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Abstract— Post-silicon debug comprises a significant
and highly variable fraction of the total development time
for large chip designs. To accelerate post-silicon debug,
BackSpace [1, 2] employs on-chip monitoring circuitry and
off-chip formal analysis to provide a trace of states that lead
up to a crash state. BackSpace employs repeated runs of
the integrated circuit being debugged, which can be time
consuming. This paper shows that correlation information
characterizing the application running on the hardware up to
the crash state can reduce the number of runs of the chip by
up to 51%.

1. Introduction
Post-silicon debug (also known as silicon validation) is the

process of determining what is wrong when the fabricated
chip of a new design behaves incorrectly. The focus of post-
silicon debug is findingdesign errors. Ideally all design
errors would be found before fabrication using simulation,
however, the billion-to-one slowdown between actual silicon
and simulation means that it is impossible to simulate a design
in all scenarios in which it will be used. Thus, regardless
of how much effort is spent before fabrication, some design
errors will escape into silicon. Finding these errors quickly is
a vital, but difficult and expensive, process. Abramovici etal.
[3] show that the percentage of total chip development time
spent on post-silicon debug is over 35% and growing. Even
worse, the schedule variability is greatest post-silicon,creating
unacceptable uncertainty in time-to-market.

It is important to distinguish between post-silicon debug,
in which the focus is findingdesign errors, and manufacture
testing, in which the focus is findingmanufacturing defects.
In this paper, we are focusing on the former.

The primary challenge during post-silicon debug is the
lack of observability into the chip. Scan chains, which likely
already exist on the chip to support manufacture test, can be
used to read out the state during debug once an incorrect
behavior is observed. This requires stopping the chip, however,
which may make it difficult to trace the execution leading
up to an error. Designers often include small amounts of
circuitry on-chip to enhance visibility during debug, however,
this requires predicting during design which parts of the chip
will need the extra visibility during debug.

A structured approach to post-silicon debug, called
BackSpace, was presented in [1, 2]. Through a combination
of on-chip monitoring circuitry and off-chip analysis using
formal methods, BackSpace produces a trace of states that
leads up to a known crash state. This trace of states can give

Fig. 1: BackSpace Debug Flow

a debugging engineer valuable information about the cause of
the bug, increasing his or her chances of finding the design
error that led to the incorrect behavior.

The primary challenge with BackSpace is the time needed
to construct this trace. BackSpace uses an iterative algorithm
which requires running the chip many times. In this paper, we
show that by gathering additional information about a circuit
as it computes the trace leading up to a crash, and using
this information to guide the BackSpace search algorithm,
we can obtain significant run-time improvements. For the
examples we evaluate, the number of runs of the chip was
reduced by between 12% and 51% (leading to significant
reduction in overall run-time) without affecting the accuracy
of the resulting trace. This is important, since the usefulness
of BackSpace relies on the debugging engineer being able to
quickly and accurately obtain such traces.

This paper is organized as follows. Section 2 summarizes
the BackSpace algorithm, and Section 3 compares this ap-
proach to previous work. Section 4 then presents our enhance-
ments. Section 5 describes our methodology, and Section 6
presents experimental results. Section 7 concludes.

2. BackSpace

The overall flow of BackSpace is shown in Figure 1. When
the chip crashes, the crash state is scanned out through the scan
chain. A state of the chip is defined as the values of all flip-
flops in the design, including all datapath registers, pipelining
registers, and state machine flip-flops. This crash state is then
sent to an off-chip analysis algorithm. This algorithm uses



formal verification techniques to compute a setS of potential
pre-image states. The setS containsall statessi that could
haveoccurred one cycle prior to the crash state. Since there is
often more than one way to get to a given state, there will
likely be more than one pre-image state inS. In essence,
this off-chip algorithm “works backwards” through the state
machine.

Each pre-image state inS is then considered individually.
The first state,s0, is loaded into an on-chip breakpoint circuit,
and the chip is re-run. If the chip passes through states0, a
breakpoint is triggered. This indicates thats0 is the correct
predecessor state, so it is added to the trace. If the chip
does not pass throughs0 (indicated by a time-out circuit),
then the next potential predecessor state,s1, is tried, and the
process repeated. Ideally, one of the states inS will trigger
a breakpoint. This predecessor state can then be used as
input to the off-chip analysis algorithm, and the entire process
repeated.

