
Energy-Efficient Realtime Motion Planning

Deval Shah, Ningfeng Yang, and Tor M. Aamodt
Department of Electrical and Computer Engineering, University of British Columbia

Vancouver, BC, Canada
devalshah@ece.ubc.ca,nxyang@ece.ubc.ca,aamodt@ece.ubc.ca

ABSTRACT

Motion planning is a fundamental problem in autonomous
robotics with real-time and low-energy requirements for safe
navigation through a dynamic environment. More than 90%
of computation time in motion planning is spent on collision
detection between the robot and the environment. Several
motion planning approaches, such as deep learning-based
motion planning, have shown significant improvements in
motion planning quality and runtime with ample parallelism
available in collision detection. However, naive parallelization
of collision detection queries significantly increases compu-
tation compared to sequential execution. In this work, we
investigate the sources of redundant computations in coarse-
grained (inter-collision detection) and fine-grained (intra-
collision detection) parallelism. We find that the physical
spatial locality of obstacles results in redundant computa-
tion in coarse-grained parallelism. We further show that the
primary sources of redundant computation in fine-grained
parallelism are easy cases where objects are far apart or
significantly overlapping. Based on these insights, we propose
MPAccel to improve the energy efficiency of parallelization in
motion planning. MPAccel consists of SAS, a Spatially Aware
Scheduler for coarse-grained parallelism, and CECDUs, Cas-
caded Early-exit Collision Detection Units for fine-grained
parallelism. SAS results in 7× speedup using 8× paralleliza-
tion with 6% increase in the computation compared to 3.7×
speedup with 83% increase in computation for naive paral-
lelization. CECDU can perform collision detection in 46−154
cycles for a robot with 6 degrees of freedom. We evaluate
MPAccel to execute a state-of-the-art learning-based motion
planning algorithm. Our simulations suggest MPAccel can
achieve real-time motion planning for a robot with 7 degrees
of freedom in 0.014ms-0.49ms with an average latency of
0.099ms compared to 1.42ms on a CPU-GPU system.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

© 2023 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589092

(a)

Sequential Parallel
 (small)

Parallel
(large)

MPAccel
100

101

102

Sp
ee

du
p

Speedup
Energy

0

2

C
om

pu
ta

tio
n

(b)

Figure 1: (a) Motion planning for a Kinova Jaco2 robotic

arm to reach the goal position while avoiding collision with

surroundings. (b) Comparison of the speedup and energy
efficiency for different execution modes on ASIC hardware.

Small and large represent the scale of parallelization.
Experimental methodology is described in Section 6.

CCS CONCEPTS

• Computing methodologies → Robotic planning; Par-
allel algorithms; • Hardware → Application-specific
VLSI designs.

KEYWORDS

Robotics, Hardware acceleration, Motion planning, Collision
detection

ACM Reference Format:
Deval Shah, Ningfeng Yang, and Tor M. Aamodt. 2023. Energy-
Efficient Realtime Motion Planning. In Proceedings of the 50th
Annual International Symposium on Computer Architecture (ISCA

’23), June 17–21, 2023, Orlando, FL, USA. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3579371.3589092

1 INTRODUCTION

Motion planning is a crucial task for autonomous robots. The
goal of this task is finding a path through a robot’s physical
environment to some end goal while avoiding collisions with
obstacles along the way (Figure 1a). Robotics tasks, includ-
ing object manipulation, footstep planning, and full-body
movement, require motion planning. Motion planning is com-
putationally intensive with demands that increase rapidly
with the number of degrees of freedom (DOF) of the robot
and environment complexity [46]. As robots need to react to
moving objects in their environment motion planning must be
accomplished within strict real-time constraints. The energy
efficiency of motion planning is important in increasing the
operation time of mobile robots. Motion planning accelera-
tors suitable for real-time motion planning can contribute to
15%-50% of its total power consumption [24, 31, 33]. Thus,
improving the performance and efficiency of motion plan-
ning is important to enabling the deployment of robotics
in challenging environments and tasks. Robots with higher

https://doi.org/10.1145/3579371.3589092
https://doi.org/10.1145/3579371.3589092

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Deval Shah, Ningfeng Yang, and Tor M. Aamodt

degrees of freedom (e.g., the 7-DOF Baxter robotic manipula-
tor [45]) can perform more than one task or complex tasks in
a cluttered environment. While the cost of high-DOF robots
is decreasing, the latency of motion planning for high-DOF
autonomous robots is currently a major impediment to its
deployment [51, 54, 56].

Several acceleration approaches have been proposed for col-
lision detection and traditional motion planning algorithms
to meet the real-time computation requirements, including
on GPUs [4, 15], FPGAs [2, 33, 48], and ASICs [3, 22, 29, 32,
52, 58]. Bakhshalipour et al. [3] proposed a voxelized robot-
environment collision detection approach. Jia et al. [22] pro-
posed a mapping accelerator that supports collision detection
between a voxel and environment. Bakhshalipour et al. [3]
introduced RACOD and proposed a speculative parallelism-
based accelerator for path planning of robots with 2 or 3
DOFs (e.g., autonomous cars or drones). However, the pro-
posed approach does not apply to motion planning algorithms
for robots with higher DOFs [3]. Other works have proposed
hardware accelerators for sampling-based motion planning
algorithms suitable for high-DOF robots [29, 32, 33, 52, 58].
However, these accelerators are not scalable for complex
robots and environments. The reason is that the underlying
motion planning algorithm (i.e., probabilistic roadmaps) used
in these works requires significantly more computation as the
complexity of robotic tasks and environment increases. For
example, a probabilistic roadmaps-based motion planning
accelerator suitable for dynamic environment and challenging
tasks requires more than 40MB on-chip memory or 40GBPS
off-chip memory bandwidth [29, 32].

There have been improvements in the field of motion plan-
ning algorithms. More recently, informed sampling-based
motion planning algorithms have exhibited significant im-
provement in the computation requirement, path quality,
and success rate of motion planning compared to conven-
tional algorithms [21, 27, 43, 44, 57]. These approaches
use different heuristics to improve the sampling efficiency.
For example, learning-based motion planning approaches use
neural networks for sampling [21, 27, 43, 44]. MPNet [43], a
state-of-the-art motion planning approach, has shown 15×
speedup on CPU and 40% improvement in the path quality
compared to the traditional sampling-based motion planning
algorithms. Though such more efficient algorithms have been
explored and studied at the software level, their architectural
implications have not been studied.

For sampling-based motion planning algorithms, collision
detection between the robot and the environment consumes
∼ 90% of execution time [4, 33]. Sampling-based motion
planning provides an approximate trajectory for the robot
by finding a set of intermediate positions that the robot
can take to reach the end goal. For example, a neural net-
work provides this approximate trajectory in learning-based
motion planning. The motion between two intermediate po-
sitions is generated by a local planner. Typically, the linear
interpolation between two positions is used as a local plan-
ning approach [26, 42]. Collision detection is used to find
which intermediate positions provide collision-free motion

and optimize this trajectory. Here, short motions between
intermediate positions can be checked for collision in parallel.
Similarly, a short motion is discretized into several robot po-
sitions, and collision detection for each position is performed,
providing inter-collision detection parallelism. Further, for
each collision detection query, different parts of the robot and
environment can be checked in parallel for a collision, and
the parallelism available in the collision detection algorithm
can be used, providing fine-grained parallelism.

There is ample coarse- and fine-grained parallelism in
sampling-based motion planning. However, we find that naive
parallelization of collision detection is work-inefficient, which
significantly increases computation and energy consumption.
A parallel algorithm is said to be work-efficient if the amount
of work done by it is asymptotically equal to the work per-
formed by the fastest sequential algorithm for the same prob-
lem and several works have focused on this problem for differ-
ent algorithms [5, 39, 49]. Collision detection queries’ serial
evaluation terminates once the desired outcome is found (e.g.,
a colliding position is found) and discards subsequent queries.
However, a parallel configuration executes multiple queries
simultaneously, resulting in redundant operations compared
to serial evaluation. Figure 1b compares the speedup and
computation for sequential and parallel evaluation on spe-
cialized hardware. Parallel evaluation results in 50× speedup
with 3.4× computation compared to sequential evaluation.

In this work, we analyze the sources of redundant compu-
tation in coarse- and fine-grained parallelization and propose
an algorithm-hardware optimization approach MPAccel to
improve the energy efficiency and execution time of motion
planning. MPAccel consists of a novel scheduler and collision
detection units. We call the former Spatially Aware Scheduler
(SAS) and the latter Cascaded Early-exit Collision Detection
Units (CECDUs). SAS exploits coarse-grained parallelism
to improve work efficiency. CECDUs exploits fine-grained
parallelism. The primary source of redundant computation
in coarse-grained parallelization is the physical locality of
objects in the environment. Collision detection outcomes for
spatially nearby robot positions are likely to be similar due
to the physical locality of obstacles. Thus, scheduling distant
positions in a batch to cover more space is crucial to reduce
redundant computation. SAS groups spatially distant com-
putation in a batch to improve the work efficiency of parallel
execution. We further show that easy collision detection cases
with significantly far or overlapping objects contribute the
most to redundant computations in fine-grained parallelism.
We propose a cascaded early-exit unit, CECDU, that filters
such easy collision-free and colliding cases by performing
low-compute collision tests using simple geometric primitives
(e.g., spheres) bounding and inscribing an object (e.g., robot’s
link). CECDU performs a precise collision detection only if
required.

SAS results in 7× speedup using 8 collision detection cores
(e.g., CECDU) compared to sequential execution, with 6%
increase in energy. CECDU can perform collision detection
in 46− 154 cycles for a 6-DOF robot. MPAccel enables real-
time motion planning for 7-DOF robot using a learning-based

Energy-Efficient Realtime Motion Planning ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

x1 x2
y1

y2

z1

z2

p1

p2
m12

(a)

p1 = (x1, y1, z1)
p2 = (x2, y2, z2)

p1

p2

c-spaceX

Y

Z

m12

(b)

p1
(Start)

p2

pn
(Goal)

Motion planning
in C-space

X

Y

Z

(c)

Figure 2: (a) Spatial poses and motion of a 2D robot
with three DOFs (x, y, z), (b) represents these poses and

motion in the robot’s C-space, and (c) shows a path made

of multiple intermediate poses in the C-space.

motion planning algorithm in 0.014ms-0.49ms with 0.099ms
on average. In summary, we make the following contributions:

• We study the sources of redundant computation in
coarse-grained and fine-grained parallelism in motion
planning.

