Accelerating Trace Computation in Post-Silicon Debug

Johnny J.W. Kuan, Steven J.E. Wilton, Tor M. Aamodt
Department of Electrical and Computer Engineering
University of British Columbia, Vancouver, BC, Canada

Email: {jkuan, stevew, aamoj@ece.ubc.ca

. . L h stat
Abstract— Post-silicon debug comprises a significant crash swate

and highly variable fraction of the total development time l

for large chip designs. To accelerate post-silicon debug, —>| Off-Chip analysis |
BackSpace [1, 2] employs on-chip monitoring circuitry and
off-chip formal analysis to provide a trace of states thatlle

up to a crash state. BackSpace employs repeated runs of

Set S of potential
predecessor states

the integrated circuit being debugged, which can be time SZ?Z@?@ 'gfétf;ffﬂ‘:;: ’
consuming. This paper shows that correlation information element of S
characterizing the application running on the hardwareaup t ¥

the crash state can reduce the number of runs of the chip by Enough states | Run Chip |

up to 51%. done

in trace?

1. Introduction
Post-silicon debug (also known as silicon validation) is th

Breakpoint was
triggered?
process of determining what is wrong when the fabricated N
chip of a new design behaves incorrectly. The focus of post- Fig. 1. BackSpace Debug Flow
silicon debug is findingdesign errors Ideally all design

Errors Wosr:d EGI}I foutnd befolre gabrlca;mtn using flmlul?it_lona debugging engineer valuable information about the cafise o
owever, the billion-to-one slowdown between actual SfiC o bug, increasing his or her chances of finding the design

and simulation means that it is impossible to simulate agiesi , .. +ho+ led to the incorrect behavior.

|r} ﬁ" scenarr:osﬁmt \.Nh'Ch Itt ‘()V”L be fu;e_d. tThus, rega(;dle;s The primary challenge with BackSpace is the time needed
of how rTIIIUC etior Its s;_::gn ;e:_o:je_ aﬂr:ca on, some.dke&g{b construct this trace. BackSpace uses an iterative #hgori
errors will escape into silicon. Finding these errors gy which requires running the chip many times. In this paper, we

a?)wtil, butthd'tﬁ'tzu“ and e>ipen5|\;et, |?r?c$]§s.(fbrallmowoa:e:_ show that by gathering additional information about a dtrcu
[3] show that the percentage of total chip development tim s it computes the trace leading up to a crash, and using

i ! 0 .
spent on post-silicon dgbu_g IS over 35% and growing. Evptﬂis information to guide the BackSpace search algorithm,
worse, the schedule variability is greatest post-silicveating

S we can obtain significant run-time improvements. For the
unac_ceptable uncerta!nty n .tlme-to-market. . examples we evaluate, the number of runs of the chip was
It is important to distinguish between post-silicon debugreduced by between 12% and 51% (leading to significant
in which the focus is findinglesign errors and manufacture reduction in overall run-time) without affecting the acacy
testing, in which the focus is findinmanufacturing defects of the resulting trace. This is important, since the usefsén
In this paper, we are focusing on the former. '

The primary challenge during post-silicon debug is th of BackSpace relies on the debugging engineer being able to

ickl d tely obtai ht .
lack of observability into the chip. Scan chains, which ljke (awc y and acclirarely obtain sUch traces

i) This paper is organized as follows. Section 2 summarizes
already exist on the chip to support manufacture test., can H‘Fe BackSpace algorithm, and Section 3 compares this ap-

%%ach to previous work. Section 4 then presents our enhance
ments. Section 5 describes our methodology, and Section 6
%)fresents experimental results. Section 7 concludes.

behavior is observed. This requires stopping the chip, kewe
which may make it difficult to trace the execution leadin
up to an error. Designers often include small amounts
circuitry on-chip to enhance visibility during debug, hawee,
this requires predicting during design which parts of thimch 2. BackSpace
will need the extra visibility during debug. The overall flow of BackSpace is shown in Figure 1. When
A structured approach to post-silicon debug, callethe chip crashes, the crash state is scanned out througbethe s
BackSpace, was presented in [1, 2]. Through a combinati@hain. A state of the chip is defined as the values of all flip-
of on-chip monitoring circuitry and off-chip analysis ugin flops in the design, including all datapath registers, [iied
formal methods, BackSpace produces a trace of states thegisters, and state machine flip-flops. This crash stateeis t
leads up to a known crash state. This trace of states can geent to an off-chip analysis algorithm. This algorithm uses