In practice, external events and non-determinism in the
execution flow may mean that the execution times out for
every state inS, even when the correct predecessor state is
loaded into the breakpoint circuit. In this case, the chip isre-
run until a breakpoint is triggered on one of the predecessor
states.

For this to be feasible, the number of possible predecessor
states inS must be as small as possible. To reduce the
size of S, de Paula et al. [1] proposes gathering additional
information, called asignature, during each run. This infor-
mation can be used to “prune out” states inS which are not
possible. There are several ways to construct a signature; in
our implementation of BackSpace, we hand-select a subset of
the state bits, and maintain a one-cycle history of these bits.
This one-cycle history can then be used to rule out many of
the states inS.

Even with a signature, however, the number of states inS

may be large. For example, in our implementation of an Intel
8051 processor which contains 702 flip-flops, if we select 281
of them as signature bits, there are, on average, 31 elements
in S. Since we try each of these individually until a match is
found, we must try, on average, half of the 31 elements inS.

Clearly, the order that we try the elements ofS is important.
In the original implementation of BackSpace, the elements are
ordered arbitrarily. In this paper, our key contribution isthat
we use additional information gathered for the circuit tore-
order the elements of S so states in S that are more likely are
tried first. This results in a reduction in the number of runs
required to construct a trace.

3. Related Work
BackSpace helps with the observability problem after a bug

has been detected. There has been some complementary work
on detecting bugs. Online assertion checking [3] can be usedto
speed up the BackSpace process by initiating debugging when
an assertion is violated rather than waiting until the problem
becomes observable at the outputs. DIVA [4] is a proposal that
suggests re-executing each instruction a processor commits
using a simpler processor more likely to be free of errors. If
an error is detected, it is fixed by using the result from the

simpler processor and flushing subsequent instructions from
the pipeline. DIVA could be employed to stop a processor
earlier so that BackSpace starts running closer to the source
of the problem causing a crash.

For systems that are completely deterministic a system
much simpler than BackSpace could be used to provide back-
wards observability. Checkpointing with deterministic replay
[5, 6] attempts to remove all sources of non-determinism using
methods such as logging all external connections. Some subtle
sources of non-determinism like that arising from correctable
soft errorsduring replay are not addressed. An alternative
method of removing system level non-determinism is to run
two copies of the design with the same inputs but the second
copy’s inputs are delayed byn cycles using a buffer. When
the first copy encounters an observable problem the second
copy is also stopped and it’s state is examined. If both chips
implemented the same design, were completely deterministic,
and were supplied with the same inputs (with a delay for the
second copy) then the state of the second copy would be the
state of the first copyn cycles in the past. This approach has
been proposed for use with FPGAs [7].

Examples of other approaches to post-silicon debug include
DACOTA and IFRA. DACOTA [8] is a proposed method to
find coherence and consistency bugs in the memory subsystem
of multi-core microprocessor designs. It leverages the execu-
tion speed and cache space of fabricated processors to provide
trace buffering. However, it is limited to detecting memory
bugs that involve more than one core. Park and Mitra [9]
record data and control flows during execution and use the
information in an analysis phase after a problem is detected
to help localize a bug. They evaluated their IFRA technique
by injecting soft errors in an architectural simulator.

4. Algorithm

The key idea behind our algorithm is to gather information
about thecorrelation of bits in the design, and use this
information to re-order the elements ofS so that states that are
more likely to be the correct predecessor state are tried first.
In the following, we first describe the correlation information
itself, and then show how this information is used to guide
BackSpace. Finally, we describe two techniques by which the
correlation information can be obtained.

4.1. Correlation Information
Since our goal is to determine the most likely predecessor

state for a given crash state, an obvious solution would be to
find the correlation of each state in cyclei with every state
in cycle i + 1. The correlation between two states would be
high if the first state was likely to occur exactly one cycle
before the second state, and low if this was unlikely. This
information could be gathered by running chip for a long
period of time, and recording state transitions. Then, during
debugging, when the setS is obtained from the off-chip
analysis algorithm, we could sortS based on these correlation
numbers. While this technique would likely give good results,
it is not feasible, even for medium-sized designs. A circuit
with n flip-flops (and hencen state bits) could have up to



2n possible states, meaning we would need to compute and
maintain22n correlation values.