• We propose MPAccel; it consists of a Spatially Aware
Scheduler (SAS) to handle coarse-grained parallelism,
and Cascaded Early-exit Collision Detection Units
(CECDUs) to handle fine-grained parallelism.

• We evaluate a learning-based motion planning algo-
rithm, MPNet, on the proposed MPAccel.

2 BACKGROUND AND MOTIVATION

This section briefly summarizes sampling-based motion plan-
ning and collision detection.

2.1 Sampling-based Motion Planning

Motion planning aims to find a collision-free path between the
start and end pose of the robot. Motion planning is typically
performed in a robot’s configuration space (C-space). The
C-space of a robot has the same dimensions as its degrees of
freedom (DOFs), where each dimension represents the range
of values for a DOF (e.g., the angle of a rotational joint).
Figure 2a represents a 3-DOF robot, and Figure 2b represents
its C-space. A point in the C-space represents a pose/position
of the robot, represented by angles of three joints (x, y, z).
The straight line between p1 and p2 in the C-space (e.g.,
m12) corresponds to a short motion between corresponding
poses in the physical space. This motion can be a sequence
of poses corresponding to a linearly interpolated line in the
C-space [26, 42] (Figure 6a).

Motion planning complexity increases exponentially with
the DOFs. Hence, sampling-based motion planning algo-
rithms are widely used for motion planning, in which the
C-space is sampled coarsely to find intermediate poses be-
tween the start and end poses, as shown in Figure 2c. Two
adjacent poses pi and pi+1 are connected by a short motion.
The motions between adjacent poses in {p1, p2, ..., pN} must
be collision-free for this path to be collision-free.

The C-space can be sampled in an informed manner to im-
prove motion planning efficiency. More recently, deep learning-
based informed sampling has shown significant improvement
in the runtime and path quality [21, 27, 43]. These approaches

Figure 3: Example of different collision detection phases

in sampling-based motion planning. Here the planning is
shown in the C-space. C-obst represents environmental

obstacles projected in the C-space.

use neural networks for sampling intermediate poses between
the start and end pose. We profile a state-of-the-art learning-
based motion planning algorithm, MPNet, on a CPU-GPU
system. Our profiling results show that neural network in-
ference (GPU) and collision detection (CPU) consume 2%
and 95% of total time, respectively. Figure 3 represents
different phases of a sampling-based motion planning algo-
rithm. In the “Feasibility checking” phase, all motions in the
final path are checked for collision. In the “Path optimiza-
tion” phase, a shortcutting algorithm is used to smoothen
the trajectory by removing redundant intermediate poses/-
points [14, 16, 19, 43, 47, 60]. For example, in a greedy
shortcutting algorithm [43], linear motions between p2 and
{p3, p4, ..., pN} are checked for collision. If a motion between
from p2 to pi is collision-free, poses p3, p4, ..., pi−1 are consid-
ered redundant as p2 and pi are connected. Removal of such
redundant intermediate poses results in a smoother path.

2.2 Collision Detection

Collision detection between a robot and its environment is
a crucial part of motion planning. Collision detection finds
if the robot collides with objects in the environment for its
given pose. Collision detection for a motion can be performed
by discretizing the motion into multiple discrete poses, and
these poses are checked for collision. A key design consider-
ation for the collision detection algorithm is the geometric
representation. The geometric representation decides the data
structures and primitives used to store the space occupied by
the robot or obstacles. In the simplest form, an object can
be represented as a set of primitives such as spheres, cubes,
boxes, or oriented boxes. For example, the environment can
be discretized into fixed-size cubes (also known as voxels).
Partially or fully occupied voxels are set to 1, and the rest
are set to 0. The shape and size of primitives determine the
representation accuracy and the storage requirement.

Bounding volume hierarchies have been proposed to reduce
collision detection time and storage requirements [25]. In this
approach, a tree-type structure represents the space occupied
by objects. Figure 4b shows an example of an octree repre-
sentation of the occupied voxels from Figure 4a. In octree
representation, each node divides the space into octants and
stores the occupancy information (empty/fully occupied/-
partially occupied) of all octants. Only partially occupied

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Deval Shah, Ningfeng Yang, and Tor M. Aamodt

(a) Spatial divi-
sion of the occu-
pied space

(b) Octree structure

Figure 4: Octree representation (figure adapted from [29]).

Figure 5: Separating axis test to find if two convex objects
overlap. Here, a separating axis is found as projections of
objects A and B on this axis do not overlap.

octants are further divided into smaller octants. Collision
detection between an object and the space occupied by this
octree is performed by traversing the tree. For each visited
node, collision detection between the object and bounding
boxes corresponding to occupied octants is performed. The
node corresponding to an octant is further traversed if a
collision is found with the octant.

Intersection Test: Intersection test between two primitive
shapes is fundamental to collision detection. The separating-
axis test can be used to perform an intersection test between
any two convex objects [13]. Two objects do not overlap if
there exists a line or plane that separates two 2D or 3D
objects. The separating axis is any line perpendicular/orthog-
onal to the separating line/plane. Figure 5 gives an example
of a separating-axis test between an axis-aligned bounding
box A (AABB) and an oriented bounding box B (OBB). Here,
projections of A and B on the axis parallel to object A’s
edge do not overlap, which shows that a line perpendicular
to this axis separates the two objects. A separating axis is
found in this case. For 3D objects, a plane perpendicular
to the separating axis separates two objects. Depending on
the shape of objects, candidates for possible separating axes
can be determined. For example, there are 15 separating
axis candidates to perform an intersection test between two
3D OBBs [17], as there are 15 possible separating planes. A
plane parallel to a face of either of the OBBs is a candidate
for separating planes, which gives six separating axes (three
unique face orientations per OBB). Further, a plane spanning
the axes of two edges, one from each OBB, is also a candidate
for separating planes. The separating axis corresponding to
this plane can be found using the cross-product of the axes
of these two edges. Since each box has three unique edge
directions, there are 3 × 3 candidates for separating axes.

Two objects are determined to be colliding if none of these
15 axes is a separating axis.

3 SPATIALLY AWARE SCHEDULER

This section summarizes our coarse-grained parallelism (i.e.,
inter-collision detection query parallelism) analysis. Further,
the proposed approach to exploit coarse-grained parallelism,
Spatially Aware Scheduler (SAS), is explained in detail.

Each phase of motion planning provides coarse-grained
inter-motion and intra-motion parallelism between collision
detection queries (Section 2.1). We first perform a limit study
to analyze the impact of the number of collision detection
units (CDUs) (i.e., degree of parallelization) on the number
of collision detection tests (i.e., a measure of work efficiency)
and collision detection runtime. Benchmarks used for this
study are described in Section 6. The limit study assumes
zero cycle latency for the scheduler and latency of one cycle
for a collision detection query. We observe that the number
of collision tests increases by 2.4× with 12.4× reduction in
the runtime for 16× naive parallelization. As the degree of
parallelization increases, the number of collision tests and
energy increase with speedup.

The key reason behind this mismatch in the number of
collision detection runs between sequential and parallel eval-
uations is that once a collision is detected for any robot pose
along a motion, there is no need to perform collision detection
for the following poses from this motion. Figure 6a represents
a robot’s pose in the physical space and C-space. Black/red
dots represent the discrete poses checked for collision de-
tection of this motion. Figure 6b.i represents the sequential
evaluation of collision detection for a motion. A collision is
detected and completed for this motion at cycle 5. However,
parallel evaluation using 4 CDUs, as shown in Figure 6b.ii,
results in more collision detection queries compared to se-
quential evaluation. The effect becomes more pronounced as
the scale of parallelization increases, as shown in Figure 7
(NP). Another approach is to use inter-motion parallelism.
However, different motions are not necessarily independent
tasks in motion planning. For example, in shortcutting for
motion planning, the goal is to find the first collision-free
motion from a pool of motions [16, 19, 47, 60]. In Figure 6c.ii,
collision-detection for motion 3 and 4 is redundant as motion-
2 is collision-free. Inter-motion parallelism reduces redundant
computation compared to naive parallelism. However, its
effectiveness reduces as the scale of parallelization increases
(See MNP in Figure 7). Thus a combination of intra- and
inter-motion parallelization is required.

The increase in redundant computation for intra-motion
parallelism is due to the physical spatial locality of the robot’s
poses and obstacles. There is considerable overlap between the
physical space covered by the poses of the robot corresponding
to adjacent points, as shown in Figure 6a. Hence, in most
cases, collision detection results for nearby poses (i.e., nearby
points in Figure 6) are likely to have the same output. Naively
grouping adjacent poses in a batch for parallelization degrades
work efficiency, as spatially similar poses are checked together.

Energy-Efficient Realtime Motion Planning ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

(a) (b) (c)

Figure 6: (a) represents a 2-DOF robot’s motion in the physical and C-space. Here, a dot in the C-space represents

the robot’s pose in discretized motion. Collision detection for all discrete poses is performed for the motion’s collision

detection. (b)-(c) represents different scheduling approaches for sequential and parallel evaluation (4 CDUs) of collision
detection queries. (b.ii)-(b.iv) are examples of intra-motion parallelism, (c.i) represents only inter-motion parallelism

(referred to as multi-motion), and (c.ii) represents an example of intra+inter motion parallelism.

A remedy to this inefficiency is to schedule physically distant
poses in a batch for parallel evaluation to cover more space.
Based on this insight, we propose a Spatially Aware Scheduler
(SAS), which schedules physically distant poses in a batch.
We explore two scheduling policies for SAS.

We first explore a binary-recursive traversal-based schedul-
ing policy. The difference between the indices of poses gives
a measure of the physical distance between the poses in Fig-
ure 6a. Binary recursive scheduling policy (BRP) selects the
order of poses using the binary-recursive algorithm, thus sam-
pling the motion from coarse to fine. Figure 6b.iii represents
scheduling using the binary-recursive algorithm, where poses
with identifiers 0, N , N/2, and N/4 are selected in the first
cycle. However, BRP requires maintaining a queue. We also
explore a simpler scheduling strategy based on coarse steps.
This coarse-step scheduling policy (CSP) uses a value greater
than one as the step size to select poses in a batch. For ex-
ample, for a step size of four, points 1 to N are scheduled in
the order of 0, 4, 8, ...,1, 5, 9, ...,2, 6, 10, ...,3, 7, 11, ..., N . Fig-
ure 6b.iv represents CSP for a step size of 4. CSP schedules
discrete poses in a motion in a coarse-to-fine manner to avoid
physical-locality-induced redundant collision checks.

