
GPUDet: A Deterministic GPU Architecture

Hadi Jooybar1 Wilson W. L. Fung1 Mike O’Connor2 Joseph Devietti3 Tor M. Aamodt1

University of British Columbia1 Advanced Micro Devices, Inc. (AMD)2 University of Washington3

jooybar@ece.ubc.ca, wwlfung@ece.ubc.ca, mike.oconnor@amd.com, devietti@cs.washington.edu, aamodt@ece.ubc.ca

Abstract

Nondeterminism is a key challenge in developing multithreaded
applications. Even with the same input, each execution of a mul-
tithreaded program may produce a different output. This behavior
complicates debugging and limits one’s ability to test for correct-
ness. This non-reproducibility situation is aggravated on massively
parallel architectures like graphics processing units (GPUs) with
thousands of concurrent threads. We believe providing a determin-
istic environment to ease debugging and testing of GPU applica-
tions is essential to enable a broader class of software to use GPUs.

Many hardware and software techniques have been proposed
for providing determinism on general-purpose multi-core proces-
sors. However, these techniques are designed for small numbers
of threads. Scaling them to thousands of threads on a GPU is a ma-
jor challenge. This paper proposes a scalable hardware mechanism,
GPUDet, to provide determinism in GPU architectures. In this pa-
per we characterize the existing deterministic and nondeterminis-
tic aspects of current GPU execution models, and we use these
observations to inform GPUDet’s design. For example, GPUDet
leverages the inherent determinism of the SIMD hardware in GPUs
to provide determinism within a wavefront at no cost. GPUDet
also exploits the Z-Buffer Unit, an existing GPU hardware unit for
graphics rendering, to allow parallel out-of-order memory writes
to produce a deterministic output. Other optimizations in GPUDet
include deterministic parallel execution of atomic operations and
a workgroup-aware algorithm that eliminates unnecessary global
synchronizations.

Our simulation results indicate that GPUDet incurs only 2×
slowdown on average over a baseline nondeterministic architecture,
with runtime overheads as low as 4% for compute-bound applica-
tions, despite running GPU kernels with thousands of threads. We
also characterize the sources of overhead for deterministic execu-
tion on GPUs to provide insights for further optimizations.

Categories and Subject Descriptors C.1.4 [Processor Architec-
tures]: Parallel Architectures—GPU Architecture; D.1.3 [Pro-
gramming Techniques]: Concurrent Programming

General Terms Design, Performance, Reliability

Keywords GPU, Deterministic Parallelism

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

1. Introduction

Massively parallel processors are designed to run thousands of
threads. The energy efficiency of these processors has driven their
widespread popularity for many inherently-parallel applications,
such as computer graphics. We anticipate that increasing demands
for energy efficiency will motivate a broader range of applications
with more complex data structures and inter-task communication
to use these processors.

Unfortunately, developing parallel applications that can uti-
lize such architectures is hampered by the challenge of coordi-
nating parallel tasks, especially in ensuring that a parallel program
behaves correctly for every possible combination of interactions
among these tasks. With the thousands of threads required to uti-
lize current massively parallel architectures like GPUs, the number
of interactions to consider is substantial. Nondeterminism makes
this challenge even harder, because it thwarts attempts to repro-
duce anomalous behavior or to provide guarantees about future
executions.

Providing deterministic execution for GPU architectures is a
crucial aid for simplifying parallel programming at scale. Deter-
minism simplifies the debugging process by making program be-
havior reproducible for a given input. Determinism is also useful
once code is deployed, to reproduce bugs that manifest in produc-
tion settings. Finally, determinism amplifies the power of testing,
by providing a guarantee that once a particular input has passed its
tests, those tests will continue to pass in the future. Current nonde-
terministic parallel architectures provide no such guarantee, which
allows testing to provide only probabilistic guarantees.

The key challenge of determinism is providing these properties
with acceptable performance overhead. To this end, different lev-
els of determinism have been proposed in the literature [35]. We
are proponents of strong determinism, which provides determinism
even in the presence of data races. Some deterministic schemes re-
quire data-race freedom [35], offering determinism in a more lim-
ited context but with lower performance overheads. In contrast, a
strongly deterministic system makes no assumptions about the pro-
gram it is running, which is well-suited to dealing with the buggy
programs that need determinism the most. The programmability of
GPUs can benefit greatly from strong determinism.

1.1 Debugging with a Deterministic GPU

Many existing GPU workloads are embarrassingly parallel applica-
tions free of inherent data-races. It may be tempting to dismiss the
benefit of deterministic execution on GPUs for these applications.
However, these applications usually feature complex data tiling to
improve data locality. Subtle mistakes during development can re-
sult in nondeterministic bugs that are hard to detect. A determinis-
tic GPU allows programmers to analyze such bugs more effectively
with a consistent output.

Indeed, race conditions have appeared in GPGPU algorithms
from the published literature. To illustrate how a determinis-
tic GPU can simplify debugging, we use a buggy version of

breadth-first-search (BFS) graph traversal distributed by Harish
and Narayanan [21] (BFSr). Below is a simplified version of the
kernel function in BFSr, which contains a race condition.

0: __global__ void BFS_step_kernel(...) {
1: if(active[tid]) {
2: active[tid] = false;
3: visited[tid] = true;
4: foreach (int id = neighbour_nodes) {
5: if(visited[id] == false) {
6: cost[id] = cost[tid] + 1;
7: active[id] = true;
8: *over=true;
9: } } } }

Presumably, this kernel is designed to traverse one level of the
breadth-first-search nodes during each kernel launch. Each thread
(tid = thread ID) is assigned a node in the graph. In each kernel
launch (at each step), each thread updates the cost of its neighbour-
ing nodes (cost[id]) that have not been visited, and sets their
active flag (active[id]), which indicates these nodes should up-
date their own neighbours during the next kernel launch. A race
condition can occur since a thread can be reading its active[tid]
and cost[tid] (at line 1 and 6) while its neighbour is updating
these locations (at line 6 and 7). This causes cost[id] to be up-
dated nondeterministically, which can lead to incorrect output. Har-
ish and Narayanan have discovered the race conditions in this code
and have posted a corrected version, which is now part of the Ro-
dinia benchmark suite [14].

With a deterministic GPU, the programmer can observe the
same incorrect output across different runs. This allows him to set
a watch point in a GPU debugger at the location in cost[] that has
an incorrect output value. The programmer can then pause the exe-
cution at every modification to this location and identify the threads
responsible for the incorrect output value. Notice that this approach
will not work with a nondeterministic GPU. The programmer can-
not be sure that the race condition would occur at the same mem-
ory location in the second run via the debugger. This difficulty with
nondeterministic parallel architecture has motivated the supercom-
puting community to create extensive logging tools that capture ac-
tivities across the entire system, and analyze the (enormous) logs
for errors [3]. We argue that providing a deterministic GPU to pro-
grammers is a more effective solution.

1.2 Our Contribution: GPUDet

This paper introduces GPUDet, which is the first deterministic mas-
sively parallel architecture. GPUDet provides strong determinism
for current-generation GPU architectures. GPUDet leverages the
approach suggested by Bergan et al. [6] for multi-core CPUs. In
this approach, threads are executed in an isolated memory space,
communicating with other threads only at deterministic, fixed inter-
vals. Thread isolation is realized by appending all stores to a private
buffer instead of directly updating global memory. Thread updates
are made globally visible via a commit process which leverages
existing GPU Z-Buffer hardware to execute in a deterministic but
highly parallel fashion. Read-modify-write operations that need to
be made globally visible have their execution deferred until this
communication phase. GPUDet executes these operations in paral-
lel and maintains a deterministic order among them by leveraging
the ordering property in existing GPU memory systems.

Our key contributions in this paper are:

1. We propose GPUDet, the first hardware model for a fully deter-
ministic GPU architecture.

2. We characterize the inherently deterministic and nondetermin-
istic aspects of the GPU execution model and propose opti-
mizations to GPUDet that leverage these inherent deterministic
properties.

Workgroup

R
e
g
is
te
r
F
ile

L
o
c
a
l
M
e
m
o
ry

L1

cache

Compute Unit

Workgroup

Workgroup

Workgroup...

Workgroup

R
e
g
is
te
r
F
ile

L
o
c
a
l
M
e
m
o
ry

L1

cache

Compute Unit

Workgroup

Workgroup

Workgroup...

In
te
rc
o
n
n
e
c
t

Workgroup

R
e
g
is
te
r
F
ile

L
o
c
a
l
M
e
m
o
ry

L1

cache

Compute Unit

Workgroup

Workgroup

Workgroup...

Memory Partition

L
2
 c
a
c
h
e

O
ff
-C
h
ip
 D
R
A
M

C
h
a
n
n
e
l

Atomic

Unit

Z-Buffer

Unit

Workgroup

Distributor

Figure 1. Baseline GPU Architecture

3. Our design exploits existing GPU hardware for Z-buffering to
accelerate deterministic parallel committing of store buffers.

4. We introduce a workgroup-based quantum formation algorithm
to enable larger quanta, which better amortized the overheads
of quantum formation.

