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Abstract

A consideration of Amdahl’s Law [9] suggests a
single-chip multiprocessor with asymmetric cores is a
promising way to improve performance [16]. In this
paper, we conduct a limit study of the potential benefit
of the tighter integration of a fast sequential core de-
signed for instruction level parallelism (e.g., an out-of-
order superscalar) and a large number of smaller cores
designed for thread-level parallelism (e.g., a graphics
processor). We optimally schedule instructions across
cores under assumptions used in past ILP limit studies.
We measure sensitivity to the sequential performance
(instruction read-after-write latency) of the low-cost
parallel cores, and latency and bandwidth of the com-
munication channel between these cores and the fast
sequential core. We find that the potential speedup of
traditional “general purpose” applications (e.g., those
from SpecCPU) as well as a heterogeneous workload
(game physics) on a CPU+GPU system is low (2.2×
to 12.7×), due to poor sequential performance of the
parallel cores. Communication latency and bandwidth
have comparatively small performance impact (1.07× to
1.48×) calling into question whether integrating onto
one chip both an array of small parallel cores and a
larger core will, in practice, benefit the performance of
these workloads significantly when compared to a sys-
tem using two separate specialized chips.

1 Introduction

As the number of cores integrated on a single chip
continues to increase, the question of how useful ad-
ditional cores will be is of intense interest. Recently,
Hill and Marty [16] combined Amdahl’s Law [9] and
Pollack’s Rule [28] to quantify the notion that single-
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chip asymmetric multicore processors may provide bet-
ter performance than using the same silicon area for a
single core or some number of identical cores. In this
paper we take a step towards refining this analysis by
considering real workloads and their behavior sched-
uled on an idealized machine while modeling commu-
nication latency and bandwidth limits.

Heterogeneous systems typically use a traditional
microprocessor core optimized for extracting instruc-
tion level parallelism (ILP) for serial tasks, while of-
floading parallel sections of algorithms to an array of
smaller cores to efficiently exploit available data and/or
thread level parallelism. The Cell processor [10] is a
heterogeneous multicore system, where a traditional
PowerPC core resides on the same die as an array
of eight smaller cores. Existing GPU compute sys-
tems [22, 2] typically consist of a GPU with a discrete
GPU attached via a card on a PCI Express bus. Al-
though development of CPU-GPU single-chip systems
has been announced [1], there is little published infor-
mation quantifying the benefits of such integration.

One common characteristic of heterogeneous multi-
core systems employing GPUs is that the small mul-
ticores for exploiting parallelism are unable to execute
a single thread of execution as fast as the larger se-
quential processor in the system. For example, recent
GPUs from NVIDIA have a register to register read-
after-write latency equivalent to 24 shader clock cy-
cles [25]1. This latency is due in part to the use of fine
grained multithreading [32] to hide memory access and
arithmetic logic unit latency [13]. Our limit study is
designed to capture this effect.

While there have been previous limit studies on
parallelism in the context of single-threaded machines
[7, 17, 15], and homogeneous multicore machines [21], a
heterogeneous system presents a different set of trade-

1The CUDA programming manual indicates 192 threads are

required to hide read-after-write latency within a single thread,

there are 32-threads per warp, and each warp is issued over four

clock cycles.



offs. It is no longer merely a question of how much par-
allelism can be extracted, but also whether the paral-
lelism is sufficient considering the lower sequential per-
formance (higher register read-after-write latency) and
communication overheads between processors. Fur-
thermore, applications with sufficient thread-level par-
allelism to hide communication latencies may diminish
the need for a single-chip heterogeneous system except
where system cost considerations limit total silicon area
to that available on a single-chip.

This paper makes the following contributions:

• We perform a limit study of an optimistic hetero-
geneous system consisting of a sequential proces-
sor and a parallel processor, modeling a traditional
CPU and an array of simpler cores for exploiting
parallelism. We use a dynamic programming algo-
rithm to choose points along the instruction trace
where mode switches should occur such that the
total runtime of the trace, including the penalties
incurred for switching modes, is minimized.

• We show the parallel processor array’s sequen-
tial performance (read-after-write latency) rela-
tive to the performance of the sequential processor
(CPU core) is a significant limitation on achievable
speedup for a set of general-purpose applications.
Note this is not the same as saying performance
is limited by the serial portion of the computa-
tion [9].

• We find that latency and bandwidth between the
two processors have comparatively minor effects
on speedup.

In the case of a heterogeneous system using a GPU-
like parallel processor, speedup is limited to only 12.7×
for SPECfp 2000, 2.2× for SPECint 2000, and 2.5× for
PhysicsBench [31]. When connecting the GPU using an
off-chip PCI Express-like bus, SPECfp achieves 74%,
SPECint 94%, and PhysicsBench 82% of the speedup
achievable without latency and bandwidth limitations.