We combine inter-motion and intra-motion parallelism to
reduce redundant computation in the parallel execution of
collision detection queries. We propose Multi-motion Coarse-
step Scheduling Policy (MCSP) for SAS that combines CSP
with inter-motion parallelism to take advantage of both kinds
of parallelism. In MCSP, a group of motion, determined by
the group size for inter-motion parallelism, is considered for
scheduling. Within a motion, the order of poses is selected
based on CSP. Figure 6c.ii represents the MCSP approach
for a group size of two and a step size of four.

Figure 7 represents a limit study on the number of collision
detection queries and runtime for different scheduling ap-
proaches. We also compare with a random selection of points
within a motion. We compare different combinations of

1 2 4 8 16 32 640

20
Sp

ee
du

p
NP
RND

BRP
CSP

MS
MNP

MBRP
MCSP

1 2 4 8 16 32 64
Number of CDUs

0

1

2

#C
ol

lis
io

n
D

et
ec

tio
n

 T

es
ts

 (N
or

m
al

iz
ed

)

Figure 7: Limit study on the effect of scheduling policies

on the number of collision detection cycles and runs for
different numbers of CDUs. NP: Naive parallel, RND:
Random scheduling; BRP: Binary recursive policy, CSP:

Coarse-step policy; prefix M represents inter-motion par-
allelism. MS represents only inter-motion parallelism.

{Seq (S), Naive Parallel (NP), Random (RND), Coarse-step
Policy (CSP), Binary Recursive Policy (BRP)} and {With
inter-motion parallelization (M), Without inter-motion par-
allelization (M omitted)}. As shown in the figure, naive or
naive+inter-motion parallelization is not sufficient for en-
ergy efficiency and speedup for a higher number of CDUs.
Furthermore, CSP results in faster collision detection than
the ordered selection of poses for sequential evaluation (i.e.,
#CDU=1) because of the efficient exploration of the space
covered by a motion. We also see that CSP performs very
similarly to the BRP and translates to a simpler hardware/-
software implementation as the binary recursive approach
requires maintaining one or more hardware/software queues.
In contrast, coarse-step-based scheduling can be implemented
using registers and adders. The figure shows that MCSP can

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Deval Shah, Ningfeng Yang, and Tor M. Aamodt

achieve up to 13.5× speedup using 16 CDUs with only a
10.5% increase in the number of collision detection tests.

4 CASCADED EARLY-EXIT
COLLISION DETECTION UNIT

Collision detection is a widely studied problem with applica-
tions in various fields. In motion planning, collision detection
is used to find if the robot collides with its surroundings
for a given pose. This section summarizes the intra-collision
detection query parallelism analysis. The proposed Cascaded
Early-exit Collision Detection Unit, CECDU, is explained in
detail.

We consider mainly three factors for selecting the geometric
representation and collision detection algorithm. The first
factor we consider is the calculation of the robot’s occupied
space for a pose. Prior works precompute the robot’s occupied
space for different poses and store it in memory [29, 32, 34,
58]. However, such precomputation does not allow collision
detection for arbitrary poses explored by the motion planning
algorithms. Furthermore, the storage requirement increases
with the complexity of the robot and its tasks [29, 32]. We
consider on-chip calculation of the robot’s occupied space for
a given pose. Thus we rule out the use of bounding volume
hierarchy (BVH) for the robot’s geometric representation, as
BVH tree generation is compute-intensive [13]. Based on this
insight, we use a set of oriented bounding boxes (OBB) to
represent the robot. As the robot changes its pose, each link
goes through a rigid transformation, i.e., its orientation and
translation change. The size of the bounding box for each link
of the robot can be precomputed. At runtime, the robot’s
pose (e.g., angle of its joint) is used to find the orientation
and center of these OBBs using trigonometric functions and
matrix multiplication [12].

The second factor is the collision detection computation
requirement for colliding and collision-free cases. We find that
more than 95% of the collision detection tests are collision-
free in motion planning benchmarks used in this work (Sec-
tion 6). BVH tree-based representation reduces computation
for collision-free cases, as collision detection can terminate
if no collision is found at a node. As mentioned earlier, gen-
erating a BVH tree for a robot is expensive as more than
1000 poses are tested for collision for each motion planning
query. However, the environment is updated only once for
a motion planning query. Based on this observation, we use
an octree representation of the environment (Section 2.2).
Prior works have focused on mapping sensor data (e.g., point
cloud, 2D images) to octree [20, 22, 55]. Jia et al. [22] pro-
posed a mapping accelerator to build octree from point cloud
data. Such mapping accelerators can be used to provide the
environment’s octree representation.

The third factor we consider is the scalability of the in-
tersection test for higher precision or a larger environment.
Collision detection between a robot (represented by a set of
OBBs) and environment (represented by an octree) consists of
multiple intersection tests between OBBs and AABBs (from
the octree nodes). One simple approach includes rasterization

Sequential Parallel0

2

R
un

tim
e/

En
er

gy

(N
or

m
al

iz
ed

) Runtime
Energy

(a)

1 2 3 4 5 6 7 8 9 101112131415
Identifier of the first successful separating axis test

0

1000

Fr
eq

ue
nc

y Not detected by the filter
Detected by the filter

(b)

Figure 8: (a) Comparison of runtime (#cycles) and energy
for sequential and parallel execution of the separating

axis tests. (b) Distribution of the successful separating
axis test identifiers for OBB-octree collision detection.

of OBB to a set of voxels. Collision detection is performed
between voxels and environment octree. However, the number
of voxels increases significantly with the resolution of rasteri-
zation. For example, we find that the number of intersection
tests increases by ∼ 5× when the discretization step size is
decreased by half for OBBs of the Jaco2 robotic arm [24].
Moreover, this requires checking all voxels for collision-free
cases. Considering this, we select the separating axis test
for OBB-AABB intersection test. The separating axis test
consists of multiplications and additions. The separating axis
test allows an accurate intersection test between the OBB and
the environment, reducing false positives (i.e., a collision-free
pose is flagged as colliding).

For the OBB-AABB intersection test, 15 potential sepa-
rating axes can be checked as explained in Section 2.2. Two
objects overlap if none of the axes is a separating axis. All
15 tests can be performed in parallel to accelerate the inter-
section test. Figure 8a shows the number of multiplications
performed (i.e., approximated energy) for sequential and par-
allel execution of separating axis tests for collision-free cases.
Parallel execution results in approximately 3× increase in
the energy. We find that the primary sources of this increase
are collision-free cases, where a separating axis is found af-
ter testing the nth separating axis candidate, and executing
all 15 tests is redundant. To understand the inefficiency of
parallel evaluation, we profile the distribution of identifiers
of the separating axis that returns true (i.e., is a separating
axis) in Figure 8b. We use collision detection tests between
OBBs for random poses of Jaco2 robot [24] and octree for
random environmental scenarios. In most cases, a separating
axis is found in the first six axes. Based on this, we propose a
three-stage execution mode, in which the 15 tests are divided
as 6−5−4 among three stages. A later stage is only executed
if the previous stage returns false, i.e., a separating axis is not

Energy-Efficient Realtime Motion Planning ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

(a) Bounding sphere (b) Inscribed sphere

Figure 9: Use of spheres to filter easy cases and reduce
computation, where objects are far apart (a) or signifi-
cantly overlapping (b). Objects are represented in 2D for

clarity.

found. This modification decreases multiplication operations
by 1.5× compared to fully parallel execution.

Furthermore, as shown in Figure 8b, for most collision-free
cases, the first axis returns true for the separating axis test.
We find that in most cases where the objects are far apart,
a separating axis is found in the first few separating axis
candidates. Prior works have proposed to use a computa-
tionally simple intersection test between bounding spheres
of OBBs before performing a detailed intersection test [9].
Figure 9a gives an example of the bounding sphere for an
OBB. The intersection test between a sphere and an AABB
requires three multiplications compared to 81 for checking
all 15 separating axes for the OBB-AABB intersection test.
The blue bars in Figure 8b show the fraction of cases filtered
by a sphere-AABB test. The majority of the intersection
tests that find a separating axis in the first test and hurt the
energy efficiency of parallel execution can be filtered by the
bounding sphere-AABB test.

Further, we find that after applying the bounding sphere-
based filter, ∼ 80% of the operations are used by colliding
cases for OBB-AABB intersection tests. We find that in
∼ 85% of colliding cases, the AABBs correspond to the
first and second levels of the octree, with 1/2 or 1/4 length
of the environment’s extent. If such large AABBs intersect
with considerably smaller OBBs, it is likely that the OBB
significantly or entirely overlaps with the AABB. We find
that an intersection test between an AABB and the inscribed
sphere of an OBB can efficiently find such colliding cases with
fewer operations. An inscribed sphere is the largest sphere
inside a shape that touches its edges (Figure 9b).

Figure 10 represents the flowchart for the proposed in-
tersection test for the proposed Cascaded Early-exit Colli-
sion Detection Unit (CECDU). The intersection tests are
performed in a cascaded manner, exiting early if collision
detection output is found. The function returns collision if a
separating axis is not found after checking all 15 axes.

5 MPACCEL

This section describes the microarchitecture of MPAccel, a
motion planning hardware accelerator. Figure 11 represents
the architecture of the overall system for a learning-based
motion planning algorithm (e.g., MPNet). The controller
receives the environment’s occupancy information from sen-
sors and sends it to the DNN accelerator and SAS 1 . The
controller receives a motion planning query consisting of the
start and end goals. The controller runs the motion planning

Figure 10: The flowchart for the proposed cascaded early-

exit intersection test using bounding and inscribed-sphere
filters and separating axis test.

Figure 11: Architecture of MPAccel.

algorithm and offloads neural network inferences to the DNN
accelerator and collision detection to MPAccel. A simple CPU
core can be used as the controller. The DNN accelerator gen-
erates intermediate poses for a candidate trajectory between
the start and the end goal 2 . The controller receives these
intermediate poses and generates a set of motions for colli-
sion detection based on the motion planning algorithm 3 .
The bandwidth of the bus between the CPU controller and
DNN accelerator and SAS is assumed to be 5GBPS, which
can be achieved by PCIe [35]. SAS receives the group of
motions and function mode from the controller and schedules
collision detection queries to the CECDUs 4 . The scheduler
also collects results from the CECDUs 5 and sends back
the aggregated result to the controller once the execution
finishes 6 .