5. We exploit the point-to-point ordering in GPU memory subsys-
tem to regain parallelism within each compute unit for read-
modify-write operations that are executed in serial mode.

The rest of the paper is organized is follows. Section 2 summa-
rizes our baseline GPU architecture and discusses sources of non-
determinism in GPUs. Section 3 summarizes existing techniques
for providing deterministic execution and highlights the challenges
in applying them on GPUs. Section 4 describes GPUDet. Section 5
presents a comprehensive evaluation of GPUDet. Section 6 dis-
cusses the related work. Section 7 concludes the paper.

2. Baseline Architecture

This section summarizes the details of our baseline GPU archi-
tecture relevant to deterministic execution on GPUs. Figure 1
shows an overview of our baseline GPU architecture modeled af-
ter the NVIDIA Fermi GPU architecture [32]. In this paper, we
use OpenCL [24] terminology. However, to make the paper eas-
ier to read we use thread instead of work item. A GPU program
(CUDA [33] or OpenCL [24]) starts running on the CPU and
launches parallel compute kernels onto the GPU for processing.
Each kernel launch consists of a hierarchy of threads organized
in equal-sized workgroups. All threads in a kernel launch execute
the same kernel function, while each thread may follow a unique
execution path (with some performance penalty). Threads within
a workgroup can synchronize quickly via workgroup barriers and
communicate via an on-chip scratch-pad memory called the local
memory. Communication among threads in different workgroups
occurs through global memory located in off-chip DRAM. Each
thread has exclusive access to its own private memory for non-
shared data.

Our GPU microarchitecture consists of a set of compute units
that access multiple partitions (i.e., channels) of off-chip DRAM
via an interconnection network. Each compute unit can sustain up
to 1536 threads in its register file. It has a scratch-pad memory that
is partitioned among the different workgroups that run concurrently
on the unit. The large register file allows a compute unit to freely
context switch between different threads to tolerate long-latency
accesses to global memory. The workgroup distributor on the GPU
ensures that a compute unit has sufficient hardware resources to
sustain all threads in a workgroup before dispatching the entire
workgroup onto the unit. A GPU program may launch a kernel with
more threads than the GPU hardware may execute concurrently. In
this case, the GPU hardware starts executing as many workgroups
as on-chip hardware resources permit, and dispatches the remaining
ones as resources are released by the workgroups that have finished
execution.

2.1 SIMT Execution Model

GPU architectures use Single-Instruction, Multiple-Data (SIMD)
hardware for enhancing computational efficiency. Rather than ex-
posing the SIMD hardware directly to the programmer, GPUs
employ a Single-Instruction, Multiple-Threads (SIMT) execution
model [29]. It groups scalar threads specified by the programmer
into SIMD execution groups called wavefronts [2] (warps [33]
in NVIDIA nomenclature). Threads in a wavefront execute in
lockstep on the SIMD hardware. Since each thread can follow a
unique execution path, a wavefront may diverge after a branch.
The GPU hardware automatically serializes the execution of sub-
sets of threads that have diverged to different control flow paths.
Each wavefront has a SIMT stack [15, 20] maintaining the differ-
ent control flow paths that still need to be executed. This allows for
nested control flow divergence.

2.2 Memory Subsystem

Individual scalar accesses to global memory from threads in a
wavefront are coalesced into wider accesses to 32, 64, or 128-byte
chunks. The L1 data cache services one coalesced access per cycle.
It caches data from both global memory and private memory, but
with different policies. It acts as a writeback cache for accesses to
private memory. Writes to global memory evict any line that hits in
the L1 cache to make the memory updates visible to all compute
units. However, the GPU hardware does not maintain coherence
among the L1 data caches in different compute units. Each unit is
responsible for purging stale data from its L1 cache.

Accesses that miss at the L1 cache are sent to the corresponding
memory partition that contains the requested data. Each memory
partition is responsible for its portion of the memory space. It
contains a slice of the shared L2 cache. Accesses that miss at the L2
cache slices are in turn serviced by the off-chip DRAM controlled
by the partition.

To support a rich set of synchronization primitives, the GPU
programming model provides atomic operations, which are read-
modify-write operations that update a single 32/64-bit word in
the global memory. The wavefront sends each operation to its
corresponding memory partition as with global memory accesses.
Atomic operations are executed at the memory partitions with a set
of specialized atomic operation units that operate directly on the L2
cache slices.

2.3 Sources of Nondeterminism in GPU Architectures

The standalone-accelerator nature of current GPU architectures
helps isolate them from some sources of nondeterminism, like in-
terrupt handlers and context switches, present in more general-
purpose architectures. However, these sources will likely be in-
creasingly relevant to future GPU architectures as GPUs become
more general-purpose. To illustrate that nondeterminism exists
on GPUs, we have developed GPU-Racey, a CUDA determinis-
tic stress test, based on CPU deterministic stress test Racey [22].
Racey computes a signature that is extremely sensitive to the rela-
tive ordering of memory accesses among threads. Across multiple
runs, it should generate different signatures on a nondeterministic
system, and the same signature on a deterministic system. Running
GPU-Racey on real GPU hardware (a Quadro FX 5800 and a Tesla
C2050) with two or more concurrent wavefronts (warps) produces
nondeterministic outputs on different runs. While the exact sources
of nondeterminism in commercial GPUs are undocumented, we
have postulated several potential sources.

First, each GPU usually consists of multiple clock domains [34],
with each domain running at its optimal frequency. The synchro-
nizer circuits interfacing between these domains can introduce non-
deterministic delays to cross-domain messages due to phase drift-
ing among the different clocks [38]. This source of nondeterminism

may be exacerbated in the future as more aggressive power man-
agement features such as dynamic voltage and frequency scaling
(DVFS) are introduced to GPU architectures.

Second, the access timing to off-chip memory on a GPU de-
pends on the physical location of the data. Accesses to different
memory partitions have an observable delay difference [45]. With
the GPU shared by many different processes in the system, it is
improbable for the GPU driver to starting in the same memory
partition for every run of an application. The variance in DRAM
cells may also encourages more adaptive refreshing techniques that
change the refreshing interval according to the dynamic status of
different cells [30]. This introduces nondeterministic delays for
DRAM accesses.

Third, arbitration/scheduling units with uninitialized states can
introduce nondeterminism by ordering thread execution or memory
requests in an application differently between different runs. This
includes the hardware wavefront schedulers in each compute unit,
the workgroup distributor and the arbiters in the interconnection
network. Although these units are reset to a known initial state at
power up, the operating system is unlikely to reset them between
kernel launches. This makes the states of these units dependent on
the previously executed workload, which is usually not predictable.

Finally, as circuit process technology scales, transient faults
in memory cells have become increasingly common. Transient
failure in either on-chip or off-chip memory can trigger recover
routines randomly [32], thus introducing nondeterministic latencies
to memory accesses.

3. GPU Deterministic Execution:

Background and Challenges

Many hardware and software techniques have been proposed
for providing determinism on general-purpose multi-core proces-
sors [4, 6, 7, 16, 17, 23, 31, 35]. However, these techniques are
designed for systems supporting tens, not thousands, of threads.
Issues of serialization, global synchronization and per-thread fixed
costs have much greater impact at GPU-scale than at CPU-scale.

In this section, we first summarize the deterministic multipro-
cessor schemes CoreDet and Calvin [6, 23], which serve as a basis
for GPUDet. We then discuss the major challenges these prior ap-
proaches face in scaling up to work on GPU architectures. We have
chosen to start with Calvin and CoreDet over more recent propos-
als because their simplicity – particularly Calvin’s in-order pipeline
design that avoids hardware speculation – is a good match for cur-
rent GPU architectures. Furthermore, subsequent improvements in
deterministic execution hardware provide lighter-weight synchro-
nization operations [17], but do not address the scaling challenges
inherent in making GPU architectures deterministic. Incorporating
these subsequent improvements with GPUDet would improve per-
formance for the applications that have frequent communications
among threads.

3.1 Background: CoreDet and Calvin

CoreDet [6] is a compiler and accompanying runtime system that
provides strong determinism for multithreaded programs. A mul-
tithreaded program compiled with CoreDet always produces the
same result, even if the program contains data races. Calvin [23] is
a processor design that provides deterministic execution, using an
algorithm very similar to CoreDet’s but incorporating the specifics
of multi-core hardware. We provide a Calvin-centric overview as its
hardware implementation is most similar to the GPUDet approach.

The basic mechanism both schemes use to enforce determinism
is described in Figure 2. The execution of the program is divided
into quanta, deterministically-sized sequences of instructions, e.g.
every 1000th instruction executed by a wavefront marks the start

of a new quantum. Each quantum is in turn composed of three
phases. The first phase is parallel mode, wherein each processor
executes in isolation. Calvin’s special coherence protocol ensures
that a processor sees only its own writes but not those of remote
processors. In effect, each processor executes a single-threaded
program which is inherently deterministic. At the end of parallel
mode, all processors enter a global barrier before transitioning into
commit mode. In commit mode the writes from each processor
are made globally visible, using a deterministic parallel commit
algorithm that maps well to GPU hardware (Section 4.4.1). Another
global barrier separates commit mode from serial mode, during
which atomic operations (which cannot execute correctly under the
relaxed-consistency coherence protocol of parallel mode) execute
in a deterministic, serial order. A final global barrier ends the
current quantum and allows a new quantum’s parallel mode to
begin.

