
LumiBench: A Benchmark Suite for Hardware Ray Tracing

Lufei Liu1 Mohammadreza Saed1 Yuan Hsi Chou1 Davit Grigoryan1

Tyler Nowicki2 Tor M. Aamodt1

1University of British Columbia, Canada
2Huawei Technologies, Canada

Abstract

Ray tracing as a graphics rendering method is becoming
increasingly popular in real-time applications, supported by
dedicated accelerator cores in the latest generation GPUs.
However, the high computational intensity of the ray tracing
algorithm still limits the visual e�ects that can be produced
while maintaining a high frame rate. To improve ray tracing
hardware, it is important to understand the underlying
characteristics of ray tracing workloads and identify per-
formance bottlenecks. In this paper, we present LumiBench,
the �rst benchmark suite for evaluating ray tracing hardware
performance in modern GPUs designed to execute on the
Vulkan-Sim GPU simulator. LumiBench features a diverse
set of scenes and shaders that are representative of real
applications but simple enough to be simulated in a reasonable
amount of time. We �rst evaluate LumiBench against Rodinia
to highlight the di�erence between ray tracing versus general
purpose workloads and demonstrate the need for a dedi-
cated benchmark suite. Then, we characterize the workloads
included in LumiBench, which are organized into several
clusters targeting di�erent aspects of the ray tracing pipeline,
and provide insights for future architectural research.

1. Introduction

Ray tracing is a rendering technique used in computer
graphics over decades for its ability to produce photore-
alistic images. However, ray tracing is computationally
expensive, and thus primarily used in o�ine rendering
applications, such as animated movies and computer-aided
design (CAD). More recently, advances in hardware and
software have made it possible to use ray tracing in
real-time applications, including video games. Hardware
support for ray tracing is growing and many of the
latest generation GPUs now feature specialized accelerators.
However, performance is still far from ideal, allowing only
a few rays per pixel to be traced. Experts in ray tracing
agree that further improvements in hardware are crucial
to widespread adoption and improved visual quality in
real-time applications [56]. The photorealistic nature of ray
traced images also make them ideal for applications such
as virtual and augmented reality (VR/AR), but current hard-
ware struggles to maintain su�ciently high frame rates for
an immersive experience. Studying the performance of ray
tracing workloads is important to understand bottlenecks
and support the architectural design of future hardware.

Although the newly-released Vulkan-Sim GPU architec-
ture simulator [50] now provides a platform for studying the
performance and bottlenecks of ray tracing hardware, there
is still a lack of a standardized benchmark suite for academic
research. Many existing ray tracing benchmarks are too
complex to be simulated in a reasonable amount of time in
the range of hours to days and are often not publicly avail-
able. Other common benchmarks such as MediaBench [42]
and Rodinia [33] do not include ray tracing workloads. As a
result, computer graphics researchers typically hand-select
scenes to study from available open-source projects without
a full understanding of the underlying characteristics. For
example, recent research on hardware ray tracing such
as the ray intersection predictor [44] and Mach-RT [54]
evaluate their ideas using six and seven scenes with no
description of the scene characteristics or selection methods
and only one scene is shared between the two works.

In this paper, we present LumiBench, a benchmark
suite for hardware ray tracing. LumiBench is designed to
be representative of real-world ray tracing workloads and
to be easily simulated in a reasonable amount of time. We
expect LumiBench to be useful for identifying performance
bottlenecks and for evaluating architectural design choices
targeting the performance of the ray tracing pipeline. Our
contributions are as follows:

• We propose a set of benchmark workloads to study
the performance of hardware ray tracing accelera-
tors on GPUs.

• We identify useful metrics for evaluating the ray
tracing workloads and use them to analyze the
similarity between benchmark scenes.

• We characterize the workloads using an updated
version of Vulkan-Sim and highlight insights for
architectural research.

2. Background and Motivation

We design LumiBench speci�cally to support the mod-
ern ray tracing pipeline. In this section, we provide basic
background information on ray tracing and Vulkan-Sim,
and discuss the motivation for our benchmark suite.

2.1. Ray Tracing

The ray tracing algorithm models the propagation of
light in a 3D scene by tracing rays from the camera through



each pixel of the image plane and following the path of
the rays as they interact with objects in the scene. The
�nal color of each pixel is determined by objects that
the ray intersects in its path. In modern ray tracing, the
base geometric primitives of the scene are organized into
an acceleration structure, most commonly the bounding
volume hierarchy (BVH), to reduce the search space for
the intersection of a ray with the scene. The BVH is a
spatial tree structure where each node is an axis-aligned
bounding box (AABB) that tightly encloses the geometric
primitives in its subtree. Modern ray tracing APIs divide the
BVH structure into two levels: the bottom-level acceleration
structure (BLAS) built using the primitives and the top-level
acceleration structure (TLAS) which contains instances of
the BLAS. This con�guration avoids duplicating geometry
when the same object appears multiple times in a scene
and instead uses a ray transformation to map the ray
intersection test to the appropriate BLAS instance.

To traverse the BVH tree, a ray is tested for intersection
with each AABB in the tree, starting from the root node.
When the ray reaches a TLAS leaf, a matrix transformation
is applied to the ray to bring it to the BLAS coordinate
system. Then, once the ray reaches a BLAS leaf node, it is
tested against the enclosed geometric primitives to deter-
mine the closest intersection. The traversal and intersection
procedure commonly follows a while-while loop [20] and
we refer readers to [51] for more details on ray tracing.

Rendering using ray tracing also involves other steps,
which are organized into shader stages in the modern
ray tracing pipeline, di�erent from the raster pipeline,
illustrated in Figure 1. Each of these shaders executes as
kernels on the GPU. The programmable ray generation
shader is responsible for de�ning ray properties includ-
ing origin and direction, then launching the traceRay
command. The green stages in Figure 1 implement the
traversal and intersection algorithm, abstracted away in
hardware. Although the traversal occurs entirely in �xed-
function hardware, the optional intersection and anyhit
programmable shaders allow for custom intersection tests,
discussed more in Section 3.1.4. Once traversal is complete,
either the closest hit or miss shader executes to determine
the �nal color of the pixel. Finally, the traceRay command
terminates and returns to the ray generation shader.

2.2. Graphics Processing Units (GPUs)

Although GPUs were initially designed for graphics
rendering, their high throughput and parallelism provide
an advantage in many other applications. As GPUs gained
popularity in general purpose computing, benchmarks such
as Rodinia [33] were developed to evaluate performance
and aid in the architectural design of GPUs. Insights from
Rodinia show that many optimization techniques are not
intuitive when working with the unique architecture of
GPUs, and a representative benchmark suite is crucial
for evaluating di�erent optimizations. This problem is
exacerbated when the GPU architecture is augmented with a
specialized ray tracing unit (RT unit), which is still relatively
new and not widely explored. Moreover, the majority of ray

Ray Generation
Shader

Miss Shader

Anyhit Shader
(optional)

Closest Hit Shader

Intersection Shader
(optional)

Acceleration
Structure
Traversal

Ray Hit?

Programmable
Shaders

Fixed Function
Hardware

Yes No

traversal complete

traceRay invoked

traceRay complete

Figure 1: The ray tracing pipeline.

tracing programs execute speci�cally inside this dedicated
RT unit, which may bene�t from di�erent optimizations
than the general purpose GPU cores.

Since the introduction of the RT Core [31] from NVIDIA
in 2018, interest in hardware support for ray tracing has
been growing. Specialized ray tracing hardware is now
available in most of the latest generation GPUs, including
the Intel ARC GPU with Ray Tracing Units (RTU) [39],
the Ray Accelerator (RA) from AMD [17], and Imagination
Technology’s Ray Acceleration Cluster (RAC) [26].

However, these ray tracing accelerators are relatively
new and many architectural optimizations have not been
fully explored. For example, rays are grouped into warps or
wavefronts for execution on the GPU, but rays easily diverge
and often invoke di�erent shaders, leading to ine�ciencies.
New ideas like Shader Execution Reordering (SER) [48],
the Thread Sorting Unit (TSU) [39], and the Coherency
Engine [26] have been introduced into the updated ray
tracing accelerators, which aims to group rays accessing
the same shaders together to improve performance. These
solutions are just the beginning of architectural research
for ray tracing hardware. Other ine�ciencies, such as
divergence during ray traversal, remain unsolved.

2.3. Vulkan-Sim

Vulkan [16] is an open-source graphics API similar to
OpenGL that provides programmers with lower level control
over hardware resources. The Vulkan API standardizes ray
tracing across di�erent hardware vendors and provides a
common interface, ideal for our benchmarking purposes.
There are many existing academic tools designed for Vulkan,
including Vulkan-Vision [49] and Vulkan-Sim [50], which
allow for detailed analysis of Vulkan ray tracing workloads.

