
Hence, the CEF metric facilitates finding the most SDC-C-prone bits in the circuit.

6.2 Error Mitigation Techniques

As described in Section 3.2, we propose a CEF-aware selective error mitigation technique. We first
evaluate the CEF-aware selection of structures for reliability-aware data placement at deployment
time. We further evaluate the area savings achieved by the proposed techniques for accelerators A1,
A2, A3scaled, and A4 for different SIL targets at design time. Note that A3’s CDF rate (0.1) is well
below the highest SIL requirement, and hence it does not need error mitigation.

6.2.1 CEF-aware selective error mitigation. Figure 16 compares the CDF rate reduction achieved
by different selection criteria for the same fraction of protected memory. We assume that protecting
a bit reduces its SDC-C probability to 0 as our aim is to compare different heuristics for selecting
the bits to be protected, which is independent of the underlying error mitigation technique. We also
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Fig. 16. Comparison of different selection criteria for selective error mitigation in A1, A2, A3scaled,
and A4. (a)-(d) compare the fraction of protected bits versus CDF rate reduction for different CDMs.
Overall, CEF-aware selection results in the highest CDF rate reduction for the same amount of protected
bits. There is a significant overlap between Bit position, Uniform, and CS Volume for A1. There is a
significant overlap between Bit position and Uniform, and CS Volume and CEF for A4.

compare with another intuitive approach to define the reliability metric that uses the volume of the
critical space (CS volume) instead of the exposed surface area. We further discuss the results for A1,
A2, A3scaled, and A4.

A1: We compare our approach with ideal, uniform, bit position, and CS volume-aware error
mitigation. Bit position does not require FI and can be used as a proxy for the vulnerability factor,
where the vulnerability of the bits decreases from the MSB to the LSB. Bit position has been
previously proposed for selective error mitigation in DNN accelerators [74]. Figure 16a shows the
fraction of protected bits versus the CDF rate reduction curve for CEF-aware selection and the other
heuristics for A1. The CEF-aware selection of bits results in 52.35× reduction in the CDF rate on
average (geometric mean) for the same amount of protected bits compared to CS volume-aware, bit
position-aware, and uniform selection. The CDF rate reduction for CEF-aware error mitigation is
only 1.60× lower than the ideal CDF rate reduction that can be achieved by exhaustive FI.

A2: We compare CEF with ideal, uniform, CS volume, bit position, and box-volume. For A2,
a structure represents a box; the volume of the box can be used as the vulnerability factor of the
structure. Box-volume is an application-specific heuristic that does not require fault characterization.
Figure 16b shows the fraction of protected bits versus the CDF rate reduction for different selection
heuristics. The CEF-aware selection of bits results in average 1.25×, 1.76×, 2.10×, and 2.46× lower
CDF rate than CS volume, bit position, box volume, and uniform selection for the same amount of
protected bits. The CDF rate reduction for CEF-aware error mitigation is only 1.66× lower than the
ideal CDF rate reduction achieved by exhaustive FI.

Intuitively, one may expect bit position to provide higher benefits than CEF, as typically MSBs
are more critical. However, we find that CEF provides a higher reduction in the CDF rate than the
bit position, due to two reasons. First, though the bit position captures the failure probability of bits
within a structure, it does not capture the relative failure probabilities across different structures. For
example, in A2, different boxes cover different numbers of voxels x in the swept space that is not
covered by other boxes; these voxels contribute to the critical space. The CEF increases as the x value
increases, and so structures with higher x have higher failure probabilities, which is not captured by
bit position. Second, the bit position does not consider whether the error will lead to a false-negative
or a false-positive. Similarly, box-volume does not necessarily capture the number of critical voxels
x. In contrast, the CEF captures the relative failure impact of all the structures, and hence provides a
higher CDF rate reduction.

A3scaled: Figure 16c shows the fraction of protected bits versus the CDF rate reduction for
different selection criteria in A3scaled. We compare CEF with two heuristics: uniform and access-
frequency-based selection. Access-frequency-based selection has been proposed for embedded
applications [68, 83]. We find that the CEF-aware selection of bits results in an average 1.07× and
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Fig. 17. Area overhead versus CDF rate reduction for selective error mitigation in A1, A2, A3scaled,
and A4. (a)-(d) compare the area overhead for different CDF reduction values for all CDMs. Table 7
summarizes the area/power overhead for CEF-aware error mitigation for different safety levels and blanket
protection of the entire on-chip memory.