Instead, we compute the correlation betweenindividual bits
within a state. For any two state bitsx andy, the correlation
between these bits,ρx,y indicates how likely these two bits are
to be either positively or negatively correlated. More precisely,

ρx,y =
1

T

T∑

i=1

(2xi − 1)(2yi − 1) (1)

wherexi is the value of bitx in cycle i, andyi is the value
of bit y in cycle i. T is the number of cycles of correlation
information that has been gathered so far. Section 4.3 discusses
different methods of gathering this information. The valueof
ρi,j is -1 if the value of biti is always the inverse of the
value of bit j and 1 if the value of biti is always the same
as the value of bitj. The value ofρi,j is 0 if knowing the
value of one bit provides no information about the value of
the other bit. Thus, we can use the absolute value ofρi,j

to determine how correlated two bits are. Note that, unlike
the first solution outlined above, this only requires computing
and storingn2 correlation values. Although this correlation
information does not provide as much information as the first
solution, we will show that it provides sufficient information
to produce an intelligent ordering of the states inS.

4.2. Using Correlation Information
Consider a set of potential pre-image statesS that are

potential predecessors of a crash statec. We wish to sort the
elements inS such that the states that aremost likelyto be
the predecessor ofc are first in the list. In this subsection,
we show how we do this, given the correlation information
described in the previous subsection.

The individual states inS differ by some number of bits.
If we can predict the most likely value of these bits, then
we can predict which of the states inS is the most likely
to have occurred immediately beforec. We do this in two
steps: pre-image merging, and pre-image ranking. Both are
described below, and the overall algorithm is summarized in
Algorithm 1.

During pre-image merging, we find a wordw which sum-
marizes the set of elements inS. Bit i of w is determined as
follows. If the corresponding bit inall elements inS is the
same then biti of w is set to this value. If biti differs across
the elements ofS, then biti of w is set to X.

Consider the example in Figure 2. The setS contains three
potential predecessor statess0, s1, ands2. In all predecessor
states, bit 3 is a 0 and bit 4 is a 1. Thus, bit 3 ofw is set to
0, and bit 4 ofw is set to 1. Bits 0 to 2 differ across the set
of predecessor states. Thus, we set bits 0 to 2 ofw to X.

Next, we perform pre-image ranking. To do this, we first
convert the wordw into a predictionp of the predecessor
state. For each biti in w that is either 0 or 1, biti of p is
set to this value. For the bits inw that are X, the following
is performed. The correlation information described earlier is
first used to determine which other bitj in the design is most
correlated to this bit (i.e. has the highest value of|ρ|, ties
broken by minimizing|i − j|, further ties broken by smallest

b0 b1 b2 b3 b4

s0 0 0 1 0 1
s1 0 1 0 0 1
s2 1 0 0 0 1

merged X X X 0 1

Fig. 2: An example of merging the pre-image setS.

j). If this other bit’s value is known, then either that value
or it’s complement is used in the corresponding location in
p. If ρi,j is positive or zero, the value is used, while if it is
negative, it’s complement is used. If the bit value is unknown,
the corresponding location ofp is again marked with an X.

It is important to note that the predictionp constructed in
this way may not correspond to an actual (or even possible)
state. It is actually an amalgamation of the predictions for
each individual bit. Thus, the final step is to go through each
elementsi in S and find the Hamming Distance betweensi

andp (if the bit in p is an X, then this bit contributes 0 to the
Hamming Distance). The setS is then sorted based on this
Hamming Distance (lowest Hamming distance comes first).

In this way, the set ofS is ordered in a manner such that
the states that are “closest” to the predicted previous state are
tried first. This ordered set is then used in the BackSpace flow
as described in Section 2.

4.3. Gathering Correlation Information
Subsection 4.2 described the correlation information, butit

did not indicate how this information can be gathered from the
design. We consider two approaches to gather this information.
The first approach is to gather the information statically, before
the chip is debugged. Using a “training testcase”, the design
can be simulated (or the fabricated chip can be run) and
individual states extracted. For a processor design, a training
testcase can be a program executing on the processor; for
a non-processor design, the training testcase can be a list
of input values over time. From these extracted states, the
correlation information for each pair of bits can be calculated.
The summation limits in Equation 1 correspond to the start
and end of the training testcase.