Vulkan-Vision supports workload characterization by
intercepting Vulkan API calls through an intermediate
layer and analyzing the collected statistics, but requires
the workload to execute on real hardware. Although
running applications on real hardware may provide the
most accurate performance results, architecture-dependent
characterization can hide underlying, inherent behavior of
the workload [38]. Vulkan-Sim is a cycle-level simulator
for Vulkan ray tracing workloads and best �ts our goal of



studying the performance of ray tracing hardware and eval-
uating new hardware changes. Previous graphics simulators
such as TEAPOT [23] and Emerald [35] were designed for
rasterization-based rendering and GPU simulators such as
Accel-Sim [40] do not model ray tracing hardware. Vulkan-
Sim includes �ve scenes that serve to validate the simulator
rather than to represent real-world workloads. Of those
�ve scenes, TRI and REF are toy scenes with only one and
50 triangles respectively, and the authors do not assess the
diversity of the remaining three scenes.

3. LumiBench Benchmark Suite

LumiBench introduces a set of benchmark scenes and
shaders that can be combined to create di�erent types
of workloads. We choose our benchmark scenes to stress
di�erent aspects of the ray tracing hardware. In computer
graphics, the worst-case scenarios are often the most
important to consider because of the strict frame rate
requirements for 60 frames per second (FPS) of real-time
applications. Each frame must be rendered within a certain
amount of time to maintain the desired frame rate, and
thus the slowest ray or pixel determines the frame rate.
This requirement di�ers from most compute workload
evaluations, which are often designed to be representative
of the average case.

The performance of ray tracing applications is highly
dependent on the shader that is executed and the scene
that is rendered. In this section, we describe our shader
and scene selections for LumiBench.

3.1. Stress Cases

We consider three major stress case scenarios in our
benchmark scenes, similar to the approach used in the
Benchmark for Animated Ray Tracing (BART) [43]. Most
stress scenarios in BART are speci�c to animated scenes and
analyzing software algorithms so we do not include them
in our benchmark. However, large working sets, overlap of
bounding volumes, and di�erent quantities of light sources
apply to both animated and static scenes. We adapt these
stresses for our benchmarking purposes and add special
cases that make use of the optional shaders in the ray
tracing pipeline. Although these scenarios stress the system,
they are all commonly found in real-world applications.

3.1.1. Large working set. The most obvious stress case for
ray tracing is a large working set of geometric primitives
that do not �t in the cache. The BVH structure size scales
logarithmically with the number of scene primitives due
to the tree structure and correlates directly to the number
of memory accesses during ray traversal. Ray tracing is
a memory-bound application, with random and divergent
memory accesses during traversal, often thrashing the cache
as shown in Section 5.3.

A subclass of this stress case is scenes with many
BLAS instances. Although the overall memory footprint is
reduced, ray traversal becomes ine�cient because primitives
in di�erent BLAS instances cannot be mixed and optimized

together during BVH construction. Compared to a �at,
single-level BVH structure, ray traversal performance can
typically be 2× slower [27] from visiting unnecessary nodes.

3.1.2. Long and thin primitives. When scene primitives
such as triangles and curves are long and thin, such as in
hair and ropes, the BVH structure is ine�cient at pruning
the search space for intersections. The BVH structure is
optimized when the bounding boxes enclose the primitives
as tightly as possible, but these boxes are axis-aligned and
leave a large empty space when long and thin primitives
do not align with the box. As a result, bounding volumes
overlap more often and rays are more likely to traverse
down unnecessary subtrees.

3.1.3. Indoor and enclosed. Rendering an enclosed scene
means that every ray must intersect with at least one object
in the scene, and traverse the BVH structure from the root
to a leaf node. Open scenes, however, include rays that can
miss the scene entirely and skip most of the BVH traversal.
Also, lighting in enclosed scenes is more complex than
open scenes because, physically, the light likely bounces
between multiple surfaces before reaching the camera. In
the context of ray tracing, this indirect lighting is created
through global illumination, which simulates each bounce
of light by tracing additional rays from the intersection
point of the original ray.

3.1.4. Intersection and anyhit shaders. Some scenes
are composed of procedural geometries that are de�ned
through equations rather than the typical triangle meshes.
Procedural geometry cannot use the hardware ray-triangle
intersection units and requires custom intersection tests
instead, which are de�ned in the intersection shader stage
of the ray tracing pipeline.

Also, some applications require anyhit shaders, most
commonly used for alpha testing. For example, alpha
masking is a technique where complex shapes, like leaves,
are de�ned by a texture cutout with an alpha channel rather
than a detailed triangle mesh. When a ray intersects a
texture-masked triangle during traversal, the anyhit shader
is invoked to fetch the texture and check the alpha channel
to determine if the intersection is valid. The NVIDIA Ada
architecture GPUs introduce additional hardware support
for alpha testing [48], but applications may still require
anyhit shaders for speci�c cases.

Both of these shaders execute on GPU compute cores
instead of in the RT unit and introduce additional overheads
of passing data between GPU cores and the ray tracing ac-
celerator. Anyhit shaders may also require texture accesses,
which can further stress the memory system. The speci�c
implementations of these optional shader invocations are
not disclosed by any hardware vendors. However, in Vulkan-
Sim, the shader invocations are queued and then executed
after ray traversal is complete, instead of interleaving them
with traversal as they are generated as the ray tracing
pipeline diagram in Figure 1 might suggest. Vulkan-Sim
also attempts to coalesce calls to the same shader [47].



TABLE 1: LumiBench scenes.

WKND SHIP BUNNY SPNZA CHSNT BATH REF CRNVL

0 triangles (procedural) 6.3K triangles 144.1K triangles 262.3K triangles 313.2K triangles 423.6K triangles 448.9K triangles 449.6K triangles

FOX PARTY SPRNG LANDS FRST PARK CAR ROBOT

1.6M triangles 1.7M triangles 1.9M triangles 3.3M triangles 4.2M triangles 6.0M triangles 12.7M triangles 20.6M triangles

3.2. Scene Selection

Many scenes used to evaluate ray tracing research are
not publicly available because of the artistic IPs involved,
making it di�cult to reproduce results and compare dif-
ferent techniques. To address this issue, several publicly
available scene repositories have been created, including the
Utah 3D Animation Repository [15], the NVIDIA ORCA [11]
repository, the Blender demo �les [2], and the Disney Moana
Island Scene [3]. Scenes published by Casual E�ects [46]
and Benedikt Bitterli [30] are also popular in ray tracing
research. We take advantage of these public scenes to
create our benchmark suite, which is designed to be a
representative sample rather than a compilation of all
available scenes. Table 1 shows the scenes we evaluate and
Table 2 lists the subset we have selected for LumiBench.

LumiBench includes White Lands (LANDS), Red Autumn
Forest (FRST ), Splash Fox (FOX ), PartyTug (PARTY ), Spring
(SPRNG), Procedural (ROBOT ) and Racing Car (CAR) from
the Blender demo �les [2] for their high primitive counts,
which are similar to those found in modern video games. We
add SHIP [29] for long and thin geometry, then BATH [30]
and REF [12] for indoor scenes with re�ections, and we
include a few scenes popular in computer graphics research,
which are BUNNY [46], Sponza (SPNZA) [46] and Carnival
(CRNVL) [41]. We also add Ray Tracing in One Weekend
(WKND) [12] and Horse Chestnut Tree (CHSNT ) [46]
because they make use of the intersection and anyhit shaders
respectively. Lastly, we created a synthetic Park scene as
a mix of publicly available grass [5], trees [13], human
characters [7], mountains [10], and a car [8], which has a
high primitive count and features long and thin grass.

We also evaluate several game maps from the Counter-
Strike: Global O�ensive (CS:GO) [53] game, which are not
included in our �nal benchmark suite due to proprietary
restrictions but serve as a point of comparison between
our benchmark scenes and real-world game scenes. We
encourage researchers interested in including these scenes
in their evaluation to reach out to the game developers and
request permission for research purposes as we have done.

Figure 2: Illustration of di�erent types of rays (redrawn

from [32]).

3.3. Shader Selection

Di�erent types of ray tracing shaders also stress the
hardware di�erently. The most common types of ray-traced
e�ects are global illumination, re�ections, shadows, and
ambient occlusion, described later in this section. Currently,
full ray tracing is too computationally expensive for real-
time applications even when using specialized hardware
accelerators. Thus, most games use a hybrid approach that
combines rasterization with layers of ray-traced e�ects
to achieve the desired image quality. Each e�ect can
be implemented separately as shaders in the ray tracing
pipeline and enabled or disabled depending on the desired
visual quality and performance. Therefore, in LumiBench,
we implement each e�ect individually so that they can be
studied independently or as a combined workload.

In real applications, shaders are far more complex than
the shaders we use in LumiBench. However, the shaders
are still generating rays that fundamentally follow the same
pattern as the di�erent ray types we include in Figure 2.
Moreover, shader execution happens within the regular
GPU cores rather than the ray tracing accelerator, which
is di�erent from the focus of LumiBench. By including a
selection of di�erent shaders, we can still gain su�cient
insights into the ray tracing pipeline and particularly the
transitional costs between the GPU cores and the RT unit.