1.90× lower CDF rate for the same amount of protected bits compared to CS volume and access-
frequency. This is because the access-frequency-based heuristic captures the failure probability of
structures within a single motion, but not the relative failure probabilities across different motions.
Further, CEF-aware selection achieves 18.89× and 0.79× reduction in CDF rate than uniform and
ideal error mitigation, respectively.

A4: Figure 16d compares different selection criteria for A4. We find that the CEF-aware selection
of bits results in an average 1.02× reduction in CDF rate for the same amount of protected bits
compared to CS volume. In the proposed accelerator, the access-frequency for all the bits of a
flattened octree is the same, and hence uniform and access-frequency-based selection given the same
reduction in the CDF rate. Further, CEF-aware selection achieves 9.41× and 0.83× reduction in
CDF rate than uniform/access-frequency and ideal error mitigation respectively.

6.2.2 Area savings using CEF-aware error mitigation. Further, we measure the area/power over-
heads to achieve different SILs using the CEF-aware error mitigation approach. In A1 and A2,
on-chip storage elements consist of 15-bit registers that are accessed independently. We assume
the use of latch hardening technique summarized in Table 6 in Sullivan et al. [120] to measure
the overheads for A1 and A2. . Latch hardening is more suitable than ECC for error mitigation in
registers that are accessed in parallel. In contrast, we use ECC (SEC-DED code) for A3scaled and A4
as these accelerators use SRAM for on-chip storage or DRAM (Table 5). For A3scaled, each entry in
SRAM consists of 24 bits. We assume an overhead of 7 bits (30%) to store the ECC bits. For A4, each
entry in DRAM consists of 64 bits, with 8 bits overhead for ECC bits. We ignore the area overhead
of the error detection/correction circuits themselves. Note that other approaches for ECC [41] can
also be combined with CEF-aware selection. Figure 17 shows the storage area overhead versus CDF
rate reduction for CEF-aware error mitigation for A1, A2, A3scaled, and A4. SIL 1-SIL 4 markers are
shown for CDF rate achievement for the Jaco2 robot and different safety standard levels. Table 7
compares the area/power overheads for different safety levels for all accelerators with the blanket
protection of CDMs. CEF-aware selection results in significantly lower overhead for all levels.

6.2.3 CEF-aware error mitigation implementation. As mentioned in Section 3.2, CEF-aware
selective error mitigation can be implemented by reliability-aware data placement in partially
protected memory. We discuss possible implementations of selective error mitigation for CDMs
studied in this work.

Table 6. Area overhead and CDF rate reduction for different latch hardening techniques.
Latch type Area Overhead failure rate reduction
Strike Suppression (RCC [111]) 1.15x 6.3x
Redundant Node (SEUT [111]) 2x 37x
Triple Module Redundancy (TMR [80]) 3.5x 1,000,000x
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Table 7. Area/Power overhead for blanket and CEF-aware error mitigation for different SILs. In A1, A2,
A3scaled, and A4, on-chip storage elements consume ∼ 50%/ ∼ 30%, ∼ 50%/ ∼ 30%, ∼ 40%/ ∼ 30%,
and ∼ 98%/∼ 98% of the total area/power of the CDM, respectively.

Accel.
Blanket Error
Mitigation CEF-aware Error Mitigation

SIL1 SIL2 SIL3 SIL4
A1 125%/75% - 1.2%/0.7% 18.8%/11.3% 68.9%/41.4%
A2 125%/75% - 5.1%/3.1% 55.7%/33.4% 101.9%/61.1%

A3scaled 12%/9% 0.4%/0.3% 3.1%/2.3% 8.8%/6.6% 11.4%/8.5%
A4 12%/12% - - 0.3%/0.3 0.7%/0.7%
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Fig. 18. Comparison of different CDM architectures geometric representations. (a) compares the CDF
rate for different Raw FIT values and technology nodes, (b) compares the CDM area versus CDF rate,
(c) compares the CEF distribution, and (d) compares the fraction of protected bits versus CDF rate for
different accelerators.