We present our processor model in Section 2,
methodology in Section 3, analyze our results in Sec-
tion 4, review previous limit studies in Section 5, and
conclude in Section 6.

2 Modeling a Heterogeneous System

We model heterogeneous systems as having two pro-
cessors with different characteristics (Figure 1). The
sequential processor models a traditional processor core
optimized for ILP, while the parallel processor mod-
els an array of cores for exploiting thread-level paral-
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Figure 1. Conceptual Model of a Heteroge-
neous System. Two processors with different
characteristics (a) may, or (b) may not share
memory.

lelism. The parallel processor models an array of low-
cost cores by allowing parallelism, but with a longer
register read-after-write latency than the sequential
processor. The two processors may communicate over
a communication channel whose latency is high and
bandwidth is limited when the two processors are on
separate chips. We assume that the processors are at-
tached to ideal memory systems. Specifically, for de-
pendencies between instructions within a given core
(sequential or parallel) we assume store-to-load com-
munication has the same latency as communication via
registers (register read-after-write latency) on the same
core. Thus, the effects of long latency memory access
for the parallel core (assuming GPU-like fine-grained
multi-threading to tolerate cache misses) is captured in
the long read-to-write delay. The effects of caches and
prefetching on the sequential processor core are cap-
tured by its relatively short read-to-write delay. We
model a single-chip system (Figure 1(a)) with shared
memory by only considering synchronization latency,
potentially accomplished via shared memory (➊) and
on-chip coherent caches [33]. We model a system with
private memory (Figure 1(b)) by limiting the commu-
nication channel’s bandwidth and imposing a latency
when data needs to be copied across the link (➋) be-
tween the two processors.

Section 2.1 and 2.2 describe each portion of our
model in more detail. In Section 2.3 we describe our
algorithm for partitioning and scheduling an instruc-
tion trace to optimize its runtime on the sequential
and parallel processors.

2.1 Sequential Processor

We model the sequential processor as being able
to execute one instruction per cycle (CPI of one).
This simple model has the advantage of having pre-
dictable performance characteristics that make the op-
timal scheduling (Section 2.3) of work between sequen-
tial and parallel processors feasible. It preserves the



essential characteristic of high-ILP processors that a
program is executed serially, while avoiding the mod-
eling complexity of a more detailed model. Although
this simple model does not capture the CPI effects of a
sequential processor which exploits ILP, we are mainly
interested in the relative speeds between the sequential
and parallel processors. We account for sequential pro-
cessor performance due to ILP by making the parallel
processor relatively slower. In the remainder of this
paper, all time periods are expressed in terms of the
sequential processor’s cycle time.

2.2 Parallel Processor

We model the parallel processor as a dataflow pro-
cessor, where a data dependency takes multiple cy-
cles to resolve. This dataflow model is driven by our
trace based limit study methodology described in Sec-
tion 3.2, which assumes perfectly predicted branches
to uncover parallelism. Using a dataflow model, we
avoid the requirement of partitioning instructions into
threads, as done in the thread-programming model.
This allows us to model the upper bound of parallelism
for future programming models that may be more flex-
ible than threads.

The parallel processor can execute multiple instruc-
tions in parallel, provided data dependencies are satis-
fied. Slower sequential performance of the parallel pro-
cessor is modeled by increasing the latency from the
beginning of an instruction’s execution until the time
its result is available for a dependent instruction. We
do not limit the parallelism that can be used by the
program, as we are interested in the amount of paral-
lelism available in algorithms.

Our model can represent a variety of methods of
building parallel hardware. In addition to an array
of single-threaded cores, it can also model cores us-
ing fine-grain multithreading, like current GPUs. Note
that modern GPUs from AMD [3] and NVIDIA [23,
24] provide a scalar multithreaded programming ab-
straction even though the underlying hardware is
single-instruction, multiple data (SIMD). This execu-
tion mode has been called single-instruction, multiple
thread (SIMT) [14].

In GPUs, fine-grain multithreading creates the il-
lusion of a large amount of parallelism (>10,000s of
threads) with low per-thread performance, although
physically there is a lower amount of parallelism (100s
of operations per cycle), high utilization of the ALUs,
and frequent thread switching. GPUs use the large
number of threads to “hide” register read-after-write
latencies and memory access latencies by switching to
a ready thread. From the perspective of the algorithm,

a GPU appears as a highly-parallel, low-sequential-
performance parallel processor.