3.3.1. Path Tracing. Path tracing (PT , Figure 2.a) is
a fully ray-traced rendering technique that begins with
primary rays from the camera and generates new secondary
rays in random directions at each intersection point to
simulate light bounces. This technique is often used to



create the visual e�ect of global illumination. The rays are
traced recursively until they reach a light source, meet the
maximum depth, or miss the scene. As a result, these rays
are likely to diverge as they bounce in di�erent directions
and terminate at di�erent depths, stressing SIMT e�ciency
in the hardware. The �nal color of each pixel is determined
by the color of the closest intersection point, so each ray
cannot terminate until all intersections have been identi�ed.

3.3.2. Re�ections. When a primary ray intersects with a
re�ective surface, re�ections can be generated by tracing
a secondary ray in a new direction following the Law of
Re�ection. Re�ection rays (Figure 2.b) are usually more
coherent because they follow a similar re�ection direction.
We do not implement a separate re�ections shader in
LumiBench since not all scenes are re�ective, but re�ection
rays are generated for any re�ective surface in the path
tracing shader, such as in the BATH scene.

3.3.3. Shadows. Shadows (SH , Figure 2.c) are created by
shooting a ray from the primary intersection point towards
a light source and testing for occlusion. Shadow rays are not
always coherent because they may shoot toward di�erent
light sources and originate from very di�erent intersection
points but they are not random like path tracing rays.
Occlusion tests are also more e�cient than �nding the
closest intersection because identifying any intersection
is su�cient to determine that a point is in shadow and
traversal can terminate.

3.3.4. Ambient Occlusion. Ambient occlusion (AO, Fig-
ure 2.d) is an e�ect that models the shadows formed in
crevices from ambient lighting. AO rays are short rays that
are shot in random directions from the primary intersection
point and the number of occluded rays determines the
amount of shadowing. These rays also bene�t from the
e�ciency of occlusion tests but are more divergent than
shadow rays because they are shot in random directions.

3.4. Diversity Analysis

Our stress scenes can be combined with any of the three
shaders, with the exception of CHSNT which only supports
PT , producing 46 unique workloads. We conduct a diver-
sity analysis following the principles of Microarchitecture-
Independent Workload Characterization (MICA) [38] to
assess the similarity between our workloads and prune to
a representative subset.

We begin by identifying a comprehensive set of 35 GPU
metrics covering the instruction mix, memory hierarchy
behavior, SIMT e�ciency, and performance collected by
Vulkan-Sim. We then add 29 additional metrics speci�c to
the hardware RT unit, which includes intersection tests
executed and memory access behavior during ray traversal.
Lastly, we include 23 scene and shader characteristics, such
as the number of primitives, type of rays generated, and
executed shaders in the ray tracing pipeline. Using a large
set of metrics allows us to better capture the behavior of
the workloads from di�erent perspectives and identify the
most important metrics for workload characterization.

TABLE 2: Selected subset of LumiBench

Scene Shader Stress

SPNZA_AO SPNZA Ambient Occlusion Indoor and enclosed, textures
BUNNY_AO BUNNY Ambient Occlusion Indoor and enclosed
WKND_PT WKND Path Tracing Procedural intersections
SHIP_SH SHIP Shadows Long and thin primitives
ROBOT_SH ROBOT Shadows Large working set
BATH_PT BATH Path Tracing Re�ective surfaces, textures
PARK_PT PARK Path Tracing Long and thin primitives
CHSNT_PT CHSNT Path Tracing Anyhit texture alpha masking

Although MICA proposes to use only microarchitecture-
independent characteristics, we included all metrics in our
analysis to capture both the underlying inherent program
behavior as well as the e�ects of the microarchitecture. We
apply Principal Component Analysis (PCA) to our charac-
terization data using the same criteria of data reduction
as MICA and plot a dendrogram to visualize the similarity
between the workloads in Figure 3. Benchmarks are grouped
by horizontal lines and the location of the line on the y-axis
represents the similarity between di�erent clusters.

The PCA results help us select a representative subset of
the workloads by choosing one workload from each cluster
in the dendrogram. In our selection, we prioritize including
a diversity of shaders and stress cases, also avoiding any
duplicated scenes. Table 2 lists the workloads we have
selected and the stress cases they represent.

We �nd that the PCA analysis is quite successful at
clustering ray tracing workloads, clearly separating cases
like the only workload with anyhit shaders (CHSNT_PT )
from all others. However, each cluster often includes multi-
ple stress scenarios, implying that PCA is able to capture a
much more comprehensive set of factors that distinguish
the workloads. Noticeably, scenes from the CS:GO game
are clustered together, indicating they do di�er from our
test scenes. However, a few workloads in LumiBench fall
into the same clusters as CS:GO, which we include in our
representative subset in order to capture some real-world
game behaviors.

We additionally validate our selection by simulating
the workloads using a di�erent hardware con�guration
that adjusts the number of cores, cache size, intersection
latencies, and the number of warps per RT unit. We �nd
the speedups of our subset to be consistent with the full
set, matching both minimum and maximum speedups and
showing an average with only a 1% di�erence. Although we
have selected eight representative workloads for LumiBench,
this subset can be considered a default selection and
we encourage researchers to choose di�erent subsets of
workloads more speci�c to their research interests.

Because PCA mixes the metrics through linear combina-
tion to reduce dimensionality, it cannot produce meaningful
principal components. Thus, we also use the genetic algo-
rithm as described in MICA to identify the eight most
representative metrics (Table 3) and plot Kiviat diagrams
in Figure 4 to further compare the LumiBench workloads.
We also include DUST2 from CS:GO in this comparison,
showing the gaps between LumiBench and real-world game



--
km

ea
ns

--
cf

d
--

st
re

am
cl

us
te

r
--

bt
re

e
--

dw
t

--
bf

s
--

he
ar

tw
al

l
--

sr
ad

--
ba

ck
pr

op
--

ho
ts

po
t

--
ga

us
si

an
--

lu
d

--
ne

ed
le

m
an

-w
C

A
R

_A
O

SP
N

ZA
_P

T
C

A
R

_P
T

C
A

R
_S

H
SP

N
ZA

_S
H

**
SP

N
ZA

_A
O

LA
N

D
S_

SH
SP

R
N

G
_S

H
FR

ST
_S

H
B

AT
H

_S
H

W
K

N
D

_S
H

R
EF

_S
H

B
U

N
N

Y
_S

H
**

B
U

N
N

Y
_A

O
R

EF
_A

O
W

K
N

D
_A

O
B

AT
H

_A
O

C
R

N
V

L_
A

O
LA

N
D

S_
A

O
FR

ST
_A

O
SP

R
N

G
_A

O
**

W
K

N
D

_P
T

FR
ST

_P
T

LA
N

D
S_

PT
SP

R
N

G
_P

T
SH

IP
_A

O
B

U
N

N
Y

_P
T

R
EF

_P
T

^M
IR

A
G

E_
SH

^D
U

ST
2_

SH
^C

A
C

H
E_

SH
^I

N
FE

R
N

O
_S

H
^V

ER
TI

G
O

_S
H

C
R

N
V

L_
SH

FO
X

_S
H

^N
U

K
E_

SH
PA

RT
Y

_S
H

**
SH

IP
_S

H
SH

IP
_P

T
FO

X
_A

O
PA

RT
Y

_A
O

^I
N

FE
R

N
O

_A
O

**
R

O
B

O
T_

SH
^M

IR
A

G
E_

A
O

^C
A

C
H

E_
A

O
^V

ER
TI

G
O

_A
O

^D
U

ST
2_

A
O

^N
U

K
E_

A
O

FO
X

_P
T

PA
RT

Y
_P

T
C

R
N

V
L_

PT
^V

ER
TI

G
O

_P
T

^D
U

ST
2_

PT
^N

U
K

E_
PT

^C
A

C
H

E_
PT

^I
N

FE
R

N
O

_P
T

^M
IR

A
G

E_
PT

**
B

AT
H

_P
T

R
O

B
O

T_
PT

**
PA

R
K

_P
T

PA
R

K
_S

H
R

O
B

O
T_

A
O

PA
R

K
_A

O
**

C
H

SN
T_

PT

** selected subset
 ^  CS:GO game map
 -- Rodinia

more similar

more different

Linkage
Distance

Figure 3: Dendrogram of workload similarity in LumiBench with colors indicating clusters identi�ed by PCA.

TABLE 3: Selected similarity characteristics

Characteristic Architecture RT Category

1 Avg DRAM row bu�er locality Dependent Memory
2 Avg DRAM utilization Dependent Memory
3 BVH tree depth Independent X Scene
4 RT memory writes Dependent X Shader
5 L1D RT read hits Dependent X Memory
6 % TLAS leaf node accesses Independent X Scene
7 % BVH node accesses Independent X Scene
8 Avg RT active cycles Dependent X Shader

SPNZA_AO BUNNY_AO WKND_PT SHIP_SH

ROBOT_SH BATH_PT PARK_PT CHSNT_PT

DUST2_PT DUST2_SH DUST2_AO

3

2
1

8

7

6
5

4

3

Figure 4: Kiviat diagrams for each workload illustrating the

eight most representative characteristics.

scenes. Interestingly, there is a lot of diversity in the
selected metrics, which implies that the workloads are
not only di�erent in terms of the stress cases but also in
terms of the underlying program behavior. The selected
metrics include both microarchitecture-independent and
microarchitecture-dependent characteristics, which further
supports our decision to include all metrics in our analysis.