3.2 Deterministic GPU Execution Challenges

The first challenge for deterministic execution on the GPU is the
lack of private caches and cache coherence. A GPU’s multiplex-
ing of hundreds of threads onto a single first-level cache means
that Calvin’s mechanism of using private caches to provide isola-
tion between threads is not readily employable. Physically or logi-
cally partitioning each cache for use amongst hundreds of threads
would dramatically reduce the cache’s effectiveness. Even if per-
thread private caches were available, the lack of cache coherence
in a GPU’s per-core caches rules out Calvin’s modified coherence
protocol as a way of providing low-overhead thread isolation. Im-
plementing isolation in software (as in CoreDet) allows physical
resources to be shared but has high runtime overhead.

Another major concern in building deterministic GPUs is deal-
ing with very large numbers of threads. This in turn leads to a
number of related problems. Large numbers of threads make the
global barriers inherent in the CoreDet/Calvin deterministic execu-
tion algorithms much more expensive. Relatedly, atomic operations
require serialization in the Calvin and CoreDet models, so their
presence in a GPU kernel can quickly erode performance. By se-
rializing thousands of threads, an atomic operation has effectively
many orders of magnitude higher cost when run deterministically
than when run nondeterministically.

The GPU hardware features various hardware mechanisms to
efficiently manage thousands of threads. These mechanisms need to
be extended accordingly to support deterministic execution. Specif-
ically, with the SIMT execution model, arbitrarily pausing a scalar
thread that has exhausted its instruction quota while permitting the
others to proceed causes the wavefront to diverge. Handling this
divergence requires substantial modification to the SIMT hardware
and the extra determinism-induced divergence lowers the SIMD
hardware utilization.

Finally, GPU kernels have different program properties than
multithreaded CPU programs. Executing larger quanta is a natu-
ral solution to amortize expensive global barriers and atomic oper-
ations, and works well in the CPU space where threads are long-
lived. Unfortunately, GPU kernels often contain a large number
of short-running threads, making global barriers both expen-
sive and frequent. GPU threads tends to synchronize frequently
within a workgroup to communicate via the on-chip scratch-pad
memory. This form of hierarchical, localized communication fits
poorly with the infrequent global communication model in the
CoreDet/Calvin deterministic execution algorithms. GPU threads
also typically exhibit less locality than CPU threads, particularly
in terms of memory accesses: frequently-used values are instead
cached in a GPU’s large register files or scratch-pad memory. This
reduced locality makes Calvin’s cache-based isolation mechanism
a poor fit for GPU kernels.

Parallel

Mode

Commit

Mode

Serial

Mode
W0
W1

W2

W0

W1

W2

time Quantumn Quantumn+1

...

A

A

A

A

A

Atomic Operations

Quantum Boundary

Deterministic Commit

Wavefront Serialization

A

C
o
m
p
u
te

U
n
it
0

C
o
m
p
u
te

U
n
it
1

Figure 2. GPUDet-base architecture. Vertical lines show the
global synchronization before the start of each mode. Wave-
front 1 (W1) of compute unit 1 has been skipped in the se-
rial mode since it has not reached an atomic operation in the
quantumn.

4. GPUDet

In this section, we present GPUDet, the first hardware proposal
that provides strong determinism for deterministic massively par-
allel architecture with thousands of concurrent threads. We de-
sign GPUDet starting with a naive adaptation of the determinis-
tic multiprocessor schemes from CoreDet/Calvin onto the GPU.
This scheme divides GPU kernel execution into quanta. Each quan-
tum has three phases: parallel mode, commit mode and serial mode
as illustrated in Figure 2. GPUDet features optimizations for each
mode, leveraging the inherent determinism in the GPU architecture
as well as common-case GPU program behavior to recover more
parallelism while reducing complexity required to support deter-
ministic execution.

For parallel mode, GPUDet exploits the inherent determinism
of current SIMT architectures to provide deterministic interaction
among threads within a wavefront at no cost (Section 4.1). GPUDet
also introduces a novel wavefront-aware quantum formation al-
gorithm to eliminate unnecessary global synchronizations and re-
place them with local, deterministic synchronizations (Section 4.2).
The store buffers that provide isolated execution among determin-
istic wavefronts are described in Section 4.3. For commit mode,
GPUDet extends the Z-Buffer hardware designed for graphics ren-
dering to accelerate its deterministic parallel commit algorithm
(Section 4.4). For serial mode, it exploits the point-to-point order-
ing in the GPU’s memory subsystem to reduce the amount of seri-
alization required in this mode (Section 4.5). Section 4.6 discusses
limitations in GPUDet’s current design.

4.1 Deterministic Wavefront

The deterministic execution algorithm used in CoreDet and Calvin
imposes determinism by pausing the execution of threads at deter-
ministic intervals for communication [6, 23]. A naive GPU adap-
tation of this scheme would involve executing each scalar thread
in isolation during the parallel mode and pausing the thread when
it has exhausted its instruction count quota for the quantum. As
mentioned in Section 3.2, this behavior interacts poorly with the
implicit synchronizations of threads within a wavefront imposed
by the SIMT execution model. Example 1 shows the execution of
a wavefront with 4 threads (T0 to T3) through a branch hammock.
The wavefront diverges at line B. In response, the SIMT stack de-
activates T2 and T3 to execute line C with only T0 and T1 active.
After executing line C, T0 and T1 have exhausted their instruction

Example 1 Thread-level isolation introduces divergence in SIMT
architecture. In this example, each thread may execute up to 3
operations per quantum. The number of operations executed by
each thread is shown beside each line of the code.

T0 T1 T2 T3
A: v = 1; \\ 1 1 1 1
B: if(threadIdx.x < 2){ \\ 2 2 2 2
C: v = input[threadIdx.x]; \\ 3 3 2 2
D: } \\
E: output[threadIdx.x] += v; \\ 4 4 3 3

count quota for the quantum, and enter the global barrier for com-
mit mode. A deadlock has occurred, because this global barrier is
also waiting for T2 and T3, which are in turn paused by the SIMT
stack to reconverge with T0 and T1 for full SIMD execution at line
E. The SIMT stack can be modified to resolve this deadlock, but do-
ing so introduces extra complexity and lowers the SIMD hardware
utilization.

GPUDet eliminates these complexities and deadlock concerns
altogether by exploiting the fact that the execution of the en-
tire wavefront is inherently deterministic. Deterministic execution
within a wavefront also eliminates the need to have thread-level
isolation and allows threads in the same wavefront share a com-
mon store buffer. The inherent determinism of wavefront execution
arises from two properties: 1) Pausing the execution of a wavefront
causes each thread to execute a deterministic (but not necessarily
equal) number of instructions, and 2) existing GPU architecture
already handles data-races between threads within a wavefront.

As described in Section 2.1, the control flow of each wavefront,
and the activity of its threads at every dynamic instruction, are
controlled by its SIMT stack. The SIMT stack of every wavefront
has deterministic initial state, since all wavefronts execute at the
start of the kernel program. As the wavefront executes in parallel
mode, its SIMT stack is updated to handle any branch divergence
that occurs. This update is deterministic, because every thread in
the wavefront is executing with input data from a deterministic
global memory state produced by the previous quantum round.
Since the SIMT stack has a deterministic initial state and it is
updated deterministically, we can infer that the SIMT stack always
maintains a deterministic state.

The deterministic SIMT stack provides deterministic control
flow for the wavefront. More importantly, it ensures that the ac-
tivity of each thread in the wavefront is deterministic for every dy-
namic instruction. This means that a wavefront can pause after any
dynamic instruction to end its parallel mode for communication.
Each thread in the wavefront may have executed a different amount
of work in the parallel mode due to divergence, but the amount ex-
ecuted by each thread is always deterministic.

Data-races can occur between threads within a wavefront, but
these data-races are reproduced deterministically on current SIMT
hardware [25], a property we exploit in GPUDet. Data-races that
occur between threads executing different dynamic instructions
are always ordered deterministically, because instructions from the
same wavefront are executed in-order and the control flow of each
wavefront is deterministic as per the above discussion. Data-races
that occur between threads at the same dynamic memory instruc-
tion are ordered by the coalescing unit, which combines the scalar
memory accesses from threads within a wavefront into accesses to
wider memory chunks. When multiple threads in a wavefront write
to the same location the coalescing unit generates only one memory
access for the location and chooses one of the threads’ store values.
To ensure determinism, GPUDet relies upon the fact that the coa-
lescing unit selects the same thread’s store value for a given access
pattern. A NVIDIA patent [26] describes a way to deterministically

handle the write collision based on thread IDs (e.g. sending data of
the thread with largest thread ID). Samuli and Tero [25] have ex-
ploited this deterministic behavior to optimize their software ras-
terization engine for the Fermi GPU architecture [32]. We have
verified this observation on current GPU hardware as well as our
simulation infrastructure with the GPU-Racey stress test described
in Section 2.3. The deterministic interaction of threads within a
wavefront enables GPUDet to use a per-wavefront store buffer (de-
scribed in Section 4.3) for execution isolation.