To model current GPUs, we use a register read-
after-write latency of 100 cycles. For example, cur-
rent Nvidia GPUs have a read-after-write latency of 24
shader clocks [25] and a shader clock frequency of 1.3-
1.5 GHz [23, 24]. The 100 cycle estimates includes the
effect of instruction latency (24×), the difference be-
tween the shader clock and current CPU clock speeds
(about 2×), and the ability of current CPUs to ex-
tract ILP—we assume an average IPC of 2 on current
CPUs, resulting in another factor of 2×. We ignore
factors such as SIMT branch divergence [8].

We note that the SPE cores on the Cell processor
have comparable read-after-write latency to the more
general purpose PPE core. However, the SPE cores are
not optimized for control-flow intensive code [10] and
thus may potentially suffer a higher “effective” read-
after-write latency on some general purpose code (al-
though quantifying such effects is beyond the scope of
this work).

2.3 Heterogeneity

We model a heterogeneous system by allowing an
algorithm to choose between executing on the sequen-
tial processor or parallel processor and to switch be-
tween them (which we refer to as a “mode switch”).
We do not allow concurrent execution of both proces-
sors. This is a common paradigm, where a parallel
section of work is spawned off to a co-processor while
the main processor waits for the results. The runtime
difference for optimal concurrent processing (e.g., as in
the asymmetric multicore chips analysis given by Hill
and Marty [16]) is no better than 2× compared to not
allowing concurrency.

We schedule an instruction trace for alternating ex-
ecution on the two processors. Execution of a trace on
each type of core was described in Sections 2.1 and 2.2.
For each mode switch, we impose a “mode switch cost”,
intuitively modeling synchronization time during which
no useful work is performed. The mode switch cost is
used to model communication latency and bandwidth
as described in Sections 2.3.2 and 2.3.3, respectively.
Next we describe our scheduling algorithm in more de-
tail.

2.3.1 Scheduling Algorithm

Dynamic Programming is often applied to find optimal
solutions to optimization problems. The paradigm re-
quires that an optimal solution to a problem be recur-
sively decomposable into optimal solutions of smaller



sub-problems, with the solutions to the sub-problems
computed first and saved in a table to avoid re-
computation [6].

In our dynamic programming algorithm, we aim to
compute the set of mode switches (i.e., scheduling) of
the given instruction trace that will minimize execu-
tion time, given the constraints of our model. We
decompose the optimal solution to the whole trace
into sub-problems that are optimal solutions to shorter
traces with the same beginning, with the ultimate sub-
problem being the trace with only the first instruction
that can be trivially scheduled. We recursively define a
solution to a longer trace by observing that a solution
to a long trace is composed of a solution to a shorter
sub-trace, followed by a decision on whether to perform
a mode switch, followed by execution of the remaining
instructions in the chosen mode.

The dynamic programming algorithm keeps a N×2
state table when given an input trace of N instructions.
Each entry in the state table records the cost of an op-
timal scheduling for every sub-trace (N of them) and
mode that was last used in those sub-traces (2 modes).
At each step of the algorithm, a solution for the next
sub-trace requires examining all possible locations of
the previous mode switch to find the one that gives the
best schedule. For each possible mode switch location,
the corresponding entry of the state table is examined
to retrieve the optimal solution for the sub-trace that
executes all instructions up to that entry in the cor-
responding state (execution on the sequential, or the
parallel core, respectively). This value is used to com-
pute a candidate state table entry for the current step
by adding the mode switch cost (if switching modes),
and the cost to execute the remaining section of the
trace from the candidate switch point up to the current
instruction in the current mode (sequential, parallel).
The lowest cost candidate over all earlier sub-traces is
chosen for the current sub-trace.

The naive optimal algorithm described above runs
in quadratic time with respect to the instruction trace
length. For traces of millions of instructions in length,
quadratic time is too slow. We make an approxima-
tion to enable the algorithm to run in time linear in
the length of the instruction trace. Instead of looking
back at all past instructions for each potential mode
switch point, we only look back 30,000 instructions.
The modified algorithm is no longer optimal. We miti-
gate this sub-optimality by first reordering instructions
before scheduling. We observed that the amount of
sub-optimality using this approach is insignificant.

To overcome the limitation of looking back only
30,000 instructions in our algorithm, we reorder
instructions in dataflow order before scheduling.

Dataflow order is the order in which instructions would
execute if scheduled with our optimal scheduling al-
gorithm. This linear-time preprocessing step exposes
parallelism found anywhere in the instruction trace by
grouping together instructions that can execute in par-
allel.