For A1 and A2, all on-chip registers in a CDC are accessed in parallel, and there are no address reg-
isters. In this case, each CDC contains a fixed number of protected registers. Selective error mitigation
can be achieved by CEF-aware placement of data in CDC’s protected and unprotected registers. For
A3, each CDC consists of an SRAM. Instead of a single SRAM, protected and unprotected SRAMs
with a fixed address range can be used in this case. Thus, selective error mitigation can be achieved
by CEF-aware address assignment and placement, with minimal performance/energy overheads [85].
A4 uses a DRAM to store the data. In this case, ECC bits can be embedded into each data row with
low overhead, as shown in [17]. Several papers have focused on a flexible partition of the register
file and DRAM with low overheads incorporating selective error mitigation in systems using CPUs
and GPUs [17, 86, 133, 140, 141]. The implementation and overheads of selective error-mitigation
depend upon the accelerator’s microarchitecture, with scope for co-designing microarchitecture and
selective error-mitigation implementation.

7 ARCHITECTURAL IMPLICATIONS

In this section, we compare the reliabilities of the four CDMs to draw lessons for resilience-aware
CDM design. Error mitigation can incur significant performance, area, and energy overheads (e.g.,
3.5× area and energy for TMR), depending upon the CDM architecture. Hence, we need to consider
the overheads of error mitigation for making architectural decisions.

Figure 18a compares the CDF rates of accelerators A1, A2, A3, A3scaled, and A4. Figure 18b
compares the error mitigation overhead for these accelerators for different CDF rates. Even though
A3scaled has the highest CDF rate (Figure 18a), ECC can be used for low overhead error mitigation in
A3scaled as it uses SRAM.

Geometric representation of swept space: Figure 18c compares the CEF distribution of different
geometric representations used in the CDMs studied for a motion set of the Jaco2 robot. We find
that two aspects of the geometric representation mainly affect the CEF distribution and range: (1)
redundancy, and the (2) volume covered by a structure. In the box-based representation, to take
advantage of spatial locality, the optimization process converts the swept space into a set of boxes.
Each box covers the maximum possible number of voxels in the swept space. This adds redundancy
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as some voxels are covered by multiple boxes, and are hence not included in critical space. In the
octree-based representation, nodes near the root node divide the space at a coarser level and represent
a much larger volume. Also, there is no redundancy in the representation. These factors result in
an overall higher CEF for octree. Conversely, in voxel- and flattened-octree-based representation,
each structure/bit represents a single voxel, and so their CEF is less than 6 (maximum 6 surfaces of
a voxel). Further, geometric representation determines the suitable storage structures and the error
mitigation approach. For example, using SRAM/DRAM with ECC results in lower costs of error
mitigation for stringent CDF rate requirements as shown in Figure 18d (A3scaled and A4).

Data reuse: Many accelerators use on-chip buffers to store frequently used data, and exploit
data reuse to reduce memory accesses. As a result, a soft error-induced bit flip persists until it is
overwritten by reloading the swept space data as explained in Section 4.3. Therefore, if the erroneous
data is used for N collision queries, the CDF rate increases by N/2 times (Equation 3). However,
frequent reloading of on-chip data increases DRAM accesses and incurs performance and energy
overheads. Thus there is a trade-off between the overhead of error mitigation and DRAM accesses.