3.4.1. Comparison to Rodinia. The Rodinia [33] bench-
mark suite was developed to address the lack of represen-
tative workloads for heterogeneous systems with GPUs

or other accelerators and aims to cover a diverse set of
applications. The suite spans many of the dwarves in the
Berkeley Dwarf Taxonomy [24] but still fails to cover
any applications with similar behavior to ray tracing. We
evaluated 13 Rodinia workloads that can execute on Vulkan-
Sim to collect the same set of metrics used for LumiBench,
excluding any metrics speci�c to ray tracing. The result
of PCA on the combined set of data clusters all Rodinia
workloads together and clearly separates them from the
LumiBench even though ray tracing metrics are excluded.

Che et al. [34] identi�es BFS as the closest matching
workload to ray tracing, but our PCA shows it being very
di�erent from our workloads. Furthermore, the raytrace
workload in PARSEC [28] is fundamentally di�erent from
the modern ray tracing pipeline and is not representative of
real-time applications. Most importantly, LumiBench aims
to stress GPUs with a specialized ray tracing accelerator,
which is not considered in any previous benchmark suites.

4. Evaluation Methodology

We characterize LumiBench using an updated version of
Vulkan-Sim and simulate the workloads using a modi�ed
version of the RayTracingInVulkan [12] application. We
use the RayTracingInVulkan application because it is open-
source and provides a simple interface for implementing
di�erent shaders and loading in OBJ scene �les. The
hardware con�guration we use in Vulkan-Sim is outlined
in Table 4, taken from the original Vulkan-Sim work to
represent a mobile GPU con�guration. We also evaluate
LumiBench using the desktop GPU con�guration from
Vulkan-Sim for comparison but using a mobile con�guration
is ideal for LumiBench to match the scaled-down nature
of the workloads. We expect ray tracing in mobile GPUs
to become increasingly popular to support VR/AR devices
and as ray tracing technology matures.

LumiBench workloads can also be executed on real
GPUs to evaluate performance. However, our workloads
are simpli�ed to run on Vulkan-Sim and are not designed



Vulkan RT
Application

NIR to PTX
Translator

Mesa3D
Lavapipe
Vulkan RT

Driver

GPU Simulation

RT Core
Timing Model

Vulkan RT
Functional Model

Figure 5: Updated Vulkan-Sim software architecture.

TABLE 4: Vulkan-Sim configuration

# Streaming Multiprocessors (SM) 8
Max Warps / SM 32
Warp Size 32
Warp Scheduler GTO
# Registers / SM 32768
Instruction Cache 128KB, 16-way assoc., 20 cycles
L1 Data Cache + Shared Memory 64KB, Fully assoc. LRU, 20 cycles
L2 Uni�ed Cache 3MB, 16-way assoc. LRU, 160 cycles
Compute Core Clock 1365 MHz
Interconnect Clock 1365 MHz
L2 Clock 1365 MHz
Memory Clock 3500 MHz
# RT Units / SM 1
Max Warps / RT Unit 4

to evaluate real hardware because the workloads do not
su�ciently saturate desktop GPUs. Existing commercial
ray tracing benchmarks like 3DMark [1] are more suitable
for this purpose, but they are not open source and cannot
provide the detailed architecture insights collected using
Vulkan-Sim that are necessary for research.

4.1. Vulkan-Sim Updates

Figure 5 shows the software architecture of the up-
dated Vulkan-Sim. Vulkan-Sim relies on the Mesa3D [9]
graphics driver to implement the Vulkan API, managing
the necessary resources and compiling the shaders to the
NIR intermediate representation. These shaders are then
translated to PTX instructions and the Mesa3D driver
launches shader execution on the modi�ed GPGPU-Sim [40]
simulator. However, Vulkan-Sim is constrained by the
requirement of an Intel CPU with integrated graphics to
execute any workloads beyond the few provided traces. In
order to simulate the LumiBench workloads, we integrate
with Lavapipe [6], which provides a software Vulkan
implementation that can execute without a physical GPU
and removes the Intel dependency from Vulkan-Sim.

Lavapipe is an open-source project maintained as part
of Gallium [4] in Mesa3D and works as a frontend to
connect Vulkan applications to our GPU simulator. However,
Lavapipe is designed as a software-only rasterizer and does
not support the ray tracing pipeline. We implement all
the necessary Vulkan API support for RayTracingInVulkan,
enabling Vulkan-Sim×Lavapipe to match Vulkan-Sim×Intel.
We also add anyhit shader support that was previously
missing. The change in Vulkan-Sim to support Lavapipe is
illustrated by the orange block in Figure 5.

4.2. Types of Workload

In our evaluation, we focus on real-time applications,
choosing to simulate a single frame of each workload.
However, complex workloads can also be represented
by LumiBench by adjusting parameters such as image
resolution, number of samples per pixel, or maximum ray
depth. Current real-time applications usually cannot support
more than 1-2 samples per pixel, but improving performance
through new optimizations may allow for higher sample
counts in the future and researchers are encouraged to
increase this value to evaluate new ideas.

Also, as new algorithms are introduced, shaders may
be modi�ed. LumiBench can be used to evaluate the
performance of these new shaders by simply replacing
the original shader with the new one and running the same
scenes. Fundamentally, the shaders in LumiBench already
cover a wide range of ray types and new techniques are
likely to be similar or a combination of existing ray types.
For example, the behavior of the Dynamic Di�use Global
Illumination (DDGI) [45] technique can be modeled by SH
as the underlying ray types are well-matched.

4.3. Representative Sampling

Simulating the scenes and shader combinations in
LumiBench at a high screen resolution is ideal but too
computationally expensive and time consuming. Although
modern games are designed to run at a resolution of 1080p
or higher, we choose to simulate the workloads at a lower
resolution of 128 × 128 pixels with two samples per pixel.
Despite the unrealistic nature of the reduced resolution, the
impact on the ray tracing hardware is still representative
of real workloads because graphics rendering is usually
completed in sequential tiles of parallel rays [18].

We use AerialVision [22] to visualize the dynamic
architectural behavior in the simulated GPU over time
for PARK_PT , BUNNY_AO, and SHIP_SH , and include an
overview for a few metrics in Figure 6. The top row of
Figure 6 shows the number of active warps per RT unit
reaches the max, indicating our resolution is still high
enough to saturate the ray tracing hardware and can be
treated as the equivalent of sampling a few tiles of a higher
resolution image.

The issue of sampling for architectural simulation to
maintain a reasonable simulation time is common across
all domains. The Principal Kernel Projection approach shows
that a smaller sample can still be representative when
the rolling average and standard deviation of the metric
of interest is stable [25]. Figure 6 also demonstrates that
performance metrics like the number of instructions per
cycle (IPC) and L1 data cache (L1D) miss rates stabilize for
our benchmarks despite initial �uctuations, and behavior of
larger resolutions can be projected from the smaller sample.

Figure 6 also includes SHIP_SH at 1080p resolution,
which con�rms that key performance metrics follow the
same trends as the lower resolution. However, the L1D miss
rate is higher at 1080p because additional rays in the larger
resolution bounce in more directions and access more parts



0.0

2.5

# 
W

ar
ps

PARK_PT BUNNY_AO SHIP_SH SHIP_SH (1080p)

0

500

IP
C

0 10 20
0

1

L1
D

M
is

s R
at

e

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0 20 40 60 80 100
Million Cycles

Figure 6: Overview of the number of warps per RT unit, IPC, and L1D miss rate over time for select workloads.

of the scene, which increases the working set size and
strains the cache. Although some workload behaviors do
di�er slightly between resolutions, we believe LumiBench
can still adequately evaluate ray tracing hardware designs
because of the diverse workloads included. The speci�c
simulation details are generally less signi�cant compared
to the overall trends of the program, which is highlighted
by a study that compares the accuracy of simulating with
di�erent intermediate representations and concluded with
nearly the same correlation to real hardware [36].

5. Characterization Results

We use Vulkan-Sim to characterize LumiBench work-
loads from several perspectives, including scene structure,
shader composition, and memory system behavior, all of
which appear in our top eight similarity metrics. Each
of these aspects is important to consider when applying
optimizations to the ray tracing pipeline and designing
future hardware.

5.1. Workload Structure

5.1.1. Scene Geometry. Scene structure is important to
understand the underlying algorithmic behavior of the
workloads. Figure 7 (top) shows the breakdown of geometry
in each scene and the resulting BVH structure. The scenes
are sorted by the number of triangles they include, which
may seem to represent the complexity of the scene, but
the ability in ray tracing to create instances of the same
geometry makes evaluation results more complex. For
example, although PARTY has relatively few triangles
compared to other workloads, it has a large number of
instances, resulting in a more complex scene.

Moreover, Figure 7 (bottom) shows the BVH structure
depth and path tracing shader execution time for each scene.
Even though FRST uses more triangles, the overall BVH
structure is not much deeper than SPRNG, implying the
average length of ray traversals may not be much longer.
In contrast, the minimum length of a ray traversal to hit
geometry in CRNVL is nearly as long as CAR despite having
signi�cantly less geometry. The overall execution time is
not directly correlated to any of these factors individually.