4.2 Quanta Formation

At certain points of execution GPUDet pauses thread execution
to commit store buffers. In order to have deterministic results,
these points should be selected deterministically. In other words,
execution of threads should be paused at the exact same instruc-
tions in different runs of a program. These termination points are
called quantum boundaries in this paper. This section describes the
quantum formation algorithm and how GPUDet determines quanta
boundaries for each wavefront.

GPUDet divides the program execution into quanta similar to
previous work [6, 23, 35]. Each wavefront is allowed to execute
a deterministic number of instructions during the parallel mode in
each quantum. To avoid deadlocks and to handle atomic operations,
a wavefront may end its parallel mode before reaching its instruc-
tion limit. The following are the events that can cause a wavefront
to end its parallel mode:

Instruction Count. A wavefront ends its parallel mode once it
finishes executing a fixed number of instructions. This number is
the quantum size.

Atomic Operations. Atomic operations are handled in GPUDet
like they are in CoreDet. A wavefront ends its parallel mode when-
ever it reaches an atomic operation to execute the operation in serial
mode.

Memory Fences. GPUs provide memory fence instructions for
programmers to impose ordering on memory operations. Similar to
CoreDet/Calvin, a fence instruction causes a wavefront in GPUDet
to end its parallel mode to commit its store buffer in commit mode.

Workgroup Barriers. The GPU architecture provides workgroup-
level synchronization operations called workgroup barriers. As
discussed in Section 2, threads inside a workgroup cannot exit a
workgroup barrier before all other threads in the same workgroup
have reached the barrier. Some of these other wavefronts may have
exhausted their instruction count limit before reaching the work-
group barrier and are waiting at the global barrier for transition into
commit mode. To prevent a deadlock in this case, the wavefront at
the workgroup barrier should end its parallel mode to unblock the
other wavefronts.

Execution Complete. When a wavefront finishes kernel execu-
tion before exhausting its instruction count limit, it ends its parallel
mode.

Figure 3 shows the breakdown of these events for our GPU ap-
plications (more details in Section 5) running on GPUDet with this
baseline quantum formation logic. In this figure, GPUDet is con-
figured to have quantum size = 200 instructions. In ATM, CL and
HT, wavefronts usually end their quanta by reaching an atomic op-
eration. In AES, HOTSP, LPS and SRAD, most wavefronts end
their quanta at workgroup barriers. In BFSr, BFSf and CFD, wave-
fronts end more then 50% of their quanta at the end of a kernel
program, illustrating the short-running thread challenge discussed
in Section 3.2. Collectively, these events constrain the number of
instructions a wavefront may execute in each quantum, and thus
limit the effectiveness of increasing quantum size to amortize the
synchronization overhead at each quantum.

With the above observations, we have designed workgroup-
aware logic to determine the end of parallel mode of each quantum.

0%

20%

40%

60%

80%

100%

A
E

S

B
F

S
r

B
F

S
f

 C
F

D

 C
P

 H
O

T
S

P

 L
IB

 L
P

S

 S
R

A
D

H
T

A
T

M

C
Lo

p
t

%
o

f
Te

rm
in

a
ti

o
n

 R
e

a
so

n
s

Atomic Operations

Instruction Count

Execution Complete

Workgroup Barriers

Figure 3. Breakdown of events that causes a wavefront to end its
quantum in GPUDet with baseline quantum formation logic.

W0

W1

W2

C
o
m
m
it
 M
o
d
e

S
e
ri
a
l
M
o
d
e

C
o
m
m
it
 M
o
d
e

S
e
ri
a
l
M
o
d
e

C
o
m
m
it
 M
o
d
e

S
e
ri
a
l
M
o
d
eW0

W1

W2

time

Reaches
Workgroup
Barrier

Instruction

Count

C
o
m
p
u
te
 U
n
it
0

(a) GPUDet-base

(b) GPUDet-WA

Quantum

Boundary

Resume

Parallel Mode

without Ending

Quantum

parallel modeparallel mode

parallel mode

C
o
m
p
u
te
 U
n
it
0

Figure 4. GPUDet quantum formation. (a) GPUDet-base behavior
toward quantum termination events. (b) Workgroup-aware quantum
formation of GPUDet (GPUDet-WA) allows wavefronts of one
workgroup to continue the execution in parallel mode after all
reaching workgroup barrier.

In Section 4.2.1 and Section 4.2.2, we describe this workgroup-
aware quantum formation logic with two optimizations. One opti-
mization allows a wavefront to execute beyond a workgroup barrier
without ending its parallel mode; the other permits the GPU to issue
a new workgroup within a quantum.

4.2.1 Workgroup-Aware Quantum Formation

Our workgroup-aware quantum formation logic (GPUDet-WA) ex-
tends the parallel mode illustrated in Figure 2 with an intermediate
wait-for-workgroup mode. A wavefront advances to this wait-for-
workgroup mode after encountering one of the termination events
listed in Section 4.2 and waits for other wavefronts in the same
workgroup to arrive. In this intermediate mode, each wavefront can
deterministically observe the states of other wavefronts in the same
workgroup. This allows all wavefronts in a workgroup to collec-
tively decide the next mode.

Figure 4 illustrates how this mechanism reduces synchroniza-
tion overhead by eliminating an unnecessary quantum boundary
introduced by a workgroup barrier. This mechanism, called Bar-

rier Termination Avoidance (BTA), allows wavefronts to continue
execution past certain quantum boundary formation conditions im-
proving load balance when the quantum size is increased. In this
figure W0, W1 and W2 belong to one workgroup. In Figure 4 all
wavefronts of the workgroup have been terminated by reaching a
workgroup barrier. In the baseline GPUDet (Figure 4(a)), wave-
fronts will end their quantum and wait for the global synchroniza-

(a) Nondeterministic Baseline

Idle Cycles

(b) GPUDet Baseline Workgroup Distribution

WG = Workgroup

WGS = Workgroup Slot

Deterministic
Partitioning

WG Issue
Queue

time

(c) Deterministic Workgroup Partitioning

Issued

Workgroups

Spawn New

Workgroup

Quantum

Boundary

WG5

..

WG4

WG3

WG2

WG1

WG0

WG5

..

WG4

WG3

WG2

WG1

WG0

..

WG6

WG4

WG2

WG0

..

WG7

WG5

WG3

WG1

WGS0 WG2WG0 ...

WGS1 WG1 WG3...

WGS0 WG0 WG3 ...

WGS1 WG1 WG2 ...

WGS0 WG2WG0 ...

WGS1 WG1 WG3 ...

Figure 5. Workgroup distribution

tion before start of commit mode. However, GPUDet wavefront
aware quantum formation (GPUDet-WA) allows the wavefronts to
exit the barrier and resume the parallel mode without ending the
quantum (BTA). Since reaching all the wavefronts of workgroup is
compulsory to exit the barrier, the wavefronts would not be able to
exit the barrier if a wavefront in that workgroup stopped execution
before the barrier. To avoid the resulting deadlock condition, all
of the wavefronts of the workgroup finish the parallel phase if any
of them have stopped their parallel mode before the barrier (e.g.,
reaching instruction limit).

A similar scenario arises when all wavefronts of the workgroup
are terminated by reaching the end of their kernels. In this case,
GPUDet launches a new workgroup and the execution continues in
the parallel phase helping to ameliorate the impact of load imbal-
ance between workgroups and gaining larger quanta.

4.2.2 Deterministic Workgroup Distribution

In Section 2, we described how a hardware workgroup distributor
assigns a new workgroup to a compute unit whenever it has a
free “slot” (subset of wavefronts with size of workgroup). This
distribution of workgroups to compute units occurs both at the start
of a kernel launch and when a running workgroup has finished
execution.

Since the commit order of wavefronts is defined by how they
are assigned to hardware wavefront slots, any change in this assign-
ment will affect the commit order and hence the execution results.
To achieve deterministic results, workgroups should be distributed
among compute units deterministically. GPUDet has two different
schemes to achieve deterministic workgroup distribution.

In the default scheme illustrated in Figure 5(b), GPUDet spawns
workgroups only at the start of each quantum. The state of the
whole system is deterministic when a quantum starts, so when

employing this policy the workgroup distributor has determinis-
tic information about free workgroup slots. To ensure determin-
ism, workgroups are assigned to free slots deterministically based
on hardware slot ID. To achieve this, GPUDet enters a special
work distribution mode right before entering the parallel mode.
Workgroups are spawned only in this work distribution mode. All
wavefronts stay in this mode until the workgroup distributor fin-
ishes assigning all free workgroup slots on all compute units with
new workgroups. A deterministic set of free slots and of remaining
workgroups results in spawning a deterministic set of workgroups.

Although implementation of the default workgroup distribution
scheme in GPUDet is simple, it performs poorly when the kernel
launch consists of short-running threads. If new workgroups are
only issued in work distribution mode, then the number of instruc-
tions executed by a wavefront in one quantum will be limited by
the amount of work per workgroup. This leads to load imbalance
when some workgroups have more work than others.