CECDU calculates the robot’s occupied space for different
poses on-chip and uses octree representation for the environ-
ment, which reduces the storage requirement. We find that
on-chip memory of 50KB is sufficient to solve motion plan-
ning for high-DOF robots (∼ 7) and complex environments.
Hence, we use on-chip SRAM for storage, and MPAccel is

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Deval Shah, Ningfeng Yang, and Tor M. Aamodt

Figure 12: SAS microarchitecture.

not connected to DRAM. Prior motion planning accelera-
tors deployed in real-world applications have proposed to
use only on-chip memory to meet the energy and real-time
constraints [32, 34, 50, 52].

5.1 Microarchitecture of SAS

Figure 12 represents the microarchitecture of SAS. SAS sup-
ports three types of function modes. The “Feasibility test”
mode is used to find if all motions are collision-free. In this
case, the scheduler stops once a collision for any pose is found.
The “Connectivity test” mode is used to find if at least one
motion is collision-free. In this case, the scheduler stops when
one collision-free motion is found. This functional mode is
useful for path optimization (Section 2.1). The “Complete
test” mode is to get collision detection results for all motions.

The Data Processing Unit receives the data sent by the
controller 1 , consisting of metadata and motion data. The
metadata includes the number of motions and the function
mode. Motion data contains its start pose, the distance be-
tween two discrete poses, and the number of discrete poses.
The Data Processing Unit processes and sends the received
data to other units and SRAM 2 . Collision detection (CD)
Query Generator generates a discrete pose to be checked for
collision and sends it to free CECDUs 3 . The CD Query
Generator implements the logic to order the poses for colli-
sion detection as per the MCSP (Section 3). The step size
for MCSP is set to 8. Similarly, group size, i.e., the number
of motions considered for inter-motion parallelism in MCSP,
is set to 16. The CD Query Generator also receives the col-
lision detection results from the CECDUs 4 . It removes a
motion from the scheduling list if an intermediate pose for
this motion is found to be colliding. This way, it ensures not
to schedule redundant work to the CECDUs. The CD Result
Processing Unit receives collision detection results from the
CECDUs 4 . Depending upon the function mode, the result
processing unit signals other units to stop operation and
sends the result to the controller 5 .

5.2 Microarchitecture of CECDU

The CECDU receives the robot’s pose from the scheduler
and performs collision detection between the robot and the
environment. Figure 13 represents the CECDU microarchi-
tecture. The OBB Generation Unit generates a set of OBBs

Figure 13: Microarchitecture of the CECDU.

(a) OBB Generation unit.

(b) OBB-octree Collision Detector.

Figure 14: (a) and (b) represents the microarchitectures
of OBB Generation Unit unit and OBB-octree Collision

Detector (OOCD).

representing the robot’s occupied space for the given pose.
The generated OBBs are sent to the OBB-octree Collision De-
tectors (OOCDs). Each OOCD performs collision detection
between an OBB and the environment octree. The Result
Collector receives results from all OOCDs and sends the final
collision detection result (True or False) to the scheduler
once collision detection for all OBBs of the robot is done.
The Result Collector stops collision detection for a given
pose if an OOCD returns true for collision detection between
OBB-environment.

Figure 14a represents the microarchitecture of the OBB
Generation Unit. For each link, the size of its bounding
box, and the radii of upper and lower bounding spheres are
stored in the SRAM. At runtime, the OBB Generation Unit
receives the robot’s pose 1 . The transformation matrix gen-
erator calculates a transformation matrix (4×4) for each link

Energy-Efficient Realtime Motion Planning ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

for this pose. This matrix is used to find the rotation and
translation of a robot link’s bounding box [12, 36]. A trigono-

metric function unit 2 is used for sine/cosine calculation
for transformation matrix generation. We use a fifth-order
approximation-based trigonometric function unit [11]. The
trigonometric function unit is a 5-stage pipelined unit consist-
ing of 8 multipliers, 3 adders/subtractors, and registers. The
transformation matrix of each link is then sent to a matrix
multiplier and adders 3 . These ALUs calculate the center
and orientation of the OBB for this link 4 . Thus the OBB
Generation unit generates a set of OBBs to represent the
space occupied by the robot for its given pose and sends
the OBBs to OOCDs for collision detection 5 . Each OBB
is represented by 17 values (16-bit each), 3 for its center. 3
for its size, 9 for its 3× 3 orientation, and 2 for radii of the
bounding and inscribed spheres.

Figure 14b represents the microarchitecture of the OOCD.
The Octree Traverser (a finite state machine) receives the

collision detection request from the OBB Generation Unit 6
and stores the root node’s address (i.e., 0) to the Address

Register and sets its valid bit 7 . The SRAM stores the
environment octree. The Memory Request Generator sends
a memory request when the Address Register has a valid en-
try 8 . The received data is then added to the Node Queue 9 .
The Node Queue can store 8 entries with 24 bits per entry.
The Node Processing Unit receives this node information 10 .
Here, each node represents an AABB in the space and con-
tains the occupancy information of its octants. An octant can
be empty (i.e., no obstacle in this space), partially occupied,
or fully occupied. The node information (24 bits) consists
of occupancy information of all octants and the addresses
for children nodes corresponding to partially occupied oc-
tants. The Node Processing Unit uses the node information
and sends intersection queries for occupied octants 11 . Each
query consists of the AABB information corresponding to
an octant and the address of the child node. An AABB is
represented by its center and size (6 × 16 bits). The Inter-
section Unit performs an AABB-OBB intersection test using
the proposed cascaded early-exit intersection test flow (Fig-
ure 10). We explore pipelined and multi-cycle designs for
the Intersection Units. The Node Processing Unit sends one
query every cycle for pipelined intersection units. For a multi-
cycle unit, it sends a query when the Intersection Unit is free.
The Intersection Unit consists of fixed-point multipliers and
adders. The Octree Traverser receives the intersection test
output (0/1), and the child node address (8 bits) 12 . If a
collision is found for a partially occupied octant, the address
for the corresponding child node is stored in the Address
Register 7 . The Octree Traverser sends back the collision

detection result (True or False) to the Result Collector 13

upon traversal completion.

6 METHODOLOGY

We evaluate the proposed hardware accelerator using a de-
tailed microarchitectural simulator. We use 16-bit fixed-point
number representation for poses, OBBs, and AABBs. We use

Verilog to build the RTL models for the SAS and CECDU
blocks. RTL implementations are synthesized using the Syn-
opsys Design Compiler and the OpenRAM Memory Com-
piler [18] to estimate the area and power at 45nm technology
using FreePDK design library [53]. The timing model of the
microarchitectural simulator is based on the cycle latency
measured from RTL models. We use the microarchitecture
simulator for the evaluation. For OOCD, Our proposed
method reduces energy by exiting early from the intersection
test flow (Figure 10). Thus the proposed method reduces the
switching activity. We built an accurate architectural power
model to speed up power measurement of OOCD using the
methodology described in [7]. We use RTL simulation to find
out the leakage and dynamic power of individual blocks (mul-
tiplier, adder, mux) and use the microarchitectural simulator
to estimate their activity factors.

We use Kinova Jaco2 [24] (6-DOF) and Baxter (7-DOF)
robots for our evaluation. Both robotic arms consist of 7 links.
We use ten environmental scenarios with 100 pairs of start
and end goals per each environmental scenario. Each sample
environment contains 5− 9 randomly placed cuboid-shaped
obstacles. The size of these obstacles in each dimension is
limited to 3%−12% of the environment’s extent. These bench-
marks are consistent with other work on motion planning
and collision detection [29, 33, 43].

We use MPNet motion planning algorithm [43] to evaluate
motion planning runtime for a 7-DOF robotic manipulator
Baxter [45] using MPAccel. Note that MPNet is used as an
example of a state-of-the-art sampling-based motion planning
algorithm. We chose MPNet [43] as it has shown significant
improvement in motion planning performance and has code
available for evaluation. However, MPAccel can also be used
for other sampling-based motion planning algorithms. We
also evaluate collision detection and motion planning runtime
on GPUs (NVIDIA Titan V and Pascal GPU with 256-CUDA
cores) and CPUs (Intel i7-4771 8-core and Cortex A57 4-core)
(Section 7.5).

7 EVALUATION

In this section, we present an evaluation of SAS and CECDU
and motion planning using MPAccel.

7.1 Performance of the Scheduler

We propose a multi-motion coarse-step-based scheduling pol-
icy (MCSP) and corresponding microarchitecture in Section 3
and Section 5. A sampling-based motion planning algorithm
consists of multiple phases (Section 2), where a set of motions
is sent to the scheduler for collision detection in each phase.
We use MPNet algorithm and report the average runtime and
energy for an entire set of motions for different schedulers.
The proposed CECDUs are used as collision detection units
(CDUs) in this evaluation. The group size is set to 16 for
inter-motion parallelism based on empirical results.

Figure 15 compares the performance and energy of different
scheduling policies. The number of collision detection tests
is used as a measure of energy. For given benchmarks, the

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Deval Shah, Ningfeng Yang, and Tor M. Aamodt

Figure 15: Comparison of different schedulers for coarse-
grained parallelism. MCSP: Coarse-step policy + inter-

motion parallelism (the proposed approach), NP: naive

parallelization, CSP: Coarse-step policy, and MP: Only
inter-motion parallelism.

on-chip memory of OOCD is sufficient for collision tests, and
there is no memory access coalescing across collision tests.
Thus, energy increases linearly with the number of collision
detection tests. This increase may not be linear if off-chip
memory is required (e.g., for high-resolution environments
such as those used in games or physics simulations). However,
the insights of this evaluation still hold for such cases. As
parallelism increases, MCSP and MP outperform NP and
group “useful” work to be dispatched to the CDUs. For eight
CDUs, MCSP results in 7× speedup with 6% increase in the
energy compared to 3.7× speedup with 83% increase in energy
for NP. Similarly, for 16 CDUs, MCSP results in 11.03×
speedup with 22% increase in the energy compared to 6.2×
speedup with 113% increase in energy for NP. The energy
consumption for MCSP is slightly higher than predicted by
the limit study (Section 3). The limit study assumes zero-
latency scheduling and equal latency for collision detection.
However, the CDU introduces a delay in receiving results
for CD queries. In this delay, the scheduler might schedule
more CD queries for a motion even though dispatched queries
might return true for collision detection.