0

20

M
ill

io
n

Tr
ia

ng
le

s

0

25

TL
A

S 
Si

ze
(K

B
)

W
K

N
D

SH
IP

B
U

N
N

Y
SP

N
ZA

C
H

SN
T

B
AT

H
R

EF
C

R
N

V
L

FO
X

PA
RT

Y
SP

R
N

G
LA

N
D

S
FR

ST
PA

R
K

C
A

R
R

O
B

O
T

0

10

B
V

H
 D

ep
th

W
K

N
D

SH
IP

B
U

N
N

Y
SP

N
ZA

C
H

SN
T

B
AT

H
R

EF
C

R
N

V
L

FO
X

PA
RT

Y
SP

R
N

G
LA

N
D

S
FR

ST
PA

R
K

C
A

R
R

O
B

O
T

0

25

M
ill

io
n

C
yc

le
s

Figure 7: Breakdown of BLAS and TLAS structures, BVH

depth, and path tracing execution time for each scene.

0%
25%
50%
75%

100%
By Inst. Count

SPNZA_AO

BUNNY_AO

WKND_PT

SHIP_SH

ROBOT_SH

BATH_PT

PARK_PT

CHSNT_PT
0%

25%
50%
75%

100%
By Inst. Latency

D
is

tri
bu

tio
n

Other
RT
Mem
Control
SFU
ALU

Figure 8: Instruction type distribution by dynamic instruc-

tion count versus simulated latency for each scene.

5.1.2. Instruction Mix. Figure 8 shows the distribution
of instruction types in LumiBench shaders by dynamic
instruction count (top) and simulated latency (bottom) for
each scene. Our shaders are primarily dominated by ALU
instructions with only a few traceRay instructions per
shader, which is re�ected in the instruction count distribu-
tion. However, traceRay is a very expensive instruction
covering the entire ray traversal algorithm, causing RT type
instructions to dominate the instruction latency distribution.

The other dominating factor in latency is the Mem
type load and store instructions. In complex workloads
like PARK_PT , the ray traversal is the primary bottleneck,
but in simpler workloads, memory accesses by the shader
become the bottleneck. This e�ect is even more evident in
WKND_PT where the ray traversal is very short because
the scene is entirely composed of procedural geometry,



0%

50%

100%

RT
 U

ni
t

RT Occupancy
RT Efficiency

SPNZA_AO

BUNNY_AO

WKND_PT

SHIP_SH

ROBOT_SH

BATH_PT

PARK_PT

CHSNT_PT
Avg PT

Avg SH
Avg AO

0%
25%
50%
75%

100%

%
 W

ar
ps

>75%
50%-75%
25%-50%
<25%

Figure 9: Warp occupancy and e�ciency for RT unit (top)

and SIMT e�ciency (bottom) for each workload, with

averages for each shader type.

so the majority of the execution time is spent on memory
accesses in the shader to fetch all the necessary information
required to compute an intersection.

5.2. Hardware E�ciency

5.2.1. RT Unit E�ciency. The top of Figure 9 shows the
average occupancy and e�ciency of the RT unit for each
shader type, de�ned as the average number of active warps
and the average number of active rays per warp in the
RT unit respectively. The average occupancy is high across
most workloads, which deceptively appears like the RT unit
is well utilized. However, when considering the e�ciency,
it indicates ray tracing su�ers greatly from load imbalance.

The average e�ciency is especially low for PT work-
loads, caused by the increasingly divergent rays that bounce
to various extents before being terminated. There is also a
problem with straggler rays that take signi�cantly longer
to execute in PT workloads and the warps cannot continue
until all rays in the warp have �nished. The e�ciency of
SH and AO workloads is much better because the rays are
terminated after the �rst hit, with SH workloads being the
highest because SH rays are more coherent and shoot in
similar directions. BUNNY_AO shows exceptionally high
RT unit e�ciency because AO rays terminate quickly and
the simple scene does not provide any opportunities for
straggler rays with lengthy traversals. In contrast, PARK_PT
creates many straggler rays because the BVH structure
cannot e�ciently bound the long and thin geometry, causing
the RT unit to be very underutilized. Naively increasing
the RT unit size would not improve performance.

5.2.2. SIMT E�ciency. On the bottom of Figure 9, we plot
the SIMT e�ciency for each shader type, which shows very
similar trends as the RT unit e�ciency. SIMT e�ciency
is measured independently of the RT unit and shows that
divergent threads and load imbalance are not exclusive to
the traceRay instruction, but persist through the entire
program. Optimizations targeting the RT unit alone will be
insu�cient to improve the performance of these ray tracing
workloads, and a more holistic approach considering the
entire ray tracing pipeline is necessary.

C
A

R
_A

O
SP

N
ZA

_P
T

C
A

R
_P

T
C

A
R

_S
H

SP
N

ZA
_S

H
SP

N
ZA

_A
O

LA
N

D
S_

SH
SP

R
N

G
_S

H
FR

ST
_S

H
B

AT
H

_S
H

W
K

N
D

_S
H

R
EF

_S
H

B
U

N
N

Y
_S

H
B

U
N

N
Y

_A
O

R
EF

_A
O

W
K

N
D

_A
O

B
AT

H
_A

O
C

R
N

V
L_

A
O

LA
N

D
S_

A
O

FR
ST

_A
O

SP
R

N
G

_A
O

W
K

N
D

_P
T

FR
ST

_P
T

LA
N

D
S_

PT
SP

R
N

G
_P

T
SH

IP
_A

O
B

U
N

N
Y

_P
T

R
EF

_P
T

C
R

N
V

L_
SH

FO
X

_S
H

PA
RT

Y
_S

H
SH

IP
_S

H
SH

IP
_P

T
FO

X
_A

O
PA

RT
Y

_A
O

R
O

B
O

T_
SH

FO
X

_P
T

PA
RT

Y
_P

T
C

R
N

V
L_

PT
B

AT
H

_P
T

R
O

B
O

T_
PT

PA
R

K
_P

T
PA

R
K

_S
H

R
O

B
O

T_
A

O
PA

R
K

_A
O

C
H

SN
T_

PT

0

5

10

Tr
av

er
sa

l R
at

io

Figure 10: Ratio of BVH depth to average traversal length

for each scene.

5.2.3. Traversal Ratio. Another consideration is the ratio
of the average number of nodes traversed per ray to the
depth of the BVH structure in each workload, shown in
Figure 10. A high traversal ratio implies the BVH structure
is not pruning the search space for intersections e�ectively,
such as in CHSNT_PT which requires the anyhit shader to
con�rm intersections. On the other hand, low ratios like
in BATH_AO can indicate a well-structured BVH, but can
also be caused by empty space, large geometric features,
or a camera position where rays miss the scene entirely.
Shader implementation details, such as choosing to search
for any intersection rather than the closest intersection,
are also re�ected in the traversal ratio. Simply comparing
the average number of nodes traversed per ray does not
provide all the necessary insights into the bottlenecks, but
the traversal ratio is a much better indicator of performance.

5.3. Memory Behavior

5.3.1. Cache Accesses. Ray tracing is commonly consid-
ered to be a memory latency-bound application, implying
that optimizing the cache is an excellent approach to
improving performance. Figure 11 shows the distribution of
all L1D accesses for each scene and breaks down traceRay-
related accesses versus other shader accesses. The average
cache miss rate for traceRay accesses in the L1D is 50%,
and surprisingly only increases to 66% for relatively large
scenes like PARK_PT , with the L2 cache exhibiting similar
behavior. Divergent memory access patterns observed in
AO ray traversals are likely related to the higher cache
miss rate in BUNNY_AO, but misses are primarily incurred
by the shader implying ray traversal is relatively simple
compared to shading. In PARK_PT , the opposite is true,
with the majority of cache misses being incurred by ray
traversal due to a far more complex scene structure. In
general, compulsory cold misses are a small part of the
total cache misses, con�rming that the scenes do not fully
�t in the cache and thrashing occurs from the random
memory access pattern of the ray traversal.

5.3.2. DRAM. From the DRAM perspective in Figure 12,
the bandwidth utilization and e�ciency of the di�erent
workloads in LumiBench di�er greatly. DRAM e�ciency,
de�ned as the cycles with data transfers relative to cycles
with DRAM requests at the memory access controller,
ranges from 48% to 88% for a mobile GPU con�guration.
Low DRAM e�ciency is likely due to the poor memory
access patterns observed with ray traversals, particularly in



SPNZA_AO

BUNNY_AO

WKND_PT

SHIP_SH

ROBOT_SH

BATH_PT

PARK_PT

CHSNT_PT
0%

20%
40%
60%
80%

100%

%
 L

1D
 A

cc
es

se
s Other Hit

RT Hit
Other Miss
RT Other Read Miss
RT Cold Read Miss

Figure 11: Distribution of L1D cache accesses for each scene.