We remove instructions from the trace that do not
depend on the result of any other instruction. Most of
these instructions are dead code created by our method
of exposing loop- and function-level parallelism, de-
scribed in Section 3.2. Since dead code can execute
in parallel, we remove these instructions to avoid hav-
ing them inflate the amount of parallelism we observe.
Across our benchmark set, 27% of instructions are re-
moved by this mechanism. Note that the dead code we
are removing is not necessarily dynamically dead [5],
but rather overhead related to sequential execution of
parallel code. The large number of instructions re-
moved results from, for example, the expansion of x86
push and pop instructions (for register spills/fills) into
a load or store micro-op (which we keep) and a stack-
pointer update micro-op (which we do not keep).

2.3.2 Latency

We model the latency of migrating tasks between pro-
cessors by imposing a constant runtime cost for each
mode switch. This cost is intended to model the la-
tency of spawning a task, as well as transferring of
data between the processors. If the amount of data
transferred is large relative to the bandwidth of the
link between processors, this is not a good model for
the cost of a mode switch. This model is reasonable
when the mode switch is dominated by latency, for ex-
ample in a heterogeneous multicore system where the
memory hierarchy is shared (Figure 1(a)), so very little
data needs to be copied between the processors.

As described in Section 2.3, our scheduling algo-
rithm considers the cost of mode switches. A mode
switch cost of zero would allow freely switching be-
tween modes, while a very high cost would constrain
the scheduler to choose to run the entire trace on one
processor or the other, whichever was faster.

2.3.3 Bandwidth

Bandwidth is a constraint that limits the rate that data
can be transferred between processors in our model.
Note that this does not apply to the processors’ link to
its memory (Figure 1), which we assume to be uncon-
strained. In our shared-memory model (Figure 1(a))
mode switches do not need to copy large amounts of
data so only latency (Section 2.3.2) is a relevant con-
straint. In our private-memory model (Figure 1(b)),



bandwidth is consumed on the link connecting proces-
sors as a result of a mode switch.

If a data value is produced by an instruction in one
processor and consumed by one or more instructions in
the other processor, then that data value needs to be
communicated to the other processor. A consequence
of exceeding the imposed bandwidth limitation is the
addition of idle computation cycles while an instruc-
tion waits for its required operand to be transferred.
In our model, we assume opportunistic use of band-
width, allowing communication of a value as soon as it
is ready, in parallel with computation.

Each data value to be transferred is sent sequentially
and occupies the communication channel for a specific
amount of time. Data values can be sent any time after
the instruction producing the value executes, but must
arrive before the first instruction that consumes the
value is executed. Data transfers are scheduled onto
the communication channel using an “earliest deadline
first” algorithm, which produces a scheduling with a
minimum of added idle cycles.

Bandwidth constraints are applied by changing the
amount of time each data value occupies on the com-
munication channel. Communication latency is applied
by setting the deadline for a value some number of cy-
cles after the value is produced.

Computing the bandwidth requirements and idle cy-
cles needed, and thus the cost to switch modes, requires
a scheduling of the instruction trace, but the optimal
instruction trace scheduling is affected by the cost of
switching modes. We approximate the ideal behav-
ior by iteratively performing scheduling using a con-
stant mode switch overhead for each mode switch and
then updating the average penalty due to bandwidth
consumption across all mode switches, then using the
new estimate of average switch cost as input into the
scheduling algorithm, until convergence.

3 Simulation Infrastructure

We evaluate performance using micro-op traces ex-
tracted from execution of a set of x86-64 benchmarks
on the PTLsim [18] simulator. Each micro-op trace
was then scheduled using our scheduling algorithm for
execution on the heterogeneous system.

3.1 Benchmark Set

We chose our benchmarks with a focus towards
general-purpose computing. We used the reference
workloads for SPECint and SPECfp 2000 v1.3.1 (23
benchmarks, except 253.perlbmk and 255.vortex which

Benchmark Description
linear Compute average of 9 input pixels for

each output pixel. Each pixel is inde-
pendent.

sepia 3× 3 constant matrix multiply on each
pixel’s 3 components. Each pixel is in-
dependent.

serial A long chain of dependent instructions,
has parallelism approximately 1 (no
parallelism).

twophase Loops through two alternating phases,
one with no parallelism, one with high
parallelism. Needs to switch between
processor types for high speedup.

Table 1. Microbenchmarks

did not run in our simulation environment), Physics-
Bench 2.0 [31] (8 benchmarks), SimpleScalar 3.0 [29]
(used here as a benchmark), and four small mi-
crobenchmarks (described in Table 1).

We chose PhysicsBench because it contains both se-
quential and parallel phases in the benchmark, and
would be a likely candidate to benefit from heterogene-
ity, as it would be unsatisfactory if both types of phases
were constrained to one processor type [31].

Our SimpleScalar benchmark used the out-of-order
processor simulator from SimpleScalar/PISA, running
go from SPECint 95, compiled for PISA.