8 RELATED WORK

Fault Characterization: Several FI tools focus on CPUs and GPUs [31, 32, 49, 75, 76, 92, 110, 123,
124, 131]. TRIDENT [76] uses compiler information to estimate SDC probability without performing
FI for CPU. gem5-Approxilyzer [131] uses gem5 simulator [13] for FI, and proposes a methodology
for fault site pruning. GPU-Qin [31] proposed an FI methodology that balances representativeness
and efficiency and performs FI on real GPU hardware. GPU FI tools [32, 92] use GPGPU-Sim [9]
for FI, and propose fault site pruning for the GPU SIMT execution model. gpuFI-4 [110] proposes a
detailed microarchitecture-level FI tool to characterize the cross-layer vulnerability for single and
multiple-bit faults. SASSIFI [49] and NVBitFI [123] propose instrumentation-based FI tools for
NVIDIA GPUs. These tools are useful for fault characterization of general purpose applications,
but they cannot be easily applied to robotics accelerators that use specialized microarchitectures and
instruction sets. More recent papers have studied the resilience of DNN accelerators [53, 54, 74, 78,
101, 108, 125, 134], and autonomous vehicle systems [11, 56, 61–63, 135]. We focus, instead, on
robotics accelerators processing spatial information. Due to the differences between the datapath
and information processed by the DNN accelerators and motion planning accelerators, the fault
propagation to the output is significantly different between them. Another body of work has proposed
metrics to characterize the vulnerability of structures to faults [30, 88, 115, 117]. Mukherjee et al. [88]
defined the Architectural Vulnerability Factor (AVF), and proposed Architectural Correct Execution
analysis (ACE-analysis) to approximate AVF for microprocessor structures [88]. Sridharan et al.
[115] proposed the Program Vulnerability Factor (PVF) to decouple the program’s fault-masking
effect from that of the microarchitecture, and quantify the vulnerability of a program. Fang et al.
extended this work in ePVF [30] to consider only SDC-causing bits. Although useful for CPUs
and GPUs, architectural or microarchitectural ACE-analysis is challenging to apply to accelerators
due to differences in the ISA and workload. For MPAs in particular, whether a bit is ACE heavily
depends upon the position of obstacles, and requires multiple simulations to estimate. The CEF gives
a measure of the fraction of runtime for which a bit is ACE without such simulations.

Error Mitigation Techniques: There has been significant work on selective error mitigation
techniques for CPUs [103], GPUs [81, 85, 95], and FPGAs [78, 98]. Mittal et al. [85] proposed
compressing similar values in GPUs. Palframan et al. [95] analyzed GPGPU applications and
proposed architectural modifications to reduce the magnitude of errors. Unfortunately, these methods
are difficult to apply to MPAs due to differences in the ISA and microarchitecture. Reis et al. [103]
and Mahmoud et al. [81] proposed software-level instruction replication to improve the resilience
of CPUs and GPUs respectively. However, accelerators typically use complex custom instructions
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and perform more computations per instruction [21, 77, 91], and hence software-level duplication
would result in significant overheads. Li et al. [76] examined the resilience properties of DNN
accelerators and proposed a method to protect vulnerable bits. Guan et al. [43] proposed leveraging
application-specific data properties in CNNs to minimize the error correction overhead. In contrast,
we focus on accelerators processing spatial information.

Motion Planning: Many techniques have been proposed to accelerate motion planning on CPUs
and GPUs [7, 12, 35, 113]. However, these do not meet the energy and performance requirements
of autonomous robots [77, 90]. ASIC-based and FPGA-based MPAs [10, 77, 90, 114, 139] focus
on performance and energy optimizations, rather than resilience. Other work [22, 121] has studied
resilient motion planning under sensor and communication faults, but not soft errors. Note that many
of these techniques use the term roadmap instead of motion set to denote the same idea.

9 CONCLUSIONS AND FUTURE WORK

Motion planning is a critical task in autonomous robots, and motion planning accelerators (MPAs)
have been proposed to speed it up significantly. Collision detection is the most resource-consuming
and safety-critical module in MPAs. In this work, we propose a spatially-aware reliability metric
(CEF) for MPAs, based on the exposed surface area of critical space. We propose a CEF-aware
mitigation strategy and Fault Injection (FI) method based on this metric. We also find that CEF-aware
error mitigation achieves significant collision detection failure rate reduction, even while incurring low
area and energy overheads. We find that CEF-aware FI results in ∼ 23,000× speedup over exhaustive
FI to identify the critical bits. Finally, we identify the architectural design parameters affecting the
resilience and error mitigation overheads in MPAs. The FI tool and simulator implementation is
available at https://github.com/ubc-aamodt-group/MPA resilience.

There are several possible directions for future work. First, while we focus on single bit flips, both
the reliability metric CEF, and the proposed error mitigation and FI methods can be extended to a
multi-bit fault model. In particular, Phase 1 of FI, CEF measurement needs to be modified to include
a multi-bit fault model, where CEF of a bit can be calculated as an average of CEF for different
multi-bit fault combinations. Second, while we focused on probabilistic roadmap-based MPAs, the
underlying ideas can be applied to other robotics accelerators that process spatial information. Finally,
our observations on the effect of the different design parameters on the resilience and error mitigation
overhead open up the direction of “resilience-aware” algorithm-hardware co-design.
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