formal verification techniques to compute a sedf potential simpler processor and flushing subsequent instructiorms fro
pre-image statesThe setS containsall statess; thatcould the pipeline. DIVA could be employed to stop a processor
haveoccurred one cycle prior to the crash state. Since thereasrlier so that BackSpace starts running closer to the sourc
often more than one way to get to a given state, there widlf the problem causing a crash.
likely be more than one pre-image state $h In essence, For systems that are completely deterministic a system
this off-chip algorithm “works backwards” through the stat much simpler than BackSpace could be used to provide back-
machine. wards observability. Checkpointing with deterministiqlay
Each pre-image state ifi is then considered individually. [5, 6] attempts to remove all sources of non-determinismaisi
The first statesg, is loaded into an on-chip breakpoint circuit,methods such as logging all external connections. Soméesubt
and the chip is re-run. If the chip passes through staiea sources of non-determinism like that arising from correlgta
breakpoint is triggered. This indicates that is the correct soft errorsduring replay are not addressed. An alternative
predecessor state, so it is added to the trace. If the chipethod of removing system level non-determinism is to run
does not pass through, (indicated by a time-out circuit), two copies of the design with the same inputs but the second
then the next potential predecessor state,is tried, and the copy’s inputs are delayed by cycles using a buffer. When
process repeated. Ideally, one of the states§ iwill trigger the first copy encounters an observable problem the second
a breakpoint. This predecessor state can then be usedcapy is also stopped and it's state is examined. If both chips
input to the off-chip analysis algorithm, and the entireqess implemented the same design, were completely determanisti
repeated. and were supplied with the same inputs (with a delay for the
In practice, external events and non-determinism in theecond copy) then the state of the second copy would be the
execution flow may mean that the execution times out fastate of the first copy: cycles in the past. This approach has
every state inS, even when the correct predecessor state Iseen proposed for use with FPGAs [7].
loaded into the breakpoint circuit. In this case, the chipeis Examples of other approaches to post-silicon debug include
run until a breakpoint is triggered on one of the predecessBACOTA and IFRA. DACOTA [8] is a proposed method to
states. find coherence and consistency bugs in the memory subsystem
For this to be feasible, the number of possible predecessofr multi-core microprocessor designs. It leverages thewxe
states inS must be as small as possible. To reduce th#on speed and cache space of fabricated processors talprovi
size of S, de Paula et al. [1] proposes gathering additionatace buffering. However, it is limited to detecting memory
information, called asignature during each run. This infor- bugs that involve more than one core. Park and Mitra [9]
mation can be used to “prune out” statesdrwhich are not record data and control flows during execution and use the
possible. There are several ways to construct a signature;information in an analysis phase after a problem is detected
our implementation of BackSpace, we hand-select a subsettofhelp localize a bug. They evaluated their IFRA technique
the state bits, and maintain a one-cycle history of these biby injecting soft errors in an architectural simulator.
This one-cycle history can then be used to rule out many of
the states inS. 4. Algorithm
Even with a signature, however, the number of state§ in . , , . . .
may be large. For example, in our implementation of an Intel The key idea be_h'”d our a'go”thm IS t‘? gather |nformat!on
8051 processor which contains 702 flip-flops, if we select ZSibOUt thecorrelatlon of bits in the design, and use this
of them as signature bits, there are, on average, 31 eIemellli'lerm‘_’jltlon to re-order the elements Ko that states th‘?‘t are
in S. Since we try each of these individually until a match ignore likely t_o be the_ correct predecessor stqte are tr_|etj firs
found, we must try, on average, half of the 31 elements.in In the following, we first describe the correlation infornoat

Clearly, the order that we try the elementssbis important. itself, and the_n show how thi_s information_ is used to .guide
In the original implementation of BackSpace, the elemerds aBackSp_ace_. Flnally,_ we describe tW.O techniques by which the
ordered arbitrarily. In this paper, our key contributionttist correlation information can be obtained.
we use additional information gathered for the circuitrée
order the elements of S so states in S that are more likely afel. Correlation I nformation