We used four microbenchmarks to observe behav-
ior at extremes of parallelism, as shown in Table 1.
Linear and sepia are highly parallel, serial is serial,
and twophase has alternating highly parallel and serial
phases.

Figure 2 shows the average parallelism present in our
benchmark set. As expected, SPECfp has more par-
allelism (611) than SPECint (116) and PhysicsBench
(83). Linear (4790) and sepia (6815) have the high-
est parallelism, while serial has essentially no paral-
lelism.

3.2 Traces

Micro-op traces were collected from PTLsim run-
ning x86-64 benchmarks, compiled with gcc 4.1.2 -O2.
Four microbenchmarks were run in their entirety, while
the 32 real benchmarks were run through SimPoint [30]
to choose representative sub-traces to analyze. Our
traces are captured at the micro-op level, so in this pa-
per instruction and micro-op are used interchangeably.

We used SimPoint to select simulation points of
10-million micro-ops in length from complete runs of
benchmarks. As recommended [30], we allowed Sim-



1

10

100

1000

10000

P
a
r
a
ll
e
li
s
m

Figure 2. Average Parallelism of Our Benchmark Set

Point to decide how many simulation points should be
used to approximate the entire benchmark run. We av-
eraged 12.9 simulation points per benchmark. This is a
significant savings over the complete benchmarks which
were typically several hundred billion instructions long.
The weighted average of the results over each set of
SimPoint traces are presented for each benchmark.

We assume branches are correctly predicted. Many
branches, like loops, can often be easily predicted or
speculated or even restructured away during manual
parallelization. As we are trying to evaluate the upper-
bound of parallelism in an algorithm, we avoid limiting
parallelism by not imposing the branch-handling char-
acteristics of sequential machines. This is somewhat
optimistic as true data-dependent branches would at
least need be converted into speculation or predicated
instructions.

Each trace is analyzed for true data dependencies.
Register dependencies are recognized if an instruction
consumes a value produced by an earlier instruction
(read-after-write). Dependencies on values carried by
the instruction pointer register are ignored, to avoid
dependencies due to instruction-pointer-relative data
addressing. Like earlier limit studies [17, 15], stack
pointer register manipulations are ignored, to extract
parallelism across function calls. Memory disambigua-
tion is perfect: Dependencies are carried through mem-
ory only if an instruction loads a value from memory
actually written by an earlier instruction.

It is also important to be able to extract loop-level
parallelism and avoid serialization of loops through the
loop induction variable. We implemented a generic so-
lution to prevent this type of serialization. We identify
instructions that produce result values that are stati-

cally known, which are instructions that have no input
operands (e.g. load constant). We then repeatedly
look for instructions dependent only on values that are
statically known and mark the values they produce as
statically known as well. We then remove dependencies
on all statically-known values. This is similar to repeat-
edly applying constant folding and constant propaga-
tion optimizations [20] to the instruction trace. The
dead code that results is removed as described in Sec-
tion 2.3.

A loop induction variable [20] is often initialized
with a constant (e.g. 0). Incrementing the induction
variable by a constant depends only on the initializa-
tion value of the induction variable, so the incremented
value is also statically known. Each subsequent incre-
ment is likewise statically known. This removes seri-
alization caused by the loop control variable, but pre-
serves genuine data dependencies between loop itera-
tions, including loop induction variable updates that
depend on a variable computed value.

4 Results

In this section, we present our analysis of our ex-
perimental results. First, we look at the speedup that
can be achieved when adding a parallel co-processor
to a sequential machine and show that the speedup is
highly dependent on the parallel instruction latency.
We define parallel instruction latency as the ratio of
the read-after-write latency of the parallel cores (recall
we assume a CPI of one for the sequential core). We
then look at the effect of communication latency and
bandwidth as parallel instruction latency is varied, and
see that the effect is significant, but small.
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Figure 3. Proportion of Instructions Sched-
uled on Parallel Core. Real benchmarks (a),
Microbenchmarks(b)

4.1 Why Heterogeneous?

Figures 3 and 4 give some intuition for the charac-
teristics of the scheduling algorithm. Figure 4 shows
the parallelism of the instructions that are scheduled
to use the parallel processor when our workloads are
scheduled for best performance. Figure 3(a) shows the
proportion of instructions that are assigned to execute
on the parallel processor. As the instruction latency
increases, sections of the workload where the benefit
of parallelism does not outweigh the cost of slower se-
quential performance become scheduled onto the se-
quential processor, raising the average parallelism of
those portions that remain on the parallel processor,
while reducing the proportion of instructions that are
scheduled on the parallel processor. The instructions
that are scheduled to run on the sequential processor
receive no speedup, but scheduling more instructions
on the parallel processor in an attempt to increase par-
allelism will only decrease speedup.