To address this problem, we have proposed a Deterministic
Workgroup Partitioning technique (DWP) that allows workgroups
to be issued deterministically in the middle of parallel mode. To
prevent nondeterministic workgroup distribution inside parallel
mode, GPUDet partitions the issue-pending workgroups among
hardware workgroup slots before starting parallel mode. Each
workgroup slot can only be replenished with the workgroups in
its partition. As workgroup partitioning is done in a determinis-
tic state (at the start of each quantum round), the final workgroup
partitioning is deterministic.

4.3 Per-Wavefront Store Buffer

In GPUDet, each wavefront has a private store buffer that contains
all of its global memory writes from the parallel mode in the current
quantum. The store buffer is located in the private memory of the
wavefront, cached by the L1 data cache and written back to off-
chip DRAM. It has been observed that in GPU kernel programs,
data written to global memory is rarely accessed by the writer
thread/wavefront again [19]. This insight suggests organizing the
store buffer as a linear write log. Each entry in this write log
represents a coalesced global memory write to a coalesced memory
access size -128-Byte- chunk. It has an address field indicating the
destination location of the chunk, a data field, and a 128-bit byte
mask to indicate the valid portion in the data field. The store buffer
has a Bloom filter that summarizes the addresses updated in the
write log. Each coalesced global memory read in parallel mode first
queries the Bloom filter with its chunk address. A hit in the Bloom
filter triggers a linear search through the write log; a miss redirects
the global memory read to the normal access sequence.

The cost of using a large Bloom filter to reduce false positives is
amortized with a wavefront-shared store buffer. A 1024-bit Bloom
filter only takes 8kB of storage per compute unit (assuming 48
wavefronts per unit). The Bloom filter of each wavefront can be
stored in the register file space allocated to the wavefront. This
eliminates any need for permanent storage at the expense of extra
register file bandwidth and capacity.

4.4 Parallel Commit of Store Buffers

GPUDet commits the store buffers from all wavefronts into the
global memory in the commit mode to allow wavefronts to commu-
nicate deterministically. We use the deterministic parallel commit
algorithm used in CoreDet [6]. This algorithm tags the entries from
the store buffer from a wavefront with a deterministic ID. This ID
defines the commit order of this wavefront with respect to the other
wavefronts. The wavefronts can attempt to commit the entries in
their store buffers in parallel. The algorithm uses the deterministic
ID to determine the final writer, in commit order, to each memory
location, and guarantees that the location contains the value writ-

ten by this wavefront after the commit mode. Currents GPUs have
non-coherent private caches. To avoid reading stale data GPUDet
flushes the L1 data caches after the commit mode. Supporting cache
coherency on GPUs [39] would eliminate this overhead.

While CoreDet implemented this algorithm in software using
fine-grained locks, we recognized that this algorithm is analogous
to the Z-Buffer algorithm that controls the visibility of overlapped
polygons in graphics rendering. GPUDet adopts the Z-Buffer Unit
for graphics rendering to implement a hardware accelerated version
of the deterministic parallel commit algorithm.

Currently, no GPU vendors have exposed any instruction for
using the Z-Buffer Unit directly in general purpose programming
models like CUDA and OpenCL. We believe exposing this unit in
general purpose programming model will not be expensive in terms
of area or complexity.

4.4.1 Z-Buffer Unit

Z-Buffer algorithm is designed to control the visibility of over-
lapped 3D objects displayed on screen. In graphics rendering, 3D
objects are represented by triangles that are transformed according
to a given camera view to be displayed. Each pixel rendered from
a triangle is assigned a depth value representing its logical order
with respect to pixels from other triangles. These depth values are
stored in a set of memory locations called the Z-Buffer. A special-
ized hardware unit in the GPU, which we call the Z-Buffer Unit,
manages the Z-Buffer. Using the depth values in the Z-Buffer, the
Z-Buffer Unit prevents overlapped triangles from updating the col-
ors of the pixels that have been updated by a foreground triangle.
The Z-Buffer Unit allows out-of-order writes to produce a deter-
ministic result. Namely, each pixel on the screen displays the color
of the foremost triangle covering that pixel regardless of the order
of the triangle updates.

There is little publicly-available information regarding the in-
ternal architecture of Z-Buffer Unit in current GPUs. The Z-Buffer
Unit evaluated in this paper is inspired by the details disclosed in a
patent by ATI Technologies [43]. As shown in Figure 1, there is a
Z-Buffer Unit in each memory partition, each responsible for ser-
vicing the color update requests to the memory locations managed
by the partition. Each Z-Buffer Unit contains a request buffer for
keeping the status of the incoming requests. Each request contains
a 128-byte aligned address to the chunk of pixels it attempts to up-
date, together with 32 color values and 32 depth values. It also has
a 128-bit byte mask indicating the valid values in the color update
request. A color update request first tries to retrieve the latest depth
values for its pixels from a cache for the depth values, called the Z-
cache. The depth values from the request are then compared against
the retrieved depth values. The Z-Buffer Unit then updates the color
of the pixels that passes the comparison by sending write requests
to the L2 cache, and updating the depth values in the Z-cache. A
request that misses at the Z-cache allocates a block in the cache,
locks the block and defers its comparison until the depth values are
fetched. Requests hitting at a locked block are deferred similarly.
The Z-Buffer Unit overlaps multiple color update requests to toler-
ate the Z-cache miss latency.

4.4.2 Deterministic Parallel Commit using Z-Buffer

To adopt the Z-Buffer Units for deterministic parallel commit of
store buffers, GPUDet allocates a corresponding Z-Buffer for each
writable global memory buffer. The allocation routine co-locates
both depth and data of a memory location at the same memory
partition. In commit mode, each wavefront publishes the entries in
its store buffer by traversing through the linear write log. From each
entry, it generates a color update request containing the buffered
data, with the depth equal to the logical quantum ID concatenated
with its hardware wavefront ID:

W0
W1

W2

W0

W1

W2

C
o
m
m
it
 M
o
d
e

W0
W1

W2

W0

W1

W2

C
o
m
m
it
 M
o
d
e

time

Serialization

Atomic

OperationP
a
ra
lle
l
M
o
d
e

P
a
ra
lle
l
M
o
d
e

A

A

A

A

A

A

serial mode

serial mode

(a)

(b)

A

A

A

A

A

C
o
m
p
u
te

U
n
it
0

C
o
m
p
u
te

U
n
it
0

C
o
m
p
u
te

U
n
it
1

C
o
m
p
u
te

U
n
it
1

Figure 6. Serial mode in GPUDet. (a) Serializing execution of all
atomic operations in GPUDet-base. (b) Overlapping execution time
of atomic operations from each compute unit by GPUDet.

Depth value = −(quantum id× 2m) + wavefront id
Here, m is number of bits needed to represent the maximum num-
ber of wavefronts that can run concurrently on the hardware. We
include the logical quantum ID in the depth to ensure that data from
an earlier quantum is always overwritten by memory updates from
a later quantum. Without the logical quantum ID, the depth val-
ues for all writeable locations in global memory must be reset to
the largest positive integer at every quantum boundaries. With the
quantum ID, GPUDet amortizes this overhead across a large num-
ber of quanta by resetting the Z-buffer only when the ID overflows.

4.5 Compute Unit Level Serialization

In serial mode, the wavefronts execute atomic operation in a deter-
ministic serial order, with the operations updating the global mem-
ory directly. Each wavefront executes only one atomic operation in
serial mode. Each atomic operation can take 100s of cycles to ex-
ecute in the GPU’s throughput-optimized memory subsystem. Our
evaluation in Section 5.2.3 shows that this naive, wavefront-level
serialization (W-Ser) significantly slows down applications that use
atomic operations.

To recapture parallelism, GPUDet exploits the point-to-point
ordering guaranteed by our GPU memory model and common in
network-on-chip designs [44] to overlap the execution of atomic
operations within a compute unit (CU-Ser). As long as the inter-
connection network guarantees point-to-point ordering, atomic op-
erations from the same compute unit to the same memory partition
will arrive in the original order. With little if any potential perfor-
mance gain at stake, the memory partitions do not reorder accesses
to the same memory location. By resetting the wavefront scheduler
in each compute unit at the start of serial mode, GPUDet forces the
unit to issue its atomic operations in a deterministic order. This or-
der is preserved by the point-to-point ordering in the GPU memory
subsystem. On the other hand, since there is no guaranteed order-
ing between requests from different cores, GPUDet has to serialize
memory operations from different compute units.

Figure 6 demonstrates how this optimization reduces serializa-
tion overhead in GPUDet by eliminating serialization within each
compute unit. In Figure 6(a), the atomic operations from all work-
group are executed serially. In Figure 6(b), each compute unit over-
laps execution of their wavefronts in serial phase, so the serializa-

tion overhead is reduced by a factor of number of wavefronts in the
compute unit.

4.6 Limitations

The current design of GPUDet does not enforce determinism in the
use local memory (or shared memory in NVIDIA terminology).
Local memory accesses update the on-chip scratch-pad memory
directly and rely on the application to remove data-races via work-
group barriers. The wavefront scheduler at each compute unit can
be modified to issue wavefronts in deterministic order. This modi-
fied scheduler will provide deterministic execution for local mem-
ory accesses even in the presence of data-race. We leave proper
support for deterministic local memory accesses as future work.