Experimentally, we have found that the static technique
does not provide adequate information to guide BackSpace.
The reason is that the state transition behavior of a design
depends very much on the inputs or the program executing. It
is unlikely that a short training testcase will be representative
of the program or inputs occurring in the actual chip during
debug.

Instead, we use a dynamic approach, in which we gather
the correlationduring debugging. As described in Section
II, BackSpace is iterative; for each state added to the trace,
the chip is run one or more times. In our dynamic solu-
tion, we compute the correlation information each time as
states are scanned out of the chip and added to the trace
history. Initially, BackSpace proceeds without any correlation
information, however, later iterations are able to use the
correlation information gathered during previous iterations. As
we will show, this technique provides sufficient information to
accelerate the BackSpace flow.



Input: Unsorted pre-image listS
Number of state bitsn
Correlation matrixρi,j ∀ 0 ≤ i, j < n

Output: Sorted listS′

foreach bit i, 0 ≤ i < n do
if bit i of sj is the same∀sj ∈ S then

bit i of w = bit i of s0;
else

bit i of w = X;
end

end
foreach bit i, 0 ≤ i < n do

if bit i of w is not X then
bit i of p = bit i of w;

else
r = j such that|ρi,j | is maximum over all

0 ≤ j < n, j 6= i;
if bit r of w is X then

bit i of p = X;
else if ρi,r ≥ 0 then

bit i of p = bit r of w;
else

bit i of p = bit r of w;
end

end
end
foreach sj ∈ S do

kj = HammingDistance (sj , p);
end
S′ = Sort S by key kj ;

Algorithm 1: Overall Algorithm for producing sorted pre-
image list

5. Methodology
We use an 8051 simulator and benchmarks from the

BackSpace Toolkit version 0.1 [10]. To evaluate our algorithm
for sorting the states inS we collected and analyzed traces
of the 8051 running the three programs shown in Table I.
The 8051 used is an open-source implementation of an 8-bit
Intel micro-controller available from opencores.org. Data was
not taken from the first few hundred cycles because there are
uninitialized flip flops in the design. The first cycle in the trace
is referred to as the start cycle. After the program finishes
execution the 8051 enters a 12 cycle loop. After one iteration
of this loop we stop the trace and label that the end cycle of
the trace. The start and end cycles for the benchmarks used
are shown in Table I.

As described in Section 4.3 the correlation information is
obtained as BackSpace is running. For the first 300 cycles
of a BackSpace computation we do not apply the algorithm
described in Section 4 and BackSpace proceeds as the baseline
described in Section 2. After BackSpace computes a trace of
300 cycles leading up to the crash we compute the correlation
ρ defined in Equation 1 for all(702)(701)2 pairs of unique bits in
the same state over the 300 cycles available. We can now use
this information to sort the potential pre-image sets obtained
for the next 300 cycles. After a trace of 600 cycles is obtained
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Fig. 3: Cumulative processor runs for the 8051 running
sqroot. Baseline is the original BackSpace algorithm. En-
hanced is the BackSpace algorithm using the algorithm pro-
posed in Section 4 of this paper.
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Fig. 4: Cumulative processor runs for the 8051 runningsort.
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Fig. 5: Cumulative processor runs for the 8051 runningfib.

we re-calculate the correlation values and use the updated
values for the next 300 cycles. BackSpace continues in this
fashion, updating the correlation values every 300 cycles,until
the beginning of the trace is reached.

For the evaluation in this paper, the simulated 8051 proces-
sor was not run for every candidate state inS, as described in
Section 2, to determine if it is the correct state. Instead, the
sorted candidate states are compared with the previous state
in the trace to determine how many runs it would take before
the correct pre-image state is tried.



TABLE I: Programs that were run on the 8051.