tried_first This results in a reduction in the number of runs ginca our goal is to determine the most likely predecessor
required to construct a trace. state for a given crash state, an obvious solution would be to
find the correlation of each state in cyclewith every state
3. Related Work in cycle i + 1. The correlation between two states would be
BackSpace helps with the observability problem after a buggh if the first state was likely to occur exactly one cycle
has been detected. There has been some complementary waefore the second state, and low if this was unlikely. This
on detecting bugs. Online assertion checking [3] can be tesedinformation could be gathered by running chip for a long
speed up the BackSpace process by initiating debugging wheeriod of time, and recording state transitions. Then, rdpri
an assertion is violated rather than waiting until the peabl debugging, when the sef is obtained from the off-chip
becomes observable at the outputs. DIVA [4] is a proposal thanalysis algorithm, we could sa$tbased on these correlation
suggests re-executing each instruction a processor cemnmumbers. While this technique would likely give good result
using a simpler processor more likely to be free of errors. if is not feasible, even for medium-sized designs. A circuit
an error is detected, it is fixed by using the result from thaith n flip-flops (and hence: state bits) could have up to

2™ possible states, meaning we would need to compute and bo b1 b2 b3 bs
maintain22” correlation values. S0 0O 0 1 0 1

Instead, we compute the correlation betwesdividual bits 51 0 1 0 0 1
within a state For any two state bits andy, the correlation 52 1 0 0 0 1
between these bitg,, ,, indicates how likely these two bits are merged X X X 0 1
to be either positively or negatively correlated. More fsely, Fig. 2 An example of merging the pre-image s%t

1 T
vor ;()) j). If this other bit's value is known, then either that value

or it's complement is used in the corresponding location in
p. If p;; is positive or zero, the value is used, while if it is
negative, it's complement is used. If the bit value is unknpw
the corresponding location gf is again marked with an X.

It is important to note that the predictignconstructed in
this way may not correspond to an actual (or even possible)

" . : . state. It is actually an amalgamation of the predictions for
as the value Of biy. The valug Ofpi s 1S 0 if knowing the ?ach individual bit. Thus, the final step is to go through each
value of one bit provides no information about the value o . : . .
the other bit. Thus. we can use the absolute value.of elements; in S and find the Hamming Distance between

T ' : Pt andp (if the bit in p is an X, then this bit contributes 0 to the
to determine how correlated two bits are. Note that, unl'kﬁamming Distance). The set is then sorted based on this
the first solution outlined above, this only requires conmaut Hamming Distance &Iowest Hamming distance comes first)
and storingn? correlation values. Although this correlation .

. . . X ; . In this way, the set of5 is ordered in a manner such that
information does not provide as much information as the fw% Y, &

:)) . -) e states that are “closest” to the predicted previous st
solution, we will show that it provides sufficient informeauti - . . .
.) : tried first. This ordered set is then used in the BackSpace flow
to produce an intelligent ordering of the statesSin

as described in Section 2.

wherez; is the value of bitr in cycle i, andy; is the value
of bit y in cyclei. T is the number of cycles of correlation
information that has been gathered so far. Section 4.3 skesu
different methods of gathering this information. The vabfe
pi; 1s -1 if the value of biti is always the inverse of the
value of bitj and 1 if the value of bit is always the same

4.2. Using Correlation Information 4.3. Gathering Correlation Information

Consider a set of potential pre-image statesthat are Subsection 4.2 described the correlation information,itout
potential predecessors of a crash staté/e wish to sort the did not indicate how this information can be gathered from th
elements inS such that the states that ameost likelyto be design. We consider two approaches to gather this infoomati
the predecessor of are first in the list. In this subsection, The first approach is to gather the information staticakypbe
we show how we do this, given the correlation informationhe chip is debugged. Using a “training testcase”, the desig
described in the previous subsection. can be simulated (or the fabricated chip can be run) and

The individual states irb differ by some number of bits. individual states extracted. For a processor design, Ritigi
If we can predict the most likely value of these bits, thenestcase can be a program executing on the processor; for
we can predict which of the states # is the most likely a non-processor design, the training testcase can be a list
to have occurred immediately before We do this in two of input values over time. From these extracted states, the
steps: pre-image merging, and pre-image ranking. Both agerrelation information for each pair of bits can be calteda
described below, and the overall algorithm is summarized iThe summation limits in Equation 1 correspond to the start
Algorithm 1. and end of the training testcase.