Since the current Z-buffer design binds each 32-bit color pixel
in memory with a depth value, the Z-buffer-based parallel com-
mit algorithm is not directly applicable to applications with byte-
granularity writes. An intermediate solution, without modifying the
Z-Buffer Unit, is to commit (only) the store buffer entries with byte-
granularity writes in the serial mode. We leave evaluation of this as
future work. Note that the per-wavefront store buffer is already de-
signed to support byte-granularity accesses. Each store buffer en-
try contains a 128-bit mask indicating the modified bytes, and the
Bloom filter is only responsible for identifying accesses to the same
128-byte chunk.

5. Evaluation

We extended GPGPU-Sim 3.0.2 [5] to model a nondeterministic
GPU architecture by randomizing the interconnect injection order
of requests from different compute units. We evaluate the perfor-
mance impact of GPUDet on a set of CUDA/OpenCL benchmarks
(listed in Table 1) from Rodinia[14], Bakhoda et al.[5] and Fung et
al.[19]. We ran each benchmark to completion. We do not exclude
any benchmarks because of poor performance. We do exclude
one benchmark that assumes workgroups are spawned in ascend-
ing ID order, and five benchmarks that contain hard-to-eliminate
byte-granularity writes. We include a version of cloth simula-
tion (CLopt) with a GPU-optimized work distribution scheme that
transforms the non-coalesced memory accesses into coalesced ac-
cesses. This optimized version performs 30% faster than the origi-
nal one on the nondeterministic baseline architecture. On GPUDet,
this optimization significantly reduces the number of entries in the
per-wavefront store buffers, lowering the overhead of each write-
log search. It also generates fewer write-log searches by eliminating
the aliased read-write accesses within a wavefront accessing differ-
ent bytes in the same 128-bytes. These two effects cause CLopt to
perform significantly better than CL on GPUDet (Section 5.3.1).
We also include the version of BFS graph traversal with data-races
(BFSr) from Section 1.1 as well as the corrected version (BFSf)
from Rodinia [14]. Both BFSr and BFSf are modified to use 32-bit
boolean flags to eliminate byte-granularity writes.

We used GPU-Racey (described in Section 2.3) to verify our
nondeterminism extension to GPGPU-Sim, and to verify that our
model of GPUDet can provide deterministic execution under this
nondeterministic simulation framework.

Our modified GPGPU-Sim is configured to model a Geforce
GTX 480 (Fermi) GPU [32] with the configuration parameters dis-
tributed with GPGPU-Sim 3.0.2. In our default GPUDet configu-
ration, each Z-Buffer Unit runs at 650MHz, has a 16kB Z-cache,
and a 16 entry request buffer. The per-wavefront store buffer uses
a 1024-bit bloom filter, implemented with a Parallel Bloom Fil-
ter [37] with 4 sub-arrays each indexed with a different hash func-
tion. This default configuration assumes that each global barrier
between parallel, commit, and serial modes in GPUDet takes zero
cycles. Section 5.3.4 investigates the sensitivity of GPUDet’s per-
formance to various Z-cache sizes, smaller store buffer bloom fil-

Table 1. Benchmarks
Name Abbr.

Without Atomic Operations

AES Cryptography [5] AES

BFS Graph Traversal (with Data-Race) [5] BFSr

BFS Graph Traversal (Race-Free) [14] BFSf

Computational Fluid Dynamics Solver [14] CFD

Coulumb Potential [5] CP

HotSpot [14] HOTSP

LIBOR [5] LIB

3D Laplace Solver [5] LPS

Speckle Reducing Anisotropic Diffusion [14] SRAD

With Atomic Operations

Cloth Simulation [19] CL

Cloth Simulation (Optimized) CLopt

Hash Table [19] HT

Bank Account [19] ATM

ters, and higher global barrier latencies. Our modified version of
GPGPU-Sim and the benchmarks are available online [1].

5.1 Overall Performance

To evaluate our system, we compare the execution time of the
benchmarks on a baseline nondeterministic architecture (NON-
DET) and the optimized version of GPUDet. We configure the
quantum size to 200 instructions. We increment the instruction
count whenever a wavefront executes an instruction, regardless
of how many threads in the wavefront execute that instruction.
Figure 7 shows the total execution time of each application with
GPUDet, normalized to execution time on a nondeterministic archi-
tecture. Our deterministic model causes about 105% performance
penalty on average. The execution time of each application is bro-
ken down into time spent in parallel, commit and serial modes.
Wavefronts spend the most time in parallel mode. We discuss the
sources of performance overhead in parallel mode below. As dis-
cussed in Section 4.5, GPUDet only serializes the execution of
atomic operations: applications without atomic operations (all ex-
cept CLopt, HT, ATM) skip serial mode entirely.

We have found that some applications (CP, AES) perform
slightly better with deterministic execution. A deeper inspection
reveals that our workgroup distribution algorithm (Section 4.2.2)
results in a more even distribution of workgroups compared to the
baseline architecture. The baseline architecture tries to find the first
free hardware slot to spawn a workgroup. This mechanism can
cause uneven distribution at the very end of a kernel launch when
all workgroups of one compute unit finish their executions within a
short period. In this case, all remaining workgroups are assigned to
the sole available compute unit. When other compute units become
available, no workgroups are left to be assigned, and the com-
pute units are underutilized (a similar observation was noted by
Bakhoda et al [5]). For these applications, GPUDet’s determinis-
tic workgroup distribution will distribute workgroups more evenly,
resulting in a small speedup.

5.2 Impact of GPUDet Optimizations

This section provides data to evaluate our optimization techniques
discussed in Section 4.

5.2.1 Quantum Formation

To assess our proposed optimization techniques for quantum for-
mation (Section 4.2) we implemented three versions of GPUDet
shown in Figure 8. In the GPUDet-base configuration all optimiza-
tions are disabled. In the GPUDet-WA(BTA) the workgroup barrier
optimization technique (Section 4.2.1) is enabled, allowing work-
groups to synchronize without a quantum boundary. Finally, the
GPUDet-WA(BTA+DWP) version additionally allows new work-
groups to be spawned in parallel mode by deterministically par-

0

1

2

3

4

5

A
E

S

B
F

S
r

B
F

S
f

 C
F

D

 C
P

 H
O

T
S

P

 L
IB

 L
P

S

 S
R

A
D

H
T

A
T

M

C
Lo

p
t

N
o

rm
a

li
ze

d

E
x
e

cu
ti

o
n

 T
im

e Serial Mode

Commit Mode

Parallel Mode

Figure 7. Breakdown of execution cycles. Normalized to NON-
DET execution time.

0

1

2

3

4

5

A
E

S

B
F

S
r

B
F

S
f

 C
F

D

 C
P

 H
O

T
S

P

 L
IB

 L
P

S

 S
R

A
D

H
T

A
T

M

C
Lo

p
t

A
V

G

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

GPUDet-base

GPUDet-WA(BTA)

GPUDet-WA(BTA+DWP)

Figure 8. Performance impact of Barrier Termination Avoid-
ance (BTA) and Deterministic Workgroup Partitioning (DWP)
techniques. Bars Normalized to NONDET execution time.

titioning of the workgroups (DWP) among workgroup slots (Sec-
tion 4.2.2).

Figure 8 shows that the barrier termination avoidance technique
decreases the execution time by 4% on average over GPUDet-
base. As expected, this improvement lies mostly with benchmarks
that have frequent synchronization barriers (AES, HOTSP, LPS,
SRAD). Figure 3 shows that encountering workgroup barriers is the
dominant cause of quantum termination for these applications. Our
experiments confirm that activating the barrier termination avoid-
ance technique (GPUDet-WA(BTA)) forms 3.8× fewer quanta in
these four benchmarks, improving their performance by 20% on
average.

Figure 8 shows that applications with small kernel functions
(BFSr, BFSf, CFD) benefit from spawning workgroups in parallel
mode. Figure 3 confirms that most of the quanta in BFSr, BFSf and
CFD are terminated by reaching the end of the kernel. The ability to
start new workgroups deterministically in parallel mode (GPUDet-
WA(BTA+DWP)) speeds up these applications by 19% on average.