The microbenchmarks in Figure 3(b) show our
scheduling algorithm works as expected. Serial has
nearly no instructions scheduled for the parallel core.
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Figure 4. Parallelism on Parallel Processor

Twophase has about 18.5% of instructions in its serial
component that are scheduled on the sequential pro-
cessor leaving 81.5% on the parallel processor, while
sepia and linear highly prefer the parallel processor.

We look at the potential speedup of adding a par-
allel processor to an existing sequential machine. Fig-
ures 5(a) and (b) show the speedup of our benchmarks
for varying parallel instruction latency, as a speedup
over a single sequential processor. Two plots for each
benchmark group are shown: The solid plots show the
speedup of a heterogeneous system where communica-
tion has no cost, while the dashed plot shows speedup
when communication is very expensive. We focus on
the solid plots in this section.

It can be observed from Figures 5(a) and (b) that
as the instruction latency increases, there is a signifi-
cant loss in the potential speedup provided by the extra
parallel processor, becoming limited by the amount of
parallelism available in the workload that can be ex-
tracted, as seen in Figure 3. Since our parallel proces-
sor model is somewhat optimistic, the speedups shown
here should be regarded as an upper bound of what
can be achieved.

With a parallel processor with GPU-like instruc-
tion latency of 100 cycles, SPECint would be lim-
ited to a speedup of 2.2×, SPECfp to 12.7×, Physics-
Bench to 2.5×, with 64%, 92%, and 72% of instructions
scheduled on the parallel processor, respectively. The
speedup is much lower than the peak relative through-
put of a GPU compared to a sequential CPU (≈ 50×),
which shows that if a GPU-like processor were used as
the parallel processor in a heterogeneous system, the
speedup on these workloads would be limited by the
parallelism available in the workload, while still leav-
ing much of the GPU hardware idle.

In contrast, for highly-parallel workloads, the
speedups achieved at an instruction latency of 100 are
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Figure 5. Speedup of Heterogeneous System:
(a) Real benchmarks, (b) Microbenchmarks.
Ideal communication (solid), communication
forbidden (dashed, NoSwitch).

similar to the peak throughput available in a GPU. The
highly-parallel linear filter and sepia tone filter (Fig-
ure 5(b)) kernels have enough parallelism to achieve
50-70× speedup at an instruction latency of 100. A
highly-serial workload (serial) does not benefit from the
parallel processor.

Although current GPU compute solutions built with
efficient low-complexity multi-threaded cores are suf-
ficient to accelerate algorithms with large amounts
of thread-level parallelism, general-purpose algorithms
would be unable to utilize the large number of thread
contexts provided by the GPU, while under-utilizing
the arithmetic hardware available.

4.2 Communication

In this section, we evaluate the impact of com-
munication latency and bandwidth on the potential
speedup, comparing performance between the extreme
cases where communication is unrestricted and commu-
nication is forbidden. The solid plots in Figure 5 show
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Figure 6. Slowdown of infinite communica-
tion cost (NoSwitch) compared to zero com-
munication cost. Real benchmarks (a), Mi-
crobenchmarks (b).

speedup when there are no limitations on communi-
cation, while the dashed plots (marked NoSwitch) has
communication so expensive that the scheduler chooses
to run the workload entirely on the sequential pro-
cessor or parallel processor, never switching between
them. Figures 6(a) and (b) show the ratio between the
solid and dashed plots in Figures 5(a) and (b), respec-
tively, to highlight the impact of communication. At
both extremes of instruction latency, where the work-
load is mostly sequential or mostly parallel, commu-
nication has little impact. It is in the moderate range
around 100-200 where communication potentially mat-
ters most.

The potential impact of expensive (latency and
bandwidth) communication is significant. For exam-
ple, at a GPU-like instruction latency of 100, SPECint
achieves only 56%, SPECfp 23%, and PhysicsBench
44% of the performance of no communication, as can
be seen in Figure 6(a). From our microbenchmark set
(Figures 5(b) and 6(b)), twophase is particularly sen-
sitive to communication costs, and gets no speedup for
instruction latency above 10. We look at more realistic
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Figure 7. Slowdown due to 100,000 cycles of
mode-switch latency. Real benchmarks.

constraints on latency and bandwidth in the following
sections.

4.2.1 Latency

Poor parallel performance is often attributed to high
communication latency [21]. Heterogeneous processing
adds a new communication requirement—the commu-
nication channel between sequential and parallel pro-
cessors (Figure 1). In this section, we measure the
impact of the latency of this communication channel.