During pre-image merging, we find a word which sum- Experimentally, we have found that the static technique
marizes the set of elements # Bit i of w is determined as does not provide adequate information to guide BackSpace.
follows. If the corresponding bit irall elements inS is the The reason is that the state transition behavior of a design
same then bit of w is set to this value. If bii differs across depends very much on the inputs or the program executing. It
the elements of, then biti of w is set to X. is unlikely that a short training testcase will be repreatwne

Consider the example in Figure 2. The Setontains three of the program or inputs occurring in the actual chip during
potential predecessor stateg s;, andss. In all predecessor debug.

states, bit 3 is a 0 and bit 4 is a 1. Thus, bit 3wefs set to Instead, we use a dynamic approach, in which we gather
0, and bit 4 ofw is set to 1. Bits 0 to 2 differ across the setthe correlationduring debugging As described in Section
of predecessor states. Thus, we set bits 0 to @ &b X. Il, BackSpace is iterative; for each state added to the trace

Next, we perform pre-image ranking. To do this, we firsthe chip is run one or more times. In our dynamic solu-
convert the wordw into a predictionp of the predecessor tion, we compute the correlation information each time as
state. For each bit in w that is either 0 or 1, bit of p is states are scanned out of the chip and added to the trace
set to this value. For the bits im that are X, the following history. Initially, BackSpace proceeds without any catiein
is performed. The correlation information described eaiis information, however, later iterations are able to use the
first used to determine which other kiin the design is most correlation information gathered during previous iteya$i. As
correlated to this bit (i.e. has the highest value|gf ties we will show, this technique provides sufficient informaitim
broken by minimizing|: — j|, further ties broken by smallest accelerate the BackSpace flow.

120000

Input: Unsorted pre-image lis$ "
Number of state bits 5 100000 |
Correlation matrixp; ; V0 <4,j<n s 50000
Output: Sorted listS’ 8 |
foreach biti, 0<i<mndo 5 60000 1
if bit ¢ of s; is the samevs; € S then v
| bit ¢ of w = bit ¢ of sg; £ 40000 |
eI% . ?E’ 20000 -
| bit:of w=X; 3
end o ‘ ‘ ‘ ‘ ‘
end 0 900 1800 2700 3600 4500 5400
foreach bit i, 0<i<n do . . Cycles Backspaced .
if bit i of w is not X then Fig. 3: Cumulative processor runs for the 8051 running
| bit i of p = bit ¢ of w; sqr oot . Baseline is the original BackSpace algorithm. En-
ese hanced is the BackSpace algorithm using the algorithm pro-
r = j such that/p; ;| is maximum over all posed in Section 4 of this paper.
0<j<n, j#i
if bit 7 of w is X then 20000]
. . 7]
| bitiofp=X; € 20000 |- w,o,o,g,q,fzﬁ?,‘i,
eseif p; » > 0 then b o®
| bit 7 of p= bit r of w, S 20000 4 - g
else é
| biti of p =it r of w; F1S000 |
end g o Baseli
end E 10000 F--mmmm o e +E:;2:§d """"""
=]
end E sooof
foreach s; € S do ©
Jp— I i . . 0 T T T T T T
| kj = HammnglStanceSg’p)’ 0 1200 2400 3600 4800 6000 7200
end Cycles Backspaced

S’ = Sort S by key k;;

Fig. 4: Cumulative processor runs for the 8051 runrsmog t .

Algorithm 1: Overall Algorithm for producing sorted pre- 25000

image list .
oo - [T e

5. Methodology 8 5000 .

We use an 8051 simulator and benchmarks from the éEs
BackSpace Toolkit version 0.1 [10]. To evaluate our aldonit D 10000 oo
for sorting the states it we collected and analyzed traces %
of the 8051 running the three programs shown in Table |. § 5000 {------m oo
The 8051 used is an open-source implementation of an 8-b 3
Intel micro-controller available from opencores.org. ®atas 0 ‘ ‘ ‘ ‘ ‘
not taken from the first few hundred cycles because there ar ° 300 602yc,es Bgffkspac;joo 1500 1800

uninitialized flip flops in the design. The first cycle in thade) .