SPNZA_AO

BUNNY_AO

WKND_PT

SHIP_SH

ROBOT_SH

BATH_PT

PARK_PT

CHSNT_PT
0%

25%
50%
75%

100%

D
R

A
M

Mobile

SPNZA_AO

BUNNY_AO

WKND_PT

SHIP_SH

ROBOT_SH

BATH_PT

PARK_PT

CHSNT_PT

Desktop

DRAM
Util
DRAM
Eff

Figure 12: DRAM utilization and e�ciency of each workload.

complex scenes like PARK_PT , which leads to long latency
data fetches. Design considerations to improve ray tracing
performance for complex scenes should focus on latency
much more than bandwidth concerns since the bandwidth
cannot be e�ciently utilized. A simple experiment with
PARTY_PT , which has a very low DRAM e�ciency of 37%,
shows that changing DRAM bandwidth has a minimal im-
pact on performance because memory is primarily latency-
bound. Also, compared to DRAM utilization, de�ned as the
percentage of cycles where data was transferred relative to
total program cycles, the average di�erence is only around
7%. This small di�erence implies memory requests to DRAM
are nearly constant and dominate the program, making
DRAM an important optimization target.

For a desktop GPU con�guration, both the DRAM
utilization and e�ciency are signi�cantly lower because
memory accesses are latency-bound and cannot fully utilize
the increased bandwidth. However, the trends are similar,
with PARK_PT still exhibiting the lowest DRAM e�ciency
and SPNZA_AO the highest. These trends also highlight that
although ROBOT has the most geometry, it is not the most
complex because only a portion of the geometry is accessed
during traversal, resulting in its low DRAM utilization.

5.3.3. Data Mix. Figure 13 shows the distribution of data
types fetched by the RT unit for each workload. While
mostly similar, SHIP_SH and PARK_PT , which stress long
and thin geometry, have a much higher proportion of leaf
nodes fetched. This behavior is likely caused by ine�cient
bounding boxes that include a large amount of empty space.
Optimizations focused on improving the BVH structure or
the traversal ratio would be bene�cial for these workloads.

5.4. System Behavior

Figure 14 plots the average IPC for each workload,
showing the cumulative e�ect of the di�erent factors on
the system. IPC also matches well with our PCA results
because the metric is comprehensive and captures the
overall performance of the system. The plot highlights

SPNZA_AO

BUNNY_AO

WKND_PT

SHIP_SH

ROBOT_SH

BATH_PT

PARK_PT

CHSNT_PT
0%

25%
50%
75%

100%

%
 N

od
e A

cc
es

se
s

Leaf
Instance
Inner
Root

Figure 13: Distribution of data types fetched to the RT unit

for each scene.

0
25
50
75

100
Mobile

C
A

R
_A

O
SP

N
ZA

_P
T

C
A

R
_P

T
C

A
R

_S
H

SP
N

ZA
_S

H
SP

N
ZA

_A
O

LA
N

D
S_

SH
SP

R
N

G
_S

H
FR

ST
_S

H
B

AT
H

_S
H

W
K

N
D

_S
H

R
EF

_S
H

B
U

N
N

Y
_S

H
B

U
N

N
Y

_A
O

R
EF

_A
O

W
K

N
D

_A
O

B
AT

H
_A

O
C

R
N

V
L_

A
O

LA
N

D
S_

A
O

FR
ST

_A
O

SP
R

N
G

_A
O

W
K

N
D

_P
T

FR
ST

_P
T

LA
N

D
S_

PT
SP

R
N

G
_P

T
SH

IP
_A

O
B

U
N

N
Y

_P
T

R
EF

_P
T

C
R

N
V

L_
SH

FO
X

_S
H

PA
RT

Y
_S

H
SH

IP
_S

H
SH

IP
_P

T
FO

X
_A

O
PA

RT
Y

_A
O

R
O

B
O

T_
SH

FO
X

_P
T

PA
RT

Y
_P

T
C

R
N

V
L_

PT
B

AT
H

_P
T

R
O

B
O

T_
PT

PA
R

K
_P

T
PA

R
K

_S
H

R
O

B
O

T_
A

O
PA

R
K

_A
O

C
H

SN
T_

PT

0

100

200

300
Desktop

Av
er

ag
e 

IP
C

Figure 14: Average IPC for each workload.

particularly di�cult workloads that provide the best opti-
mization opportunities because ray tracing performance is
bound by the worst-case scenario.

Evaluating the performance of LumiBench workloads
on the desktop GPU con�guration shows similar trends to
the mobile GPU con�guration, also illustrated in Figure 14.
The desktop GPU reports higher IPCs as a result of the
increased resources.

5.4.1. Simulation Time. In our characterization study,
simulation time ranged from around 15 minutes to under 13
hours per workload, with an average of 1.5 hours. We simu-
late LumiBench at 128×128 pixels to maintain a reasonable
simulation time because large resolutions signi�cantly
increase computational e�ort. For example, simulating a
single frame of SHIP_SH at 128 × 128 resolution requires
only 30 minutes, versus 36 hours at 1080p resolution when
evaluating multiple workloads and hardware con�gurations.
Complex workloads like PARK_PT can require more than
a week to simulate at 1080p.

5.5. Analytical Modeling

Analytical studies are especially useful for extrapolating
performance results to higher resolutions and larger scenes
that are infeasible to simulate. We evaluate the analytical
model described in Hong and Kim [37]. They represent the
performance of a GPU kernel with two metrics: Memory
Warp Parallelism (MWP) and Computation Warp Parallelism
(CWP). MWP is the maximum number of memory requests
that can be issued in parallel by an SM, and CWP is the
number of warps that an SM can execute during a memory
warp waiting period. A limitation of this model is the
lack of any cache e�ects due to high cache hit rates for
the instruction, texture, and constant caches exhibited by



0 2
0

100

A
na

ly
tic

al
 C

yc
le

s
(M

ill
io

ns
)

Rodinia
R2 = 0.704

0 25
Vulkan-Sim Cycles (Millions)

20

40

Ray Tracing
R2 = 0.298

0 20

20

40

SPNZA_AO
BUNNY_AO

WKND_PT

SHIP_SH
ROBOT_SH

BATH_PT

PARK_PT

CHSNT_PT
LumiBench Subset

R2 = 0.170

Figure 15: Comparison for analytical model

GPGPU applications, as well as the lack of a cache for
global memory in the modeled G80 GPU architecture. We
instead multiply the DRAM latency by the L1 cache miss
rate to estimate the average memory latency.

Existing analytical models do not �t ray tracing work-
loads, as shown in Figure 15. The R2 value for linear
regression over our data is 0.704 for Rodinia workloads,
but only 0.298 for ray tracing workloads and lower when
applied to the LumiBench subset.

6. Related Works

Previous works have primarily focused on evaluating
techniques and optimizations for the ray tracing algorithm
itself, rather than the systematic evaluation of ray tracing
hardware. Industry benchmarks that do evaluate graphics
hardware do not focus on ray tracing. This section outlines
the related works that are most relevant to LumiBench.

6.1. Graphics Benchmarks

Benchmark suites used to evaluate computer graphics
techniques are generally a set of scenes that stress di�erent
aspects of the rendering algorithms. BART [43] was the
�rst benchmark suite developed to evaluate ray tracing
workloads and the most similar to LumiBench. However,
BART was still designed to evaluate algorithms rather than
hardware, and the proposed scenes are now outdated com-
pared to modern applications. Other ray tracing benchmark
scenes have been proposed since but focus on stressing
speci�c algorithm features, such as TauBench [21] which
stresses temporal reuse techniques for ray tracing.

Several industry benchmarks exist for evaluating graph-
ics hardware, such as 3DMark [1] and SPECviewperf [14].
These benchmarks are proprietary and designed to evaluate
commodity graphics hardware, which is not suitable for use
with academic simulators in the research community. Many
of the scenes and applications in these benchmarks are far
too complex to be simulated in a reasonable amount of time.
The open-source Quake II RTX game o�ers an excellent
alternative to industry benchmarks for graphics researchers,
but the application is also too complex for Vulkan-Sim.

6.2. Ray Tracing Characterization

Several works also characterize ray tracing workloads,
providing insights into performance bottlenecks and op-
portunities for optimization. Early works from Aila et

al. [19] evaluate the performance of a software ray trac-
ing implementation on a GPU and identify the memory
bandwidth as the main bottleneck, but predate current ray
tracing accelerators. More recently, Vasiou et al. [55] use
SimTRaX to evaluate a set of four scenes from the McGuire
Computer Graphics Archive [46] selected for their variation
in geometric complexities only. Their study mostly focuses
on the e�ects of a growing number of ray bounces on the
memory system, however, the high numbers of ray bounces
Vasiou et al. evaluate are not representative of real-time
applications. Also, SimTRaX is designed to simulate the
specialized TRaX [52] accelerator, which does not integrate
with the GPU and therefore does not operate using the
industry-standard ray tracing pipeline.

Pankratz et al. [49] introduced Vulkan-Vision, using
the tool to evaluate the performance of ray tracing work-
loads on real hardware. Although Vulkan-Vision identi�es
bottlenecks in the ray tracing pipeline, the tool requires
applications to execute on real hardware so it cannot be used
to evaluate hardware optimizations. LumiBench provides
the �rst publicly available benchmark suite for ray tracing
hardware used with a cycle-level simulator.