We model this latency by requiring that switching
modes between the two processor types causes a fixed
amount of idle computation time. In this section, we do
not consider the bandwidth of the data that needs to
be transferred. This model represents a heterogeneous
system with shared memory (Figure 1(a)), where mi-
grating a task does not involve data copying, but only
involves a pipeline flush, notification to the other pro-
cessor of work, and potentially flushing private caches
if caches are not coherent.

Figure 7 shows the slowdown when we include
100,000 cycles of mode-switch latency in our perfor-
mance model and scheduling, when compared to zero-
latency mode switch.

The impact of imposing a delay for every mode
switch has only a minor effect on runtime. Although
Figure 6(a) suggested that the potential for perfor-
mance loss due to latency is great, even when each
mode switch costs 100,000 cycles (greater than 10us
at current clock rates), most of the speedup remains.
We can achieve ≈85% of the performance of a hetero-
geneous system with zero-cost communication. Stated
another way, reducing latency between sequential and
parallel cores might provide an average ≈ 18% perfor-
mance improvement.

To gain further insight into the impact of mode
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Figure 8. Mode switches as switch latency
varies: (a) zero cycles, (b) 10 cycles, (c) 1000
cycles.

switch latency, Figure 8 illustrates the number of mode
switches per 10 million instructions as we vary the cost
of switching from zero to 1000 cycles. As the cost of
a mode switch increases the number of mode switches
decreases. Also, more mode switches occur at interme-
diate values of parallel instruction latency where the
benefit of being able to use both types processors out-
weighs the cost of switching modes.

For systems with private memory (e.g. discrete
GPU), data copying is required when migrating a task
between processors at mode switches. We consider
bandwidth constraints in the next section.

4.2.2 Bandwidth

In the previous section, we saw that high communi-
cation latency had only a minor effect on achievable
performance. Here, we place a bandwidth constraint
on the communication between processors. Data that
needs to be communicated between processors is re-
stricted to a maximum rate, and the processors are
forced to wait if data is not available in time for an
instruction to use it, as described in Section 2.3.3. We
also include 1,000 cycles of latency as part of the model.

We first construct a model to represent PCI Express,
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as discrete GPUs are often attached to the system this
way. PCI Express x16 has a peak bandwidth of 4GB/s
and latency around 250ns [4]. Assuming current pro-
cessors perform about 4 billion instructions per second
on 32-bit data values, we can model PCI Express us-
ing a latency of about 1,000 cycles and bandwidth of 4
cycles per 32-bit value. Being somewhat pessimistic to
account for overheads, we use a bandwidth of 8 cycles
per 32-bit value (about 2GB/s).

Figure 9 shows the performance impact of restrict-
ing bandwidth to one 32-bit value every 8 clocks with
1,000 cycles of latency. Slowdown is worse than with
100,000 cycles of latency, but the benchmark set af-
fected the most (SPECfp) can still achieve ≈67.4% of
the ideal performance at a parallel instruction latency
of 100. Stated another way, increasing bandwidth be-
tween sequential and parallel cores might provide an

average 1.48× performance improvement for workloads
like SPECfp. For workloads such as PhysicsBench and
SPECint the potential benefits appear lower (1.33×
and 1.07× potential speedup, respectively). Compar-
ing latency (Figure 7) to bandwidth (Figure 9) con-
straints, SPECfp and PhysicsBench has more perfor-
mance degradation than under a pure-latency con-
straint, but SPECint performs better, suggesting that
SPECint is less sensitive to bandwidth.

The above plots suggest that a heterogeneous sys-
tem attached without a potentially-expensive, low-
latency, high-bandwidth communication channel can
still achieve much of the potential speedup.

To further evaluate whether GPU-like systems could
be usefully attached using even lower bandwidth in-
terconnect, we measure the sensitivity of performance
to bandwidth for instruction latency 100. Figure 10
shows the speedup for varying bandwidth. Bandwidth
(x-axis) is normalized to 1 cycle per datum, equivalent
to about 16GB/s in today’s systems. Speedup (y-axis)
is relative to the workload running on a sequential pro-
cessor.

SPECfp and PhysicsBench have similar sensitivity
to reduced bandwidth, while SPECint’s speedup loss
at low bandwidth is less significant (Figure 10). Al-
though there is some loss of performance at PCI Ex-
press speeds (normalized bandwidth = 1/8), about half
of the potential benefit of heterogeneity remains at
PCI-like speeds (normalized bandwidth = 1/128). At
PCI Express x16 speeds, SPECint can achieve 92%,
SPECfp 69%, and PhysicsBench 78% of the speedup
achievable without latency and bandwidth limitations.