5.2.2 Parallel Commit using Z-Buffer Unit

To evaluate the Z-Buffer Unit parallel commit algorithm, we im-
plemented a lock-based version of committing the store buffer. The
lock-based version simulates the software-based deterministic par-
allel commit algorithm proposed in CoreDet [6]. The algorithm
locks the chunk of memory that corresponds to the store buffer
entry address using atomic operations and performs the logical or-
der priority comparisons and global memory updates in a mutually
exclusive section. Although it has been reported that atomic op-
erations contending for the same memory location can be up to
8.4× slower than non-atomic store operations in the Fermi archi-
tecture [40], in our evaluation we do not model this extra slowdown

0

2

4

6

8

10
B

u
ff

e
r

Lo
ck

in
g

B
u

ff
e

r

Lo
ck

in
g

B
u

ff
e

r

Lo
ck

in
g

B
u

ff
e

r

Lo
ck

in
g

B
u

ff
e

r

Lo
ck

in
g

B
u

ff
e

r

Lo
ck

in
g

B
u

ff
e

r

Lo
ck

in
g

B
u

ff
e

r

Lo
ck

in
g

B
u

ff
e

r

Lo
ck

in
g

B
u

ff
e

r

Lo
ck

in
g

B
u

ff
e

r

Lo
ck

in
g

B
u

ff
e

r

Lo
ck

in
g

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Commit Mode

Parallel & Serial Modes

Z
-B

u
ff

e
r

Lo
ck

in
g

Z
-B

u
ff

e
r

Lo
ck

in
g

Z
-B

u
ff

e
r

Lo
ck

in
g

Z
-B

u
ff

e
r

Lo
ck

in
g

Z
-B

u
ff

e
r

Lo
ck

in
g

Z
-B

u
ff

e
r

Lo
ck

in
g

Z
-B

u
ff

e
r

Lo
ck

in
g

Z
-B

u
ff

e
r

Lo
ck

in
g

Z
-B

u
ff

e
r

Lo
ck

in
g

Z
-B

u
ff

e
r

Lo
ck

in
g

Z
-B

u
ff

e
r

Lo
ck

in
g

Z
-B

u
ff

e
r

Lo
ck

in
g

AES BFSr BFSf CFD CP HOTSP LIB LPS SRAD HT ATM CloptN
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Figure 9. Execution time comparison of committing the store
buffer between the Z-Buffer Unit parallel commit and the lock-
based algorithms

0

2

4

6

8

10

12

14

W
-S

e
r

C
U

-S
e

r

W
-S

e
r

C
U

-S
e

r

W
-S

e
r

C
U

-S
e

r

CLopt HT ATM

N
o

rm
a

li
ze

 E
x
e

cu
ti

o
n

 T
im

e Serial Mode

Parallel&Commit Modes

Figure 10. Execution time comparison between wavefront level
(W-Ser) and compute unit level (CU-Ser) serialization of
atomic operations (Section 4.5). Normalized to NONDET ex-
ecution time

for the additional atomic operations required by the lock-based ver-
sion.

Figure 9 shows the normalized execution time for both of the
store buffer committing algorithms. The Z-Buffer Unit commit al-
gorithm improves performance by 60% on average. Since spinning
for a lock in compute units generates significantly more global
memory accesses, it is expected that the applications with more
accesses (e.g. HT) achieve more performance improvement by ex-
ploiting the Z-Buffer Unit commit algorithm. Figure 9 shows that
the execution time of commit mode is decreased by 2.3× using the
Z-Buffer Unit for the HT benchmark.

5.2.3 Serial Mode Optimization

Figure 10 evaluates the performance overhead of serial mode in
GPUDet. Since only atomic operations are serialized, we omit
benchmarks without atomic operations. W-Ser (wavefront level se-
rialization) is the GPUDet-base configuration which serializes ex-
ecution of all atomic operations. In CU-Ser (compute unit serial-
ization), serialization is only performed among compute units by
executing the atomic operations of a single compute unit in paral-
lel. CU-Ser decreases overhead of serial mode by 6.1× for these
applications.

5.3 Sensitivity Analysis

This section explores the performance impact of varying different
GPUDet design parameters.

5.3.1 Quantum Size and Store Buffer Overhead

In this section we evaluate the effect of quantum size on perfor-
mance. For better insight, we separate out the time spent in store
buffer operations. Store buffer operations entail appending entries
to store buffers for stores, and traversing store buffers for reply-

6

8

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

T
im

e
 i

n
 P

a
ra

ll
e

l
M

o
d

e

128 bits 256 bits

512 bits 1024 bits

0

2

4

6

B
F
S

r

B
F
S

f

C
F

D

LP
S

S
R

A
D

H
T

A
T

M

C
Lo

p
t

A
V

G C
L

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

T
im

e
 i

n
 P

a
ra

ll
e

l
M

o
d

e

512 bits 1024 bits

Ideal BF

Figure 12. Execution cycles in parallel mode for various sizes
of Bloom filter, normalized to NONDET execution. The AVG
bar shows the average among all our benchmarks.

ing to loads. Figure 11 shows the execution time of GPUDet with
quantum sizes of 100, 200, 600 and 1000 instructions.

Increasing quantum size has three kinds of effects on applica-
tions. For applications that have few stores to global memory (AES,
CP, HOTSP and LIB) larger quanta improves performance. By in-
creasing quantum size, we reduce the number of quantum bound-
aries, each of which involves expensive global synchronization.

For applications with frequent accesses to global memory (BFSr
and BFSf), performance is degraded with increasing quantum size,
because larger quanta lead to larger store buffers. Because GPUDet
uses a linear write log traversal, load instructions hitting in store
buffer must perform longer searches. Increasing the quantum size
also has a side effect on the BFS benchmark. Since this benchmark
is not work optimal [27] (it may do each task several times), the
number of executed instructions varies in different configurations.
In this application the number of redundant tasks depends on how
frequently the execution results of each thread become visible to the
other threads. Enlarging quantum size causes results to be visible
less frequently, BFS runs more redundant tasks which decreases
performance. Our experiments reveal that the number of executed
instructions increases by 26% when the quantum size increases
from 200 to 1000.

For the CL benchmark, the performance overhead of the lin-
ear write log is highly affected by the size of the quantum. We
realized that in the Integrator, WriteBack and Driver Solver ker-
nels [12] of this benchmark work is distributed block-wise among
the threads, so wavefronts generate uncoalesced memory accesses.
As described in Section 4.3, uncoalesced accesses generate many
extra entries in the store buffer. Furthermore, due to Bloom filter
aliasing, uncoalesced accesses result in unnecessary log traversals
for load operations (Section 5.3.2). By using an interleaved dis-
tribution of work among the threads, we eliminated uncoalesced
memory accesses in the CLopt application. Since eliminating un-
coalesced accesses to the global memory is profitable for general
GPU applications and it does not need substantial changes to CL
source code, we have only included the optimized version of CL in
our overall average.

5.3.2 Bloom Filter

Figure 12 evaluates the effect of Bloom filter size on performance.
Since the Bloom filter configuration does not affect commit and se-
rial modes, we present only the execution time of parallel mode.
Figure 12 shows the execution time of the GPUDet architecture
with 128, 256, 512 and 1024-bit Bloom filters, and an ideal Bloom
filter which has no false positives. We only present the execution
time of individual applications that use the store buffer frequently,
but the average is for all our workloads. Figure 12 shows that for
most of the applications (except BFSr and CL) a 256-bit Bloom fil-

0

2

4

6

8

10

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Serial Mode

Commit Mode

Store Buffer Overhead

Parallel Mode7

9

11

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

1
0

0
2

0
0

6
0

0
1

0
0

0

AES BFSr BFSf CFD CP HOTSP LIB LPS SRAD HT ATM CLopt AVG CLN
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Figure 11. Sensitivity of GPUDet to quantum size. Execution time is normalized to NONDET. The unoptimized version of CL is
not included in the average.

ter performs as well as ideal. Increasing Bloom filter size for BFSr
reduces execution time because of a high number of store buffer
entries in each quantum. For CL, because of the large number of
uncoalesced accesses, the store buffer contains many 128B entries
with sparsely-populated data portions. The large number of entries
causes many loads to perform unnecessary log traversals.

5.3.3 Z-Buffer Unit

We assess the sensitivity of GPUDet to the size of the Z-cache (Sec-
tion 4.4.1) by adjusting the size of cache for each memory partition
from 8KB to 128KB. As expected, execution time decreases with
increasing Z-cache size. However, since wavefronts spend most of
their execution time in parallel and serial modes, the execution time
decreases by less than 3% when the Z-cache is enlarged from 8KB
to 128KB.

5.3.4 Global Synchronization Overhead

GPUDet needs global synchronization between each execution
mode. We analysed the sensitivity of GPUDet to the cost of global
synchronization. Our data illustrates that the overall performance
degradation with a 100 cycles synchronization overhead is neg-
ligible. However increasing the overhead to 1000 cycles reduces
overall performance by 22% over the instantaneous synchroniza-
tion model.

6. Related Work

The most highly-related work to GPUDet are proposals for pro-
viding deterministic execution of general CPU programs [4, 6, 7,
16, 23, 31, 35]. These schemes provide determinism for general
multithreaded code on commodity [4, 6, 7, 31, 35] or modified
general-purpose multicore CPUs [16, 23]. A naive translation of
these schemes to a GPU architecture would be highly inefficient
due to the massive numbers of threads involved. For example, the
global barriers inherent in many deterministic execution schemes
([4, 7, 16, 23, 31]) would not scale well with 1000s of threads.
Kendo’s [35] more scalable approach provides determinism for
data-race-free programs only, which would scale better in a GPU
environment but also reneges on many of the debugging benefits of
other determinism techniques that can handle data races.