SAS can schedule up to one CD query per cycle. If the
latency of CDUs is less than the number of CDUs, then
increasing the number of CDUs does not help with speedup
as the scheduler can not dispatch CD queries fast enough.
Hence the speedup saturates as the number of CDUs reaches
32. However, as shown in the limit study with the ideal
scheduler and CDU (zero latency) in Section 3, increasing
the number of CDUs beyond 64 does not help with speedup
and significantly increases energy consumption.

7.1.1 Effect of Inter-motion Parallelism: Group size represents
the number of motions used for inter-motion parallelism. We
compare the effect of group size on speedup and energy for
MCSP in Figure 16 for eight CDUs. Smaller group size does
not take advantage of inter-motion parallelism and results
in higher runtime and energy. As the group size increases,
inter-motion parallelism helps with improving the runtime by

1 2 4 8 16 32 64
Group size for inter-motion parallelism

0.0

0.5

1.0

R
un

tim
e/

En
er

gy
 (N

or
m

al
iz

ed
) Runtime

Energy

Figure 16: Effect of group size for inter-motion parallelism

on runtime for MCSP.

Figure 17: Comparison of the runtime and computation
for sequential and parallel collision detection.

reducing redundant computation. The runtime and energy
both increase for group sizes greater than 16. Collision detec-
tion for a group of motions can be run in different function
modes (Section 5.1). For example, in the “Connectivity test”
mode, once a collision-free motion is found, the subsequent
motions can be discarded without checking for collision. More
motions are scheduled together as the group size increases,
and some motions that could have been discarded are also
scheduled for collision detection. This results in the increased
energy consumption for larger group sizes.

7.2 Performance of the CECDU

7.2.1 Evaluation of OBB-octree collision detection: We pro-
pose a cascaded early-exit collision detection unit (CECDU)
for OBB-octree collision detection. First, we compare the la-
tency/computation of the OBB-octree collision detection for
parallel and sequential execution of the separating axis test
without early-exit approach. Since the intersection test com-
putation is dominated by multiplications, we use the number
of multiplications as an estimate of computation. We also
provide latency/computation for pipelined and multi-cycle
versions. For the baseline version (without spheres filters),
parallel execution results in 46% higher computation with
2.52× and 1.77× speedup compared to the sequential execu-
tion for multi-cycle and pipelined configurations, respectively.
The proposed approach based on the bounding sphere closes
the gap between the computation of sequential and parallel ex-
ecution, and parallel execution provides 1.2− 1.4× speedup
with 1.3% more computation. Furthermore, the proposed
filter using an inscribed sphere to reduce computation for
colliding cases reduces the computation by 33%. Both filters
together provide ∼ 4.1× speedup compared to sequential
execution (without filters) with 61% computation savings.

7.2.2 Collision detection latency for a robotic arm: We eval-
uate the collision detection latency for a 6-DOF (7 links)
robotic arm using CECDU. Each CECDU can have more

Energy-Efficient Realtime Motion Planning ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Table 1: Collision detection latency for different CECDU
configurations for Jaco2 robot with 7 links and 6 degrees

of freedom.

Single Intersection Unit Four Intersection Units

Multi-cycle Pipelined Multi-cycle Pipelined

Latency
(Cycles)

154.4 137.5 54.8 46.3

Area

(mm^2)
0.21 0.32 0.69 1.12

Power

(mW)
92.6 100.8 215.7 248.7

(a) (b)

Figure 18: (a) represents the runtime and energy for sin-
gle and four intersection units, and (b) represents the

breakdown of the exit cycle from the proposed flow (Fig-
ure 10) for different environmental complexity (number
of obstacles in this example).

than one OOCD, where each OOCD performs collision detec-
tion between an OBB (i.e., robot’s link) and the environment.
We evaluate two configurations of CECDUs. In the first con-
figuration, the CECDU consists of a single OOCD unit that
performs collision detection for all OBBs in a robot serially.
If a collision is found between an OBB and the environment,
subsequent OBBs are discarded. In the second configuration,
the CECDU consists of four OOCD units for parallel colli-
sion detection. We also provide evaluation for pipelined and
multi-cycle Intersection Units.

Table 1 compares the collision detection latency, area, and
power for different combinations. Note that the use of four
OOCD units does not reduce the runtime proportionally for
two reasons. First, subsequent OBBs are not checked for col-
lision in serial execution once a collision is detected. Second,
the collision detection time for parallel intersection tests is
dominated by the highest intersection test time across all
units as we use synchronous scheduling. The end-to-end la-
tency of intersection test is same for pipelined and multi-cycle
units. However, the pipelined version can process more than 1
intersection tests at the same time in the pipeline. Therefore,
the latency of robot-environment collision detection (which
consists of multiple intersection tests) is lower for pipelined
version. CECDU performs collision detection for the robotic
arm in 46− 154 cycles.

We further analyze the effect of environmental complexity
(e.g., number of obstacles) on CECDU. Figure 18a represents
the robot-environment collision detection runtime and energy
for environments with increasing number of obstacles. The
runtime increases by ∼ 50% as the number of obstacles
doubles. Figure 18b provides the breakdown of cycles required

Table 2: Area and power breakdown for hardware units.

Module
Area

(mm2)

Power

(mW)

Scheduler 0.110 60.7

CECDU (with four multi-cycle OOCD) 0.694 215.7

OBB Transformation Unit 0.054 51.6

Octree Traversal Unit 0.029 16.7

Intersection Unit (Multi-cycle) 0.143 24.34

Intersection Unit (Pipelined) 0.251 32.57

MPAccel (Scheduler + 16 CECDUs)

Config 1: 4 multi-cycle OOCDs/CECDU 11.21 3.51W

Config 2: 4 pipelined OOCDs/CECDU 18.12 4.03W

for the intersection test (Figure 10) for different environments.
As shown in the figure, the proposed method effectively filters
easy cases (cycle-1) across different environmental complexity.

Bakhshalipour et al. [3] also proposed a collision detection
acceleration unit CODAcc for OBB-voxelized environment
collision detection. In their approach, an OBB is converted
to occupied voxels, and read requests for the environment’s
occupancy information corresponding to these voxels are sent
to memory. We could not quantitatively compare our pro-
posed OOCD unit with CODAcc as absolute performance
is not reported in their work, and we could not get access
to their implementation. Below we provide our insights and
approximate comparison of both approaches. Voxelization
of OBB results in a simpler intersection test; however, the
number of voxels to be checked and memory accesses in-
crease significantly with the resolution of voxelization. Our
approximate measurement for the Jaco2 robot shows that for
voxels of size 2.56cm (environment’s extent is 180cm), the
voxelized environment requires 32KB storage and 30− 154
memory accesses. In contrast, OOCD uses an octree-based
compact environment representation and performs collision
detection between OBB-environment in < 40 cycles with
0.75KB on-chip SRAM.

7.3 Area and power

Table 2 summarizes the area and power estimation obtained
from the synthesis of RTL implementations of all hardware
modules and submodules. The intersection unit is a major
contributor to the total area and power. Further, the total
area and power of the Intersection Unit are dominated by
fixed-point multipliers (∼ 85%), which can be reduced sig-
nificantly by employing custom-designed multiplier cells [41].
The critical-path delay for pipelined/multi-cycle OOCD is
1.48ns/2.24ns, and is dominated by multipliers. This delay
can be reduced by using optimized 16-bit multipliers’ stan-
dard cells [41] and/or pipelining.

7.4 Motion planning runtime for MPNet

We further evaluate the runtime for motion planning queries
for MPNet algorithm using MPAccel. We use an estimate
of 12TOPS for the DNN accelerator, which can be achieved
by existing DNN accelerators [10, 59]. Similarly, we set the

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Deval Shah, Ningfeng Yang, and Tor M. Aamodt

Figure 19: Motion planning runtime using MPAccel for

different benchmarks. Baxter robot is used for the evalu-
ation. Here the number of CECDUs is set to eight, and

each CECDU has four multi-cycle Intersection Units.

8_4_mc
16_4_mc

8_4_p
16_4_p

8_1_mc
16_1_mc

8_1_p
16_1_p

Configurations of MPAccel

0.0

0.2

0.4

0.6

0.8

R
un

tim
e

(m
s)

0

1000

2000

3000

4000

Q
ue

rie
s/

(S
ec

 ×
 W

 ×
 m

m
2)

Peformance

Figure 20: Motion planning runtime and performance

for different MPAccel configurations. The performance
is measured using number of motion planning queries
executed per (Second×Watt×mm2).

IO bandwidth to 5GBPS. We estimate the latency of the
controller using the number of instructions.

Figure 19 provides the motion planning latency for differ-
ent benchmarks for MCSP-based scheduler and 16 CECDUs
with four multi-cycle OOCDs each. The motion planning
time varies from 0.014ms to 0.49ms, with an average runtime
of 0.099ms. This motion planning runtime meets the require-
ment of real-time motion planning (< 1ms as the actuators’
response rate is typically ∼ 1kHz).

We further compare the latency and performance of differ-
ent configurations of the scheduler and CECDUs. Figure 20
compares the motion planning latency and performance for
different configurations of MPAccel. Here X Y mc/p config-
uration represents MPAccel with X CECDUs, Y OOCDs
per CECDU, and multi-cycle or pipelined design of the In-
tersection Unit. The left Y-axis compares the latency dis-
tribution for motion planning queries. The right Y-axis rep-
resents the performance of configurations (motion planning
queries/(Second×Watt×mm2)).

7.5 Evaluation on GPU and CPU

Collision detection is the most time-consuming kernel in mo-
tion planning [4, 33]. To help compare against GPU baselines,
we thus wrote our own OBB-octree collision test for a GPU.
Here each thread performs OBB-octree collision detection.
We form a warp (32 threads) such that all OBBs in a sin-
gle warp have physical locality, which reduces divergence as
all threads are likely to follow a similar traversal order in

Table 3: Collision detection runtime for GPU and CPUs.