As can be seen from the above data, heteroge-
neous systems can potentially provide significant per-
formance improvements on a wide range of applica-
tions, even when system cost sensitivity demands high-
latency, low-bandwidth interconnect. However, it also
shows that applications are not entirely insensitive to
latency and bandwidth, so high-performance systems
will still need to worry about increasing bandwidth and
lowering latency.

The lower sensitivity to latency than to bandwidth
suggests that a shared-memory multicore heteroge-
neous system would be of benefit, as sharing a single
memory system avoids data copying when migrating
tasks between processors, leaving only synchronization
latency. This could increase costs, as die size would
increase, and the memory system would then need to
support the needs of both sequential and parallel pro-
cessors. A high-performance off-chip interconnect like
PCI Express or HyperTransport may be a good com-
promise.



5 Related Work

There have been many limit studies on the amount
of parallelism within sequential programs.

Wall [7] studies parallelism in SPEC92 under vari-
ous limitations in branch prediction, register renaming,
and memory disambiguation. Lam et al. [17] stud-
ies parallelism under branch prediction, condition de-
pendence analysis, and multiple-fetch. Postiff et al.
[15] perform a similar analysis on the SPEC95 suite
of benchmarks. These studies showed that significant
amounts of parallelism exist in typical applications un-
der optimistic assumptions. These studies focused on
extracting instruction-level parallelism on a single pro-
cessor. As it becomes increasingly difficult to extract
ILP out of a single processor, performance increases
often comes from multicore systems.

As we move towards multicore systems, there are
new constraints, such as communication latency, that
are now applicable. Vachharajani et al. [21] studies
speedup available on homogeneous multiprocessor sys-
tems. They use a greedy scheduling algorithm to assign
instructions to cores. They also scale communication
latency between cores in the array of cores and find
that it is a significant limit on available parallelism.

In our study, we extend these analyses to heteroge-
neous systems, where there are two types of processors.
Vachharajani examined the impact of communication
between processors within a homogeneous processor ar-
ray. We examine the impact of communication between
a sequential processor and an array of cores. In our
model, we roughly account for communication latency
between cores within an array of cores by using higher
instruction read-after-write latency.

Heterogeneous systems are interesting because they
are commercially available [10, 25, 2] and, for GPU
compute systems, can leverage the existing software
ecosystem by using the traditional CPU as its sequen-
tial processor. They have also been shown to be more
area and power efficient [16, 26, 27] than homogeneous
multicore systems.

Hill and Marty [16] uses Amdahl’s Law to show that
there are limits to parallel speedup, and makes the
case that when one must trade per-core performance
for more cores, heterogeneous multiprocessor systems
perform better than homogeneous ones because non-
parallelizable fragments of code do not benefit from
more cores, but do suffer when all cores are made slower
to accommodate more cores. They indicate that more
research should be done to explore “the scheduling and
overhead challenges that Amdahl’s model doesn’t cap-
ture”. Our work can be viewed as an attempt to further
quantify the impact that these challenges present.

6 Conclusion

We conducted a limit study to analyze the behavior
of a set of general purpose applications on a heteroge-
neous system consisting of a sequential processor and
a parallel processor with higher instruction latency.

We showed that instruction read-after-write latency
of the parallel processor was a significant factor in per-
formance. In order to be useful for applications without
copious amounts of parallelism, we believe that instruc-
tion read-after-write latencies of GPUs will need to de-
crease and thus GPUs can no longer rely exclusively on
fine-grain multithreading to keep utilization high. We
note that VLIW or superscalar issue combined with
fine-grained multithreading [3, 19] do not inherently
mitigate this read-after-write latency, though adding
forwarding [12] might. Our data shows that latency
and bandwidth of communication between the parallel
cores and the sequential core, while significant factors,
have comparatively minor effects on performance. La-
tency and bandwidth characteristics of PCI Express
was sufficient to achieve most of the available perfor-
mance.

Note that since our results are normalized to the
sequential processor, our results scale as processor de-
signs improve. As sequential processor performance
improves in the future, the read-after-write latency
of the parallel processor will also need to improve to
match.

Manufacturers have and will likely continue to build
single-chip heterogeneous multicore processors. The
data presented in this paper may suggest the reasons
for doing so are other than to obtain higher perfor-
mance from reduced communication overheads on gen-
eral purpose workloads. A subject for future work is
evaluating whether such conclusions hold under more
realistic evaluation scenarios (limited hardware paral-
lelism, detailed simulations, real hardware) along with
exploration of a wider set of applications (ideally in-
cluding real workloads carefully tuned specifically for a
tightly coupled single-chip heterogeneous system). As
well, this work does not quantify the effect that in-
creasing problem size [11] may have on the question of
the benefits of heterogeneous (or asymmetric) multi-
core performance.
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