There has also been extensive work on deterministic program-
ming languages ([9, 10, 13, 18, 36, 41]). Programs written in these
languages are deterministic by construction, and incur little run-
time overhead during execution at the expense of a restricted pro-
gramming model. SHIM [18] is a deterministic version of MPI that
provides determinism for message-passing programs. NESL [9]
and Data Parallel Haskell [13] are pure functional languages that
support data-parallel operations which are deterministic and im-
plicitly parallel. Jade [36] is an imperative language that relies on
programmer-supplied annotations to extract parallelism automat-

ically while preserving sequential (and deterministic) semantics.
StreamIt [41] is a language for streaming computations that en-
forces determinism by restricting communication between parallel
stream kernels to occur only via FIFOs, though a later version of
StreamIt allowed for out-of-band control messages that could flow
both upstream and downstream without breaking determinism [42].
Deterministic Parallel Java [10] is a version of Java augmented with
a type-and-effect system that proves non-interference between par-
allel fork-join tasks. None of these languages are directly appli-
cable to current GPU programming models, which support a rich
set of synchronization primitives via atomic operations on global
memory.

A number of projects have looked at improving GPU pro-
grammability through hardware or software mechanisms. Kilo
TM [19] showed that transactional memory can be incorporated
into the GPU programming model at low cost. GRace [46] pro-
posed a race detector for GPU programs, achieving low overhead
via a combination of static analysis and runtime instrumentation.
Boyer and Skadron [11] describe a GPU emulator that detects race
conditions and bank conflicts for CUDA programs, though the em-
ulation overheads are quite high compared to native execution. The
PUG system [28] and GPUVerify [8] leverage the compact na-
ture of GPU kernels to perform static race detection, occasionally
requiring annotations from programmers to avoid false positives.

7. Conclusion

Nondeterminism in parallel architectures hampers programmers’
productivity significantly as bugs can no longer be reproduced
easily. We believe this non-reproducibility problem presents a key
challenge to GPU software development, discouraging use of GPUs
in broader range of applications.

In this paper we presented GPUDet, a proposal for supporting
deterministic execution on GPUs. GPUDet exploits deterministic
aspects of the GPU architecture to regain performance. Specifi-
cally, it uses the inherent determinism of the SIMD hardware in
GPUs to provide deterministic interaction among threads within a
wavefront. This amortizes the complexity of store buffers required
to isolate the execution of each wavefront and works seamlessly
with the existing SIMT execution model in GPUs. GPUDet uses
a workgroup-aware quantum formation scheme that allows wave-
fronts in parallel mode to coordinate via workgroup barriers and to
accept work from a deterministic workgroup distributor. GPUDet
also extends the Z-Buffer Unit, an existing GPU hardware unit for
graphics rendering, to deterministically commit store buffers in par-
allel. Finally, GPUDet eliminates the serialization required among
atomic operations from the same compute unit by exploiting the
implicit point-to-point ordering in the GPU memory subsystem.

Our simulation results indicate that these optimizations allow
GPUDet to perform comparably against a nondeterministic base-

line, despite running GPU kernels with thousands of threads. Our
characterization of sources of overhead for deterministic execution
on GPUs provides insights for further optimizations.

Acknowledgments

The authors would like to thank Inderpreet Singh, Tim Rogers,
Henry Wong and the anonymous reviewers for their insightful feed-
back. We also thank Ayub Gubran for his work on developing the
functional model for the Z-Buffer Unit in our simulator. This re-
search was funded in part by grants from Advanced Micro Devices
Inc., Qualcomm Inc., and the Natural Sciences and Engineering
Research Council of Canada. Wilson W. L. Fung is supported by
NVIDIA Graduate Fellowship Program.

References

[1] http://www.ece.ubc.ca/˜aamodt/GPUDet.

[2] White Paper — AMD Graphics Cores Next (GCN) Architecture. AMD,
June 2012.

[3] D. Arnold et al. Stack Trace Analysis for Large Scale Debugging. In
IPDPS, 2007.

[4] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-enforced
deterministic parallelism. In OSDI, 2010.

[5] A. Bakhoda et al. Analyzing CUDA Workloads Using a Detailed GPU
Simulator. In ISPASS, 2009.

[6] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
Det: A Compiler and Runtime System for Deterministic Multithreaded
Execution. In ASPLOS, 2010.

[7] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic Process
Groups in dOS. In OSDI, 2010.

[8] A. Betts, N. Chong, A. F. Donaldson, S. Qadeer, and P. Thomson.
GPUVerify: a verifier for GPU kernels. In Proceedings of the 27th An-

nual ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA’12). ACM, 2012.

[9] G. Blelloch. NESL: A Nested Data-Parallel Language (Version 3.1).
Technical report, Carnegie Mellon University, Pittsburgh, PA, 2007.

[10] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A
Type and Effect System for Deterministic Parallel Java. In OOPSLA,
2009.

[11] M. Boyer, K. Skadron, and W. Weimer. Automated Dynamic Anal-
ysis of CUDA Programs. In Third Workshop on Software Tools for

MultiCore Systems, 2008.

[12] A. Brownsword. Cloth in OpenCL, 2009.

[13] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller,
and S. Marlow. Data Parallel Haskell: A Status Report. In DAMP,
2007.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In IISWC, 2009.

[15] B. W. Coon et al. United States Patent #7,353,369: System and Method
for Managing Divergent Threads in a SIMD Architecture (Assignee
NVIDIA Corp.), April 2008.

[16] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic
Shared Memory Multiprocessing. In ASPLOS, 2009.

[17] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman. RCDC:
A Relaxed Consistency Deterministic Computer. In ASPLOS, 2011.

[18] S. A. Edwards and O. Tardieu. SHIM: A Deterministic Model for
Heterogeneous Embedded Systems. In EMSOFT, 2005.

[19] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt. Hard-
ware Transactional Memory for GPU Architectures. In MICRO-44,
2011.

[20] W. Fung et al. Dynamic Warp Formation and Scheduling for Efficient
GPU Control Flow. In MICRO, 2007.

[21] P. Harish and P. J. Narayanan. Accelerating Large Graph Algorithms
on the GPU Using CUDA. In HiPC, 2007.

[22] M. Hill and M. Xu. http://www.cs.wisc.edu/ markhill/racey.html,
2009.

[23] D. Hower, P. Dudnik, M. Hill, and D. Wood. Calvin: Deterministic or
Not? Free Will to Choose. In HPCA, 2011.

[24] Khronos Group. OpenCL. http://www.khronos.org/opencl/.

[25] S. Laine and T. Karras. High-Performance Software Rasterization on
GPUs. In HPG, 2011.

[26] G. H. Lars Nyland, John R. Nickolls and T. Mandal. United States
Patent #8,086,806: Systems and methods for coalescing memory ac-
cesses of parallel threads (Assignee NVIDIA Corp.), April 2011.

[27] C. E. Leiserson and T. B. Schardl. A Work-Efficient Parallel Breadth-
First Search Algorithm (or How to Cope with the Nondeterminism of
Reducers). In SPAA, 2010.

[28] G. Li and G. Gopalakrishnan. Scalable SMT-Based Verification of
GPU Kernel Functions. In FSE, 2010.

[29] E. Lindholm et al. NVIDIA Tesla: A Unified Graphics and Computing
Architecture. Micro, IEEE, 2008.

[30] J. Liu, B. Jaiyen, R. Veras, and O. Multu. RAIDR: Retention-Aware
Intelligent DRAM Refresh. In ISCA, 2012.

[31] T. Liu, C. Curtsinger, and E. D. Berger. DTHREADS: Efficient
Deterministic Multithreading. In SOSP, 2011.

[32] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
NVIDIA, October 2009.

[33] NVIDIA CUDA Programming Guide v3.1. NVIDIA Corp., 2010.

[34] NVML API Reference Manual v3.295.45. NVIDIA Corp., 2012.

[35] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient deter-
ministic multithreading in software. In ASPLOS, 2009.

[36] M. C. Rinard and M. S. Lam. The design, implementation, and
evaluation of Jade. ACM Trans. Program. Lang. Syst., 20(3), May
1998.

[37] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam. Implementing
Signatures for Transactional Memory. In MICRO, 2007.

[38] S. R. Sarangi, B. Greskamp, and J. Torrellas. CADRE: Cycle-Accurate
Deterministic Replay for Hardware Debugging. In DSN, 2006.

[39] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M.
Aamodt. Cache Coherence for GPU Architectures. In HPCA, 2013.

[40] J. A. Stuart and J. D. Owens. Efficient Synchronization Primitives for
GPUs. CoRR, abs/1110.4623, 2011.

[41] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A Lan-
guage for Streaming Applications. In CC ’02, 2002.

[42] W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. P. Ama-
rasinghe. Teleport Messaging for Distributed Stream Programs. In
PPoPP, 2005.

[43] T. J. Van Hook. United States Patent #6,630,933: Method and Appa-
ratus for Compression and Decompression of Z Data (Assignee ATI
Technologies Inc.), October 2003.

[44] S. Vangal et al. An 80-Tile Sub-100-W TeraFLOPS Processor in 65-
nm CMOS. IEEE Journal of Solid-State Circuits, 43(1):29–41, Jan.
2008.

[45] H. Wong et al. Demystifying GPU microarchitecture through mi-
crobenchmarking. In ISPASS, 2010.

[46] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal. GRace: A Low-
Overhead Mechanism for Detecting Data Races in GPU Programs. In
PPoPP, 2011.