NVIDIA
Titan V

NVIDIA
Jetson

TX2 GPU

i7-4771
(8-core)

Cortex-
A57

(4-core)
OBB-octree (ms) 24 5833 153 360
OBB-octree + GPU
optimizations (ms)

12 3403 N/A N/A

OBB-octree leaf
nodes (ms)

6 1373 890 3304

Power (W) 156.8 3.5 65 4.2
Average motion
planning runtime
(ms)

1.42 110.27 4.13 11.62

the octree. We also implement two optimizations specific to
GPU. Each thread accesses a FIFO queue during the octree
traversal. We interleave queues for all threads in a single
warp to reduce memory divergence. The second optimization
is based on [30] to reduce warp divergence. We also imple-
ment an OBB-octree leaf nodes collision detection. In this
approach, each thread performs collision detection between
a leaf node and OBB. Table 3 summarizes the CPU and
GPU runtime for 220 OBB-octree collision detection queries.
For comparison, 16 CECDUs with four multi-cycle OOCDs
per CECDU (11.1mm2, 3.4W) take 0.91ms to execute the
same number of OBB-octree collision detection queries. Sim-
ilarly, 16 CECDUs with four pipelined OOCDs per CECDU
(18.0mm2, 4.0W) take 0.53ms to execute the same number of
OBB-octree collision detection queries. We built a simulator
for the CPU+DNN Accelerator and GPU+Controller+DNN
Accelerator system to evaluate motion planning runtime.
Table 3 summarizes the overall motion planning runtime.

8 RELATED WORK

Bakhshalipour et al. [3] proposed an acceleration approach for
a path planning algorithm for robots with 2-3 DOFs. However,
this approach does not apply to motion planning algorithms
for robots with higher DOF. They also proposed a colli-
sion detection acceleration unit CODAcc based on voxelized
OBB-voxelized environment intersection. Here, the number
of intersection tests increases with voxelization resolution.
We chose the separating axis test as it does not discretize the
robot’s space and is scalable for fine-resolution intersection
tests. Jia et al. [22] proposed a mapping accelerator to map
environment point cloud data to octree representation. The
proposed accelerator also supports a collision detection test
between a voxel and the environment. However, similarly,
the number of voxel queries increases with the voxelization
resolution used for the robot’s occupied space.

Other works have proposed motion planning acceleration
for CPUs and GPUs [1, 4, 8, 15, 23, 28, 37, 38, 40]. While
GPU-based acceleration approaches provide significant accel-
eration, state-of-the-art motion planning approaches on GPUs
still do not provide the energy efficiency and performance.
Hardware acceleration approaches have been proposed for
specific motion planning algorithms to meet the computation
and real-time requirements, including on FPGA [2, 33, 48]
and ASIC [3, 29, 32, 52, 58]. Murray et al. [33] proposed an ac-
celeration approach using FPGAs for probabilistic roadmap-
based motion planning (PRM). Further, they expanded the

Energy-Efficient Realtime Motion Planning ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

work to a programmable motion planning chip [32, 52]. They
proposed to use a fixed set of motions and precompute the
space occupied by these motions. These swept spaces are
represented using sets of voxels. At runtime, these precom-
puted swept spaces are used for collision detection. Lian
et al. [29] proposed to use octree representation for swept
spaces. Though the pre-computation step reduces the mo-
tion planning runtime, to solve challenging motion planning
tasks, precomputed swept spaces require more than 40MB
on-chip memory or > 40GBPS off-chip memory bandwidth.
Yang et al. [58] proposed to use near-memory computing to
reduce the memory bandwidth requirement. However, these
approaches use a fixed set of motions for motion planning.
Such approaches are suitable for a constrained environment
with fixed obstacles and tasks but are not scalable for au-
tonomous robots performing diverse tasks in highly dynamic
environments.

RoboRun [6] proposes to control the volume and precision
of the environment depending upon its speed and the distance
from obstacles. The proposed optimization can be applied to
MPAccel, as the environment’s octree representation supports
variable precision using octree node pruning.

9 CONCLUSION

In this work, we analyze sampling-based motion planning
algorithms and identify the sources of possible acceleration.
We show that speedup through naive parallelization comes at
the cost of increased energy due to redundant computation.
We identify the sources of these redundant computations
in coarse-grained and fine-grained parallelization. Based on
this, we propose an algorithm-hardware-based approach to
increase the energy efficiency of parallel execution. SAS, the
proposed scheduler unit, results in 7× speedup using 8 colli-
sion detection cores compared to sequential execution, with
6% increase in energy. The proposed CECDU can perform
collision detection in 46− 154 cycles for a robotic arm with
6 degrees of freedom. SAS and CECDU enables real-time
motion planning for a 7-DOF robot in 0.014ms-0.49ms with
an average of 0.099ms when evaluated for a learning-based
motion planning algorithm.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers and artifact
evaluators for their feedback. We would also like to thank
Mabel Wang for helping with MPNet experiment setup. This
research has been funded in part by the National Sciences and
Engineering Research Council of Canada (NSERC) through
the NSERC strategic network on Computing Hardware for
Emerging Intelligent Sensory Applications (COHESA) and
through an NSERC Strategic Project Grant. Tor M. Aamodt
recently served as a consultant for Huawei Technologies
Canada Co. Ltd and Intel Corp.

REFERENCES
[1] N.M. Amato and L.K. Dale. 1999. Probabilistic roadmap meth-

ods are embarrassingly parallel. In Proceedings 1999 IEEE In-
ternational Conference on Robotics and Automation. 688–694.

https://doi.org/10.1109/ROBOT.1999.770055
[2] Nuzhet Atay and Burchan Bayazit. 2006. A motion planning

processor on reconfigurable hardware. In Proceedings of IEEE
International Conference on Robotics and Automation (ICRA).
IEEE, 125–132. https://doi.org/10.1109/ROBOT.2006.1641172

[3] Mohammad Bakhshalipour, Seyed Borna Ehsani, Mohamad Qadri,
Dominic Guri, Maxim Likhachev, and Phillip B. Gibbons. 2022.
RACOD: Algorithm/Hardware Co-Design for Mobile Robot Path
Planning. In Proceedings of the 49th Annual International Sym-
posium on Computer Architecture. Association for Computing
Machinery. https://doi.org/10.1145/3470496.3527383

[4] Joshua Bialkowski, Sertac Karaman, and Emilio Frazzoli. 2011.
Massively parallelizing the RRT and the RRT. In International
Conference on Intelligent Robots and Systems. 3513–3518. https:
//doi.org/10.1109/IROS.2011.6048813

[5] Guy E. Blelloch and Bruce M. Maggs. 1996. Parallel Algorithms.
ACM Comput. Surv. 28, 1 (1996), 51–54. https://doi.org/10.
1145/234313.234339

[6] Behzad Boroujerdian, Radhika Ghosal, Jonathan Cruz, Brian
Plancher, and Vijay Janapa Reddi. 2021. RoboRun: A Ro-
bot Runtime to Exploit Spatial Heterogeneity. In 2021 58th
ACM/IEEE Design Automation Conference (DAC). 829–834.
https://doi.org/10.1109/DAC18074.2021.9586280

[7] D. Brooks, V. Tiwari, and M. Martonosi. 2000. Wattch: a frame-
work for architectural-level power analysis and optimizations. In
Proceedings of 27th International Symposium on Computer Ar-
chitecture. 83–94.

[8] D.J. Challou, M. Gini, and V. Kumar. 1993. Parallel search
algorithms for robot motion planning. In Proceedings IEEE In-
ternational Conference on Robotics and Automation. 46–51 vol.2.
https://doi.org/10.1109/ROBOT.1993.292122

[9] Jung-Woo Chang, Wenping Wang, and Myung-Soo Kim. 2010.
Efficient collision detection using a dual OBB-sphere bounding
volume hierarchy. Computer-Aided Design 42 (2010), 50–57.
https://doi.org/10.1016/j.cad.2009.04.010

[10] Coral AI. 2020. AI Google Coral TPU Overview and Products.
https://dls.ieiworld.com/IEIWEB/MARKETING MATERIAL/
2021 catalog/0-10 AI Google TPU overview %26 products.pdf

[11] Florent de Dinechin, Matei Istoan, and Guillaume Sergent. 2014.
Fixed-Point Trigonometric Functions on FPGAs. SIGARCH
Comput. Archit. News 41, 5 (2014), 83–88. https://doi.org/10.
1145/2641361.2641375

[12] J. Denavit and R. S. Hartenberg. 2021. A Kine-
matic Notation for Lower-Pair Mechanisms Based
on Matrices. Journal of Applied Mechanics 22, 2
(2021), 215–221. https://doi.org/10.1115/1.4011045
arXiv:https://asmedigitalcollection.asme.org/appliedmechanics/article-
pdf/22/2/215/6748803/215 1.pdf

[13] Christer Ericson. 2004. Real-Time Collision Detection. CRC
Press, Inc.

[14] D. Ferguson, N. Kalra, and A. Stentz. 2006. Replanning with
RRTs. In Proceedings 2006 IEEE International Conference on
Robotics and Automation. 1243–1248. https://doi.org/10.1109/
ROBOT.2006.1641879

[15] Russell Gayle, Paul Segars, Ming Lin, and Dinesh Manocha. 2005.
Path Planning for Deformable Robots in Complex Environments.
In Robotics: Science and Systems. 225–232. https://doi.org/10.
15607/RSS.2005.I.030

[16] Roland Geraerts and Mark Overmars. 2007. Creating High-quality
Paths for Motion Planning. International Journal of Robotics Re-
search 26 (08 2007). https://doi.org/10.1177/0278364907079280

[17] S. Gottschalk, Ming Lin, and Dinesh Manocha. 1997. OBBTree:
A Hierarchical Structure for Rapid Interference Detection. Com-
puter Graphics 30 (10 1997). https://doi.org/10.1145/237170.
237244

[18] Matthew R. Guthaus, James E. Stine, Samira Ataei, Brian Chen,
Bin Wu, and Mehedi Sarwar. 2016. OpenRAM: An open-source
memory compiler. In 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). 1–6. https://doi.org/10.
1145/2966986.2980098 ISSN: 1558-2434.