7. Conclusion

In conclusion, we present LumiBench as a benchmark
suite for evaluating ray tracing hardware performance in
modern GPUs. LumiBench is designed to be representative
of real-world ray tracing workloads while still being able to
complete simulation using the Vulkan-Sim GPU simulator in
a reasonable amount of time. We characterize the workloads
in LumiBench using Vulkan-Sim and provide insights for
architectural research. Our updates to Vulkan-Sim are avail-
able at https:// github.com/ubc-aamodt-group/ vulkan-sim
and our modi�ed version of the RayTracingInVulkan ap-
plication is available at https:// github.com/ ubc-aamodt-
group/RayTracingInVulkan on GitHub. Detailed instructions
to run LumiBench are included in the Appendix.

We expect LumiBench to be a �rst step towards a
standardized benchmark suite for hardware ray tracing,
however, there are still many opportunities for future work.
We plan to continue adding more scenes and shaders
to LumiBench to increase the diversity of the workloads
and target di�erent aspects of the ray tracing hardware,
which requires additional improvements to Vulkan-Sim.
Furthermore, we hope to add support for animations and
dynamic scenes to better study temporal e�ects and the
performance of the ray tracing pipeline over time.

Acknowledgments

We thank the anonymous reviewers for their valuable
feedback. We also wish to thank all the developers of the
open-source scenes and projects that made LumiBench pos-
sible. This research is funded in part by grants from Huawei
Technologies and the Natural Sciences and Engineering
Research Council of Canada (NSERC).



Appendix

1. Abstract

The included artifact provides the source code for the
updated version of Vulkan-Sim, which uses the Lavapipe
driver. We also provide our modi�ed version of the Ray-
TracingInVulkan application and all the benchmark scenes
and shaders used in LumiBench. We describe the installation
procedure and work�ow to reproduce our results in Figure
14 and package the artifact as a Docker container.

2. Artifact check-list (meta-information)

• Program: Vulkan-Sim simulator and RayTracingInVulkan
application

• Compilation: GCC/G++, CMake, CUDA, Ninja, Meson
• Binary: source code and compiled binary both provided
• Model: OBJ models included
• Run-time environment: tested on Ubuntu 20.04
• Hardware: >12 GB RAM
• Metrics: execution time, cache access breakdown, ray

tracing application statistics
• Output: simulator metrics and PPM images
• How much disk space required (approximately)?:

18GB uncompressed Docker image or 8GB from source
(including simulator and benchmark scenes)

• How much time is needed to prepare work�ow

(approximately)?: 1-2 hours
• How much time is needed to complete experiments

(approximately)?: 3-5 days if benchmarks are executed
sequentially

• Publicly available?: Yes
• Code licenses (if publicly available)?: BSD-3
• Data licenses (if publicly available)?: CC BY-NC-SA
• Archived (provide DOI)?:

Zenodo: https://doi.org/10.5281/zenodo.8267898

3. Description

3.1. How to access. We package both the modi�ed version
of Vulkan-Sim as well as all of the scenes and shaders for
LumiBench in a Docker container, which is available from
https://doi.org/10.5281/zenodo.8267898 on Zenodo. Alterna-
tively, our updates are available from https://github.com/ubc-
aamodt- group/ vulkan- sim for Vulkan-Sim and https://
github.com/ubc-aamodt-group/RayTracingInVulkan for Lu-
miBench on GitHub.

3.2. Hardware dependencies. There are no speci�c hard-
ware dependencies for this project. However, the simulation
of larger models or resolutions can range from hours to
several days and require more RAM. For example, the PARK
scene requires around 12GB of RAM to simulate in our
experiments.

3.3. Software dependencies. The provided Docker con-
tainer includes all of the software dependencies for Vulkan-
Sim and the benchmark scenes and shaders.

For users who wish to build the simulator from source,
the following dependencies are required:

• Vulkan SDK with ray tracing
• CUDA Toolkit 10

• Embree3
• Mesa
• All original dependencies of Vulkan-Sim
• All original dependencies of RayTracingInVulkan
• matplotlib, numpy, pandas, scikit-learn and

scipy Python packages are required to produce
the �gures in this paper

3.4. Models. We redistribute the benchmark scenes used
in LumiBench in the Docker container, which includes the
following models:

• White Lands (LANDS)
• Red Autumn Forest (FRST)
• Splash Fox (FOX)
• PartyTug (PARTY)
• Spring (SPRNG)
• Procedural (ROBOT)
• Racing Car (CAR)
• Ship (SHIP)
• Bathroom (BATH)
• Re�ective Cornell Box (REF)
• Bunny (BUNNY)
• Crytek Sponza (SPNZA)
• Carnival (CRNVL)
• Ray Tracing In One Weekend (WKND)
• Horse Chestnut Tree (CHSNT)
• Park (PARK)

4. Installation

We provide a Docker container for users to reproduce
our results, which is available from https://doi.org/10.5281/
zenodo.8267898 on Zenodo. After downloading the container,
users can run the following command to start the container:

docker load < lumibench.tar.gz
docker run -it vulkansim:lavapipe /bin/bash

Vulkan-Sim and RayTracingInVulkan are both installed
and precompiled in the container, ready for use. Alter-
natively, users can build the simulator from source by
following the instructions below.

cd /home/vulkansim/mesa
meson --prefix="${PWD}/lib" build -Dvulkan-

drivers=swrast -Dgallium-drivers=swrast -
Dplatforms=x11 -D b_lundef=false -D
buildtype=debug

cd build
ninja -C build/ install

The �rst compilation of Mesa generates �les necessary
for Vulkan-Sim, which must be compiled before Mesa will
compile successfully.

cd /home/vulkansim/gpgpu-sim_emerald
source setup_environment
make -j
cd /home/vulkansim/mesa
ninja -C build/ install



The benchmark application can be compiled by follow-
ing the instructions below.

cd /home/vulkansim/RayTracingInVulkan
./vcpkg_linux.sh
./build_linux.sh

5. Experiment work�ow

After starting the Docker container, navigate to the Ray-
TracingInVulkan executable directory and use the following
Python script to run the benchmark:

cd /home/vulkansim/RayTracingInVulkan/build/
linux/bin

python3 run_benchmark.py

A message of Simulation complete! will be printed to
the console when the benchmark is complete and simulator
log �les for each workload will be saved in the ./logs
directory. In addition, PPM images corresponding to the
simulation timestamp of each workload will also be saved
in the same directory. We provide additional Python scripts
to parse the simulator logs once the benchmark is complete,
generate a CSV �le containing a table of metrics for each
workload and reproduce Figure 14. In order to generate the
�gure, some additional Python packages are required.

pip3 install matplotlib numpy pandas scikit-
learn scipy

python3 generate_results.py

A second included script will produce a dendrogram
similar to Figure 3, but the �gure will be di�erent because
it does not include CS:GO scenes or Rodinia workloads.
Run this script after generating the CSV results to create a
dendrogram.

python3 plot_dendrogram.py

6. Evaluation and expected results

Successfully executing the Python scripts will produce
a CSV �le containing a table of metrics for each workload
and Figure 14. If insu�cient memory is available in the
Docker container, some of the larger workloads may fail
to execute.

7. Experiment customization

Experiments can be customized by modifying the
gpgpusim.config �le included in the executable directory.
This �le describes the GPU con�gurations as supported
by Vulkan-Sim. For example, the max number of warps
per ray tracing unit can be modi�ed by changing the
gpgpu_rt_max_warps parameter.

Additionally, workloads can be executed individually by
modifying the run_benchmark.py script or by executing
the workload directly.

./RayTracer --scene <scene number> --width <
width> --height <height> --samples <
samples per pixel>

For shadow shaders, add --shader-type <type
number> --shadow-rays <number of rays> to the com-
mand line arguments, with type 1 for direct shadows and
2 for ambient occlusion. The anyhit shader can be invoked
with --shader-type 5.

8. Notes

Scenes from CS:GO are not included in our benchmark
suite and thus also not included in this artifact because
they are not publicly available. However, we encourage
researchers to reach out to Valve for permission to include
these scenes for their own research.

9. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/ publications/ policies/ artifact-
review-badging

• http:// cTuning.org/ae/ submission-20201122.html
• http:// cTuning.org/ae/ reviewing-20201122.html

References

[1] 3DMark. [Online]. Available: https://www.3dmark.com

[2] Blender demo �les. [Online]. Available: https://www.blender.org/
download/demo-�les/

[3] Disney Moana Island Scene. [Online]. Available: https://
disneyanimation.com/resources/moana-island-scene/

[4] Gallium. [Online]. Available: https://docs.mesa3d.org/gallium/
index.html

[5] “Grass 3D Model.” [Online]. Available: https://free3d.com/3d-
model/grass-74284.html

[6] “Lavapipe.” [Online]. Available: https://gitlab.freedesktop.org/mesa/
mesa/-/tree/main/src/gallium/frontends/lavapipe

[7] “Male Base Mesh 3D Model.” [Online]. Available: https://free3d.com/
3d-model/male-base-mesh-6682.html

[8] “Mercedes Benz GLS 580 2020 3D Model.” [Online]. Available: https://
free3d.com/3d-model/mercedes-benz-gls-580-2020-83444.html

[9] Mesa 3d. [Online]. Available: https://www.mesa3d.org/

[10] “Mountain 3D Model.” [Online]. Available: https://free3d.com/3d-
model/mountain-183041.html

[11] ORCA: Open Research Content Archive. [Online]. Available:
https://developer.nvidia.com/orca

[12] Ray Tracing In Vulkan. [Online]. Available: https://github.com/
GPSnoopy/RayTracingInVulkan

[13] “Realistic Trees Scene 3D Model.” [Online]. Available: https://
free3d.com/3d-model/realistic-tree-pack-3-trees-95419.html

[14] SPECviewperf. [Online]. Available: https://gwpg.spec.org/bm-
specviewperf/

[15] Utah 3D Animation Repository. [Online]. Available: http://
www.sci.utah.edu/~wald/animrep/index.html

[16] Vulkan. [Online]. Available: https://www.vulkan.org/

[17] Advanced Micro Devices Inc. (2022) AMD RDNA architecture.
[Online]. Available: https://www.amd.com/en/technologies/rdna

[18] A. T. Áfra, C. Benthin, I. Wald, and J. Munkberg, “Local shading
coherence extraction for SIMD-e�cient path tracing on CPUs.” in
High Performance Graphics, 2016, pp. 119–128.



[19] T. Aila and T. Karras, “Architecture considerations for tracing
incoherent rays,” in Proc. ACM Conf. on High Performance Graphics
(HPG), 2010, pp. 113–122.

[20] T. Aila and S. Laine, “Understanding the e�ciency of ray traversal
on GPUs,” in Proc. ACM Conf. on High Performance Graphics (HPG),
2009, pp. 145–149.

[21] J. Alanko, M. Mäkitalo, and P. Jääskeläinen, “TauBench: Dynamic
benchmark for graphics rendering,” 2022.

[22] A. Ariel, W. W. L. Fung, A. E. Turner, and T. M. Aamodt, “Visualizing
complex dynamics in many-core accelerator architectures,” in Proc.
IEEE Symp. on Perf. Analysis of Systems and Software (ISPASS), 2010,
pp. 164–174.

[23] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “TEAPOT: A toolset
for evaluating performance, power and image quality on mobile
graphics systems,” in Proc. ACM Conf. on Supercomputing (ICS), 2013,
pp. 37–46.

[24] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams
et al., “The landscape of parallel computing research: A view from
Berkeley,” 2006.

[25] C. Avalos Baddouh, M. Khairy, R. N. Green, M. Payer, and T. G. Rogers,
“Principal kernel analysis: A tractable methodology to simulate scaled
GPU workloads,” in Proc. IEEE/ACM Symp. on Microarch. (MICRO),
2021, pp. 724–737.

[26] K. Beets, “Rays Your Game: Introduction to the PowerVR Photon
Architecture,” 2021. [Online]. Available: https://imaginationtech.com/
products/gpu/graphics-architecture/powervr-photon/

[27] C. Benthin, S. Woop, I. Wald, and A. T. Áfra, “Improved two-
level BVHs using partial re-braiding,” in Proc. ACM Conf. on High
Performance Graphics (HPG), 2017, pp. 1–8.

[28] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in Proc.
IEEE/ACM Conf. on Par. Arch. and Comp. Tech. (PACT), 2008, pp.
72–81.

[29] J. Bikker, “Real-time ray tracing through the eyes of a game developer,”
in Symp. on Interactive Ray Tracing, 2007.

[30] B. Bitterli, “Rendering resources,” 2016, https://benedikt-
bitterli.me/resources/.

[31] J. Burgess, “RTX on—the NVIDIA Turing GPU,” IEEE Micro, vol. 40,
no. 2, pp. 36–44, 2020.

[32] A. Burnes. (2019) Ray tracing, your questions answered: Types of
ray tracing, performance on GeForce GPUs, and more. [Online].
Available: https://www.nvidia.com/en-us/geforce/news/geforce-gtx-
dxr-ray-tracing-available-now/

[33] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Shea�er, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. IEEE Symp. on Workload Characterization (IISWC),
2009, pp. 44–54.

[34] S. Che, J. W. Shea�er, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron, “A characterization of the Rodinia benchmark suite
with comparison to contemporary CMP workloads,” in Proc. IEEE
Symp. on Workload Characterization (IISWC), 2010.

[35] A. A. Gubran and T. M. Aamodt, “Emerald: Graphics modeling for
SoC systems,” in Proc. IEEE/ACM Int’l Symp. on Computer Architecture
(ISCA), 2019, pp. 169–182.

[36] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kala-
matianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor et al., “Lost in
abstraction: Pitfalls of analyzing GPUs at the intermediate language
level,” in Proc. IEEE Symp. on High-Perf. Computer Architecture (HPCA),
2018, pp. 608–619.

[37] S. Hong and H. Kim, “An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness,” in Proc.
IEEE/ACM Int’l Symp. on Computer Architecture (ISCA), 2009.

[38] K. Hoste and L. Eeckhout, “Microarchitecture-independent workload
characterization,” IEEE Micro, vol. 27, no. 3, pp. 63–72, 2007.

[39] Intel Corporation. (2022) Introduction to the Xe-HPG
architecture. [Online]. Available: https://www.intel.com/content/
www/us/en/developer/articles/technical/introduction- to- the- xe-
hpg-architecture.html

[40] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim: An
extensible simulation framework for validated GPU modeling,” in
Proc. IEEE/ACM Int’l Symp. on Computer Architecture (ISCA), 2020,
pp. 473–486.

[41] D. Konieczka, “3D render lighting challenges,”
https://www.3drender.com/challenges/.

[42] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in Proc. IEEE/ACM Symp. on Microarch. (MICRO), 1997, pp.
330–335.

[43] J. Lext, U. Assarsson, and T. Moller, “A benchmark for animated ray
tracing,” IEEE Computer Graphics and Applications, vol. 21, no. 2, pp.
22–31, 2001.

[44] L. Liu, W. Chang, F. Demoullin, Y. H. Chou, M. Saed, D. Pankratz,
T. Nowicki, and T. M. Aamodt, “Intersection prediction for accelerated
GPU ray tracing,” in Proc. IEEE/ACM Symp. on Microarch. (MICRO),
2021, pp. 709–723.

[45] Z. Majercik, J.-P. Guertin, D. Nowrouzezahrai, and M. McGuire,
“Dynamic di�use global illumination with ray-traced irradiance �elds,”
Journal of Computer Graphics Techniques (JCGT), vol. 8, no. 2, 2019.

[46] M. McGuire, “Computer graphics archive,” 2017, https://casual-
e�ects.com/data.

[47] T. B. Nowicki and A. M. E. M. Eltantawy, “Methods and apparatuses
for coalescing function calls for ray-tracing,” US Patent 17 008 437.

[48] Nvidia Corporation. (2022) Nvidia Ada GPU architecture. [Online].
Available: https://images.nvidia.com/aem-dam/Solutions/geforce/ada/
nvidia-ada-gpu-architecture.pdf

[49] D. Pankratz, T. Nowicki, A. Eltantawy, and J. N. Amaral, “Vulkan
Vision: Ray tracing workload characterization using automatic graph-
ics instrumentation,” in Proc. IEEE/ACM Symp. on Code Generation
and Optimization (CGO), 2021, pp. 137–149.

[50] M. Saed, Y. H. Chou, L. Liu, T. Nowicki, and T. M. Aamodt, “Vulkan-
Sim: A GPU architecture simulator for ray tracing,” in Proc. IEEE/ACM
Symp. on Microarch. (MICRO), 2022, pp. 263–281.

[51] P. Shirley, “Ray tracing in one weekend,” Amazon Digital Services
LLC, vol. 1, p. 4, 2018.

[52] J. Spjut, A. Kensler, D. Kopta, and E. Brunvand, “TRaX: A multicore
hardware architecture for real-time ray tracing,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 28, no. 12, pp. 1802–1815, 2009.

[53] Valve, “Counter-Strike: Global O�ensive,” Video Game, 2012, accessed
on June 9, 2023, on Microsoft Windows. [Online]. Available: https://
store.steampowered.com/app/730/CounterStrike_Global_O�ensive/

[54] E. Vasiou, K. Shkurko, E. Brunvand, and C. Yuksel, “Mach-RT: A
many chip architecture for high performance ray tracing,” vol. 28,
no. 3, pp. 1585–1596, 2020.

[55] E. Vasiou, K. Shkurko, I. Mallett, E. Brunvand, and C. Yuksel, “A
detailed study of ray tracing performance: render time and energy
cost,” The Visual Computer, vol. 34, pp. 875–885, 2018.

[56] C. Yuksel, “Ray tracing in video games,” 2023. [Online]. Available:
https://blog.siggraph.org/2023/05/siggraph- spotlight- episode- 65-
tracing-the-future-exploring-the-revolutionary-technology-of-ray-
tracing.html/