is referred to as the start cycle. After the program finishesig- 5: Cumulative processor runs for the 8051 running.
execution the 8051 enters a 12 cycle loop. After one itematio

of this loop we stop the trace and label that the end cycle of

the trace. The start and end cycles for the benchmarks used

are shown in Table I. o ~we re-calculate the correlation values and use the updated
As described in Section 4.3 the correlation information igalues for the next 300 cycles. BackSpace continues in this
obtained as BackSpace is running. For the first 300 cyclegshion, updating the correlation values every 300 cyclat]

of a BackSpace computation we do not apply the algorithihe peginning of the trace is reached.
described in Section 4 and BackSpace proceeds as the leaselin

described in Section 2. After BackSpace computes a trace ofFor the evaluation in this paper, the simulated 8051 proces-
300 cycles leading up to the crash we compute the correlatisor was not run for every candidate stateSinas described in

p defined in Equation 1 foraﬂw pairs of unique bits in Section 2, to determine if it is the correct state. Instehd, t
the same state over the 300 cycles available. We can now isseted candidate states are compared with the previowes stat
this information to sort the potential pre-image sets oi@di in the trace to determine how many runs it would take before
for the next 300 cycles. After a trace of 600 cycles is obtdinethe correct pre-image state is tried.

N
)

TABLE |: Programs that were run on the 8051. °

| R AN S ©—Baseline |
=~ Enhanced

w
4]

Program Name| Start Cycle | End Cycle

fib 630 2224 30
sort 630 8368 5 |

sqroot 660 5813

-
wu
L

-
o
L

6. Results

The results for runningqr oot , sort, andfi b can be
seen in Figures 3, 4, and 5 respectively. The right-mosttpoin
on each of these graphs shows the total number of times th
chip must be run to BackSpace the entire trace. In Figure 3 the))
ratio between the cumulative number of processor runs for t 'g. 6: Average Processor runs per correlatlon sample interval
enhanced algorithm and the baseline is decreasing. Byrtiee ti or th_e 8051_ runnings qr O_Ot - Enhanced S the _BackSpace_
BackSpace traces through all states in $fug oot program algorithm using the algorithm proposed in Section 4 of this
there is a 51% reduction in the number of times the processB"f’per'
must be run relative to the baseline. Figure 4 shows the 5
result forsor t . After backspacing 3900 cycles the lines for ¢ |
our enhanced algorithm and the baseline are parallel. Bhis i § ol N [eBaselne |
because there is only one candidate predecessor statoter th & | s 8~ Enhanced
cycles and the baseline algorithm cannot be improved upor
This can be seen more clearly in Figure 7. Upon completior
of this trace, there is a cumulative reduction of 14% in the
total number of processor runs required. Figure 5 shows thi
result forfi b. Although BackSpace was only run for 1594
cycles for this program, the results show that as BackSpac
is run, our enhanced algorithm requires a smaller fraction o o : ‘ ‘ : : :
the number of processor runs required by the baseline. Th 0 1200 24°°cycle3:g‘;cksp:i2(; 6000 7200
overall improvement for this program is 12%. . i i

The average number of runs needed over each 300 cyglkg- 7: Average processor runs per correlation sample interval
epoch forsqroot, sort, andfib can be seen in Fig- for the 8051 runningsort .
ures 6, 7, and 8 respectively. Each point shows the numbe
of runs needed to reach the correct predecessor state edera¢ 5 |
over 300 cycles. For each of these results the first point, a
300 cycles backspaced, is the same for both our enhance
algorithm and the baseline. This is because there has bee
no correlation data gathered for that program yet. The nex
point, at 600 cycles backspaced, shows the impact of usin
300 cycles of correlation data to sort the candidate pragena
In Figure 6 we see that our enhanced algorithm reduces th
number of runs needed over a 300 cycle period by up to 77%
(between 4201 and 4500 cycles backspaced) fostireoot
program. Over the entire trace the reduction in the number o
times the chip would need to be run is 51%. With g t . lati e |
program shown in Figure 7, we only see a 14% reduction in tq@g' r? Average prpce_sst;or runs per correlation sample interva
number of times the chip needs to be run. This is partly dugrt e 8051 running i b.
to the many states that only have one candidate pre-image.

Figu[)e 8 ?hﬁws the resullt fordth‘ei g bprolgzr;m, whe"reothe if the unknown bits of the state do not change very much
number of chip runs Is only reduced by o overall. Une G, cycle to cycle. This algorithm (referred to as “Guess

the reasons the overall improvement is lower for this progra, Change” in Table 1) was able to predict the correct state

is because it is shprt. For abou_t the first 20% of th_e cycleghd reach the correct candidate pre-image on the first run
backspaced there is no correlation to sort the candidate Plfiore often than the baseline, however, the overall perfooma

images with. was 6% worse than the baseline. For the circuit we used, it
)) was found that the state bits have a zero bias, that is there

6.1. Alternative Algorithms were more 0 bits in the trace than 1 bits. Guessing 0 for all
To gain further insight, we tried several other algorithmsthe unknown bits, and using the baseline ordering to resolve
First we investigated using the state the processor is milyre ties, results in approximately the same performance as the
stopped at as the predictign Intuitively this would work baseline. Randomizing the order before sorting based on a

Average Number of Runs
N
o

(4]
L

o

0 900 1800 2700 3600 4500 5400
Cycles Backspaced

B I

-
o
L

e}
L

Average Number o
F NI
.