[19] Kris Hauser and Victor Ng-Thow-Hing. 2010. Fast smoothing
of manipulator trajectories using optimal bounded-acceleration
shortcuts. In 2010 IEEE International Conference on Robotics
and Automation. 2493–2498. https://doi.org/10.1109/ROBOT.
2010.5509683

[20] Armin Hornung, Kai Wurm, Maren Bennewitz, Cyrill Stachniss,
and Wolfram Burgard. 2013. OctoMap: An efficient probabilistic

https://doi.org/10.1109/ROBOT.1999.770055
https://doi.org/10.1109/ROBOT.2006.1641172
https://doi.org/10.1145/3470496.3527383
https://doi.org/10.1109/IROS.2011.6048813
https://doi.org/10.1109/IROS.2011.6048813
https://doi.org/10.1145/234313.234339
https://doi.org/10.1145/234313.234339
https://doi.org/10.1109/DAC18074.2021.9586280
https://doi.org/10.1109/ROBOT.1993.292122
https://doi.org/10.1016/j.cad.2009.04.010
https://dls.ieiworld.com/IEIWEB/MARKETING_MATERIAL/2021_catalog/0-10_AI_Google_TPU_overview_%26_products.pdf
https://dls.ieiworld.com/IEIWEB/MARKETING_MATERIAL/2021_catalog/0-10_AI_Google_TPU_overview_%26_products.pdf
https://doi.org/10.1145/2641361.2641375
https://doi.org/10.1145/2641361.2641375
https://doi.org/10.1115/1.4011045
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/22/2/215/6748803/215_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/22/2/215/6748803/215_1.pdf
https://doi.org/10.1109/ROBOT.2006.1641879
https://doi.org/10.1109/ROBOT.2006.1641879
https://doi.org/10.15607/RSS.2005.I.030
https://doi.org/10.15607/RSS.2005.I.030
https://doi.org/10.1177/0278364907079280
https://doi.org/10.1145/237170.237244
https://doi.org/10.1145/237170.237244
https://doi.org/10.1145/2966986.2980098
https://doi.org/10.1145/2966986.2980098
https://doi.org/10.1109/ROBOT.2010.5509683
https://doi.org/10.1109/ROBOT.2010.5509683

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Deval Shah, Ningfeng Yang, and Tor M. Aamodt

3D mapping framework based on octrees. Autonomous Robots
34 (04 2013). https://doi.org/10.1007/s10514-012-9321-0

[21] Brian Ichter, James Harrison, and Marco Pavone. 2018. Learning
Sampling Distributions for Robot Motion Planning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA).
7087–7094. https://doi.org/10.1109/ICRA.2018.8460730

[22] Tianyu Jia, En-Yu Yang, Yu-Shun Hsiao, Jonathan Cruz, David
Brooks, Gu-Yeon Wei, and Vijay Janapa Reddi. 2022. OMU: A
Probabilistic 3D Occupancy Mapping Accelerator for Real-Time
OctoMap at the Edge. In Proceedings of the 2022 Conference
Exhibition on Design Automation Test in Europe (Antwerp,
Belgium). 909–914.

[23] Joseph T. Kider, Mark Henderson, Maxim Likhachev, and Alla
Safonova. 2010. High-dimensional planning on the GPU. In 2010
IEEE International Conference on Robotics and Automation.
2515–2522. https://doi.org/10.1109/ROBOT.2010.5509470

[24] KINOVA. 2018. KINOVA JACO Assistive robot.
https://www.kinovarobotics.com/sites/default/files/KINO-
2018-Bro-Assistive-ZH YUL-06-R-Web.pdf.

[25] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K.
Zikan. 1998. Efficient collision detection using bounding volume
hierarchies of k-DOPs. IEEE Transactions on Visualization and
Computer Graphics (1998). https://doi.org/10.1109/2945.675649

[26] Steven M. LaValle. 2006. Planning Algorithms. http://lavalle.
pl/planning/

[27] Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing,
and Ruslan Salakhutdinov. 2018. Gated Path Planning Networks.
In Proceedings of the 35th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 80).
2947–2955.

[28] Jed Lengyel, Mark Reichert, Bruce R. Donald, and Donald P.
Greenberg. 1990. Real-Time Robot Motion Planning Using Raster-
izing Computer Graphics Hardware. SIGGRAPH Comput. Graph.
24, 4 (1990), 327–335. https://doi.org/10.1145/97880.97915

[29] Shiqi Lian, Yinhe Han, Xiaoming Chen, Ying Wang, and Hang
Xiao. 2018. Dadu-P: A Scalable Accelerator for Robot Motion
Planning in a Dynamic Environment. In Proceedings of the An-
nual Design Automation Conference (San Francisco, California)
(DAC). Association for Computing Machinery, 6 pages.

[30] Jianqiao Liu, Nikhil Hegde, and Milind Kulkarni. 2016. Hy-
brid CPU-GPU Scheduling and Execution of Tree Traversals. In
Proceedings of the 2016 International Conference on Supercom-
puting. Association for Computing Machinery, Article 2, 12 pages.
https://doi.org/10.1145/2925426.2926261

[31] Lynxmotion. 2020. AL5D Robot Arm Specs. http://www.
lynxmotion.com/driver.aspx?Topic=specs04.

[32] Sean Murray, Will Floyd-jones, George Konidaris, and Daniel J
Sorin. 2019. A Programmable Architecture for Robot Motion Plan-
ning Acceleration. In International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE,
185–188.

[33] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris,
and Daniel J. Sorin. 2016. The Microarchitecture of a Real-
Time Robot Motion Planning Accelerator. In Proceedings of
the ACM/IEEE International Symposium on Microarchitecture
(MICRO). IEEE Press. https://doi.org/10.1109/MICRO.2016.
7783748

[34] Sean Murray, Will Floyd-Jones, Ying Qi, Daniel J. Sorin, and
George Konidaris. 2016. Robot Motion Planning on a Chip. In
Robotics: Science and Systems. https://doi.org/10.15607/rss.
2016.xii.004

[35] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Au-
dzevich, Sergio López-Buedo, and Andrew W. Moore. 2018. Un-
derstanding PCIe Performance for End Host Networking. In Pro-
ceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’18). Association
for Computing Machinery, 327–341. https://doi.org/10.1145/
3230543.3230560

[36] Theodore Pachidis, Christos Sgouros, Vassilis G. Kaburlasos, Eleni
Vrochidou, Theofanis Kalampokas, Konstantinos Tziridis, Alexan-
dros Nikolaou, and George A. Papakostas. 2020. Forward Kine-
matic Analysis of JACO2 Robotic Arm Towards Implementing a
Grapes Harvesting Robot. In 2020 International Conference on
Software, Telecommunications and Computer Networks (Soft-
COM). https://doi.org/10.23919/SoftCOM50211.2020.9238297

[37] Jia Pan, Christian Lauterbach, and Dinesh Manocha. 2010. g-
Planner: Real-time Motion Planning and Global Navigation using
GPUs.. In Proceedings of the National Conference on Artificial

Intelligence, Vol. 2.
[38] Jia Pan and Dinesh Manocha. 2012. GPU-based parallel collision

detection for fast motion planning. The International Journal
of Robotics Research 31, 2 (2012), 187–200. https://doi.org/10.
1177/0278364911429335

[39] Keshav Pingali, Milind Kulkarni, Donald Nguyen, Martin
Burtscher, Mario Mendez-Lojo, Dimitrios Prountzos, Xin Sui,
and Zifei Zhong. 2009. Amorphous data-parallelism in irregular
algorithms. regular tech report TR-09-05, The University of
Texas at Austin (2009).

[40] E. Plaku and L.E. Kavraki. 2005. Distributed Sampling-Based
Roadmap of Trees for Large-Scale Motion Planning. In Proceed-
ings of the 2005 IEEE International Conference on Robotics
and Automation. 3868–3873. https://doi.org/10.1109/ROBOT.
2005.1570711

[41] Liangyu Qian, Chenghua Wang, Weiqiang Liu, Fabrizio Lom-
bardi, and Jie Han. 2016. Design and evaluation of an ap-
proximate Wallace-Booth multiplier. In 2016 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). 1974–1977.
https://doi.org/10.1109/ISCAS.2016.7538962

[42] Ahmed Qureshi, Yinglong Miao, Anthony Simeonov, and Michael
Yip. 2020. Motion Planning Networks: Bridging the Gap Between
Learning-Based and Classical Motion Planners. IEEE Transac-
tions on Robotics PP (08 2020), 1–19. https://doi.org/10.1109/
TRO.2020.3006716

[43] Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and
Michael C Yip. 2019. Motion planning networks. In 2019 In-
ternational Conference on Robotics and Automation (ICRA).
IEEE, 2118–2124.

[44] Ahmed H Qureshi and Michael C Yip. 2018. Deeply Informed
Neural Sampling for Robot Motion Planning. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE, 6582–6588.

[45] Rethink Robotics. 2013. Baxter. https://robots.ieee.org/robots/
baxter/

[46] Oren Salzman. 2019. Sampling-Based Robot Motion Planning.
Commun. ACM (2019), 54–63. https://doi.org/10.1145/3318164

[47] Ji Hwan Seo, Hyuntae Lee, and Kyoung-Dae Kim. 2021. A Par-
allelization Algorithm for Real-Time Path Shortening of High-
DOFs Manipulator. IEEE Access 9 (2021), 123727–123741.
https://doi.org/10.1109/ACCESS.2021.3109744

[48] Xuesong Shi, Lu Cao, Dawei Wang, Ling Liu, Ganmei You,
Shuang Liu, and Chunjie Wang. 2018. HERO: Accelerating
Autonomous Robotic Tasks with FPGA. International Con-
ference on Intelligent Robots and Systems, 7766–7772. https:
//doi.org/10.1109/IROS.2018.8593522

[49] Julian Shun. 2017. Shared-Memory Parallelism Can Be Simple,
Fast, and Scalable. Vol. 15. Association for Computing Machinery
and Morgan.

[50] Daniel Sorin, William Floyd-Jones, Sean Murray, George
Konidaris, and William Walker. 2019. Apparatus, method and ar-
ticle to facilitate motion planning of an autonomous vehicle in an
environment having dynamic objects. Patent No. US11292456B2,
Filed April 1, 2019, Issued April 5, 2022.

[51] Daniel J. Sorin and George Konidaris. 2018. Enabling
Faster, More Capable Robots With Real-Time Motion Plan-
ning. https://spectrum.ieee.org/enabling-faster-more-capable-
robots-with-real-time-motion-planning

[52] Daniel J. Sorin, George Konidaris, William Floyd-Jones, and
Sean Murray. 2019. Motion Planning for Aotonomous Vehicles
and Reconfigurable Motion Planning Processor. Patent No.
US20190163191A1, Filed June 9, 2017, Issued May 30, 2019.

[53] James E. Stine, Ivan D. Castellanos, Michael H. Wood, Jeff Hen-
son, Fred Love, William Rhett Davis, Paul D. Franzon, Michael
Bucher, Sunil Basavarajaiah, Julie Oh, and Ravi Jenkal. 2007.
FreePDK: An Open-Source Variation-Aware Design Kit. In IEEE
International Conference on Microelectronic Systems Education
(MSE). 173–174.