Program Name Start Cycle End Cycle
fib 630 2224
sort 630 8368
sqroot 660 5813

6. Results
The results for runningsqroot, sort, andfib can be

seen in Figures 3, 4, and 5 respectively. The right-most point
on each of these graphs shows the total number of times the
chip must be run to BackSpace the entire trace. In Figure 3 the
ratio between the cumulative number of processor runs for the
enhanced algorithm and the baseline is decreasing. By the time
BackSpace traces through all states in thesqroot program
there is a 51% reduction in the number of times the processor
must be run relative to the baseline. Figure 4 shows the
result forsort. After backspacing 3900 cycles the lines for
our enhanced algorithm and the baseline are parallel. This is
because there is only one candidate predecessor state for those
cycles and the baseline algorithm cannot be improved upon.
This can be seen more clearly in Figure 7. Upon completion
of this trace, there is a cumulative reduction of 14% in the
total number of processor runs required. Figure 5 shows the
result forfib. Although BackSpace was only run for 1594
cycles for this program, the results show that as BackSpace
is run, our enhanced algorithm requires a smaller fraction of
the number of processor runs required by the baseline. The
overall improvement for this program is 12%.

The average number of runs needed over each 300 cycle
epoch for sqroot, sort, and fib can be seen in Fig-
ures 6, 7, and 8 respectively. Each point shows the number
of runs needed to reach the correct predecessor state averaged
over 300 cycles. For each of these results the first point, at
300 cycles backspaced, is the same for both our enhanced
algorithm and the baseline. This is because there has been
no correlation data gathered for that program yet. The next
point, at 600 cycles backspaced, shows the impact of using
300 cycles of correlation data to sort the candidate pre-images.
In Figure 6 we see that our enhanced algorithm reduces the
number of runs needed over a 300 cycle period by up to 77%
(between 4201 and 4500 cycles backspaced) for thesqroot
program. Over the entire trace the reduction in the number of
times the chip would need to be run is 51%. With thesort
program shown in Figure 7, we only see a 14% reduction in the
number of times the chip needs to be run. This is partly due
to the many states that only have one candidate pre-image.
Figure 8 shows the result for thefib program, where the
number of chip runs is only reduced by 12% overall. One of
the reasons the overall improvement is lower for this program
is because it is short. For about the first 20% of the cycles
backspaced there is no correlation to sort the candidate pre-
images with.

6.1. Alternative Algorithms
To gain further insight, we tried several other algorithms.

First we investigated using the state the processor is currently
stopped at as the predictionp. Intuitively this would work
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Fig. 6: Average processor runs per correlation sample interval
for the 8051 runningsqroot. Enhanced is the BackSpace
algorithm using the algorithm proposed in Section 4 of this
paper.
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Fig. 7: Average processor runs per correlation sample interval
for the 8051 runningsort.
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Fig. 8: Average processor runs per correlation sample interval
for the 8051 runningfib.

if the unknown bits of the state do not change very much
from cycle to cycle. This algorithm (referred to as “Guess
No Change” in Table II) was able to predict the correct state
and reach the correct candidate pre-image on the first run
more often than the baseline, however, the overall performance
was 6% worse than the baseline. For the circuit we used, it
was found that the state bits have a zero bias, that is there
were more 0 bits in the trace than 1 bits. Guessing 0 for all
the unknown bits, and using the baseline ordering to resolve
ties, results in approximately the same performance as the
baseline. Randomizing the order before sorting based on a



TABLE II: The relative number of runs required to BackSpace
the different programs relative to the baseline.

sqroot sort fib
Enhanced 0.49 0.86 0.88
Randomized Guess 0 1.02 1.09 1.07
Guess No Change 1.07 1.09 0.94
Baseline 1.00 1.00 1.00
Random 1.25 2.11 2.06

guess of 0 (referred to as “Randomized Guess 0” in Table II)
for all the unknown bits results in performance 4% worse
than the baseline, but still requires 34% fewer runs than a
random ordering. These results may suggest that a portion of
the performance improvement of the order tried by the baseline
BackSpace algorithm over a random ordering results from
the tendency of the baseline BackSpace algorithm to order
states with more 0 bits first. The algorithm we propose in this
paper (“Enhanced”) performs better than the above simpler
algorithms.

7. Conclusion
BackSpace generates a trace showing the state of the chip

leading up to a crash. Each cycle added to the trace may
require running the chip multiple times in order to reach the
previous state. We proposed a technique where we use the
trace generated so far to compute the correlation between
state bits. Using this correlation information, we then make
a prediction about which potential previous states to try first.
Our results showed between 12% and 51% reduction in the
number of times the chip must be run over an entire trace
computation, which translates into a significant reductionin
runtime. In the future, we would like to investigate how our
algorithm scales with larger chip designs.
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