N
L

Average Number of Runs
e e
(o)} e} o N » (o)}

EN
L

N
L

o

300 600 900 1200 1500 1800
Cycles Backspaced

TABLE I1: The relative number of runs required to BackSpacg efer ences
the different programs relative to the baseline.

sqroot sort fib
Enhanced 0.49 0.86 0.88
Randomized Guess 1.02 1.09 1.07
Guess No Change 1.07 1.09 0.94
Baseline 1.00 1.00 1.00
Random 1.25 211 2.06

(1]

(2]

guess of O (referred to as “Randomized Guess 0” in Table Il)3]

for all the unknown bits results in performance 4% worse

than the baseline, but still requires 34% fewer runs than a
random ordering. These results may suggest that a portion of
the performance improvement of the order tried by the baseli [4]
BackSpace algorithm over a random ordering results from
the tendency of the baseline BackSpace algorithm to order

states with more 0 bits first. The algorithm we propose in this

paper (“Enhanced”) performs better than the above simplef5]

algorithms.

7. Conclusion

BackSpace generates a trace showing the state of the chip
leading up to a crash. Each cycle added to the trace maljf]

require running the chip multiple times in order to reach the

previous state. We proposed a technique where we use the
trace generated so far to compute the correlation betweel]

state bits. Using this correlation information, we then mak
a prediction about which potential previous states to tist.fir

Our results showed between 12% and 51% reduction in the
number of times the chip must be run over an entire trace

computation, which translates into a significant reduciion
runtime. In the future, we would like to investigate how our
algorithm scales with larger chip designs.

Acknowledgments

We would like to thank Wilson Fung, Ali Bakhoda, and the

Flavio M. De Paula, Marcel Gort, Alan J. Hu, Steven J. E.
Wilton, and Jin Yang, “BackSpace: Formal Analysis for
Post-Silicon Debug,” inFormal Methods in Computer
Aided Design2008.

Flavio M. De Paula, Marcel Gort, Alan J. Hu, and Steven
J. E. Wilton, “BackSpace: Moving Towards Reality,”
in International Workshop on Microprocessor Test and
Verification December 2008, pp. 49-54.

M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin,
G. Memmi, and D. Miller, “A reconfigurable design-
for-debug infrastructure for SoCs,” 3rd ACM/IEEE
Design Automation Conferenc2006, pp. 7-12.

T.M. Austin, “DIVA: A Reliable Substrate for Deep Sub-

micron Microarchitecture Design,” iB82nd ACM/IEEE
International Symposium on Microarchitecture (MICRO-

32), 1999, pp. 196-207.

S.R. Sarangi, B. Greskamp, and J. Torrellas, “CADRE:
Cycle-Accurate Deterministic Replay for Hardware De-
bugging,” in International Conference on Dependable
Systems and Networks (DSN 2008)ne 2006, pp. 301-
312.

Isic Silas, Igor Frumkin, Eilon Hazan, Ehud Mor, and
Genadiy Zobin, “System-Level Validation of the Intel
Pentium M Processor,” Tech. Rep., May 2003.

Mario Larouche, “Infusing Speed and Visibility into
ASIC Verification,” Tech. Rep., January 2007.

[8] A. DeOrio, I. Wagner, and V. Bertacco, “Dacota: Post-

silicon validation of the memory subsystem in multi-core
designs,” in15th IEEE International Symposium on High
Performance Computer Architecture (HPCA 200B¢b.
2009, pp. 405-416.

[9] Sung-Boem Park and S. Mitra, “IFRA: Instruction

Footprint Recording and Analysis for post-silicon bug
localization in processors,” id5th ACM/IEEE Design
Automation Conferengelune 2008, pp. 373-378.

anonymous reviewers for their valuable comments. This wolk0] Flavio M. De Paula, “Backspace,”
was funded by the Semiconductor Research Corporation(SRC) http://www.cs.ubc.ca/ depaulfm/BackSpace, 2009.

TaskID: 1586.001.