[54] Neil Tardella. 2019. Robots with high degrees of freedom face
barriers to adoption. https://www.cobottrends.com/robots-with-
high-degrees-of-freedom-face-barriers-to-adoption/.

[55] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2017.
Octree Generating Networks: Efficient Convolutional Architec-
tures for High-resolution 3D Outputs. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV). 2107–2115.
https://doi.org/10.1109/ICCV.2017.230

[56] Jonathan Tilley. 2017. Automation, robotics, and the factory of
the future. https://www.mckinsey.com/capabilities/operations/

https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1109/ICRA.2018.8460730
https://doi.org/10.1109/ROBOT.2010.5509470
https://www.kinovarobotics.com/sites/default/files/KINO-2018-Bro-Assistive-ZH_YUL-06-R-Web.pdf
https://www.kinovarobotics.com/sites/default/files/KINO-2018-Bro-Assistive-ZH_YUL-06-R-Web.pdf
https://doi.org/10.1109/2945.675649
http://lavalle.pl/planning/
http://lavalle.pl/planning/
https://doi.org/10.1145/97880.97915
https://doi.org/10.1145/2925426.2926261
http://www.lynxmotion.com/driver.aspx?Topic=specs04
http://www.lynxmotion.com/driver.aspx?Topic=specs04
https://doi.org/10.1109/MICRO.2016.7783748
https://doi.org/10.1109/MICRO.2016.7783748
https://doi.org/10.15607/rss.2016.xii.004
https://doi.org/10.15607/rss.2016.xii.004
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.23919/SoftCOM50211.2020.9238297
https://doi.org/10.1177/0278364911429335
https://doi.org/10.1177/0278364911429335
https://doi.org/10.1109/ROBOT.2005.1570711
https://doi.org/10.1109/ROBOT.2005.1570711
https://doi.org/10.1109/ISCAS.2016.7538962
https://doi.org/10.1109/TRO.2020.3006716
https://doi.org/10.1109/TRO.2020.3006716
https://robots.ieee.org/robots/baxter/
https://robots.ieee.org/robots/baxter/
https://doi.org/10.1145/3318164
https://doi.org/10.1109/ACCESS.2021.3109744
https://doi.org/10.1109/IROS.2018.8593522
https://doi.org/10.1109/IROS.2018.8593522
https://spectrum.ieee.org/enabling-faster-more-capable-robots-with-real-time-motion-planning
https://spectrum.ieee.org/enabling-faster-more-capable-robots-with-real-time-motion-planning
https://www.cobottrends.com/robots-with-high-degrees-of-freedom-face-barriers-to-adoption/
https://www.cobottrends.com/robots-with-high-degrees-of-freedom-face-barriers-to-adoption/
https://doi.org/10.1109/ICCV.2017.230
https://www.mckinsey.com/capabilities/operations/our-insights/automation-robotics-and-the-factory-of-the-future
https://www.mckinsey.com/capabilities/operations/our-insights/automation-robotics-and-the-factory-of-the-future

Energy-Efficient Realtime Motion Planning ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

our-insights/automation-robotics-and-the-factory-of-the-future.
[57] Jiankun Wang, Tianyi Zhang, Nachuan Ma, Zhaoting Li, Han

Ma, Fei Meng, and Max Q.-H. Meng. 2021. A survey of learning-
based robot motion planning. IET Cyber-Systems and Robotics
(2021). https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.
1049/csy2.12020

[58] Yuxin Yang, Xiaoming Chen, and Yinhe Han. 2020. Dadu-CD:
Fast and Efficient Processing-in-Memory Accelerator for Colli-
sion Detection. In 2020 57th ACM/IEEE Design Automation

Conference (DAC). 1–6.
[59] Amir Yazdanbakhsh, Berkin Akin, and Kiran K Seshadri. 2021.

An Evaluation of Edge TPU Accelerators for Convolutional Neural
Networks. https://arxiv.org/abs/2102.10423.

[60] Eiichi Yoshida, Kazuhito Yokoi, and Pierre Gergondet. 2010. On-
line replanning for reactive robot motion: Practical aspects. In
2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems. 5927–5933. https://doi.org/10.1109/IROS.2010.
5649645

https://www.mckinsey.com/capabilities/operations/our-insights/automation-robotics-and-the-factory-of-the-future
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/csy2.12020
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/csy2.12020
https://doi.org/10.1109/IROS.2010.5649645
https://doi.org/10.1109/IROS.2010.5649645

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Deval Shah, Ningfeng Yang, and Tor M. Aamodt

A ARTIFACT APPENDIX

This artifact provides the complete implementation for the
MPAccel simulator and the traces used for evaluation re-
ported in Section 7. Section A.1 provides basic information
about the artifact. We describe the artifact description and in-
stallation procedure in Section A.2. Section A.3 describes the
experiment workflow for evaluation using the provided trace
files. We also provide the trace generation script example for
the Jaco2 robot, which can be used to generate traces for
different robots and environmental scenarios (Section A.4).

A.1 Artifact Check-List
(Meta-Information)

• Program: We provide microarchitecture simulators for

CECDU, SAS, and MPAccel.
• Run-time environment: All scripts are tested on Linux

(Ubuntu 16.04) and macOS (12). It does not require root
access.

• Hardware: All evaluation experiments require only CPU
(no specific requirement). Trace generation example (traces

provided; trace generation not needed for main evaluation)
requires GPU for neural network inference.

• Metrics: Execution time and energy consumption.

• Output: Numerical results and graphs reported in Sec-
tion 7.

• Experiments: README provided with instructions. Pro-
vided bash scripts to run all experiments.

• How much disk space required (approximately)?:
5GB.

• How much time is needed to prepare workflow (ap-

proximately)?: Less than 1 hour.

• How much time is needed to complete experiments
(approximately)?: 10-12 hours for main evaluation using

a single machine.

• Publicly available?: Yes.
• Licenses (if publicly available)?: The simulator code is

available under Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

• Archived (provide DOI)?: 10.5281/zenodo.7824123

A.2 Description and Installation

A.2.1 How to access it: MPAccel simulator is available on
Zenodo: https://doi.org/10.5281/zenodo.7824123. This repos-
itory consists of the microarchitectural simulators and traces
used for evaluation.

A.2.2 Hardware dependencies: There are no specific hardware
requirements if only executing the MPAccel simulator with
provided traces. For MPNet trace generation using provided
example, a CPU-GPU system is preferable as it performs
neural network inferences.

A.2.3 Software dependencies: Our artifact has been tested
on Ubuntu 16.04 and macOS 12. It does not require root ac-
cess. The execution requires Python 3.7.0 additional Python
packages. Conda can be optionally installed to create a virtual
environment.

A.2.4 Installation: Create a virtual environment and activate
with python==3.7.0 (**optional to use virtual environment).

cd MPAccel_simulator

conda create -n mpaccel python==3.7.0

conda activate mpaccel

python -m pip install -r requirements.txt

A.3 Evaluation

A.3.1 Cascaded Early-entry Collision Detection Unit (CECDU):.
The experiments required for Table 1 and Figure 17 can be
executed using the following set of scripts. All scripts should
take less than 20 minutes.

cd MPAccel_simulator/collision_detection

Run all experiments for Table 1

bash table_1.sh

Run all experiments for Figure 17

bash fig17.sh

A.3.2 Spatially Aware Scheduler (SAS):. The experiments
required for Figure 15 and results reported in Section 7.1
can be run using the following commands for a subset of
benchmarks.

cd MPAccel_simulator/SAS

bash launch_overall.sh

bash combine.sh

python plot_figure15.py

SAS evaluation for all benchmarks (∼60 hour) can be
carried out by executing the above commands after making
the following changes in launch overall.sh and combine.sh.
Comment lines 5 and 49, and uncomment lines 6 and 50
in launch overall.sh. Comment lines 6, 12, 18, 24, and un-
comment lines 7, 13, 19, 25 in combine.sh. Rerun the above
commands to run the SAS simulator for all benchmarks.

A.3.3 MPAccel Evaluation for Motion Planning: These exper-
iments require approximately 2 hours. The following steps
will generate the motion planning runtime in Figure 19 and
Section 7.4.

Generate collision detection runtime for SAS + 16

CECDUs

Each CECDU consists of four multicycle OOCDs

cd MPAccel_simulator/SAS

bash launch_16_cdu.sh

Above command stores traces in ../traces/

mpnet_logfile/bench*/16cdu_result_16_16_4_mcsp.txt

cd ../mpaccel_overall

ls ../traces/mpnet_logfile/bench_*/16cdu* >

result_filenames

python mpaccel_sim.py

https://doi.org/10.5281/zenodo.7824123

Energy-Efficient Realtime Motion Planning ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

A.4 Trace Generation

1) OBB information for CECDU:

cd MPAccel_simulator/collision_detection

bash E1_run.sh

2) Scene information for CECDU:

cd MPAccel_simulator/collision_detection

bash E2_run.sh

3) Collision latency generation for SAS:

cd MPAccel_simulator/collision_detection

bash E3_run.sh

4) MPNet trace generation example: We provide the trace
generation example script for the MPNet motion planning
algorithm. This script runs the motion planning algorithm

and stores the traces of motions and motion segments in dif-
ferent phases of the algorithm, which is then used for motion
planning runtime analysis of MPAccel.

cd MPAccel_simulator/mpnet_tracegen_example

The following script downloads the trained models for

MPNet from

https://drive.google.com/file/d/1

fh6JMzgruaDNE8J4PhuX29L0-sP57xQn/view?usp=share_link

and

https://drive.google.com/file/d/1

GwDjnxlu9tkyxcX7eJg0Xt9N0_zr4gEU/view?usp=share_link

bash download.sh

This script generates the traces for MPNet in bench_0_

* folder

bash E4_run.sh

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Sampling-based Motion Planning
	2.2 Collision Detection

	3 Spatially Aware Scheduler
	4 Cascaded Early-exit Collision Detection Unit
	5 MPAccel
	5.1 Microarchitecture of SAS
	5.2 Microarchitecture of CECDU

	6 Methodology
	7 Evaluation
	7.1 Performance of the Scheduler
	7.2 Performance of the CECDU
	7.3 Area and power
	7.4 Motion planning runtime for MPNet
	7.5 Evaluation on GPU and CPU

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact appendix
	A.1 Artifact Check-List (Meta-Information)
	A.2 Description and Installation
	A.3 Evaluation
	A.4 Trace Generation

